
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

SHiLA: Synthesizing High-Level Assertions for
High-Speed Validation of High-Level Designs

Mohammad Riazati
Mälardalen University

Västerås, Sweden
mohammad.riazati@mdh.se

Masoud Daneshtalab
Mälardalen University

Västerås, Sweden
masoud.daneshtalab@mdh.se

Mikael Sjödin
Mälardalen University

Västerås, Sweden
mikael.sjodin@mdh.se

Björn Lisper
Mälardalen University

Västerås, Sweden
bjorn.lisper@mdh.se

Abstract—In the past, assertions were mostly used to validate
the system through the design and simulation process. Later, a
new method known as assertion synthesis was introduced, which
enabled the designers to use the assertions for high-speed
hardware emulation and safety and reliability insurance after
tape-out. Although the synthesis of the assertions at the register
transfer level is proposed and implemented in several works,
none of them can be adopted for high-level assertions. In this
paper, we propose the SHiLA framework and a detailed
implementation guide by which assertion synthesis can also be
applied to the high-level design processes. The proposed method,
which is fully tool independent, is not only an enabler to high-
speed assertion-assisted simulation but can also be used in other
scenarios that need assertion synthesis, as it has the minimum
possible effect on the main design’s performance.

Keywords— Assertion, Synthesis, HLS, High-Level Design,
High-Speed Validation

I. INTRODUCTION
High-Level Synthesis (HLS) enables designers to develop the

design faster and easier in higher-level languages such as C. Design
and verification are two main steps before any digital product
becomes available to be sent to the market. Researchers and engineers
have been continuously trying to facilitate and expedite this process.
On the design side, the most recent and significant step was the
introduction of the high-level synthesis, which enabled the designers
to implement their desired system in a more natural and perceivable
manner. Although HLS emerged as a remarkable advancement in
digital design technology, on the verification side, there has been no
significant achievement to accompany this design level. One of the
main verification methods in the literature and industry is Assertion-
Based Verification (ABV) [1].

Fortunately, assertion statements are already supported by the
ANSI C language standard [2]. The two most common practices of
using assertions are using them as pre-conditions or post-conditions.
Pre-conditions and post-conditions are used to specify and check the
assumptions or conditions before and after a region of a program,
respectively. These usages not only expedite the simulation and
verification process but also improve the readability and
understandability of the program. More precisely, assert is a macro
usually defined in the assert.h header file.

The C/C++ assert statement’s implementation in assert.h is in a
way that it is executed only during the debug time. When the release
version is being built, the assert statement is eliminated during the
preprocessing phase. A similar scenario happens when the C language
is used for high-level modeling of the digital circuits. When the
designer is simulating (and testing) the design using a testbench,
assertions are active and generate corresponding messages whenever
a fault, incorrect action, unexpected behavior, undesired input or
output, etc. is detected. However, during the synthesis process,
assertions are ignored (or may cause synthesis failure as a result of
being a non-synthesizable construct, if they are not eliminated during
the pre-processing step).

Assertions were basically intended to be used as software internal
checkpoints. But, transforming them to the hardware checkers and
putting them along with the main design body will be valuable in
several scenarios described as follows:

A) High-speed simulation: in this scenario which is also known
as emulation or hardware-assisted simulation, instead of simulating
the design on the computers, alternatively, the design is synthesized
to the FPGA and input vectors and sequences are applied to the
hardware. By monitoring the outputs, the designer can examine the
functional correctness of the design. In this case, if the assertions are

also synthesized to the FPGA, the observability of the design’s
internal behavior as well as the ability to cover the corner cases
significantly increases. This method also has a side benefit, which is
known as synthesis result assurance. If assertions are synthesized to
the hardware, especially if they are used as the pre-conditions of a
specific code region, they will help the designers not only with
detecting the possible inequality between pre-synthesis and post-
synthesis versions but also with pinpointing its origin.

