
Combining Model Checking and Reinforcement
Learning for Scalable Mission Planning of

Autonomous Agents
Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

Mälardalen University, Västerås, Sweden
Email: (first.last)@mdh.se

Abstract—The problem of mission planning for multiple au-
tonomous agents, including path planning and task scheduling,
is often complex, especially when the number of agents grows
or requirements include real-time constraints. In this paper, we
propose a novel approach called MCRL that integrates model
checking and reinforcement learning to overcome this difficulty.
Our approach employs timed automata and timed computation
tree logic to describe the autonomous agents’ behavior and
requirements, and trains the model by a reinforcement learning
algorithm, namely Q-learning, to populate a table used to
restrict the state space of the model. Our method provides a
means to synthesize mission plans for autonomous systems whose
complexity exceeds the scalability boundaries of exhaustive model
checking, but also to analyze and verify synthesized mission plans
to ensure given requirements. We evaluate the proposed method
on various scenarios involving autonomous agents, as well as
present comparisons with other methods and tools.

Index Terms—autonomous agents, mission planning, model
checking, reinforcement learning

I. INTRODUCTION

Autonomous agents are systems that usually move and
operate in a possibly unpredictable environment, can sense
and act on it, over time, while pursuing their goals [1]. As
this kind of systems bear the promise of facilitating people’s
daily lives and increasing safety and industrial productivity
by automating repetitive tasks, autonomous technologies are
drawing an increased attention from both researchers and
practitioners. In an attempt to realize their functions, mission
planning of autonomous agents, including path planning and
task scheduling, is one of the most critical problems to
solve [2]. As path-planning algorithms focus on calculating
collision-free paths towards the destination, they do not handle
requirements concerning logic and temporal constraints, e.g.,
delivering goods in a prioritized order, and within a certain
time limit. In addition, when considering a group of agents that
need to collaborate with each other and usually work along-
side humans, the job of synthesizing correctness-guaranteed
mission plans becomes crucial and more difficult.

In our previous work [3], we have proposed an approach
based on Timed Automata (TA) and Timed Computation
Tree Logic (TCTL) to formally capture the agents’ behavior
and requirements, respectively, and synthesize mission plans
for autonomous agents by model checking. Our approach is
successfully implemented in a tool called TAMAA, and shown
to be applicable to solving the mission-planning problem of

industrial autonomous agents. However, TAMAA alone is not
scalable when the number of agents is large, as the state space
of the model explodes when the number of agents grows.

The state-space-explosion problem is one of the most strin-
gent issues when employing model checking [4] for verifica-
tion, therefore many studies have explored ways of fighting it
[5]. In this paper, we propose a novel method called MCRL
that combines model checking with reinforcement learning [6]
to restrict the state space in order to synthesize mission plans
for large numbers of agents. Our method is based on UPPAAL
[7] and leverages the model of autonomous agents generated
by TAMAA. Instead of exhaustively exploring and storing
states of the model, MCRL utilizes Monte Carlo simulations
to obtain the execution traces leading to the desired states
or deadlocks. Note that in TAMAA timing uncertainties are
modeled by non-deterministic delays bounded from below
as well as above, rather than by probability distributions.
Therefore, the simulation is simply for randomly sampling
execution traces. Then, a reinforcement learning algorithm,
namely Q-learning [8], is employed to process the execution
traces, and populate a Q-table containing the state-action pairs
and their values. The Q-table is recognized as the mission plan
that we have aimed to synthesize, which is injected back into
the old TAMAA model, forming a new model. As the Q-table
regulates the behavior of the agent model, the state space is
greatly reduced, which makes it possible to verify mission
plans for large numbers of agents. Moreover, MCRL enables
the model equipped with Q-tables to make best decisions
when the task execution time and duration of movement are
uncertain, which is not supported by TAMAA. As MCRL is
based on formal modeling, it complements classic reinforce-
ment learning algorithms with means to verify the synthesized
mission plans against, for instance, safety requirements.

We select relevant scenarios involving autonomous agents
in a construction site, and conduct experiments with MCRL,
TAMAA, and UPPAAL STRATEGO [9] that is a tool often used
for generating winning strategies for stochastic priced timed
games. The experimental results show that MCRL performs
better than TAMAA and UPPAAL STRATEGO, when the num-
ber of agents is greater than five. The time of synthesizing
mission plans using MCRL increases linearly with the number
of agents, whereas for the other two methods it increases
exponentially.

Fig. 1. An example of a time automaton of a traffic light

To summarize, the contributions of this paper are:
• A novel approach called MCRL for synthesizing mission

plans of large numbers of autonomous agents by reinforce-
ment learning, combined with model checking the synthesis
results.

• An evaluation of the scalability of MCRL via experiments
conducted with tools such as TAMAA, UPPAAL STRATEGO,
and MCRL, on relevant scenarios involving autonomous
agents. The experimental results show that MCRL can scale
to large numbers of agents that cannot be handled by other
methods.

The remainder of the paper is organized as follows. In Section
2, we introduce the preliminaries of this paper. Section 3 de-
scribes the problem that we attempt to solve and its challenges,
whereas in Section 4 we introduce our novel approach for
taming the scalability of model checking, which combines the
latter with reinforcement learning. In Section 5, we explain the
experiments and their results on TAMAA, UPPAAL STRATEGO,
and MCRL. In Section 6 we compare to related work, before
concluding and outlining possible future work in Section 7.

II. PRELIMINARIES

In this section, we introduce timed automata, UPPAAL,
UPPAAL STRATEGO, and reinforcement learning.

