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Abstract Software in modern vehicles consists of multi-criticality functions,
where a function can be safety-critical with stringent real-time requirements,
less critical from the vehicle operation perspective, but still with real-time
requirements, or not critical at all. Next-generation autonomous vehicles will
require higher computational power to run multi-criticality functions and such
a power can only be provided by parallel computing platforms such as multi-
core architectures. However, current model-based software development solu-
tions and related modelling languages have not been designed to effectively
deal with challenges specific of multi-core, such as core-interdependency and
controlled allocation of software to hardware.

In this paper, we report on the evolution of the Rubus Component Model
for the modelling, analysis, and development of vehicular software-systems
with multi-criticality for deployment on multi-core platforms. Our goal is to
provide a lightweight and technology-preserving transition from model-based
software development for single-core to multi-core. This is achieved by evolving
the Rubus Component Model to capture explicit concepts for multi-core and
parallel hardware and for expressing variable criticality of software functions.
The paper illustrates these contributions through an industrial application in
the vehicular domain.
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1 Introduction

Software has become the heart of modern systems across most domains and is
enhancing, sometimes even replacing, an ever larger number of mechanical and
electrical parts. The automotive industry, for instance, has experienced a dra-
matic increment of software in vehicles. A modern car is a software-intensive
system, while historically vehicles have been considered to be mechanics-
intensive [49]. The same is happening in other domains, such as, for example,
aerospace, automation, and robotics.

In our research, we target vehicular applications, where multiple networks,
consisting of Electronic Control Units (ECUs), sensors, and actuators whose
most value-added functionalities are realised by software. An example is the
throttle control system, implemented now in these terms and replacing the
old-fashioned mechanical linkage between the gas pedal and the throttle valve.
Besides single specific control functionalities, the current trend in automotive
is to empower software to steer vehicles, break, and in general to control com-
plex vehicle behaviours. While most current vehicular systems only leverage
single-core ECUs, to be able to provide suitable computational power to such
a complex software, the trend is to switch to ECUs with multi-core micropro-
cessors.

Shifting to multi-core impacts the way vehicular software is designed, anal-
ysed and developed. Current model-based solutions, specifically tailored to
single-core, are hardly reusable when dealing with challenges specific to multi-
core [33], such as core-interdependency and allocation of parallel software to
hardware. The latter is further complicated by the so called multi-criticality
problem. Vehicular software typically consists of functions with different crit-
icality levels: some are safety-critical with stringent real-time requirements
(e.g., airbag deployment), some are not safety-critical although with real-time
requirements (e.g., speedometer), others are not critical (e.g., infotainment).
In this landscape, a challenge is to design and develop multi-criticality software
and allocate it to hardware in a reliable and cost-effective manner.

We have long been working on enhancing Rubus [1], a commercial model-
based approach and modelling language for vehicular single-core systems, to
address multi-core platforms with the intent of not disrupting the existing
vehicular software-assets developed in the vehicular industry. Such core assets
include:

– own legacy, up to 90% of the software in a new vehicle release can be reused
from previous releases [47];

– supplier legacy Original Equipment Manufacturers (OEMs) have decennial
contracts with Tier-N suppliers and changes to assets shall not affect them,
and

– certified run-time support1, important since model-based solutions rely
on certified development environments and real-time operating systems

1 Rubus RTOS is certified according to the ISO 26262 safety standard, whereas the cer-
tification of the Rubus-ICE development environment is undergoing.
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(RTOS) [2] and, typically, the certification process adds a development
cost overhead between 25 and 100% [46].

Our goal was to evolve the Rubus Component Model (RCM) [40], core
of the Rubus approach, to support multi-core in modelling multi-criticality
vehicular software systems. In this paper, we describe the process that we
followed and show the results of our effort. Moreover, we discuss key lessons
we learnt from this effort and that could help other technology providers facing
similar transitions.

The remainder of the paper is structured as follows. Section 2 describes the
specific contributions of this work and put them in relation with the authors’
previous works. Section 3 motivates the selection and evolution of RCM, the
background as well as the comparison between existing related approaches
documented in the literature and our solution. Section 4 describes the evolution
of RCM. Section 5 discusses the application of the proposed solution to an
industrial application in three different configurations. Section 6 discusses our
contributions from a more generic viewpoint while Section 7 concludes the
paper with final remarks and intended future work.