B) Safety assurance: in safety-critical applications, like avionics
systems, a slight unpredicted or unexpected behavior (such as bit-
flips) may result in disastrous consequences, including loss of human
life or financial damage. The inclusion of the assertions in the final
chip will help the chip environment to realize the chip malfunction.
This can start several countermeasures, e.g., deactivation of the
current module and activation of the back-up one.

C) Security: a design can be equipped with assertions in order to
detect various attacks such as control-flow and data-injection attacks.
In case such assertions fire when the generated hardware is
performing the intended tasks, this firing signal can be utilized either
to stop execution or to take a countermeasure.

In this paper, we mainly focus on high-speed simulation.
Nonetheless, our method is applicable to any safety/security
mechanism that is capable of using assertions.

As mentioned earlier, ANSI C assert statements are not
synthesized by the traditional synthesis tools, unless a specific method
is adopted. As we will discuss in the related work section, the
previously proposed methods significantly affect the performance of
the design, rely on a specific synthesis tool, or are applicable only to
a subset of C designs.

As our key contribution, we propose a complete framework,
which instead of letting the assert statements be eliminated by the
synthesis tool, converts them to synthesizable constructs to
accompany the generated hardware without affecting the performance
of the design. We implemented a code analyzer and manipulator to
extract and eliminate the assertions, inject the required auxiliary codes
and automatically generate the synthesizable assertion modules. The
main advantages of this work are threefold as follows:
• The proposed mechanism is entirely tool-agnostic so that it can

be used along with any existing synthesis tools, either open-
source or commercial.

• The assertion modules are generated such that their effect on the
design’s timing and performance is minimal.

• Assertions are implemented as separate modules so that any
future improvements like optimization or consolidation is easily
possible for future researchers or tool producers.
The remainder of this paper is organized as follows. In Section 2,

previous work on assertion synthesis is reviewed. Then in Section 3,
the overall structure and detailed implementation of the proposed
mechanism is explained. Experimental results are given in Section 4.
Some technicalities are discussed in Section 5, and finally, the paper
concludes in Section 6.

II. RELATED WORK
There are a lot of research works on the synthesis of the assertions.

We categorize them as the synthesis of RTL assertions, and the
synthesis of high-level assertions. A large body of works has focused
on the synthesis of the RTL assertions, where some recent works are
provided here. However, only a few papers deal with the high-level
assertion synthesis, and we try to cover all of them.
A. Synthesis of assertions at the register transfer level

A lot of assertion languages and libraries are used along with the
RTL design. OVL, SVA, PSL, and VHDL assert statements are the

Preprint submitted to Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS'20)

most covered ones in the literature. There are also some less prevalent
ones like OVA, Intel ForSpec, IBM Sugar, Motorola CBV.

The synthesis of RTL assertions has been the topic of various
research works, and we will address some of the latest ones here.
Morin-Allory et al. [3] developed a prototype tool called SyntHorus2
that generates a synthesizable RTL design from the input PSL
specifications. Wenzl et al. in [4] also provided a tool for conversion
from PSL to synthesizable VHDL/Verilog code as output. In [5] the
architecture of a System Verilog Assertions (SVA) synthesis compiler
is presented, which converts SVA assertions to equivalent
synthesizable Verilog code. Taatizadeh and Nicolici in [6], presented
an emulation framework in which the assertions are synthesized using
the existing assertion synthesis tools for PSL and SVA; the framework
is used to detect bit-flips during post-silicon validation.
B. Synthesis of the assertions in high-level designs

The simplest and most straightforward way to synthesize the
assertions is that the assertions are just removed from the source
design, and after synthesizing the assertion-free design, assertions are
appended to the generated RTL. Although this method seems natural
to apply, it has several disadvantages. The first problem is that the
designer should find the corresponding signal for each of the variables
and objects used as the input expression of the assert statement in the
high-level source in the generated register-level source; usually, the
variable and signal names in the post-synthesis RTL code is different
from their names in the high-level design. It is even likely that the
HLS eliminates the signal during the optimization phases. The second
point is that whenever the designer alters the high-level design, this
step should be repeated manually. Moreover, any changes in the HLS
system, such as utilizing another HLS from another vendor or even
any updating by the same vendor, requires the user to repeat this
process.