A. Timed Automata and UPPAAL

A timed automaton (TA) is a finite-state automaton extended
with real-valued variables, called clocks, suitable for modeling
real-time systems [10]. UPPAAL [7] is a tool for modeling,
simulation, and model checking of real-time systems, which
uses an extension of TA as the modeling formalism. Figure 1
depicts a simple example of a UPPAAL TA modeling traffic
lights. Two locations Red and Green model the two colors
of a traffic light. A clock variable x is used in the invariants
(boolean expressions over clocks) on locations (e.g., x<=10)
to enforce an upper bound of delaying in that location (in our
case, after 10 time units, the automaton must leave location
Red). Edges are directed lines used to connect locations, and
they are decorated by guards, which are boolean conditions
over clocks or discrete variables, which enable the automaton
to traverse the respective edge once they evaluate to true. In
our case, when x>= 5, the TA may move from the Red to the
Green location. In UPPAAL, there is a special type of location,
namely committed (denoted by encircled c). It requires that
time does not elapse in these types of locations and the next
edge to be traversed needs to start from a committed location.
Clocks can be reset over edges, e.g., x:= 0 in Figure 1, whereas
discrete typed variables can be assigned values, accordingly,
via updates on the edges, or via functions that are implemented

by a subset of the C language in the declaration of the TA.
A network of TA, B0 ‖ ... ‖ Bn−1, is a parallel composition
of n TA via synchronization channels (i.e., a! is synchronized
with a? by handshake). In Figure 1, the edges are labeled
with channels named STOP and GO, which synchronize this
TA with other TA of vehicles.

The UPPAAL queries that we verify in this paper are
properties of the form: (i) Invariance: A � p means that
for all paths, for all states in each path, p is satisfied, (ii)
Liveness: A ♦ p means that for all paths, p is satisfied by at
least one state in each path, (iii) Reachability: E ♦ p means
that there exists a path where p is satisfied by at least one
state of the path, and (iv) Time-bounded Leads to: p ≤t q,
which means that whenever p holds, q must hold within at
most t time units thereafter; it is equivalent to the property:
A� (p⇒ A♦≤t q).

B. UPPAAL STRATEGO

UPPAAL has several branches that extends it to deal with
various specific problems. UPPAAL STRATEGO [9] is a tool
that integrates UPPAAL with two of its branches, that is,
UPPAAL SMC [11] (statistical model checking) and UPPAAL
TIGA [12] (policy synthesis for timed games). In this paper,
we employ UPPAAL STRATEGO to solve the same mission-
planning problem for autonomous agents, in order to compare
the result with our MCRL approach. UPPAAL STRATEGO is
designed to synthesize strategies for stochastic priced timed
games. A game is a mathematical model of a system consisting
of several players that compete in a common environment
and aim to achieve their independent goals. Since it is
based on UPPAAL, its modeling language is an extension of
timed automata, which differentiates actions into two types:
controllable and uncontrollable. The former ones are actions
controlled by the players, whereas the latter ones are controlled
by the environment. We refer readers to the literature [9]
for details of this tool. A strategy is a policy of a player’s
actions for any possible situation that guides the player to
reach its final goal. A winning strategy contains sequences of
controllable actions that lead players to the states satisfying
desired properties, regardless of the executed uncontrollable
actions. In UPPAAL STRATEGO, one can synthesize winning
strategies in form of: strategy S = control: P, where “=” is an
assignment sign, P is the TCTL property to be met, and verify
the synthesized strategies in the form of: P’ under S, where P’
is a stronger property that the model is verified against, with
its behavior regulated by strategy S.

C. Reinforcement Learning

Reinforcement learning is a branch of machine learning
aiming to calculate how agents should take actions in an
environment, in order to maximize the accumulated reward
obtained from the environment [6]. In this paper, we use one
of the model-free reinforcement learning algorithms called
Q-learning [8], which is usually adopted to learn policies
that indicate agents the actions to take at different states. A
policy is associated with a state action value function called

Fig. 2. An example of an autonomous quarry

Q function, where “Q” stands for “quality”. The optimal Q
function satisfies the Bellman optimality equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (1)

where q∗(s, a) represents the expected reward of executing
action a at state s, E denotes the expected value function,
R(s, a) is the reward obtained by taking the action a at
state s, γ is a discounting value, s′ is the new state coming
from state s by taking action a, max

a′
q∗(s′, a′) represents

the maximum reward that can be achieved by any possible
next state-action pair (s′, a′). The equation means that the
expected reward of the state-action pair (s, a) is the sum
of the current reward and the discounted maximum future
reward. As the learning process iterates, the Q-value of each
state-action pair converges to the maximum Q-value, i.e., q∗,
and the parameters are updated using gradient descent [13].
Although Q-learning is a model-free algorithm, the learning
process often relies on a simulation environment that depends
on the form of the model. In this paper, we use the simulation
function in UPPAAL to gather the information of state-action
pairs, and invoke the Q-learning algorithm to populate a Q-
table that stores state-action pairs and their Q-values.

III. PROBLEM DESCRIPTION

In this section, we introduce an industrial use case of an
autonomous quarry, containing various autonomous vehicles,
e.g., trucks, wheel loaders, etc. For example, as shown in
Figure 2, we consider the mission of transporting stones in
a quarry site, where a wheel loader digs and loads stones,
and trucks transport stones. They need to carry the stones
from stone piles to the primary crushers, where stones are
crushed into fractions, and proceed to carry the crushed stones
to the secondary crushers, which is the destination. During
this process, the vehicles must avoid static obstacles (e.g,
holes and rocks on the ground, larger than given sizes) and
go to the charging point when their battery level is low.
In an autonomous quarry, all the operations are performed
automatically without human intervention, and the vehicles
are autonomous agents that we call agents for short, in this
paper. To achieve their goal, respectively, the agents need
to be able to calculate collision-free paths and schedule
their tasks efficiently. Hence, our research problem involves
task scheduling, path planning and following, and collision
avoidance for multiple autonomous agents. In our previous

work [14], we have proposed a two-layer framework for the
design of formal models of agents, where task scheduling and
path planning belong to the so-called static layer, whereas the
path following and avoidance of dynamic obstacles, including
the case of overlapping paths of multiple agents, is being dealt
with in the dynamic layer. In this paper, we assume that the
collision avoidance of dynamic obstacles functions correctly,
and focus on the static layer for synthesizing verifiable mission
plans.

