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Abstract—In the past, assertions were mostly used to validate 
the system through the design and simulation process. Later, a 
new method known as assertion synthesis was introduced, which 
enabled the designers to use the assertions for high-speed 
hardware emulation and safety and reliability insurance after 
tape-out. Although the synthesis of the assertions at the register 
transfer level is proposed and implemented in several works, 
none of them can be adopted for high-level assertions. In this 
paper, we propose the SHiLA framework and a detailed 
implementation guide by which assertion synthesis can also be 
applied to the high-level design processes. The proposed method, 
which is fully tool independent, is not only an enabler to high-
speed assertion-assisted simulation but can also be used in other 
scenarios that need assertion synthesis, as it has the minimum 
possible effect on the main design’s performance. 
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I. INTRODUCTION
High-Level Synthesis (HLS) enables designers to develop the 

design faster and easier in higher-level languages such as C. Design 
and verification are two main steps before any digital product 
becomes available to be sent to the market. Researchers and engineers 
have been continuously trying to facilitate and expedite this process. 
On the design side, the most recent and significant step was the 
introduction of the high-level synthesis, which enabled the designers 
to implement their desired system in a more natural and perceivable 
manner. Although HLS emerged as a remarkable advancement in 
digital design technology, on the verification side, there has been no 
significant achievement to accompany this design level. One of the 
main verification methods in the literature and industry is Assertion-
Based Verification (ABV) [1]. 

Fortunately, assertion statements are already supported by the 
ANSI C language standard [2]. The two most common practices of 
using assertions are using them as pre-conditions or post-conditions. 
Pre-conditions and post-conditions are used to specify and check the 
assumptions or conditions before and after a region of a program, 
respectively. These usages not only expedite the simulation and 
verification process but also improve the readability and 
understandability of the program. More precisely, assert is a macro 
usually defined in the assert.h header file. 

The C/C++ assert statement’s implementation in assert.h is in a 
way that it is executed only during the debug time. When the release 
version is being built, the assert statement is eliminated during the 
preprocessing phase. A similar scenario happens when the C language 
is used for high-level modeling of the digital circuits. When the 
designer is simulating (and testing) the design using a testbench, 
assertions are active and generate corresponding messages whenever 
a fault, incorrect action, unexpected behavior, undesired input or 
output, etc. is detected. However, during the synthesis process, 
assertions are ignored (or may cause synthesis failure as a result of 
being a non-synthesizable construct, if they are not eliminated during 
the pre-processing step). 

Assertions were basically intended to be used as software internal 
checkpoints. But, transforming them to the hardware checkers and 
putting them along with the main design body will be valuable in 
several scenarios described as follows: 

A) High-speed simulation: in this scenario which is also known
as emulation or hardware-assisted simulation, instead of simulating 
the design on the computers, alternatively, the design is synthesized 
to the FPGA and input vectors and sequences are applied to the 
hardware. By monitoring the outputs, the designer can examine the 
functional correctness of the design. In this case, if the assertions are 

also synthesized to the FPGA, the observability of the design’s 
internal behavior as well as the ability to cover the corner cases 
significantly increases. This method also has a side benefit, which is 
known as synthesis result assurance. If assertions are synthesized to 
the hardware, especially if they are used as the pre-conditions of a 
specific code region, they will help the designers not only with 
detecting the possible inequality between pre-synthesis and post-
synthesis versions but also with pinpointing its origin. 

B) Safety assurance: in safety-critical applications, like avionics
systems, a slight unpredicted or unexpected behavior (such as bit-
flips) may result in disastrous consequences, including loss of human 
life or financial damage. The inclusion of the assertions in the final 
chip will help the chip environment to realize the chip malfunction. 
This can start several countermeasures, e.g., deactivation of the 
current module and activation of the back-up one. 

C) Security: a design can be equipped with assertions in order to
detect various attacks such as control-flow and data-injection attacks. 
In case such assertions fire when the generated hardware is 
performing the intended tasks, this firing signal can be utilized either 
to stop execution or to take a countermeasure. 

In this paper, we mainly focus on high-speed simulation.  
Nonetheless, our method is applicable to any safety/security 
mechanism that is capable of using assertions. 

