
Supporting Engineering Requirements in the Rubus
Component Model

Kaj Hänninen∗†, Jukka Mäki-Turja∗, Mikael Nolin∗‡,
Mats Lindberg†, John Lundbäck† and Kurt-Lennart Lundbäck†
∗Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden

†Arcticus Systems, Järfälla, Sweden
‡CC Systems, Uppsala, Sweden

Abstract— In this paper we present a component model for
development of distributed real-time systems. The model is de-
veloped to support development of embedded control systems for
ground vehicles. The model aims at supporting three important
activities in real-time development, (i) design, (ii) analysis and
(iii) synthesis. These activities emphasise different and sometimes
conflicting requirements that need to be balanced. For example,
developers desire freedom in designing to solve complex tasks,
analysis tools require the design to be formal enough for analysis
and synthesis need to be efficient for low run-time footprint. We
have considered industrial requirements for these activities and
developed the RubusCMv3 component model. The model has
been developed in close cooperation with industrial partners and
it is currently being evaluated on real systems.

I. INTRODUCTION

The industrial requirements on embedded computer sys-
tems are constantly evolving. With the flexibility offered by
software, the complexity of system designs and the amount
of advanced computer controlled functionality in products is
increasing. In the automotive domain, for example, systems
are typically characterised by having a mix of requirements
ranging from hard real-time, soft and even non real-time whilst
operating in a resource constrained environment. Historically,
developers of embedded real-time systems have used low
level programming languages to guarantee full control of the
system behaviour. Hence, many embedded real-time systems
have become overly complex and hard to manage during
functionality or technology shifts. The variety of functionality
in today’s embedded systems requires development methods
and tools that support flexible and efficient development.

In resent years, Component Based Development (CBD), has
shown to be successful in development of complex desktop
applications. It is an emerging development discipline in which
software systems are built by assembling pieces of software
units, components, into larger systems. Components are self
contained units that provide natural units of reuse by en-
capsulating functionality into manageable blocks of software.
In general, components provide possibilities for high level
architectural descriptions, hence, serving as descriptive entities
and reusable logic.

Component based engineering has had a tremendous im-
pact in the office-/Internet-area. Today, there exists several
commercial component technologies for the desktop- and
Internet-market, e.g., COM/DCOM [1], Corba [2] [3], Java

Beans/EJB [4] [5], .NET [6] are readily available and used by
developers on a day-to-day basis. However, these technologies
are typically not suitable for embedded control systems [7]. In
the embedded systems domain, CBSE is still only perceived
as a promising future technology. Several component models
and technologies for embedded systems have been proposed
(e.g. Koala [8], PECOS [9] [10], MetaH [11], VEST [12],
the control server [13], ReFlex [14] and [15] etc.). Projects
such a Space4U [16], its predecessor Robocop [17], DECOS
[18], SAVE [19] and PROGRESS [20] are targeting CBSE for
embedded systems. Ever still, there is an apprehension that
current tools and methods for embedded CBSE are lacking
one or more key-properties to support industrial requirements
such as:

• giving the software developer suitable level of expressive-
ness and/or abstraction

• enabling development of both safety critical and flexible
functionality in a system

• enabling code and architecture reuse
• supporting development of predictable and resource effi-

cient systems

To summarise, we recognise three important aspects of com-
ponent based software development for resource constrained
and predictable real-time systems: (a) the aspects of the
developer, (b) the aspects of the analysis framework, and (c)
the aspect of the run-time system. These three different aspects
emphasise different, and sometimes conflicting, requirements
for design, analysis and synthesis. For example, the devel-
opers must have sufficient methods and tools to design the
overall software architecture. The analysis framework needs
the architecture to be formal enough for automated analysis
of important properties. And finally, the solution must be able
to execute resource efficiently in the run-time platform. Any
development strategy, for resource constrained and predictable
real-time systems, has to take into account and balance these
aspects to gain industrial usefulness.

In this paper we present a novel component model,
RubusCMv3, for development of embedded control systems
with a mix of hard, soft and non real-time requirements. The
model is developed as a joint effort between industrial partners
and the MultEx project [21] at Mälardalen Real-Time research
Centre. The objective of the model is to support and balance

common requirements in design, analysis and synthesis of
embedded real-time control systems.