A. Problem Analysis

For simplicity, henceforth, we call the problem of path plan-
ning and task scheduling for agents as mission planning. Path
planning deals with computing collision-free paths that visit
all required target positions (a.k.a. milestones), via efficient
algorithms such as Theta* [15] and RRT [16]. We adopt the
Theta* algorithm in this paper, since the environment in the
problem is a 2-D map, and the algorithm is especially good at
generating smooth paths with any-angle turning points in 2-D
maps. After the paths are calculated, the agents need to know
the assignment and execution order of tasks. For instance,
digging stones must be carried out at stone piles before the
stones are unloaded into the primary crushers. In this case,
digging stones and unloading stones are two tasks, and their
execution positions and order must be correct. Additionally, as
the machines must guarantee a certain level of productivity,
the work has to be completed within some given time. As
our solution aims to be general, regardless of the exact type
of agents, we formulate the requirements generically, and
categorize them as follows:
• Milestone Matching. Tasks must be performed at the right

milestones.
• Task Sequencing. The task execution order must be correct.
• Timing. Tasks must be done within prescribed times.
• Event Reaction. Some special tasks are only triggered by

events under certain circumstances, e.g., when the battery
level is low, the agents must go to charge themselves.

The task-scheduling problem in this paper is similar to a
classic scheduling problem called job-shop problem [17],
which consists of a finite set of jobs to be processed on a
finite set of machines. Each job is a sequence of tasks to be
executed in a certain order and no tasks can be preempted
once started. Each machine can process at most one task
at a time and the execution time varies for tasks, but it is
fixed. The objective is to assign jobs to machines and decide
their starting times in order to minimize the total execution
time of all jobs. The problem is NP-hard, so even a simple
instance with very restrictive constraints remains difficult to
solve [18]. Although the task scheduling in this paper shares
many similarities with the job-shop problem, e.g., tasks are
non preemptive, our problem has some unique challenges that
we introduce in the following section.

B. Uncertainties and Scalability of Mission Planning

The classic job-shop problem is deterministic as the in-
formation is known and fixed. However, the task-scheduling

TABLE I
EVALUATION OF TAMAA AND UPPAAL STRATEGO

Number of
Agents

Number of
Explored States

Time

TAMAA 4 2,058,132 20160 s
5 Out of Memory Out of Memory

UPPAAL
STRATEGO

2 12,031 2670 s
3 Out of Memory Out of Memory

(a) A simple example of a quarry (b) Map decomposition and paths cal-
culation

Fig. 3. An example of an autonomous quarry

problem in this paper contains two types of uncertainties, i.e.,
the uncertain execution time of tasks and uncertain duration
of agent movement.

• Uncertain execution time of tasks. The execution time of
tasks is modeled by time intervals between the BCET
(best-case execution time) and WCET (worst-case execution
time), which are usually different.

• Uncertain movement time. The traveling time between mile-
stones of any agent is not fixed, due to the fact that the
destination milestone can be occupied at some time, and
thus the agent that is approaching it has then to wait until
the destination is available, and the waiting time is uncertain.

These features make our problem more difficult than the clas-
sic job-shop problem. When the number of agents increases,
the complexity of the problem grows exponentially.

In our previous work [3], we propose a timed-automata-
based approach called TAMAA to solve this problem. Although
the approach manages to generate mission plans satisfying
complex requirements, when the number of agents increases
to 5, model checking the TAMAA model exhausts the existing
memory due to the state-space explosion problem of model
checking [3], [4]. To compare with a similar existing approach,
we also employ UPPAAL STRATEGO [9] to synthesize mission
plans by verifying the model of TAMAA in this tool (Section
5). Researchers have utilized UPPAAL STRATEGO to solve
similar scheduling problems like ours, for e.g., cruise control
[19], and floor heating [20], which involve assigning motions
to “players” in the environment, to obtain winning strategies.
Thus, UPPAAL STRATEGO is considered to be suitable to solve
such task-scheduling problems. However, UPPAAL STRATEGO
is only able to generate results when the number of agents
is less than 3, as it is shown in Table I. In a nutshell, task
scheduling for multiple autonomous agents, as an NP-hard
problem, remains unsolved when the number of agents is large.

(a) Part of an agent’s movement TA

(b) Part of an agent’s task execution TA

Fig. 4. The TA model of the example in Figure ??

IV. MCRL: COMBINING MODEL CHECKING AND
REINFORCEMENT LEARNING IN UPPAAL

In this section, we introduce our novel approach called
MCRL for mission planning of multiple autonomous agents,
which combines model checking with reinforcement learning
to alleviate the state-space-explosion problem. The TA model
in MCRL originates from TAMAA, therefore, we first briefly
introduce TAMAA in the following section to lay the founda-
tion of this method. The formal definitions of the movement
and task execution in TAMAA, as well as the model generation
algorithms are described in our previous work [3], which the
interested reader is referred to for details1.

A. Timed-Automata-Based Model for Mission Plan Synthesis

We elaborate the TA model in TAMAA by an example
illustrated in Figure 3(a). In an autonomous quarry, there are
four autonomous trucks starting from milestone A, aiming
to transport stones at milestone B, to the primary crusher at
milestone C or D, and eventually go to the secondary crusher
at milestone E. There are also autonomous wheel loaders
working at milestone B, digging stones and loading them into
the trucks. A charging point is located at milestone F, where
all the vehicles go for charging when their battery-level is low.

Initially, the environment is decomposed into a Cartesian
grid and the Theta* algorithm [15] is executed to calculate
the shortest paths among milestones A - F (See Figure 3(b)).
Note that the trucks only need to choose one primary crusher
at position C or D, to unload stones. Next, a TA-model is
automatically generated by TAMAA, based on the decomposed
environment. For brevity, an example of the TA model is is
only partly shown in Figure 4(a). It models the movement of
autonomous trucks between milestones A and B. The initial
location of the automaton has only one outgoing edge to
location A, indicating that milestone A is where the truck starts.
Locations A2B and B2A are created to count the duration
of traveling between A and B. Variable TT[m1][m2] is the

1A demo of TAMAA is in https://doi.org/10.5281/zenodo.3614128

travelling time between milestones m1 and m2. Locations G0
and G1 are committed locations that do not cost any time
and are used to diverge the movement to multiple targets.
Since some of the milestones are not accessible when they
are occupied, the guard function “isOccupied” is utilized (see
Figure 4(a)) to judge if the milestones are occupied or not.
When the function returns false, the edge is enabled but
does not trigger the transition, which means that the agent can
stay at this location rather than go to the target. Therefore, the
incoming edges of locations A and B are labelled with channels
“go[id]?”, where “id” represents the index of the agent, and it
synchronizes the movement TA with the tasks execution TA.