As mentioned earlier, ANSI C assert statements are not 
synthesized by the traditional synthesis tools, unless a specific method 
is adopted. As we will discuss in the related work section, the 
previously proposed methods significantly affect the performance of 
the design, rely on a specific synthesis tool, or are applicable only to 
a subset of C designs.   

As our key contribution, we propose a complete framework, 
which instead of letting the assert statements be eliminated by the 
synthesis tool, converts them to synthesizable constructs to 
accompany the generated hardware without affecting the performance 
of the design. We implemented a code analyzer and manipulator to 
extract and eliminate the assertions, inject the required auxiliary codes 
and automatically generate the synthesizable assertion modules. The 
main advantages of this work are threefold as follows: 
• The proposed mechanism is entirely tool-agnostic so that it can

be used along with any existing synthesis tools, either open-
source or commercial.

• The assertion modules are generated such that their effect on the
design’s timing and performance is minimal.

• Assertions are implemented as separate modules so that any
future improvements like optimization or consolidation is easily
possible for future researchers or tool producers.
The remainder of this paper is organized as follows. In Section 2,

previous work on assertion synthesis is reviewed. Then in Section 3, 
the overall structure and detailed implementation of the proposed 
mechanism is explained. Experimental results are given in Section 4. 
Some technicalities are discussed in Section 5, and finally, the paper 
concludes in Section 6. 

II. RELATED WORK
There are a lot of research works on the synthesis of the assertions. 

We categorize them as the synthesis of RTL assertions, and the 
synthesis of high-level assertions. A large body of works has focused 
on the synthesis of the RTL assertions, where some recent works are 
provided here. However, only a few papers deal with the high-level 
assertion synthesis, and we try to cover all of them. 
A. Synthesis of assertions at the register transfer level

A lot of assertion languages and libraries are used along with the
RTL design. OVL, SVA, PSL, and VHDL assert statements are the 
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most covered ones in the literature. There are also some less prevalent 
ones like OVA, Intel ForSpec, IBM Sugar, Motorola CBV. 

The synthesis of RTL assertions has been the topic of various 
research works, and we will address some of the latest ones here. 
Morin-Allory et al. [3] developed a prototype tool called SyntHorus2 
that generates a synthesizable RTL design from the input PSL 
specifications. Wenzl et al. in [4] also provided a tool for conversion 
from PSL to synthesizable VHDL/Verilog code as output. In [5] the 
architecture of a System Verilog Assertions (SVA) synthesis compiler 
is presented, which converts SVA assertions to equivalent 
synthesizable Verilog code. Taatizadeh and Nicolici in [6], presented 
an emulation framework in which the assertions are synthesized using 
the existing assertion synthesis tools for PSL and SVA; the framework 
is used to detect bit-flips during post-silicon validation. 
B. Synthesis of the assertions in high-level designs 

The simplest and most straightforward way to synthesize the 
assertions is that the assertions are just removed from the source 
design, and after synthesizing the assertion-free design, assertions are 
appended to the generated RTL. Although this method seems natural 
to apply, it has several disadvantages. The first problem is that the 
designer should find the corresponding signal for each of the variables 
and objects used as the input expression of the assert statement in the 
high-level source in the generated register-level source; usually, the 
variable and signal names in the post-synthesis RTL code is different 
from their names in the high-level design. It is even likely that the 
HLS eliminates the signal during the optimization phases. The second 
point is that whenever the designer alters the high-level design, this 
step should be repeated manually. Moreover, any changes in the HLS 
system, such as utilizing another HLS from another vendor or even 
any updating by the same vendor, requires the user to repeat this 
process. 