Paper outline. The reminder of this paper is organised as
follows. In section II we outline some common requirements in
development of embedded software. In section III we describe
the main objectives of the RubusCMv3 component model.
In section IV the architectural elements of RubusCMv3 are
presented. In section V we show a simple design of an
oil pressure supervision to illustrate features of RubusCMv3.
In section VI we discuss the key-properties supported by
RubusCMv3. Finally, in section VII we conclude the work
described in this paper.

II. ENGINEERING REQUIREMENTS ON RUBUSCMV3

The fact that more and more mechanical solutions are
replaced with software, results in an increasing system com-
plexity. Today’s embedded systems are typically characterised
by having a mix of functionality with requirements ranging
from hard real-time, soft and even non real-time. Many of
these systems operate in resource constrained environments
that need to satisfy requirements on dependability and effi-
cient resource usage. For example, in a recent study [22],
we discovered that vehicular systems are rapidly evolving
and contain more heterogeneous functionality than before.
Control applications, information handling and entertainment
supplies, are nowadays supported in software by a mix of
hard and soft real-time requirements. In addition, developers
predict an increase in information intensity and a continuing
increase in diversity of functionality. Safety and reliability
are of utmost importance and considered key properties in
development. This implies that development models must be
able to support development and analysis of safety critical
functionality, as well as development of flexible and resource
efficient functionality.

III. OBJECTIVE OF RUBUSCMV3

This section describes the main objectives of the Rubus
component model. The objectives are derived from a recent
study of industrial requirements in development of embedded
systems in the vehicle domain [22]. One of the key objectives
of the RubusCMv3 model is to support an overall descriptive
view of the system functionality, i.e., serving as a system
description facilitating reasoning about the functionality at a
high level. Furthermore, abstraction mechanisms should be
supported through hierarchical decomposition. This allows
reasoning on different levels of abstraction. Besides having
different levels of abstraction a user should be able to see the
system through different views, highlighting different aspects.
For example, a developer might be interested in the functional
view when first designing the system, and later on, focus on
the real-time temporal aspects, hiding unnecessary details of
the functional aspects. Thus it must be possible to express
both real-time requirements and real-time properties of the
design. The overall purpose of the component model should
be to express the infrastructure of software functions, i.e.,
the interaction between software functions in terms of data-

and control-flow. One important principle is to separate code
and infrastructure, i.e., explicit synchronisation or data access
should all be visible in the infrastructure level. Separating code
and infrastructure facilitates analysis and reuse of components
in different contexts.

The component model should have a formal syntax and
semantics and thus lend itself to formal analysis at an early
stage. This allows timing errors to be revealed at an early
stage in development. Real-time attributes on components can
be expressed as budgets or estimates, enabling analysis of, for
example, memory consumption and temporal attributes. These
budgets can then serve as implementation requirements at a
later stage in development.

The resulting architecture must be efficiently mapped to
a run-system. With the diverging type of functionality in
today’s embedded systems, suitable execution models, such
as hybrid scheduling [23], have to be supported. Hence, the
user should be able to express events in terms of clocks and
internal/external events.

IV. THE RUBUSCMV3 COMPONENT MODEL

The component model is developed as a part of the Rubus
concept [24]. Rubus emanates from Basement [25], and was
first introduced for industrial use in 1996. Throughout the
years Rubus been used by a number of companies, e.g., [26]–
[29] for development of real-time software.

The RubusCMv3 model is intentionally simple, still giv-
ing enough expressiveness for development and analysis of
resource constrained systems with mixed real-time require-
ments. It is intended for development of software architectures
expressing data-flow and synchronisation between software
entities in single and multi-node systems.

In the following sections, we describe the architectural
elements for hierarchical decomposition of software logic and
assignment of real-time properties in RubusCMv3.