2 Contribution

Although there are several modelling languages used in the vehicular domain
such as, for example, AUTOSAR [3], ProCom [56], COMDES [41], AADL [48],
we focus on RCM and its extension for multi-core due to the following reasons.
Thanks to its statically synthesised communication as well as its predictable
and fine-grained execution model, RCM allows overcoming the issues related to
predictability [53]. Moreover, RCM uses pipe-and-filter2 communication and
distinguishes between the control and data flows among its software compo-
nents; this communication mechanism resembles the sender receiver commu-
nication in the AUTOSAR standard [3]. In [55], we showed how these features
contributed to enable early timing verification of the modelled system, e.g.,
by supporting end-to-end timing analysis [45] of software architectures of the
system at early stages during the development. Lastly, the automatically gen-
erated footprint of the executable image of the system is consistently smaller
than for other modelling languages [55]. Whereas our work focuses on RCM,
we believe that the evolution problems that we faced are commonly emerg-
ing in the transition of similar languages towards the support of multi-core
platforms.

Originally, RCM was aimed at providing support for the development of
distributed real-time systems through the specification of re-usable units of
software (i.e., software components). However, RCM did not feature any form
of automation. In order to achieve a full-fledged model-based approach, in [16]
we reverse-engineered the RCM specification in order to express it in a more

2 The pipe-and-filter communication mechanism is used by many software component
models in the vehicular domain [53], e.g., COMDES [41], ProCom [56].
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canonical form, i.e. through a metamodel, called RubusMM. RubusMM in-
cluded concepts for expressing software architectures and concepts for de-
scribing timing information of vehicular single-core applications. In [17], we
evolved RubusMM to entail concepts for modelling vehicular applications on
multi-core.

In this work, we report on the evolution of RubusMM, the modelling lan-
guage core of the Rubus approach, to support multi-core in modelling software
with multi-criticality for vehicular embedded systems. This evolution repre-
sents a crucial step in transitioning from single-core to multi-core without dis-
rupting the current vehicular software-assets. In particular, the contribution
is two-fold.

Contribution 1 (C1): We revolve the Rubus modelling language so as to
enable the prescription of the structure of multi-criticality software systems to
be deployed on single- and multi-core as well as on mixed architectures3.

Contribution 2 (C2): We ensure backward compatibility with legacy soft-
ware systems modelled with RubusMM and do not cause any modification to
the Rubus run-time layer, the certified Rubus Kernel.

While evolving RubusMM, we built upon the previous extensions intro-
duced in [17], focusing on introducing concepts for modelling multi-criticality
vehicular systems (C1, C2). More specifically, we answered to the following
needs:

– Improve separation of concerns. Separation of concerns is a long-
known practice (first advocated by Dijkstra [31]), which aims at sepa-
rating different aspects of software for improving separate reasoning and
focused specification. Such a practice has been a pivotal aspect in the defi-
nition of modern (modelling) languages especially for those supporting the
component-based design pattern [37]. Nevertheless, separation of concerns
has been sometimes neglected in favour of more pragmatic choices when
defining languages. This is especially true for languages having a strong
industrial connotation, as in the case of RubusMM, which, prior to this
extension, was fairly monolithic, blending software, hardware, and analy-
sis aspects together. Thereby, in order to make the language more flexible
to evolutions, such as the one presented in this paper, a first step was to
enhance, or rather include, separation of concerns at metamodelling level
in RubusMM.

– Extend timing modelling concepts. Real-time embedded systems re-
quire evidence that their output will be delivered at the time that is suit-
able for the environment they interact with. Schedulability analysis is an
a-priori timing analysis technique which ascertains whether each function
in the system is going to meet its timing requirements. The majority of ex-
isting timing analyses are used at an abstraction level that is close to the

3 With respect to C1, the RubusMM presented in [17] did not provide support for multi-
criticality software systems.
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system implementation (e.g., code). The language needed modelling sup-
port that was expressive enough to allow the timing analysis of software
architectures at a higher level of abstraction (i.e., models).