There are only a few works on the synthesis of high-level 
assertions. The first paper was published in 2010 by Curreri et al. [7] 
in which the C assert statement was converted to an IF statement. The 
condition of the IF statement was the complement of the assert 
condition. Authors admitted that this conversion results in significant 
performance downgrade and hardware overhead. The source of this 
problem is that the IF statement is still in the original code, which 
affects the synthesis process, and more precisely, the scheduling and 
binding steps of the HLS. The proposed method in [8] is aimed to 
work with Impulse C, which is a proprietary subset of the C 
programming language with parallel programming support. The tool, 
which is not available anymore at the time of writing this paper, only 
supported that version of the C language (not the standard ANSI C). 
In [9], another synthesis method for high-level assertions is presented. 
This method reads and manipulates the Control Data Flow Graph 
(CDFG) of the design. It identifies and tags all assertion branches in 
the graph and extracts them. Afterward, the result VHDL/Verilog 
modules are generated. As the proposed method requires access to the 
HLS source, it cannot be employed in commercial HLS tools. Besides, 
the assertions are still embedded in the CDFG, and thus, the 
performance of the generated hardware is affected. Authors in [10] 
defined extensions to the Java language to support assertions. Then, 
they defined some APIs to send the result of the assertion alerts from 
the hardware part to the software part. The extended language is only 
supported by Maxeler [11], and the generic and standard synthesis 
tools cannot synthesize the design. Besides, the method is only 
applicable to the designs that a software part accompanies the 
hardware. In [12], HLS verification was studied, but no methodology 
or practical assertion synthesis mechanism is proposed. 

As discussed in this section, none of the existing assertion 
synthesis methods has all the following features: 
• Applicable to the standard C language (ANSI C) 
• Being tool independent so that a designer is not limited to a 

specific (likely a proprietary) tool. 
• Design’s critical path and performance is not affected. 

In this paper, we are proposing an automatic process that has all 
the above features together. 

III. SHILA FLOW 
Our proposed high-level assertion synthesis method begins by 

receiving the High-Level Design (HLD) in C/C++ language, in which 
the assert statements are embedded. We assume that although the 
assert statement is not a synthesizable construct, the expression used 
as the assertion parameter is synthesizable. Non-synthesizable 
expressions may comprise dynamic memory allocation function calls 

or pointers that cannot be resolved statically. The overall flow of 
SHiLA is illustrated in Fig. 1. The input HLD is then analyzed to find 
the assert statements. During the analysis and manipulation stage, 
assert statements are extracted from the code. The output of this stage 
will be two separate sets of HLD source files. The first one is the 
modified design, in which no assert statement exists, and some 
additional statements and auxiliary control signals and ports are 
implanted in the design. The second set of modules contains the high-
level synthesizable version of the assertions. For each assert statement 
in the HLD, an assertion module is generated. This stage is later 
explained in detail. Assuming that the input HLD (ignoring the assert 
statements) is synthesizable, the two outputs of this step are 
synthesizable HLDs. As a result, they can be fed into a high-level 
synthesis tool. The flow is entirely tool-agnostic, which enables the 
users to utilize every existing high-level synthesis tool. By 
synthesizing the generated modules, one assertion-free IP for the main 
design and a set of synthesizable assertion IPs are created. These IPs 
are then all connected to each other and synthesized. 

As stated earlier, in the code analysis and manipulation stage, 
hereafter referred to as pre-processing, the input HLD is processed, 
and one assertion-free HLD and several assertion modules are 
generated. Fig. 2. shows an overview of the process in this step. As 
shown, we assume the input HLD consists of three significant 
elements: ports (shown in blue), several C code sections (shown in 
black), and several assert statements scattered throughout the design 
(shown in green). Except for the C code sections, which are kept 
untouched, the two other parts should be analyzed and manipulated 
during the pre-processing phase. In the rest of this section, we will 
cover the implementation details of the pre-processing stage. 
A. Creating assertion modules 

Assertion modules are designed in the ANSI C language. Fig. 3 
shows a pseudo-code of an assertion implementation. 

The "enable" input determines if the assertion module should 
function at a specific time or not. An assert statement is used at a 
particular point of the design. It is necessary to inform the assertion 
module that the execution of the main design has reached that 
particular point, and the required data are ready and valid to be 
collected and evaluated. It is indicated by a Boolean (one bit) input. 

The validity of the assertion outputs is indicated by the one-bit 
ready signal. At the beginning of the assertion execution, the value of 
zero (false) is assigned to this output. It remains false until the 
execution has finished, and the result becomes ready. 