There are only a few works on the synthesis of high-level
assertions. The first paper was published in 2010 by Curreri et al. [7]
in which the C assert statement was converted to an IF statement. The
condition of the IF statement was the complement of the assert
condition. Authors admitted that this conversion results in significant
performance downgrade and hardware overhead. The source of this
problem is that the IF statement is still in the original code, which
affects the synthesis process, and more precisely, the scheduling and
binding steps of the HLS. The proposed method in [8] is aimed to
work with Impulse C, which is a proprietary subset of the C
programming language with parallel programming support. The tool,
which is not available anymore at the time of writing this paper, only
supported that version of the C language (not the standard ANSI C).
In [9], another synthesis method for high-level assertions is presented.
This method reads and manipulates the Control Data Flow Graph
(CDFG) of the design. It identifies and tags all assertion branches in
the graph and extracts them. Afterward, the result VHDL/Verilog
modules are generated. As the proposed method requires access to the
HLS source, it cannot be employed in commercial HLS tools. Besides,
the assertions are still embedded in the CDFG, and thus, the
performance of the generated hardware is affected. Authors in [10]
defined extensions to the Java language to support assertions. Then,
they defined some APIs to send the result of the assertion alerts from
the hardware part to the software part. The extended language is only
supported by Maxeler [11], and the generic and standard synthesis
tools cannot synthesize the design. Besides, the method is only
applicable to the designs that a software part accompanies the
hardware. In [12], HLS verification was studied, but no methodology
or practical assertion synthesis mechanism is proposed.

As discussed in this section, none of the existing assertion
synthesis methods has all the following features:
• Applicable to the standard C language (ANSI C)
• Being tool independent so that a designer is not limited to a

specific (likely a proprietary) tool.
• Design’s critical path and performance is not affected.

In this paper, we are proposing an automatic process that has all
the above features together.

III. SHILA FLOW
Our proposed high-level assertion synthesis method begins by

receiving the High-Level Design (HLD) in C/C++ language, in which
the assert statements are embedded. We assume that although the
assert statement is not a synthesizable construct, the expression used
as the assertion parameter is synthesizable. Non-synthesizable
expressions may comprise dynamic memory allocation function calls

or pointers that cannot be resolved statically. The overall flow of
SHiLA is illustrated in Fig. 1. The input HLD is then analyzed to find
the assert statements. During the analysis and manipulation stage,
assert statements are extracted from the code. The output of this stage
will be two separate sets of HLD source files. The first one is the
modified design, in which no assert statement exists, and some
additional statements and auxiliary control signals and ports are
implanted in the design. The second set of modules contains the high-
level synthesizable version of the assertions. For each assert statement
in the HLD, an assertion module is generated. This stage is later
explained in detail. Assuming that the input HLD (ignoring the assert
statements) is synthesizable, the two outputs of this step are
synthesizable HLDs. As a result, they can be fed into a high-level
synthesis tool. The flow is entirely tool-agnostic, which enables the
users to utilize every existing high-level synthesis tool. By
synthesizing the generated modules, one assertion-free IP for the main
design and a set of synthesizable assertion IPs are created. These IPs
are then all connected to each other and synthesized.

As stated earlier, in the code analysis and manipulation stage,
hereafter referred to as pre-processing, the input HLD is processed,
and one assertion-free HLD and several assertion modules are
generated. Fig. 2. shows an overview of the process in this step. As
shown, we assume the input HLD consists of three significant
elements: ports (shown in blue), several C code sections (shown in
black), and several assert statements scattered throughout the design
(shown in green). Except for the C code sections, which are kept
untouched, the two other parts should be analyzed and manipulated
during the pre-processing phase. In the rest of this section, we will
cover the implementation details of the pre-processing stage.
A. Creating assertion modules

Assertion modules are designed in the ANSI C language. Fig. 3
shows a pseudo-code of an assertion implementation.