– Extend hardware modelling concepts. The language only allowed
modelling of single-core CPU-based hardware. Therefore, we needed to
provide the structural constructs for describing the multi-core, even hetero-
geneous, hardware architectures. This includes general information about
the hardware (for example: partitions, number of cores, etc.) as well as re-
lationships among hardware elements (for example: containment relations,
etc.). To ensure compatibility with the previous RubusMM versions and
back-compatibility of legacy models, we needed to take specific counter-
measures especially when extending hardware modelling concepts.

– Extend software modelling concepts. The ISO 26262 [2] safety stan-
dard defines the Automotive Safety Integrity Level (ASIL) as a risk clas-
sification system for the functional safety of road vehicles. Accordingly,
vehicular software functions are categorised with respect to the risks asso-
ciated with their failure. There are four ASILs identified by ISO 26262: A,
B, C, and D, where ASIL A represents the lowest degree (lowest criticality
level) and ASIL D represents the highest degree (highest criticality level)
of automotive hazard. In order to support the modelling and execution of
software functions with different criticality levels on the same core, we use
partitions to logically isolate the software functions with respect to their
criticality levels. Partitioning is a proven method for implementing the log-
ical isolation of software on the same core. A core can have a minimum of
one and a maximum of five partitions, where each partition hosts software
with the same criticality level that corresponds to ASIL A, B, C, D or
non-critical. Note that there are several ways to implement the partitions,
e.g., assigning distinct runtime priorities to each partition or assigning a
dedicated execution budget to each partition with respect to its criticality
level. In this work, we assume the priority-based implementation.

3 Background and related work

3.1 The Rubus concept

Rubus is developed by Arcticus Systems4 in collaboration with Mälardalen
University and other academic and industrial partners [51]. The Rubus concept
is based around the RCM [40] and its development environment Rubus-ICE
(Integrated Component development Environment), which includes modeling
tools, code generators, analysis tools and run-time infrastructure. Rubus also
provides a real-time operating system which has been certified to the highest
ASIL level according to the ISO 26262 safety standard. The overall goal of
Rubus is to be aggressively resource-efficient and to provide means for devel-
oping predictable and analyzable control functions in resource-constrained em-

4 https://www.arcticus-systems.com
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bedded systems. RCM and Rubus tools have been used in the vehicle industry
for over 25 years by several OEMs and Tier-1 companies (e.g., Volvo Construc-
tion Equipment, BAE Systems Hägglunds, Hoerbiger and Knorr Bremse) for
the software development of real-time embedded systems.

3.1.1 The Rubus Component Model (RCM)
The purpose of RCM is to express the infrastructure for software functions.

In RCM, a Software Circuit (SWC) is the lowest-level hierarchical element
and its purpose is to encapsulate software functions. An SWC can be seen as
a type, or a class that can be instantiated an arbitrary number of times. The
interaction between the SWCs is clearly separated in terms of data and con-
trol flows for facilitating the definition of the control specification, typical of
real-time embedded systems, and interactions. Hence, the SWCs interact with
each other via data and control ports, separately. Data ports used for modelling
data communication while control ports are used for modelling triggering con-
ditions. One important principle in RCM is to separate functional code from
the infrastructure implementing the execution model. This allows visualising
explicit synchronisation and data access at the modelling level, distinctively.
Furthermore, this principle facilitates the analysis and reuse of SWCs in differ-
ent contexts (an SWC has no knowledge how it connects to other components).
The execution semantics of an SWC are as follows:

1. upon receiving a trigger signal on the trigger input port, read data on all
data input ports;

2. execute the encapsulated software function;
3. write data to all data output ports; and
4. activate the trigger output port.

An example software architecture of a single-node system modelled with
RCM, depicted in Figure 1, shows how components interact with external
events and actuators with respect to both data and triggering. The figure also
shows the internal structure of one of the SWCs, which consists of one or more
behaviour and one interface that contains all the ports. In RCM a Behaviour
element acts as a root container for the behavioural model or code. Hence,
such an element can contain either software code (e.g. C) or an executable
model (e.g. Simulink).

3.1.2 The Rubus analysis framework
RCM allows expressing timing requirements and properties of the software

architecture. For example, it is possible to associate real-time requirements
from a generated event and an arbitrary output trigger along the chain of
SWCs. These requirements are expressed by means of timing constraints. All
timing constraints that are part of the timing model in the AUTOSAR stan-
dard are included in RCM [55]. Moreover, the designer can express real-time
properties of SWCs, such as worst-case, best-case and average-case execu-
tion times as well as the stack usage. The scheduler will take these real-time
constraints into consideration when producing a schedule. For event-triggered
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Fig. 1 Example of a software architecture modelled in RCM.