 
Fig. 1. SHiLA flow from HLD to Device 

As high-level designs are described through sequential bodies, 
once the assertion is activated, the program continues running while 
the assertion is running in parallel. Execution of the next statements 
in the main design's body may affect the variables’ values that are used 
by the assertion. For this reason, the assertion module should retain 
the values at the very first stage of its execution. To guarantee that, a 
local copy of all the variables is created as the opening statements in 
the assert module by defining local correspondences for each of the 
input variables and assigning the inputs to these new local variables. 
It is worth noting that as there is no dependency between these 
assignment statements, all of them are executed in parallel and in one 
clock cycle after synthesis. 



The result of the validation is assigned to the output. The value of 
zero (false) indicates that no error has been detected. Contrarily, the 
value of one (true) means that checking the inputs based on the 
determined correctness conditions has failed. Note again that this 
value is valid only if the ready signal is true. 
B. Assertion firing 

After checking the correctness of the assertion expression, the 
assertion module generates the firing result. It will be false if the 
assertion input expression is evaluated as correct and will be true 
otherwise. The design validators can use this signal in hardware-
assisted simulation environments and safety or security applications 
may use it to start counter actions such as restarting the system, 
blocking access to the system, etc. 

A firing signal is generated for each of the assertions. However, it 
should be considered that for designs with lots of assertions (and firing 
signals consequently) due to a possible shortage of output ports of the 
target device, the user may opt to adopt an encoder circuit, or even an 
OR gate if the user is only concerned about the failure of at least one 
assertion. Another useful method, which is slower, needs fewer ports, 
and meanwhile, provides the exact firing location, is utilizing a scan 
chain to send out the assertion firing results sequentially. 

 
Fig. 2. code analysis and manipulation stage of SHiLA 

function assert_id 
 inputs: bool enable, input_data_list 
 outputs: bool ready, bool fired 
  
 create local copies of input_data_list; 
 if (!enable) do nothing; 
 else 
  ready = false; 
  if (condition)fired = false; //No Firing 
  else fired = true; //Firing 
  ready = true; 

Fig. 3. High-level synthesizable version assertion 

C. Auxiliary ports 
Assertion modules and the high-level design are implemented as 

two distinct IPs. Therefore, all the variables used in the assertion input 
expression should be defined as the main design’s ports. As illustrated 
in Fig. 2, they are all connected to the inputs of the assertion modules. 
These ports will not use any of the physical I/O ports as they are just 
internal connections when two IPs (main design and assertion 
modules) are connected to each other. Another consequence of adding 
these signals as the design’s interface ports is to prevent the HLS from 
eliminating them during the optimization stages. 

Another category of the auxiliary ports is the assertion starters. As 
explained before, high-level assertions are valid only in a specific 
zone. Therefore, when the execution of the design reaches the validity 
point of one specific assertion, that assertion module should be 
notified. Notification is made through the enable port of the assertion 
modules, which were previously explained. For each assertion in the 
HLD, a single-bit output is added to the design. Every assertion in the 
HLD is replaced with an assertion starter, which assigns the value of 
true to this signal to activate that specific assertion. 
D. Integration and synthesis 

Finally, both modified HLD and the assertion modules are 
synthesizable. With the aid of the auxiliary ports, modules can be 
connected to each other and synthesized to the target device. The 
target device should be selected according to the required size of the 

whole design. A thorough discussion on this issue is later explained 
in Section V.  

IV. EXPERIMENTAL RESULTS 
To confirm the performance of the proposed method, we provide 

two sets of results. First, with an example, we will explain how the 
insertion of the synthesizable version of an assertion, directly in the 
high-level design, will downgrade the performance of the design. We 
will show that this will result in a much longer execution in terms of 
the number of the required clock cycles to finish the execution of a 
slice of code. In the second experiment, we apply our method to two 
well-known benchmark sets and show how dramatically the 
simulation speed increases. Note that this experiment is conducted to 
demonstrate the effectiveness of the high-speed simulation technique, 
which we listed in the introduction section of this paper. Other usages 
can be achieved by the implementation of fault-tolerant or security 
mechanisms along with the introduced assertion synthesis 
mechanism, which is out of the scope of this paper. 