When an agent is at a milestone, it has three options for
the next motion: staying, moving, or executing tasks. TAMAA
generates a TA for tasks execution that models these behaviors.
This TA is partly depicted in Figure 4(b), with location
Idle representing the no-operation task, where the agent is
allowed to move. The invariant and self loop of location Idle
represent the time unit of scheduling a moving action. Every
“MAXWAIT” time unit, the tasks execution TA informs the
movement TA that the agent is ready to move. Location T1
represents the task “loading”, and the guard on its incoming
edge regulates that it must be carried out at milestone B and
after task 2 finished, provided that the charging event does
not occur. Location T1 has an invariant that indicates that
the actual execution time of task “loading” must not exceed
its WCET. Similarly, the guard on the outgoing edge of T1
ensures that the agent leaves the location when the execution
time is no longer less than BCET.

After the resulting TA model is verified in UPPAAL, exe-
cution traces indicating the order of visiting milestones and
operating tasks are generated. Since UPPAAL provides three
types of execution traces, i.e., the shortest, the fastest, and
random ones, we can generate mission plans that take the
least number of steps (shortest), or the shortest time (fastest),
or random. However, the verification is based on exhaustive
model checking, which means that the entire state space is
built and stored during the process. Therefore, the number
of states of the model grows exponentially as the number of
agents increases, and thus the computation time and memory
consumption increase dramatically, as it is shown in Table I.
In the following, we show how we alleviate this shortcoming,
by applying a reinforcement learning algorithm to reduce the
state space of model checking the TA model.

B. MCRL Method Description

In order to alleviate the state-space explosion problem,
MCRL adopts random simulation instead of exhaustive model
checking, and trains the model by the Q-learning algorithm.
Figure 5 depicts the process of the method. First, in the data-
gathering phase, we obtain the execution traces of the model
by Monte Carlo simulation in UPPAAL. We assign rewards
to the state-action pairs of the execution traces that satisfy
the desired properties, and penalties to the ones containing
deadlocks. The traces that either hold the properties or contain
deadlocks are ignored and not used in the next phases. There-

Fig. 5. The process of creating a model using a Q-table

after, in the model-training phase, we adopt the Q-learning
algorithm, which is implemented as Java program, to process
the traces and populate a Q-table, which is then used to form
a new model whose state space is restricted. Details of this
approach are presented in the following sections.

1) Model Design and Data Gathering: To differentiate
between the state of TA and the state of Q-tables, we define
Q-state and Q-action as follows:

Definition 1 (Q-state). A Q-state is defined as a tuple:

QS =< TP ,MATCH >,

where TP is a real number denoting the time point of leaving
this state, MATCH is a tuple < RT ,CT ,CP ,EV ,ST >,
where
• RT is an integer denoting the number of rounds for finishing

all tasks,
• CT is an integer denoting the index of the current task,
• CP is an integer denoting the index of the current milestone,
• EV is a set of Boolean values of events, occurred or not,
• ST is a set of integers of EST (execution status of tasks) of

all the agents in the environment. �

Definition 2 (Q-action). A Q-action is defined as a tuple:

QA =< BT ,WT ,MT ,TT >,

where,
• BT is a real number denoting the BCET of the action,
• WT is a real number denoting the WCET of the action,
• MT is an integer denoting the type of the motion,
• TT is an integer denoting the target of the motion. �

“TP” in Definition 1 is created to distinguish “meaningless”
execution traces of agents that simply move around and
consume plenty of time but do not complete tasks. The Q-
states that have the same values of other attributes but own
a much larger value of “TP” can be omitted. Note that
“ST” in Definition 1 represents the execution status of tasks
(EST) of all agents in the environment. It has three possible
integer values, i.e., 0: unfinished, 1: finished, or 2: will be
finished by the time the current agent arrives at the milestones
where other agents locate. As each agent owns a Q-table,
when they need to make a decision, i.e., which milestone
to go, or which task to execute, they must be aware of the
EST of other agents to avoid unnecessary waiting. “MT” in
Definition 2 has two possible values, i.e., 0: movement, 1:
execution. Correspondingly, “TT” can be the index of the
target milestone, or the index of the next task.

All the attributes of a Q-state and a Q-action can be
elicited from the TA model generated by TAMAA, and thus,

we create a 2-dimensional array in the global declaration of
the TA model in UPPAAL to represent the Q-table for each
of the agent mode. The state-action pairs in the Q-tables are
calculated and stored during the random simulation of the
model. UPPAAL 4.1.222 provides a new function of simulation
that prints information only when certain predicates are true.
For example, in the following query, the model is simulated
1000 rounds and 100 time units for each round. Only when
the predicate following the simulation query is true, i.e., the
Boolean variable “taskAllFinish” turns true, the information
within the curly parentheses ({. . .}) is printed.

simulate[<= 100; 1000]{...} : taskAllFinish == true

By using this function, we can control the simulation to print
data when all tasks are finished (good traces), or any of the
agents is stuck in a deadlock (bad traces). At the end of
each round of the simulation, if the predicate is satisfied,
rewards (positive values) are assigned to the state-action pairs
in the trace by the functions in the TA model; if a deadlock
occurs, penalties (negative values) are assigned to them in
a similar way. More precisely, the reward has a value of
MAX − CTime , where MAX is the maximum simulation
time, CTime is the time point of finishing all tasks, whereas
penalties have the same fixed value. In this way, the traces
that reach the states that satisfy the predicates faster get higher
rewards and thus are enhanced by Q-learning.