SWCs, response-time calculations are performed and compared to the cor-
responding timing requirements. The analysis engines support various types
of timing analysis that include response-time analysis and end-to-end data-
propagation delay analysis [52].

3.1.3 The Rubus run-time framework

The SWCs in the resulting software architecture are mapped to run-time
entities called tasks. Each external event trigger defines a task and SWCs con-
nected through the chain of triggered SWCs are allocated to the corresponding
task. All SWC chains that are triggered by periodic clocks are allocated to an
automatically generated static schedule that fulfils the precedence order and
timing requirements. Within these chains, the inter-SWC communication is
highly optimised to use the most efficient means of communication possible
for each communication link. The mapping of SWCs to tasks and generation
of the schedule can be optimised to minimise response times for different types
of tasks or memory usage. The run-time system executes all tasks on a shared
stack, thus eliminating the need for static allocation of stack memory to each
individual task. This optimisation results in a small runtime footprint of the
software architecture.

3.1.4 The Rubus multi-core hypervisor

The Rubus multi-core hypervisor uses resource-isolation techniques [35] for
arbitration of intra- and inter-core shared resources. These isolation techniques
are commonly used in many application domains to simplify and partition the
system resources in time and space, e.g., the Avionics Application Standard
Software Interface ARINC 653 [4] uses these techniques [60,61]. The Rubus
hypervisor implements the Time Division Multiple Access (TDMA) protocol
to arbitrate the shared system bus among the cores [62]. Similarly, memory
partitioning techniques are used to isolate the shared memories, including L3
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cache and RAM among the cores [29]. Isolation techniques enable cores, as
well as partitions within those cores, to become virtually independent from
other cores and their partitions. In other words, each partition can be seen as
a single-core processor equivalent with dedicated system resources (although
with reduced capacity which is equivalent to the allotted size of shared memory
and bandwidth of the system bus). One notable advantage of the single-core
processor equivalent model is that the overall system becomes simple to model,
i.e., there is no need to explicitly model memories, I/Os and other shared
resources in the software architecture.

3.2 Related work

In this section, we survey the principal strands of research that relate to the
work we present in this paper. In Section 4 we use these lines of research for
categorising the proposed extensions, and similarly in Section 6 we use them
to discuss strengths and limitations of this work.

3.2.1 Enhance separation of concerns
Numerous research efforts5, AMALTHEA/APP4MC6, CHESS [22], DREAMS [50],

MultiPARTES [57] address the design of multi-criticality embedded real-time
systems in a similar way to what is proposed in this article. In particular, they
also propose the separation of concerns when dealing with software, hardware,
and allocation modelling, that is indeed an implicit consequence of obeying to
safety standards. Nonetheless, typically these solutions aim to be very generic
in order to support multiple application domains, hence not only automotive
but also industrial automation, avionics, and so forth. On the one hand, this
generality makes the approaches more malleable, e.g. in case of long-lasting
maintenance and evolution of existing applications. On the other hand, the
price to pay is the inherent complexity of eliciting and specifying all the details
such that the tooling support would work as expected (e.g. validation checks,
generation of artefacts, etc.). In this respect, a domain-specific approach like
the one we propose embeds most of the automotive systems characteristics
in the language and surrounding tooling, relieving the users from the burden
of specifying all the details. However, major technical updates (notably the
introduction of multi-core platforms) would typically require an update of the
language, tooling, and existing models (see for instance the work in [30] about
consequences of AUTOSAR metamodel evolutions).