A. Software logic

Software circuits
Software circuits (SWCs) are the basic unit of hierarchical de-
composition in RubusCMv3. The primary purpose of an SWC
is to encapsulate functions, hence a SWC can have multiple
behaviours, each one represented by a specific entry function
serving as the starting point of execution. Each SWC is defined
by its behaviour, interface and an internal state data. Interfaces
manage interaction between SWCs through ports. Two types
of ports are supported, data ports for data flow and trigger
ports for control flow. A SWC receives data(D)/triggering(T)
on its input ports(I) and produces data/triggering to its output
ports(O). Fig. 1 shows the graphical notation of an SWC in
RubusCMv3. OTU denotes unconditional triggering, i.e., a
trigger signal that is always produced, whereas UTC denotes
conditional triggering meaning that the trigger signal on the
UTC port may be produced, depending on conditions within
the SWC. Data transfer/triggering between two SWCs require
that output ports of the transmitting component are connected
to input ports on the receiving component. If a data output

port and a trigger output port from the same component is
connected to one other component, then the run-time environ-
ment must guarantee that the data will arrive to the destination
before it is triggered by the source.

ID OD

IT OTU

OTC

SWC

ID OD

IT OTU

OTC

SWC

Fig. 1. Graphical description of a software circuit

A SWC becomes eligible for execution when its trigger
condition is true, i.e., when the input trigger port receives a
trigger signal. Each SWCs executes with a run to completion
semantics as shown in Fig. 2, i.e., a SWC is not allowed to
have synchronisation primitives defined within its behaviour
(i.e., in the source code of the component), meaning that all
synchronisations must visible in the design and represented by
synchronisation objects. Before an SWC becomes executing it
first reads the data on the data input ports. When the SWC
terminates, it produces data/trigger on its output ports and
reverts to its idle state.

IDLE

READY

COPY INPUT

EXECUTE

PRODUCE OUTPUT

TERMINATE

1

2

3

4

5

6

IDLE

READY

COPY INPUT

EXECUTE

PRODUCE OUTPUT

TERMINATE

IDLE

READY

COPY INPUT

EXECUTE

PRODUCE OUTPUT

TERMINATE

11

22

33

44

55

66

Fig. 2. Run-cycle of software circuit

A SWC may preserve its internal state data between
executions. The internal state of an SWC must be initialised
by a constructor in the SWC and cleaned up by a destructor
in the SWC. The constructor must be called by the run-time
environment at system start up, and the destructor must be
called when the system is shutdown in an orderly fashion.

Assemblies and composites
Assemblies and composites (ASMs/CMPs) provide ways
to connect a set of SWCs. They also provide means for
hierarchical decomposition of SWCs and their connections.
ASMs/CMPs provides no semantics, hence the purpose of
ASMs/CMPs is to provide structure and increased abstraction,
i.e., to abstract details of the software architecture. Assemblies
and composites communicate through a set in- and output
ports, similar to SWCs. Composites differ from assemblies
in the sense that a composite object can be divided and parts
of it can be deployed on different nodes, whereas assembly
objects are un-dividable objects that cannot be split during
deployment, i.e., an assembly object can only be deployed as
a whole objects to a single node. Fig. 3 shows the graphical
notation of an ASM in RubusCMv3

ID OD

IT OTU

ID

IT

SWC_A SWC_B

OD

OTU

ID

IT

OD

OT

ASM_AB

ID OD

IT OTU

ID

IT

SWC_A SWC_B

OD

OTU

ID

IT

OD

OT

ASM_AB

Fig. 3. Graphical description of an assembly

Modes
Modes are means to distinguish different states or conditions
of a system. Each mode describes the functionality that is
relevant for that mode. For example, a system may execute a
certain type of functionality during start-up, and other type
of functionality when in operational mode. Mode transitions
are specified in order to show the transitions that are legal in
the system. This is illustrated by a high level state diagram
describing switches between different system functionality. In
RubusCMv3, the mode objects are treated as self contained
applications, realising the operational conditions of a system.
Modes are semantically seen as synchronised only within
a single node. Fig. 4 shows an example of modes and
transitions within an ECU.

INIT. RUNNING
SHUT
DOWN

ERROR

ECU

INIT. RUNNING
SHUT
DOWN

ERROR

ECU

Fig. 4. Example of modes and mode transitions in an ECU

System
A system is the top level hierarchical entity, describing the
software logic and architecture for a complete, possibly
distributed, system. A system contains no assignments to
platforms.