There are several things about the simulation that deserve
further explanation. In UPPAAL, the simulation query sub-
sumes Monte Carlo simulation to simulate the model, which
is originally designed for statistical model checking [11].
However, in this paper, we do not adopt this feature of UPPAAL
but only utilize the Monte Carlo simulation to explore the
state space of the model, and the only two uncertainties in the
problem, e.g., uncertain task execution and movement times,
are modeled as time-bounded delays that follow a uniform
probability distribution. One can change it to an arbitrary
choice of time-bounded delays or other probability distribu-
tions and still use MCRL to solve the problem. Additionally,
the simulation time of each round should not be shorter than
the shortest time needed to finish tasks, otherwise the predicate
remains false and thus no good trace can be gathered in the
simulation. The number of simulation rounds should be set
properly so that the gathered data is not only enough for
training the model, but also not too large, which would entail
unnecessarily long time to process it. When the simulation
finishes, UPPAAL prints the state-action pairs into a file, which
is used in the model-training phase.

2) Model Training and Reforming: After the state-action
pairs are formed in the simulation, we input those data into the
Q-learning algorithm, which is implemented as Java program,
to populate a Q-table. We illustrate the format of the Q-table
as follows:

|Q-state|Q-action|Q-value|

2UPPAAL 4.1.22 was published in March 2019 on http://www.uppaal.org/

Fig. 6. The conductor TA in the new model with a Q-table

As aforementioned, the Q-tables for agents are stored in a
two-dimensional array of the TA model. After running the Q-
learning algorithms, Equation 1 guarantees that the Q-values
of the state-action pairs are accumulated and converged.

In the model-reforming phase, a new TA model, which we
call conductor, is designed for each of the autonomous agents,
which looks up the agent’s Q-table and sends controlling
commands. Since there is no centralized control in the en-
vironment, each agent model is equipped with one conductor.
However, the conductor contains the Q-tables of all agents in
order to decide which one has the priority to act, when multiple
agents intend to perform some concurrent actions. Figure
6 depicts the TA model of conductors. The initial location
Init is urgent to ensure that whenever the agent is ready, it
is scheduled immediately. The function makeDecision()
looks up the Q-table and chooses the state-action pair that
owns the highest value among those that match the current
state of the agent. Note that, here we only need to compare the
attributes in “MATCH ” but not “TP”, because the former is
enough to represent the states of the agent and environment.
If the chosen action is “execution”, the conductor sends an
“executing” command to the task execution TA via channel
“exe[id]”. If the chosen action is “movement”, the conductor
looks up other agents’ Q-tables to obtain their intentions
of actions. If they also intend to go to the same milestone
where agents are mutually exclusive, the one with the highest
value of state-action pair is allowed to move, whereas others
have to wait until the former finishes scheduling. Whatever
the command is, the conductor TA transfers to the location
Waiting to wait until the agent finishes its action and
responds via the synchronization channel “done[id]”.

The fact that locations, expect locations “Disappear” and
“Waiting”, are either urgent or committed guarantees that
all agents are scheduled simultaneously. Meanwhile, UPPAAL
sets the order of running the conductors to be arbitrary, which
means agents could act in any order. However, the formal
verification of the model equipped with Q-tables can prove
that no matter what the acting order is, agents are guaranteed
to satisfy the desired properties. This is what traditional RL
algorithms cannot provide.

Consequently, the original TA of movement and task execu-
tion (see Figures 4(a) and 4(b) as examples) need to be slightly
adjusted. As depicted in Figures 7(a) and 7(b), the edges with
functions move() and start() are labelled with channels

(a) Reformed TA of an agent’s movement

(b) Reformed TA of an agent’s task execution

Fig. 7. Reformed TA model

“run[id]?” and “exe[id]?”, respectively. In those two functions,
a Boolean variable “idle[id]” is turned to false, indicating that
the agent is scheduled to start working. However, if the target
position is occupied at the moment and multiple agents are
not allowed at this milestone, the movement TA should not
transfer. Hence, the channel “run[id]” is broadcast so that it
does not block the transition in the conductor TA, and the
variable “idle[id]” remains true because the function move()
is not invoked.

In this case, the conductor TA needs to be informed when the
position is released in order to re-schedule the agent. When
the action finishes, the conductor leaves location Waiting
and moves back to the initial location to start another round
of scheduling. As the times of such actions are not determined,
the conductor does not know when to restart. Hence, the
edges with functions finish() and reach() in the task
execution TA and movement TA are synchronized with the con-
ductor TA via channel “done[id]”, so that whenever an agent
completes an action, its conductor restarts. The conductor TA
could also go back to its initial location via the edge labelled
with a broadcast channel “restart?” and a guard “idle[id]”,
indicating that some other agent has changed its state, and
if the current one is idle, it can be re-scheduled. A Boolean
variable “finished” is used in the conductor TA. When the agent
finishes the requested rounds of work, this variable turns to
true on the edge going to the location Disappear, and the
milestone occupied by this agent is released, indicating that it
has left the site and stopped. This edge is also labelled with
the channel “restart!” to inform other agents for re-scheduling.