3.2.2 Extend timing modelling
There exists a number of languages that support modelling of timing prop-

erties and requirements in vehicular embedded software systems. TIMMO [13]
is an industrial initiative to provide AUTOSAR [10] with a timing model and
it is based on a language called the Timing Augmented Description Language

5 https://af3.fortiss.org
6 http://www.amalthea-project.org
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(TADL) [11] and inspired by MARTE [5]. TADL is redefined and released in
the TADL2 [6] specification of the TIMMO-2-USE project [12]. There are sev-
eral other approaches from academia like COMDES-II [41] and ProCom [56].
Most of these initiatives lack the support for expressing low-level details at the
higher levels such as linking information in distributed chains. This informa-
tion is necessary to extract the end-to-end timing information from the soft-
ware architecture to perform its end-to-end timing analysis [52]. Moreover, no
support is provided for extracting this information from the software architec-
tures of these systems. Most of the above cited languages such as AUTOSAR,
ProCom, COMDES and CORBA [39] support modelling of on board real-time
network communication. However, most of them allow modelling of only low-
bandwidth real-time on-board networks, e.g., CAN, while there are very few
works that support modelling of high-bandwidth real-time on-board networks
that are based on, e.g., switched Ethernet. The work in [43] is one of such
works which provides support for modelling of switched Ethernet on-board
networks. AUTOSAR, complemented by the SymTA/S tool, facilitates mod-
elling of Ethernet, but lacks support for modelling Time Sensitive Networking
(TSN) network. In [44], the authors present a work in progress for developing
an approach to configure TSN network and verify its configuration.

3.2.3 Extend hardware modelling concepts

There exists a large body of work on multi-criticality systems for single-
core systems. The difficulty of realising multi-criticality systems on multi-core
is the management of shared resources, which in general makes the timing
behaviour of the system very difficult to predict. There exist two different
definitions and underlying models of multi-criticality systems in the real-time
embedded systems domain. The first model is based on Vestal’s work, where
different criticality levels are associated to individual software components (at
design time) or corresponding tasks (at runtime) [58]. Whereas, the second
model associates a unique criticality level to the complete application and not
to individual software components or tasks within the application. This latter
model complies with various standards such as the functional safety standard
for road vehicles ISO 26262 [2] and the aerospace standard DO-178C [7]. These
standards also prescribe that the criticality level of an application shall be set
as its most critical sub-function, unless time and memory independence be-
tween sub-functions is demonstrated. In practice, development efforts tend to
take the latter path (i.e., implementing and demonstrating independence),
since in general certifying the whole application for the highest criticality
would be prohibitively expensive [36]. In this work, we extend RCM with
support for multi-criticality systems according to the model in [24]. A com-
plete discussion of the state of the art on multi-criticality systems goes beyond
the scope of this article, and the interested reader is referred to [20] [21]. Here
it is worth noting that a body of literature has been devoted to scheduling
solutions that are able to maximise resources utilisation while preserving the
timing correctness of system execution, especially for the Vestal’s model of
multi-criticality [58].
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Vehicular software has to obey safety standards like ISO 26262 [2], therefore
the notion of criticality considered in this article conforms to the standards,
as clarified above. In particular, for the approach proposed in this article the
development process relies on a hypervisor mechanism (e.g., ARINC 653 hy-
pervisor [60]) provided by the underlying runtime environment, i.e. time and
memory separation between logical partitions are guaranteed according to a
software layer. In this way, software functions can be grouped according to
their criticality level and deployed on partitions in a consistent manner, while
the runtime guarantees that each partition can be analysed in isolation for cer-
tification purposes. Moreover, the correctness of design models with respect to
allocation choices is preserved by language constraints, such that any model
including heterogeneous allocations, i.e. sub-functions with different criticality
levels allocated to the same partition, would make model validation checks to
fail.

There exist other hypervisor/virtualisation-based solutions in the litera-
ture, like for example the one presented in [57], that is based on the XtratuM
virtualisation layer [23]. Other approaches that leverage hardware features
to ensure space and time separation required by multi-criticality systems. No-
tably, in [36] the authors illustrate the safety argumentation for an automotive
case study based on the AURIX processor family. Those concerns however fall
outside of the scope of this paper, since its primary goal is to spare the need
to re-certify the Rubus kernel.

3.2.4 Extend software architectural modelling

Some of the mentioned approaches like CHESS [22], DREAMS [50] and
MultiPARTES [57] provide also design-/deployment-space exploration (DSE)
features, that is they support the automatic synthesis of allocation and schedul-
ing configurations such that multi-criticality and other safety constraints are
obeyed [59][27]. Even though in this article we consider the allocation as a man-
ual activity, the language expressiveness does not prevent the development of
DSE mechanisms to automatically derive allocation alternatives. Indeed, in
our previous works we have already proposed model transformations able to
perform DSE to generate correct timing configurations for the system under
development [19].