The "enable" input determines if the assertion module should
function at a specific time or not. An assert statement is used at a
particular point of the design. It is necessary to inform the assertion
module that the execution of the main design has reached that
particular point, and the required data are ready and valid to be
collected and evaluated. It is indicated by a Boolean (one bit) input.

The validity of the assertion outputs is indicated by the one-bit
ready signal. At the beginning of the assertion execution, the value of
zero (false) is assigned to this output. It remains false until the
execution has finished, and the result becomes ready.

Fig. 1. SHiLA flow from HLD to Device

As high-level designs are described through sequential bodies,
once the assertion is activated, the program continues running while
the assertion is running in parallel. Execution of the next statements
in the main design's body may affect the variables’ values that are used
by the assertion. For this reason, the assertion module should retain
the values at the very first stage of its execution. To guarantee that, a
local copy of all the variables is created as the opening statements in
the assert module by defining local correspondences for each of the
input variables and assigning the inputs to these new local variables.
It is worth noting that as there is no dependency between these
assignment statements, all of them are executed in parallel and in one
clock cycle after synthesis.

The result of the validation is assigned to the output. The value of
zero (false) indicates that no error has been detected. Contrarily, the
value of one (true) means that checking the inputs based on the
determined correctness conditions has failed. Note again that this
value is valid only if the ready signal is true.
B. Assertion firing

After checking the correctness of the assertion expression, the
assertion module generates the firing result. It will be false if the
assertion input expression is evaluated as correct and will be true
otherwise. The design validators can use this signal in hardware-
assisted simulation environments and safety or security applications
may use it to start counter actions such as restarting the system,
blocking access to the system, etc.

A firing signal is generated for each of the assertions. However, it
should be considered that for designs with lots of assertions (and firing
signals consequently) due to a possible shortage of output ports of the
target device, the user may opt to adopt an encoder circuit, or even an
OR gate if the user is only concerned about the failure of at least one
assertion. Another useful method, which is slower, needs fewer ports,
and meanwhile, provides the exact firing location, is utilizing a scan
chain to send out the assertion firing results sequentially.

Fig. 2. code analysis and manipulation stage of SHiLA

function assert_id
 inputs: bool enable, input_data_list
 outputs: bool ready, bool fired

 create local copies of input_data_list;
 if (!enable) do nothing;
 else
 ready = false;
 if (condition)fired = false; //No Firing
 else fired = true; //Firing
 ready = true;

Fig. 3. High-level synthesizable version assertion

C. Auxiliary ports
Assertion modules and the high-level design are implemented as

two distinct IPs. Therefore, all the variables used in the assertion input
expression should be defined as the main design’s ports. As illustrated
in Fig. 2, they are all connected to the inputs of the assertion modules.
These ports will not use any of the physical I/O ports as they are just
internal connections when two IPs (main design and assertion
modules) are connected to each other. Another consequence of adding
these signals as the design’s interface ports is to prevent the HLS from
eliminating them during the optimization stages.

Another category of the auxiliary ports is the assertion starters. As
explained before, high-level assertions are valid only in a specific
zone. Therefore, when the execution of the design reaches the validity
point of one specific assertion, that assertion module should be
notified. Notification is made through the enable port of the assertion
modules, which were previously explained. For each assertion in the
HLD, a single-bit output is added to the design. Every assertion in the
HLD is replaced with an assertion starter, which assigns the value of
true to this signal to activate that specific assertion.
D. Integration and synthesis

Finally, both modified HLD and the assertion modules are
synthesizable. With the aid of the auxiliary ports, modules can be
connected to each other and synthesized to the target device. The
target device should be selected according to the required size of the

whole design. A thorough discussion on this issue is later explained
in Section V.