To produce the experimental results, we chose a list of high-level 
designs from the WCET benchmarks [13] and CHStone benchmarks 
[14]. WCET benchmarks are set of C designs with various levels of 
complexity intended to analyze the worst-case execution time. 
CHStone benchmarks, on the other side, are mainly intended to 
evaluate high-level synthesis tools. 
A. Comparison with related work 

In this section, with a brief example, we will demonstrate how the 
insertion of the synthesizable version of the assertions directly into the 
design may downgrade the performance of the design. This method 
was proposed in [7]. It should be noted that although we introduced 
more methods in the related work section to synthesize the high-level 
assertions, as explained, [7] is the only one that is comparable to our 
method. 

In this experiment, as an example, we used the Prime benchmark 
from the WCET benchmark set. We first synthesized the high-level 
design to a Xilinx Artix-7 FPGA using Xilinx Vivado HLS tool to 
obtain the minimum clock period for the synthesized design. Vivado 
HLS generates an RTL design in VHDL language. Using the 
ModelSim simulator, we simulated the generated VHDL code and 
realized how many clock cycles are required to finish the execution of 
the code. By multiplication of the clock period by the number of 
clocks, we obtain the total wall-clock time needed to execute the code. 
Then, we implemented a synthesizable version of an assertion. The 
assertion was intended to make sure that a specific value is not 
supplied as a parameter. We added the assertion inline as an IF 
statement as proposed in [7]. We followed the same approach for this 
assertion-equipped design to find the latency. Latency, or the 
execution time, is the number of the required clock cycles multiplied 
by the period of each clock.  Table I shows the results. The clock 
period is similar in both versions as the critical paths are the same. The 
only difference is that the number of execution clock cycles spiked 
from 302 to 438, which is nearly 45% overhead in the latency. It is 
worth noting that this increase is a result of instrumenting the design 
with only one single assertion. Adding and invoking more assertions 
in this way can significantly deteriorate the performance.  

Then, we applied our method and implemented the assertion as a 
separate module. Again, the same steps were taken. Again, the clock 
period is the same, but the number of execution clock cycles is much 
less than the inline method, although a few clock cycles more than the 
original design due to some communication overheads. 

The area overhead of both methods is also shown in table I to 
compare two methods. Even though the execution time of our method 
is significantly shorter, the area overhead of our method is slightly 
higher, as some logic sharing by the synthesis tools has not been 
possible in our method. Note that in this paper, we do not cope with 
the area overhead of the assertions. The designer is responsible for 
selecting the assertions while considering the importance and 
coverage of them. We have covered some aspects of the area overhead 
considerations in the discussion section. 

TABLE I.  PERFORMANCE DROP BY SYNTHESIZING ASSERTIONS INLINE  

Design 
Clock 
Period 

(ns) 

Execution 
time 

(Clock cycles) 

Execution 
time 
(ns) 

Latency 
overhead 

Area overhead 
(LUT/FF) 

Original 8.47 302 2558 - - / - 
Assertion equipped 
[7] 8.47 438 3710 45.0% 13.7% / 3.21% 

Assertion equipped 
[Proposed method] 8.47 306 2592 1.3% 14.3% / 3.43% 



B. High-speed simulation speed up results 
In the second round of experiments, we will explain how our 

proposed method will speed up the validation process. The following 
steps were taken to illustrate the effectiveness of the method: 
1) Obtaining the normal execution time of the high-level code: In 

this step, we compiled and executed the assertion equipped 
design in Microsoft Visual C++ with sample inputs and obtained 
the total execution time. The results were collected on an Intel 
Core i5 1.6 GHz. To obtain a more realistic result for large 
designs with long testbenches, we had to extend the testcases. It 
should be noted that hardware-assisted simulation in general, and 
our proposed method in particular, is only useful for the designs 
with a long testing time. 

2) Applying the method: We applied the method according to 
Section III. The output of this step was the synthesizable HLD 
accompanied by the assertion module. The whole system is 
synthesizable by any generic HLS tool as the designs were all 
synthesizable high-level designs and the assertion modules were 
also implemented in a synthesizable manner. 