EAST-ADL [8] is an architecture description language devoted to the spec-
ification of automotive electronic systems. To cope with vehicular systems’
complexity, EAST-ADL leverages a multi-layer approach, where each layer
describes the system at a different abstraction level and from a different per-
spective. In particular, EAST-ADL defines the vehicle, analysis, design, imple-
mentation, and operational layers, and each layer includes engineering informa-
tion like requirements, vehicle features and functions, variability, software and
hardware components, and communication. The implementation layer is usu-
ally delegated to domain-specific languages (DSL), notably AUTOSAR, RCM,
and so forth. Therefore, the work described in this article can be considered
as complementary to EAST-ADL. Indeed, we have already shown in [15,14]
how to employ model transformations to close the abstraction gaps between
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EAST-ADL and the DSL used at implementation level (namely RCM) and
to anticipate timing analysis at the EAST-ADL design level. This work fur-
thers the same front of research, introducing modelling elements for handling
multi-core platforms and multi-criticality issues.

Besides automotive-specific modelling technologies, there exists a plethora
of general purpose approaches that could be used to complement the imple-
mentation level DSLs like AUTOSAR and RCM. In general those approaches
use the UML language and its profiles MARTE [5] and/or SysML [32].

AADL [48] was conceived as an architecture description language for the
avionics domain, but it is being increasingly used for modelling embedded
systems in general. When compared to RCM, AADL also provides multi-core
support and a clear separation of concerns between software and hardware
elements. However, AADL adopts a lower level of abstraction approach for
software architecture modelling, where typical elements are, e.g., Processes
and Threads.

VERTAF/Multi-core is a UML/SysML-based framework for the develop-
ment of multi-core software [28]. VERTAF/Multi-core proposes UML class
diagrams, timed state machines, and sequence diagrams as the modelling in-
struments to describe multi-core software systems. The viability of the design
with respect to schedulability and conformance to the specifications is verified
automatically through model transformations. In particular, the transforma-
tions generate opportune extensions of the input models to enable the analyses
mentioned earlier. The UML profile MARTE provides extensive support for
the design of multi-core systems. Notably, in [33] the authors provide a detailed
description of the software system architecture to generate code and perform
timing verification through simulation. In particular, the software components
modelled in UML are complemented with hardware and software to hardware
allocation specifications by means of MARTE. Instead, in [26] the authors
propose to employ MARTE for system development of component-based sys-
tems: MARTE models describing the system are completed with allocation of
components information through automated code generation. GASPARD [25]
is a MARTE-based framework for the design and implementation of (massive)
parallel embedded systems. MARTE design models are exploited as source
to automatically generate implementation alternatives, giving place to design
space exploration. The framework also supports code generation for formal ver-
ification, simulation and hardware synthesis. On a similar line of research, the
COMPLEX framework [34] leverages MARTE models, describing embedded
systems, to perform design space exploration in order to derive corresponding
architectural solutions. All the above mentioned approaches are mainly de-
voted to optimisation of the designed system architectures, e.g. to maximise
parallel execution, while in general safety/certification issues are not taken
into account.
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4 Evolving the Rubus Component Model

In this section, we describe the evolution of RubusMM (the Rubus metamodel
formalising its component model, RCM) for modelling multi-criticality vehicle
software for multi-core. The evolution entailed adding, extending and modify-
ing modelling concepts and formalising the evolution by means of metamod-
elling. We compare the evolved RubusMM with its previous definition, given
in [16], highlighting differences and commonalities.

4.1 Improving separation of concerns

We introduced packages for ensuring a better separation of concerns, improving
the understandability of the metamodel, and enhancing its extensibility. The
RubusMM packages involved in the evolution are RCM COMMON, RCM HW
and RCM SW, where RCM HW contains the elements for modelling the hard-
ware platform, RCM SW contains the elements for modelling the software ar-
chitecture and RCM COMMON contains elements that are common to mul-
tiple packages, respectively. Prior to this evolution, RubusMM did not feature
any package7. We removed the structural containment occurring between hard-
ware and software elements, too. More details on this enhancement come in
the following sections.