IV. EXPERIMENTAL RESULTS
To confirm the performance of the proposed method, we provide

two sets of results. First, with an example, we will explain how the
insertion of the synthesizable version of an assertion, directly in the
high-level design, will downgrade the performance of the design. We
will show that this will result in a much longer execution in terms of
the number of the required clock cycles to finish the execution of a
slice of code. In the second experiment, we apply our method to two
well-known benchmark sets and show how dramatically the
simulation speed increases. Note that this experiment is conducted to
demonstrate the effectiveness of the high-speed simulation technique,
which we listed in the introduction section of this paper. Other usages
can be achieved by the implementation of fault-tolerant or security
mechanisms along with the introduced assertion synthesis
mechanism, which is out of the scope of this paper.

To produce the experimental results, we chose a list of high-level
designs from the WCET benchmarks [13] and CHStone benchmarks
[14]. WCET benchmarks are set of C designs with various levels of
complexity intended to analyze the worst-case execution time.
CHStone benchmarks, on the other side, are mainly intended to
evaluate high-level synthesis tools.
A. Comparison with related work

In this section, with a brief example, we will demonstrate how the
insertion of the synthesizable version of the assertions directly into the
design may downgrade the performance of the design. This method
was proposed in [7]. It should be noted that although we introduced
more methods in the related work section to synthesize the high-level
assertions, as explained, [7] is the only one that is comparable to our
method.

In this experiment, as an example, we used the Prime benchmark
from the WCET benchmark set. We first synthesized the high-level
design to a Xilinx Artix-7 FPGA using Xilinx Vivado HLS tool to
obtain the minimum clock period for the synthesized design. Vivado
HLS generates an RTL design in VHDL language. Using the
ModelSim simulator, we simulated the generated VHDL code and
realized how many clock cycles are required to finish the execution of
the code. By multiplication of the clock period by the number of
clocks, we obtain the total wall-clock time needed to execute the code.
Then, we implemented a synthesizable version of an assertion. The
assertion was intended to make sure that a specific value is not
supplied as a parameter. We added the assertion inline as an IF
statement as proposed in [7]. We followed the same approach for this
assertion-equipped design to find the latency. Latency, or the
execution time, is the number of the required clock cycles multiplied
by the period of each clock. Table I shows the results. The clock
period is similar in both versions as the critical paths are the same. The
only difference is that the number of execution clock cycles spiked
from 302 to 438, which is nearly 45% overhead in the latency. It is
worth noting that this increase is a result of instrumenting the design
with only one single assertion. Adding and invoking more assertions
in this way can significantly deteriorate the performance.

Then, we applied our method and implemented the assertion as a
separate module. Again, the same steps were taken. Again, the clock
period is the same, but the number of execution clock cycles is much
less than the inline method, although a few clock cycles more than the
original design due to some communication overheads.

The area overhead of both methods is also shown in table I to
compare two methods. Even though the execution time of our method
is significantly shorter, the area overhead of our method is slightly
higher, as some logic sharing by the synthesis tools has not been
possible in our method. Note that in this paper, we do not cope with
the area overhead of the assertions. The designer is responsible for
selecting the assertions while considering the importance and
coverage of them. We have covered some aspects of the area overhead
considerations in the discussion section.

TABLE I. PERFORMANCE DROP BY SYNTHESIZING ASSERTIONS INLINE

Design
Clock
Period

(ns)

Execution
time

(Clock cycles)

Execution
time
(ns)

Latency
overhead

Area overhead
(LUT/FF)

Original 8.47 302 2558 - - / -
Assertion equipped
[7] 8.47 438 3710 45.0% 13.7% / 3.21%

Assertion equipped
[Proposed method] 8.47 306 2592 1.3% 14.3% / 3.43%

B. High-speed simulation speed up results
In the second round of experiments, we will explain how our

proposed method will speed up the validation process. The following
steps were taken to illustrate the effectiveness of the method:
1) Obtaining the normal execution time of the high-level code: In

this step, we compiled and executed the assertion equipped
design in Microsoft Visual C++ with sample inputs and obtained
the total execution time. The results were collected on an Intel
Core i5 1.6 GHz. To obtain a more realistic result for large
designs with long testbenches, we had to extend the testcases. It
should be noted that hardware-assisted simulation in general, and
our proposed method in particular, is only useful for the designs
with a long testing time.