Logic objects for data and triggering
RubusCMv3 also defines the following software logic items
for data and triggering (Fig. 5):

• Source items are used to, (i) define constant values on
data input ports, (ii) indicate an unconnected trigger input
port, i.e., a port that will not be triggered.

• Sink items are terminators of data- and trigger output
ports. The sink object indicates that the data or trigger
from the output port will be terminated, i.e., the control
or data flow from the port terminates at the sink.

• Named data items can be described as collectors of
data. The item has blackboard semantics, i.e., any of
the architectural element (described above), can write
and read from a named data. Moreover, entities that are
external to the model may read and write named data.

• Clock items define periodic triggering. A clock object has
an trigger output port activated with a specified frequency.
In addition, a clock object may define a possible delay
(offset time) specifying the minimum delay, from that the
clock produces a trigger out, until the first logic object
connected to the trigger output port on the clock, may be
activated for execution.

• Interrupt and event items define external interrupts, in-
ternal and external events. These items are used to define
events generated either by hardware or other software
items. Events are specified by a minimum interarrival
time (MINT) and priority. MINT specifies the shortest
time between two consecutive activation of an event. The
priority denotes the priority of the event (for events that
correspond to interrupts, the priority denotes the interrupt
priority).

• Down sampling items may be used to alter the frequency
of triggering. For example, consider a control flow be-
tween SWCs (SWC_1 and SWC_2), then, without a down
sampling object, a trigger signal from an output port of
SWC_1 is immediately delivered to the input port of
SWC_2. When attaching a down sampling item to the
control flow, the delivery of the trigger signal from the
output port of SWC_1 to the input port of SWC_2 may
be altered in the following way: If DOWNSAMPLE-
FACTOR is x then the receiving port (input port on
SWC_2 in this case) is triggered no more than every xth

time.
• AND/OR items are logic objects for triggering. AND/OR

objects have trigger input and trigger output ports. In
essence, they define the boolean conditions that has to
be true on the objects trigger input ports for the object
to activate its trigger output port. AND/OR objects may
be used to synchronise the control flow of a design.

Named data

Const

Terminator

(Data Port)

Source items

Terminator

(Output Trigger Port)
Sink items

Input Data Port
value zero

Not connected

(Input Trigger Port)

Input Data Port
Constant Value

ExtTrigger items Clock Interrupt Internal
event

External
event

x
Control flow

items
Down sampling AND

OR
And/Or logic

Named data

Const

Terminator

(Data Port)

Source items

Terminator

(Output Trigger Port)
Sink items

Input Data Port
value zero

Not connected

(Input Trigger Port)

Input Data Port
Constant Value

ExtExtTrigger items Clock Interrupt Internal
event

External
event

x
Control flow

items
Down sampling AND

OR
And/Or logic

Fig. 5. Logic items for data and triggering

B. Real-time properties in RubusCMv3

The software logic defined by the constituents of
RubusCMv3 may be the associated with real-time execution
properties defining actions that trigger executions, require-
ments on execution and timing properties of SWCs. To enable
real-time analysis, each SWC is associated with a run-time

profile describing the execution-time and memory consump-
tion on different platforms. Two types of real-time require-
ments are currently supported in RubusCMv3 (i) deadlines
on completion and (ii) jitter bounds. Deadlines are specified
as bounds for a completed sequence and jitter bounds are
specified as the maximum difference between the longest and
shortest delay for a completed sequence.

V. SYSTEM EXAMPLE

In this section, we show a simple design of an oil pres-
sure supervision (see Fig. 6) to illustrate some features of
RubusCMv3. Assume that the requirements for the example
are as follows:

• Correct oil pressure is important for the longevity of an
combustion engine, hence the oil pressure of an engine
should be regularly monitored. In case of abnormal oil
pressure levels, the pressure level should be logged and
an alarm, notifying the operator, must be raised within 5
seconds.

Oil pressure monitor

Oil
pressure

Operator

Oil pressure monitor

Oil
pressure

Operator

Fig. 6. Example, oil pressure supervision

A typical development scenario using RubusCMv3 includes
identifying and composing the software architecture, deploy-
ing the architecture and assigning real-time properties to the
design.