3) High-level synthesis of the system modules: We synthesized the 
whole system using the Xilinx Vivado HLS tool. It determined 
the minimum clock period required for the synthesized design on 
the FPGA. It will also generate the VHDL version of the design, 
which can be used in RTL simulation tools. 

4) Simulation of the synthesized design: Here, we applied the same 
inputs as step one to the design and simulated the generated RTL 
design using the ModelSim simulation tool. The result of this 
step is the number of clock cycles required to finish the 
execution. By multiplication of the clock-cycle count by the 
clock period obtained from step three, we calculated the wall-
clock time for the whole execution. 
As shown in table II, the simulation time for the synthesized 

version of assertion-instrumented designs is considerably lower than 
the simulation time of the high-level design on a computer. For the 
Prime benchmark, which shows the least speed-up, the execution 
speed increased more than 100 times. For other cases, the speedup is 
almost between 200 and 500 times. The “lcdnum” benchmarks show 
a very large speed-up as high as almost 5000. Actually, this a very rare 
case that the design has been synthesized in a way that the execution 
takes only one clock cycle. In fact, this design was synthesized as a 
pure combinational circuit. Another important point that is worth 

being considered in this table is that there is no meaningful relation 
between the execution time on the PC and the achieved speed-up 
through hardware-assisted simulation. 

V. DISCUSSION 
There are some notes to be considered for this method, which in 

this section, we try to cover. 
Applying this method to a design certainly needs an extra area on 

the silicon. In the case of size limitation (especially if the assertions 
are synthesized and sent to the tape-out for a scenario other than 
hardware-assisted simulation), the user should prioritize and select the 
most important ones. Adding even a single assertion to the final chip 
that is being sent for the tape-out usually, not always, will result in 
area overhead. It is the cost of safety or security. However, it should 
be noted that in some specific cases, there is no area overhead cost. 
As an example, if you consider the number of logic cells of Xilinx 
Virtex-7 series FPGAs, they are as follows: 326,400; 412,160; 
485,760; 554,240; 693,120; 979,200; 1,139,200; As can be seen, the 
number of logic cells increases by some sort of granularity. It means 
that if the original design does not fit into one FPGA and the designer 
decides to select a larger FPGA from the list, usually there are some 
unused logic cells (and Flip-Flops, etc.). These unused logic cells can 
be used for safety/security assurance through the assertion synthesis. 

The second point to be noted is that although the method is 
defined and tested for ANSI C assertions, a similar methodology can 
be applied to sequential assertions in VHDL and SVA, though with 
minor modifications. 

Thirdly, if the high-level design consists of a hierarchy of the 
functions, the local variables of the functions which are used in the 
assertions inside that specific function, should also be defined as the 
auxiliary ports of the design. It can be achieved by adding these 
variables as the outputs of that functions and then the same action in 
the calling function, and so on. It should be done in a bubbling 
manner. 

VI. CONCLUSION 
In this paper, we proposed a methodology that enables the 

designers to synthesize the assertions in high-level designs without 
affecting their performance. It is helpful in various scenarios such as 
high-speed or hardware-assisted simulation and safety and security 
assurance. The experimental results showed that how the proposed 
method is more effective than merely embedding the assertions inline 
with the design and how this technique can significantly reduce the 
simulation time.  

TABLE II.  EXECUTION RESULTS ON PC VS. HARDWARE-ASSISTED SIMULATION USING SHILA 

Design Execution Time (s) 
(on PC) 

Clock Period 
(ns) 

Execution Time 
(Number of Clock Cycle) 

Execution Time (ns) 
(Hardware-Assisted) Speed-up 

prime 290 8.47 3,019,681,304 25,576,700,645 11.3 
janne_complex 79 6.51 457,851,870 2,980,615,674 26.5 
lcdnum 22 4.434 9,464,655 41,966,280 524.3 
fibcall 98 7.88 328,463,091 2,588,289,157 37.9 
sqrt 231 8.451 1,124,626,467 9,504,218,273 24.3 
adpcm-encode 597 8.555 2,004,786,131 17,150,945,351 34.8 
adpcm-decode 488 8.47 1,189,895,355 10,078,413,657 48.4 
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