2) Applying the method: We applied the method according to
Section III. The output of this step was the synthesizable HLD
accompanied by the assertion module. The whole system is
synthesizable by any generic HLS tool as the designs were all
synthesizable high-level designs and the assertion modules were
also implemented in a synthesizable manner.

3) High-level synthesis of the system modules: We synthesized the
whole system using the Xilinx Vivado HLS tool. It determined
the minimum clock period required for the synthesized design on
the FPGA. It will also generate the VHDL version of the design,
which can be used in RTL simulation tools.

4) Simulation of the synthesized design: Here, we applied the same
inputs as step one to the design and simulated the generated RTL
design using the ModelSim simulation tool. The result of this
step is the number of clock cycles required to finish the
execution. By multiplication of the clock-cycle count by the
clock period obtained from step three, we calculated the wall-
clock time for the whole execution.
As shown in table II, the simulation time for the synthesized

version of assertion-instrumented designs is considerably lower than
the simulation time of the high-level design on a computer. For the
Prime benchmark, which shows the least speed-up, the execution
speed increased more than 100 times. For other cases, the speedup is
almost between 200 and 500 times. The “lcdnum” benchmarks show
a very large speed-up as high as almost 5000. Actually, this a very rare
case that the design has been synthesized in a way that the execution
takes only one clock cycle. In fact, this design was synthesized as a
pure combinational circuit. Another important point that is worth

being considered in this table is that there is no meaningful relation
between the execution time on the PC and the achieved speed-up
through hardware-assisted simulation.

V. DISCUSSION
There are some notes to be considered for this method, which in

this section, we try to cover.
Applying this method to a design certainly needs an extra area on

the silicon. In the case of size limitation (especially if the assertions
are synthesized and sent to the tape-out for a scenario other than
hardware-assisted simulation), the user should prioritize and select the
most important ones. Adding even a single assertion to the final chip
that is being sent for the tape-out usually, not always, will result in
area overhead. It is the cost of safety or security. However, it should
be noted that in some specific cases, there is no area overhead cost.
As an example, if you consider the number of logic cells of Xilinx
Virtex-7 series FPGAs, they are as follows: 326,400; 412,160;
485,760; 554,240; 693,120; 979,200; 1,139,200; As can be seen, the
number of logic cells increases by some sort of granularity. It means
that if the original design does not fit into one FPGA and the designer
decides to select a larger FPGA from the list, usually there are some
unused logic cells (and Flip-Flops, etc.). These unused logic cells can
be used for safety/security assurance through the assertion synthesis.

The second point to be noted is that although the method is
defined and tested for ANSI C assertions, a similar methodology can
be applied to sequential assertions in VHDL and SVA, though with
minor modifications.

Thirdly, if the high-level design consists of a hierarchy of the
functions, the local variables of the functions which are used in the
assertions inside that specific function, should also be defined as the
auxiliary ports of the design. It can be achieved by adding these
variables as the outputs of that functions and then the same action in
the calling function, and so on. It should be done in a bubbling
manner.

VI. CONCLUSION
In this paper, we proposed a methodology that enables the

designers to synthesize the assertions in high-level designs without
affecting their performance. It is helpful in various scenarios such as
high-speed or hardware-assisted simulation and safety and security
assurance. The experimental results showed that how the proposed
method is more effective than merely embedding the assertions inline
with the design and how this technique can significantly reduce the
simulation time.