For this example, we assume that a pressure sensor is used
to measure the oil pressure and a LED to inform the operator
of abnormal pressure conditions, hence, the software parts
in this example are illustrated by the constituents of the oil
pressure monitor in Fig. 7. The monitor consist of an object
for supervision of the oil pressure, an object logging abnormal
conditions and an alarm object informing the operator of
abnormal oil pressure.

Supervision Alarm

Oil pressure monitor

Logging

Pressure Operator

Supervision Alarm

Oil pressure monitor

Logging

Pressure Operator

Fig. 7. Example, oil monitor software parts

We are now ready to create a more detailed design of the oil
monitor object and applying the requirements on the software.
Recall that in RubusCMv3, boxes represent data, triangles
represent activation interfaces and the arrows show direction
of data and control flow. A clock is assigned to the supervision
object for periodic monitoring of the oil pressure. We assume
that abnormal pressure conditions are sporadic, hence the
logging and alarming of abnormal pressure is activated by
events. The real time requirement, describing the maximum
time delay (5 seconds) from the occurrence of abnormal oil

pressure until the alarm is raised, is assigned to the design
(see Fig. 8).

Supervision Alarm

Oil pressure monitor

Logging

Sensor LED

sensor – LED : 5sekSupervision Alarm

Oil pressure monitor

Logging

Sensor LED

sensor – LED : 5sek

Fig. 8. Example, oil monitor software logic

Figure 8 shows that the data flow and the control flow are
separated in the design. Separating data from control flow
makes it easier to extract parts from the design and display
only the data flow or only the control flow between object. We
can now go further in to details and design the functionality for
each of the objects in the oil pressure monitor. For simplicity,
we only show an detailed example of the supervision object
(Fig. 9).

A/D

Supervision

ManagerA/D

Supervision

Manager

Fig. 9. Example, supervision software logic

A key feature of RubusCMv3 is to allow developers to
focus on functionality on system level, without considering
the hardware architecture. To this point, the functionality is
designed without hardware architectural concerns. However,
in reality, the hardware architecture of a system is often
established based on the physical conditions and hence con-
ceptually established at an early point in development. In
addition, the placement of sensors and other elements for
sensing environmental conditions are guiding the placement of
the computational hardware. For the rest of this example we
assume that the pressure sensor is connected to an engine ECU
and that the LED display is connected to a cabin ECU. The
engine ECU is physically placed in the engine compartment
and the cabin ECU in the cabin. A CAN bus is used for
communication between the ECUs (Fig. 10).

Engine ECU Cabin ECU

CAN

Engine ECU Cabin ECU

CAN

Fig. 10. Example, ECUs

Objects describing ECUs can have a set of operational
modes, i.e., states, and transitions between modes within
an ECU. Assuming that we need to deploy parts of our

functionality to the drive mode of the engine ECU and other
parts of our functionality to the drive mode of the cabin ECU,
we then need to decide how to design the communication
between the ECUs. In our example we assume that we need
an object that packages messages into frames (CAN send)
and an interrupt that activates the transmission of messages.
At the receiving end we assign a CAN receive object that
unpacks the messages and activates the software that alarms
the operator of abnormal oil pressure conditions. Fig. 11
shows the software logic of each mode.

Alarm

Drive mode, cabin ECU

CAN receive

LED

CAN
interrupt

Supervision
CAN send

Drive mode, engine ECU

Logging

Sensor

Alarm

Drive mode, cabin ECU

CAN receive

LED

CAN
interrupt

Supervision
CAN send

Drive mode, engine ECU

Logging

Sensor

Fig. 11. Example, mode logic

To enable timing- and memory analysis of our example
design, the objects need to be assigned properties such as worst
case execution times and maximum stack usage etc. At this
point, we may or may not have source code for the objects.
We can however, assign timing and memory budgets to the
objects and perform analysis. We can then choose to write or
retrieve the source code to get more accurate figures on timing
and memory consumption. For our example, we also need to
consider timing in messages transmission on the CAN bus.