3) Mission Plan Synthesis and Analysis: By introducing
the conductor TA, the behavior of the autonomous agents is
restricted by the Q-table. Hence, if the Q-table is formed
by using the state-action pairs satisfying certain predicates,
the reformed model is supposed to satisfy the predicates. For
example, in the data-gathering phase, the simulation query is
designed as follows:

simulate[<=T; R] {...}: forall(i:int[0,N-1]) work[i] ≥ X,

TABLE II
TASKS FOR THE AUTONOMOUS AGENTS IN THE EXPERIMENT

Task BCET WCET precondition

Truck
Load 1 4 none

Unload 4 4 Load
Charge 15 15 none

Wheel loader
Dig 2 2 none

Unload 1 4 Dig
Charge 15 15 none

where T is the simulation time of each round, R is the
number of simulation rounds, N is the number of agents, X
is the requested rounds of work. In the case of autonomous
trucks, one round of work means starting from the stone pile
and eventually unloading stones at the secondary crusher as
it is shown in Figure 2. The predicate regulates that if the
N agents accomplish X rounds of work, the information in
the parenthesis ({...}), i.e., the state-action pairs and their
rewards/penalties, is printed. Hence, when the TA model is
verified in UPPAAL, properties of the following form:

A♦ forall(i:int[0,N-1]) work[i] ≥ X, (2)

should be satisfied, which we demonstrate in Section V.
Meeting this kind of properties proves that the Q-table serves
as the mission plan that we intend to synthesize, and guides
the agents to accomplish a requested amount of work. Addi-
tionally, one can also verify properties of the following form:

A� forall(i:int[0, M-1]) positionOccupied[i] ≤ 1 (3)

batter==low −− > movement.charging && x ≤ L (4)

Equation 3 requires that milestones are never occupied by
multiple agents. Equation 4 requires that the agent goes to
the charging point within L time units, when its battery level
is low. One can design their own properties, or TA model, to
express and verify specific requirements. These properties are
impossible to be verified by traditional model checking alone
in the cases containing large numbers of agents, due to the
exponentially grown state space.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach by conducting
experiments on MCRL, TAMAA, and UPPAAL STRATEGO
to make a comparison. The experiments are conducted in
UPPAAL 4.1.22 and UPPAAL STRATEGO 4.1.20-7, on a laptop
running an Intel Core i5 processor with 16 GB of RAM
and a 64-bit Windows OS. The environment model in this
experiment is the one depicted in Figure 3(a), containing 4
static obstacles, 6 milestones, and several autonomous trucks
and 1 autonomous wheel loader. To make a comparison with
TAMAA and UPPAAL STRATEGO, we vary the number of
agents from 2 to 6. The tasks and their execution times for
autonomous trucks and wheel loader are shown in Table II.

Experimentation using TAMAA. After configuring the en-
vironment, agents, and tasks in the TAMAA tool, we obtain the
TA model of task execution, movement, and monitor for the
battery-low event. To synthesize the mission plan that transfers
all the stones to the secondary crusher with the minimum

time consumption, we verify the model in UPPAAL and select
the fastest diagnostic trace. The TCTL query designed for the
verification is as follows:

E♦ (stone==0 && time≤LIMIT), (5)

where the variable “stone” represents the volume of the stone
pile, whose value is updated in the function “finish()” in the
task execution TA, and “time ≤ LIMIT” regulates the time
limit of finishing the job. The verification results3 show that
TAMAA can generate mission plans that guide the agents to
avoid static obstacles and carry all the stones to the destination.
However, this approach can only synthesize a certain type of
mission plans, e.g., fastest, shortest, or random, as UPPAAL
provides these three types of diagnostic traces. When the
execution times of tasks are uncertain, these types of mission
plans are not sufficient to handle all situations.

Experimentation using UPPAAL STRATEGO. In order
to synthesize mission plans in UPPAAL STRATEGO, the TA
model in TAMAA needs to be adjusted slightly. See Figure 4(a)
as an example, where edges from location A2B to location
B and from location B2A to A in the movement TA are
changed to “uncontrollable” ones, as they are controlled by the
environment. Similarly, in the task execution TA, the incoming
edges of location Idle are changed to “uncontrollable”.
Thereafter, we verify the model against queries as follows:

strategy MP = control: A♦ stone==0 (6)

E♦ (stone==0 && x≤MAXTIME) under MP (7)

Query 6 utilizes a special syntactical keyword of UPPAAL
STRATEGO “control” to synthesize strategies that enable the
model to transfer all the stones to the secondary crusher
under any circumstances (i.e., A♦). Query 7 verifies the
model to see whether the agents are able to transfer stones
within a time limit (i.e., “time ≤ MAXTIME”), when their
behaviors are restricted by the strategy (i.e., “under MP”).
These queries provide a means of synthesizing and optimizing
mission plans that handle the uncertain times of task execution
and movement, which is better than TAMAA. However, as
UPPAAL STRATEGO still adopts exhaustive model checking
to generate mission plans (strategies) by queries like Query
6, the state-space explosion problem is inevitable when the
system is large and complex.

Experimentation using MCRL. In this experiment, we train
and reform the TA model of TAMAA in the way described in
Section IV-B. Then, we synthesize mission plans for 2 to 6
autonomous agents. Figure 8(a) shows the comparison of the
number of explored states in the verification using different
methods, where “OOM” means the verification runs out of
memory and fails to generate a result. As shown in Figure
8(a), MCRL is able to generate a result for all the cases and
explores much less states than the other two methods. This
demonstrates that the new approach is applicable and scalable
to solve the mission-planning problem for larger numbers of

3Graphic mission plans in TAMAA: http://doi.org/10.5281/zenodo.3731960

(a) The number of states explored

(b) The time consumption

Fig. 8. Experimental result of the algorithm performance of synthesizing
mission plans for different numbers of agents using three methods

agents. We experiment up to 6 agents, however we believe that
MCRL is able to handle even larger numbers of agents.

A. Discussion
From the experimental results we can conclude that MCRL

can generate results for up to 6 agents, TAMAA for maximum
4 agents, and UPPAAL STRATEGO for maximum 2 agents
(see Figure 8(a)). Figure 8(b) shows the computation time of
synthesizing mission plans using different methods. Since the
difference between times are significantly large, in order to
show the data in one graph, the Y-axis is not entirely equidis-
tant, as from 8 we skip numbers. Since TAMAA and UPPAAL
STRATEGO fail to generate results when agents are more than
4 and 2 respectively, the black portion of the graph indicates
that the methods exhaust memory and return an “out of
memory” error after large amounts of time, respectively. The
computation time of MCRL is the sum of computing all phases,
including data gathering, model training and reforming. As
the number of agents grows, the time increase of computation
is nearly linear. In the case of 3 agents, TAMAA costs the
least time, as UPPAAL STRATEGO and MCRL consider all the
situations of uncertain task execution and movement times,
which are not dealt with by TAMAA. In the case of 4 agents,
TAMAA can still generate results but costs more than 5 hours,
whereas MCRL only needs nearly 3 minutes.