TABLE II. EXECUTION RESULTS ON PC VS. HARDWARE-ASSISTED SIMULATION USING SHILA

Design Execution Time (s)
(on PC)

Clock Period
(ns)

Execution Time
(Number of Clock Cycle)

Execution Time (ns)
(Hardware-Assisted) Speed-up

prime 290 8.47 3,019,681,304 25,576,700,645 11.3
janne_complex 79 6.51 457,851,870 2,980,615,674 26.5
lcdnum 22 4.434 9,464,655 41,966,280 524.3
fibcall 98 7.88 328,463,091 2,588,289,157 37.9
sqrt 231 8.451 1,124,626,467 9,504,218,273 24.3
adpcm-encode 597 8.555 2,004,786,131 17,150,945,351 34.8
adpcm-decode 488 8.47 1,189,895,355 10,078,413,657 48.4

REFERENCES
[1] Z. Ren and H. Al-Asaad, "Overview of Assertion-Based Verification

and its Applications."
[2] Programming languages - C, 9899:1999, ISO/IEC.
[3] K. Morin-Allory, F. N. Javaheri, and D. Borrione, "Efficient and correct

by construction assertion-based synthesis," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 23, no. 12, pp. 2890-2901,
2015.

[4] M. Wenzl, C. Fibich, P. Rössler, H. Taucher, and M. Matschnig, "Logic
synthesis of assertions for saftey-critical applications," in 2015 IEEE
International Conference on Industrial Technology (ICIT), 2015: IEEE,
pp. 1581-1586.

[5] O. Amin, Y. Ramzy, O. Ibrahem, A. Fouad, K. Mohamed, and M.
Abdelsalam, "System Verilog Assertions Synthesis Based Compiler,"
in 2016 17th International Workshop on Microprocessor and SOC Test
and Verification (MTV), 2016: IEEE, pp. 65-70.

[6] P. Taatizadeh and N. Nicolici, "Emulation infrastructure for the
evaluation of hardware assertions for post-silicon validation," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 6, pp. 1866-1880, 2017.

[7] J. Curreri, G. Stitt, and A. D. George, "High-level synthesis techniques
for in-circuit assertion-based verification," in 2010 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010: IEEE, pp. 1-8.

[8] "Impulce C." https://en.wikipedia.org/wiki/Impulse_C (accessed 18
June, 2019).

[9] A. Ribon, B. Le Gal, C. Jégo, and D. Dallet, "Assertion support in high-
level synthesis design flow," in FDL 2011 Proceedings, 2011: IEEE, pp.
1-8.

[10] T. Todman and W. Luk, "In-Circuit Assertions and Exceptions for
Reconfigurable Hardware Design," in Provably Correct Systems:
Springer, 2017, pp. 265-281.

[11] "MaxCompiler."
https://www.maxeler.com/products/software/maxcompiler/ (accessed
18 June, 2019).

[12] S. U. Park, T. P. Kim, M. Z. Lee, and Y. B. Cho, "Method of RTL
Debugging When Using HLS for HW Design: Different Simulation
Result of Verilog & VHDL," in 2018 International SoC Design
Conference (ISOCC), 2018: IEEE, pp. 273-274.

[13] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, "The Mälardalen
WCET benchmarks: Past, present and future," in 10th International
Workshop on Worst-Case Execution Time Analysis (WCET 2010),
2010: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[14] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, "Proposal and
quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis," Journal of Information
Processing, vol. 17, pp. 242-254, 2009.

	I. Introduction
	II. Related work
	A. Synthesis of assertions at the register transfer level
	B. Synthesis of the assertions in high-level designs

	III. SHiLA flow
	A. Creating assertion modules
	B. Assertion firing
	C. Auxiliary ports
	D. Integration and synthesis

	IV. Experimental Results
	A. Comparison with related work
	B. High-speed simulation speed up results

	V. Discussion
	VI. Conclusion
	References