VI. SYSTEM DEVELOPMENT USING RUBUSCMV3

The RubusCMv3 model provides constructs for systems
design through hierarchical decomposition of software logic,
giving developers the possibility design the logic at different
levels of abstraction. By separating data- and control-flow,
developers can exploit the benefits of addressing different
views, e.g., the logical or the temporal view of a design.
The oil pressure example shows the separation of concerns in
different phases of development. First, the design of the com-
plete functionality is put in focus, without hardware concerns.
Secondly, the data flow and control flow are separated for
abstraction reasons. The example also shows different levels of
abstraction of a software entity, i.e., the monitor object consist
of a supervision object that consists of an A/D converter and
an oil manager.

The example also illustrates how a distributed functionality,
with hard and non real-time requirements, can be realised by
two execution models (EMs). The hard real time requirement,

realised by a time-triggered EM, concerns the maximum delay
from abnormal pressure until an alarm is raised, whereas the
logging of abnormal pressures, realised by the event-triggered
EM, lack explicit timing requirements. Industrial systems often
contain a mix of different real-time requirements. Still, many
of these systems are developed using only the time triggered
EM. The time triggered EM is, of course, suitable for periodic
control systems and other type of functionality that need
to be managed or polled periodically. However, the mixed
requirements on systems indicate that the event-triggered exe-
cution model could also be used in systems development. For
this reason, RubusCMv3 supports two fundamental execution
models, the time- and event-triggered models. Hence, devel-
opers can choose different EMs for different subsystems, e.g.,
static scheduling for critical core functions (which is often
desired, and sometimes even mandated by safety standards
and certification agencies [30]) while allowing less critical
functions to be executed using a less resource demanding and
flexible EM.

The fact that EMs are logical objects defined in the in-
frastructure, instead of being coded into the components,
will facilitated component reuse, since components can be
developed independent of the EMs. This, in turn, will in
a long term perspective decrease the software development
costs. Also, for companies that sustain a product line,1 software
reuse is crucial and is an important factor in decreasing the
time-to-market for new products.

To formally verify whether the real-time properties of a
Rubus design is met, response time analysis such as [31]
[32] [33] [34] may be used. Response-time analysis gives
an upper bound on the completion time of functionality. It
can also be used to analyse message transmission times in
communication networks. By comparing the deadline with the
response time, the temporal properties of the functionality can
be verified. The jitter bound, as defined in RubusCMv3, can
also be verified using response time analysis. The jitter bound
is defined as the maximum difference between the longest and
shortest delay for a completed sequence. This corresponds to
the difference between the worst case response time and the
best case response time of the functionality. In addition to
formal analysis, verification of the logical functionality may
be done by, for example, stimulating data and triggering.
We have developed a framework for such verification of
SWCs and ASMs/CMPs on PCs, see Fig. 12. The framework
reads input data from, for example, Matlab. The data is then
fed to the simulation process that controls the stimulation
of input ports and state variables using probes. The output
from the simulation process can be fed back to, for example,
Matlab. This gives developers possibilities to test the logical
functionality of software elements, even without having the
actual hardware at hand. The framework has been successfully
tested in development and it is currently used by our industrial
partners.

1A product line is a series of related, but yet distinct, products. Economical
benefits are achieved by synergies in the development and maintenance of the
products in the product line.

Probe
In

Circuit

Probe
Out

Circuit

Circuit

Circuit

Test Object

Component Process

Rubus OS/Win.

Simulation Control Process

Probe In
data

Probe
Out data

Execution
Control

Stimulation Process

Files/GUI/Matlab/LabView Files/GUI/Matlab/LabView

Stimulation PC

Shared memory

Shared memory TCP/IP

Probe
In

Circuit

Probe
Out

Circuit

Circuit

Circuit

Test Object

Component Process

Rubus OS/Win.

Simulation Control Process

Probe In
data

Probe
Out data

Execution
Control

Stimulation Process

Files/GUI/Matlab/LabView Files/GUI/Matlab/LabView

Stimulation PC

Shared memory

Shared memory TCP/IP

Fig. 12. Framework for testing of logical functionality of Rubus software
elements

For resource constrained embedded systems, the resulting
design must be resource efficiently mapped to a run time
system. The mapping of logical software items to executable
threads can of course be done in several ways. However,
the RubusCMv3 model provides possibilities to map several
components into one executable thread, minimising contexts
switch overheads. This is possible since the model provides
possibilities to realise functionality as transactions, i.e., a
sequential execution of components triggered by a common
source such as a clock item. In addition, the run-to-completion
semantics of SWCs and the fact that synchronisation is done
in the infrastructure, enables efficient use of memory by
stack sharing. Stack sharing allows several tasks to share, i.e.,
execute, on a single stack, even in preemptive systems. It has
been shown that significant memory savings can be achieved
by stack sharing. Today, there exists a number of methods to
formally analyse the amount of stack needed in shared stack
systems, e.g., [35] [36] [37].