Beside the ability of handling larger number of agents,
MCRL also provides a way to analyze the synthesized mission
plans. Given the model with a Q-table, we can inspect sample
mission plans via simulation query as follows:

simulate[<=45; 2]{ position, task+6}, (8)

where tasks and positions are encoded as different levels,
and the simulation runs 2 rounds and 45 time units for
each round. The result of the simulation query is depicted
in Figure 9, which indicates that the agent probably goes to
the primary crusher at milestone C or D (see Figure 3(a)),
to carry out the unloading task. It is due to the fact that,

Fig. 9. Two samples of mission plans

Fig. 10. A scenario where agent 1 learns in the training phase

in case either milestone is being occupied, the agent knows
to go to the other one to avoid unnecessary waiting. This
“intellegence” is obtained through the model-training phase,
which is one of the benefits of adopting Q-learning. One
can design various queries to analyze the synthesized mission
plans in this integrated method, which is another contribution
of MCRL.

By verifying Query 9, we can get the counter-example of
the query that enables one to understand how the choice is
made.

A� agent[1].unload==FIN imply movement1.C (9)

As illustrated in Figure 10, when agent 1 finishes the loading
task, agent 2 is occupying the primary crusher at position D and
unloading stones. At this moment, if agent 1 goes to position
D, it needs to predict whether agent 2 is still there, which
entails that agent 1 has to wait. To achieve this, we employ
the attribute “ST” (execution status of tasks) in Definition 1.

The moment agent 1 finishes its task at position B, it sends
a request to obtain the execution status of the agent working at
position D, which contains two elements: execution status (ES)
and worst-case-execution-time of the current task (WCET).
Based on the movement TA of agent 1, it is aware of its
traveling time of reaching position D. Hence, ES of agent
2 can be easily predicted by the following formula:

ES2(c+µ1) =


FIN , ES2(c) == FIN ,

UFIN , ES2(c) 6= FIN & c+ µ1 <WCET 2,

WFIN , ES2(c) 6= FIN & c+ µ1 ≥WCET 2,
(10)

where c is the current time, and µ1 is agent 1’s traveling time to

position D. Formula 10 means: (i) if agent 2’s current task has
finished at the moment, after the traveling time of agent 1, it is
still “finished”, or, (ii) if the future time point (c+ µ1) is less
than the WCET of agent 2’s current task, it is “unfinished”,
otherwise (iii) it “will-be-finished”. This formula provides a
conservative prediction if the WCET is different from the
BCET of the task. One can change WCET in Formula 10
with BCET to make aggressive predictions.

Once the states of the model are distinguished in this
way, the learning algorithm is able to gradually acquire the
optimal decisions for different situations, after multi-rounds
of simulation. For example, in the data-gathering phase, we
obtain the state-action pairs of agents going to positions C
and D. The learning algorithm assigns higher values to the
ones with less time consumption, therefore, like the situation
in Figure 10, when the predicted execution status of agent 2 is
unfinished, agent 1 going to position C is “reinforced” because
it is faster. Moreover, Query 11, a modified version of Query
9, can be satisfied, which means the observation in the sample
is generally held by the mission plan.

(agent[1].load == FIN && agent[2].unload == UFIN)

−− >(agent[1].unload == FIN imply movement1.C)
(11)

Besides this example, one can specify various requirements
by using CTL/TCL queries, and apply MCRL to synthesize
mission plans and verify them by model checking. To the
best of our knowledge, the ability of synthesizing verifiable
mission plans for large numbers of agents is not provided by
any existing solution in the literature.

Although promising, one observation of MCRL is that if
the simulation rounds in the data gathering phase are not
enough, and thus do not obtain enough data, the method is
unable to synthesize valid mission plans, even when there
exists one solution in the original model. Currently, the number
of simulation rounds is decided based on the experience of
designers, and a method to infer the number is needed in
the future work. However, according to the experiments (see
Figure 8(b)), we know that, even including all phases of
MCRL, the total time consumption is much less than other
two methods when the number of agents grows.

VI. RELATED WORK

Recently, there has been a rising interest in policy synthesis
for autonomous systems. Wang et al. [21] propose a novel
POMDP (Partially Observable Markov Decision Processes)
formulation to synthesis policies over a vast space of probabil-
ity distributions so that their approach is capable of handling
uncertain obstacles. Bouton et al. [22] also employ POMDP
for modeling, and their solution enables the autonomous vehi-
cles to adapt to the behavior of other agents. Nikou et al. [23]
propose an automata-based solution for controller synthesis
of multi-agent path planning, where Metric Interval Temporal
Logic (MITL) is used to describe each agent’s individual high-
level specification. In contrast to these studies, our approach
combines model checking and reinforcement learning so that

both merits benefit our solution that proves to be accurate and
scalable.

The combination of formal methods and learning algorithms
is a recent trend that attracts a large body of research work.
Li et al. [24] utilize the expressiveness of formal specification
languages to capture complex requirements of robotic systems
to construct reward functions of reinforcement learning so
that they are interpretable. Bouton et al. [25] propose a
generic approach to enforce probabilistic guarantees on agents
trained by reinforcement learning. Mason et al. [26] present
an assured reinforcement learning algorithm using abstract
Markov decision processes and probabilistic model checking
to establish abstract policies for autonomous agents that are
formally verified. As aforementioned, UPPAAL STRATEGO is
a new branch of UPPAAL designed by David et al. [9], which
adopts reinforcement learning algorithms to refine the synthe-
sized strategies for winning priced timed games. However, as
different from these studies, our approach focuses on using
reinforcement learning to replace exhaustive model checking
for mission-plan synthesis of multi-agents, so that the state-
space explosion is alleviated.