A run-time environment is essential to provide the infras-
tructure services that are needed to execute the logic defined
by a component model. Furthermore, a run-time environment
must also be able to preserve the semantics and support effi-
cient execution of the logics defined by a component model.
In general, RubusCMv3 do not restrict the use of a specific
run-time environment, in fact, any run-time environment that
endorse the semantics of RubusCMv3 can be used. However,
to fully support RubusCMv3 model the run-time environment
must be able to realise the complete set of logic with the
semantics defined by the model. Currently, we have extended
the Rubus-RTOS [24] to fully support the RubusCMv3 model.

VII. CONCLUSIONS AND FUTURE WORK

Today’s embedded systems are typically characterised by
having a mix of functionality with requirements ranging from
hard real-time, soft and even non real-time. Many of these
systems operate in resource constrained environments that

need to satisfy requirements on dependability as well as
efficient resource usage. Current trends predict a continuing
increase in diversity of functionality in systems, resulting in an
increasing system complexity. Component Based Development
(CBD) is a promising and emerging development discipline for
real-time systems, providing many attractive qualities such as
encapsulation, high level description and reusable logic.

This paper presented the RubusCMv3 component model,
a novel component model for development of resource con-
strained embedded real-time systems. The model has been de-
veloped in close cooperation with industrial partners. It aims at
supporting three important activities in real-time development,
(i) design, (ii) analysis and (iii) synthesis. These activities em-
phasise different and sometimes conflicting requirements that
need to be balanced. The model provides methods to express
the infrastructure of software functions, i.e., the interaction
between software functions in terms of data- and control-
flow. The resulting architecture is formal enough for analysis
of timing and memory properties. The components and the
infrastructure allows for a resource efficient mapping onto a
run-time structure.

The model is integrated in the next generation of the Rubus
tool suite (RubusICE), the model is currently evaluated on
real systems. We have successfully converted a traditionally
developed industrial system, into a component based system
using RubusCMv3. Future work consists of evaluating the
component model in other industrial settings.

REFERENCES

[1] Microsoft, “Microsoft COM Technologies,” http://www.microsoft.com/-
com/.

[2] OMG, “CORBA Home Page,” http://www.omg.org/corba/.
[3] ——, “CORBA Component Model 3.0,” June 2002, http://www.omg.-

org/technology/documents/formal/components.htm.
[4] SUN Microsystems, “Enterprise Javabeans Technology,” http://java.sun.-

com/products/ejb/.
[5] ——, “Introducing Java Beans,” http://developer.java.sun.com/-

developer/onlineTraining/Beans/Beans1/index.html.
[6] Microsoft, “.NET Home Page,” http://www.microsoft.com/net/.
[7] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin, “Evaluation of

Component Technologies with Respect to Industrial Requirements,” in
Euromicro Conference, Component-Based Software Engineering Track,
August 2004.

[8] R. van Ommering, Building Reliable Component-Based Software Sys-
tems. Artech House Publishers, July 2002, ch. The Koala Component
Model, pp. 223–236, iSBN 1-58053-327-2.

[9] P. O. Müller, C. M. Stich, and C. Zeidler, Building Reliable Component-
Based Software Systems. Artech House publisher, 2002, ch. Component
Based Embedded Systems, pp. 303–323, iSBN 1-58053-327-2.

[10] “PECOS Project Web Site,” http://www.pecos-project.org.
[11] S. Vestal, “Support for Real-Time Multi-Processor Avionics,” in Proc.

18th IEEE Real-Time Systems Symposium (RTSS), December 1997, pp.
11–21.

[12] J. A. Stankovic, “VEST — A toolset for constructing and
analyzing component based embedded systems,” Lecture Notes in
Computer Science, vol. 2211, pp. 390–402, 2001. [Online]. Available:
citeseer.nj.nec.com/stankovic00vest.html

[13] A. Cervin and J. Eker, “The Control Server Model: A Computational
Model for Real-Time Control Tasks,” in Proc. of the 15th Euromicro
Conference on Real-Time Systems, July 2003.

[14] A. Wall, “Architectural Modeling and Analysis of Complex Real-Time
Systems,” Ph.D. dissertation, Mälardalen University, Dept. of Computer
Science and Engineering, September 2003.

[15] M. Díaz, D. Garrido, L. Llopis, F. Rus, and J. Troya, “Integrating
Real-Time Analysis in a Component Model for Embedded Systems,”
in Proceedings of the 30th Euromicro Conference. Rennes, France:
IEEE Computer Society, September 2004, pp. 14–21.

[16] “Space4U project home-page,” http://www.extra.research.philips.com/-
euprojects/space4u.

[17] “Robocop project home-page,” http://www.extra.research.philips.com/-
euprojects/robocop/index.htm.

[18] “DECOS - Dependable Embedded Components and Systems,” http://-
www.decos.at.

[19] SAVE, “SAVE Project Page,” http://www.artes.uu.se/++/SAVE/.
[20] “PROGRESS Web-Page,” http://www.mrtc.mdh.se/progress/.
[21] “MultEx - Software development using multiple execution models, Web-

Page,” http://www.mrtc.mdh.se/projects/multex/.
[22] K. Hänninen, J. Mäki-Turja, and M. Nolin, “Present and Future Re-

quirements in Developing Industrial Embedded Real-Time Systems -
Interviews with Designers in the Vehicle Domain,” in Proceedings of
the 13th International Conference and Workshop on the Engineering of
Computer Based Systems. Potsdam, Germany: IEEE Computer Society,
March 2006, pp. 139–147.

[23] J. Mäki-Turja, K. Hänninen, and M. Nolin, “Efficient Development
of Real-Time Systems Using Hybrid Scheduling,” in International
conference on Embedded Systems and Applications (ESA), June 2005.

[24] “Arcticus Systems Web-Page,” http://www.arcticus-systems.com.
[25] H. Hansson, H. Lawson, and M. Strömberg, “BASEMENT a Distributed

Real-Time Architecture for Vehicle Applications,” Journal of Real-Time
Systems, vol. 3, no. 11, pp. 223–244, November 1996.

[26] “BAE Systems,” Web page, http://www.baesystems.com.
[27] “Knorr-bremse,” Web page,

http://www.knorr-bremse.com.
[28] “Mecel,” Web page, http://www.mecel.se/.
[29] “Volvo Construction Equipment,” http://www.volvoce.com.
[30] I. E. Commission, “IEC 61508 - Functional safety of electri-

cal/electronic/programmable electronic safety-related systems.”
[31] O. Redell, “Response time analysis for implementation of distributed

control systems,” Ph.D. dissertation, KTH, Department of Machine
Design, 2003, series: TRITA-MMK 2003:17.

[32] J. Mäki-Turja, “Engineering Strength Response-Time Analysis, A Tim-
ing Analysis Approach for the Development of Real-Time Systems,”
Ph.D. dissertation, Mälardalen University, Department of Computer
Science and Electronics, 2005.

[33] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[34] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing Analysis of
the FlexRay Communication Protocol,” in Proc. of the 18th Euromicro
Conference on Real-Time Systems, July 2006.

[35] K. Hänninen, J. Mäki-Turja, M. Bohlin, J. Carlson, and M. Nolin, “De-
termining Maximum Stack Usage in Preemptive Shared Stack Systems,”
in Proc. 27th IEEE Real-Time Systems Symposium (RTSS), December
2006, pp. 445–453.

[36] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and M. Nolin,
“Safe Shared Stack Bounds in Systems with Offsets and Precedences,”
Mälardalen Real-Time Research Centre (MRTC), Tech. Rep. MRTC no.
221, January 2008.

[37] R. Davis, N. Merriam, and N. Tracey, “How embedded applications
using an RTOS can stay within on-chip memory limits,” in Proc. of
the WiP and Industrial Experience Session, Euromicro Conference on
Real-Time Systems, June 2000.