To the best of our knowledge, the first attempt to solve
the state-space-explosion problem of model checking using
reinforcement learning is done by Behjati et al. [27]. These
authors propose a bounded rational verification approach for
on-the-fly model checking. However, this method is limited to
non-timing LTL properties.

VII. CONCLUSION AND FUTURE WORK

We present a novel mission-plan synthesis method called
MCRL that can handle large numbers of autonomous agents.
The method adopts formal modeling to capture the behavior
of autonomous agents and Q-learning to train the model
and synthesize mission plans in the form of Q-tables. We
demonstrate MCRL’s ability of handling multiple agents by
an experiment, and compare the result with TAMAA and
UPPAAL STRATEGO. The experimental results show that
the computation time of MCRL increases linearly with the
number of agents, whereas the other two approaches show an
exponential increase of their computation time, respectively.
MCRL is also able to cope with uncertain task execution
and movement times, which is not supported by exhaustive
model checking in TAMAA. We present means for verifying
and analyzing the synthesized mission plans using model
checking to ensure safety-critical requirements. As the current
approach does not consider unforeseen situations such as
undetected obstacles, one direction of the future work is to
introduce statistical model checking into our method to cope
with probabilistic situations. Another possible direction will
focus on integrating Q-learning directly into the generation
of the state space with UPPAAL, and possibly on applying
other machine learning or AI algorithms to tame verification
scalability or guide the model checking itself.

Acknowledgement The research leading to the presented
results has been undertaken within the research profile DPAC

- Dependable Platform for Autonomous Systems and Control
project, funded by the Swedish Knowledge Foundation, grant
number: 20150022.

REFERENCES

[1] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A
taxonomy for autonomous agents,” in International Workshop on Agent
Theories, Architectures, and Languages. Springer, 1996, pp. 21–35.

[2] P. Chandler and M. Pachter, “Research issues in autonomous control of
tactical uavs,” in Proceedings of the 1998 American Control Conference.
ACC (IEEE Cat. No. 98CH36207). IEEE, 1998.

[3] R. Gu, E. P. Enoiu, and C. Seceleanu, “Tamaa: Uppaal-based mission
planning for autonomous agents,” in The 35th ACM/SIGAPP Symposium
On Applied Computing SAC2020, 30 Mar 2020, Brno, Czech Republic,
2019.

[4] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking
and the state explosion problem,” in LASER Summer School. Springer,
2011, pp. 1–30.

[5] R. Pelánek, “Fighting state space explosion: Review and evaluation,” in
FMICS Workshop. Springer, 2008.

[6] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 2, no. 4.

[7] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” Lecture Notes in Computer Science, vol. 3098, pp. 87–124, 2004.

[8] C. J. H. Watkins, “Learning from delayed rewards,” 1989.
[9] A. David, P. G. Jensen, K. G. Larsen, M. Mikučionis, and J. H.

Taankvist, “Uppaal stratego,” in TACAS. Springer, 2015.
[10] R. Alur and D. Dill, “Automata for Modeling Real-time Systems,” in

Automata, languages and programming. Springer, 1990, pp. 322–335.
[11] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikučionis, D. B.

Poulsen, and S. Sedwards, “Statistical model checking for stochastic
hybrid systems,” arXiv preprint arXiv:1208.3856, 2012.

[12] G. Behrmann, A. David, E. Fleury, K. Larsen, D. Lime, and E. Nantes,
“Uppaal-tiga: Time for playing games! (tool paper),” 2007.

[13] M. J. Kochenderfer, Decision making under uncertainty: theory and
application. MIT press, 2015.

[14] R. Gu, R. Marinescu, C. Seceleanu, and K. Lundqvist, “Towards a two-
layer framework for verifying autonomous vehicles,” in NASA Formal
Methods Symposium. Springer, 2019, pp. 186–203.

[15] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path
planning on grids,” Artificial Intelligence Research, vol. 39, 2010.

[16] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[17] H. Fisher, “Probabilistic learning combinations of local job-shop
scheduling rules,” Industrial scheduling, pp. 225–251, 1963.

[18] Y. Abdeddaı, E. Asarin, O. Maler et al., “Scheduling with timed
automata,” Theoretical Computer Science, vol. 354, no. 2, 2006.

[19] K. G. Larsen, M. Mikučionis, and J. H. Taankvist, “Safe and optimal
adaptive cruise control,” in Correct System Design. Springer, 2015.

[20] K. G. Larsen, M. Mikučionis, M. Muniz, J. Srba, and J. H. Taankvist,
“Online and compositional learning of controllers with application to
floor heating,” in TACAS. Springer, 2016.

[21] Y. Wang, S. Chaudhuri, and L. E. Kavraki, “Bounded policy synthesis for
pomdps with safe-reachability objectives,” in International Conference
on Autonomous Agents and Multi Agent Systems. IFAAMS, 2018.

[22] M. Bouton, A. Cosgun, and M. J. Kochenderfer, “Belief state planning
for autonomously navigating urban intersections,” in Intelligent Vehicles
Symposium. IEEE, 2017, pp. 825–830.

[23] A. Nikou, D. Boskos, J. Tumova, and D. V. Dimarogonas, “On the timed
temporal logic planning of coupled multi-agent systems,” Automatica,
vol. 97, pp. 339–345, 2018.

[24] X. Li, Z. Serlin, G. Yang, and C. Belta, “A formal methods approach
to interpretable reinforcement learning for robotic planning,” Science
Robotics, vol. 4, no. 37, 2019.

[25] M. Bouton, J. Karlsson, A. Nakhaei, K. Fujimura, M. J. Kochenderfer,
and J. Tumova, “Reinforcement learning with probabilistic guarantees
for autonomous driving,” arXiv preprint arXiv:1904.07189, 2019.

[26] G. R. Mason, R. C. Calinescu, D. Kudenko, and A. Banks, “Assured
reinforcement learning with formally verified abstract policies,” in
ICAART, 2017.

[27] R. Behjati, M. Sirjani, and M. N. Ahmadabadi, “Bounded rational search
for on-the-fly model checking of ltl properties,” in FSE. Springer, 2009,
pp. 292–307.