4.2 Extending timing modelling concepts

System represents the system under development. It inherits from the ab-
stract metaclass NamedElement, which provides two attributes: name and
ID. Such an inheritance is common to all the elements in RubusMM. We
extended System with the reference timingConstraint. The addition of the ref-
erence timingConstraint on the element System as well as on other elements
enables the specification of various timing requirements on these elements
and the verification of the timing requirements on the software architectures
using state-of-the-art timing analysis techniques [54]8. Furthermore, the ref-
erence timingConstraint is pivotal for the design space generation technique
described in [15]. Without this extension, it would not be possible to leverage
the aforementioned techniques at system level. We extended RubusMM with
Core and Partition elements (and related references and attributes) so the
language could support the design and timing analysis of multi-core applica-
tions.

7 The complete explanation of RubusMM is not in the scope of this work. The interested
reader may refer to [16].

8 TimingConstraint and other elements from different RubusMM packages are not part
of this extension. However, they are put in relation to this extension as they contribute to
a holistic view of the language and its peculiarities.



From single- to multi-core and multi-criticality model-based vehicular systems 13

4.3 Extending hardware modelling concepts

Figure 2 shows a fragment of RubusMM containing elements from RCM HW
for modelling the hardware platform. One important principle driving the
RubusMM evolution with respect to the hardware platforms modelling is that
we aimed at introducing the minimum number of hardware elements that
are crucial for the allocation of software to hardware and for modelling and
extracting the timing information to support the timing analysis engines.

Fig. 2 Fragment of the RCM HW package for modelling the hardware platform.

System contains one Network, one or more Target elements, and one or
more Application elements. A Network element models all the messages ex-
changed among the Target elements and has two attributes, protocol and speed,
which specify the protocol (e.g., Controlled Area Network (CAN) [38]) and the
speed of the network in Kbit/s, respectively.

Target is a hardware-specific element which represents a processor archi-
tecture. It has been extended with the references timingConstraint, portIO,
and portNetwork. As for the System element, the reference timingConstraint
enables the specification of timing constraints, occurrences and events used
for timing verification (at Target level). portIO and portNetwork model the
peripherals and the inter-target communication, respectively.

In the previous definition of RubusMM, Target contained Mode, acting as
a container for the software application. However, such a containment relation
was too restrictive for modelling multi-criticality applications on multi-core.
In fact, the containment relation between Target and Mode prescribed that
software elements (represented by Mode elements) were structurally contained
by hardware (represented by Target elements). Although not providing a clear
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separation between software and hardware, this structural containment suited
the single-core case, since allocation of software to hardware was not variably
split across different cores. Modelling for multi-criticality software on multi-
core demands more flexibility, since allocation of software to hardware is a
variability point that can be affected by the software criticality levels and it
can hardly be represented by a structural containment.

4.3.1 Ensuring backward compatibility with legacy models

In order to provide such a flexibility while ensuring backward compati-
bility with legacy RubusMM models, we have modified the existing hierar-
chy as follows. We have added the metaclasses TargetLegacy and TargetNew,
both inheriting from the abstract metaclass Target. TargetLegacy represents
a legacy (single-core) processor and it contains one or more Mode elements.
This containment is specified through the reference mode. TargetNew repre-
sents a single- or multi-core processor and contains one or more Core elements,
which in turn can contain Partition elements. TargetNew, Core and Partition
elements inherit from the abstract metaclass Allocator, representing hardware
elements to which software elements, represented by the metaclass Allocatable,
can be allocated. The metaclasses Allocator and Allocatable, together with the
reference isAllocated, provide the flexible mechanism for the allocation of soft-
ware to hardware that we needed, without any structural containment.

4.3.2 Providing support for multi-core hardware modelling

The metaclass Target provides the following attributes: speed, which spec-
ifies its speed in MHz, and type, which specifies whether it is a physical or
a simulated target. A simulated target represents the simulation of the ac-
tual target processor in a host environment such as Windows or Linux. Both
TargetLegacy and TargetNew inherit the speed and type attributes. Moreover,
TargetNew provides additional multi-core specific attributes. numberOfCores
specifies the number of cores composing the TargetNew and it is used by the
model-based timing analysis and to automatically allocate software to hard-
ware. The reference core links Core elements to their respective TargetNew
elements.

Core may contain Partition elements. The attribute numberOfPartitions
specifies the number of partitions within a Core and the reference partition
links them to the Core elements. Partition elements represent a logical divi-
sion of a core into multiple sets of resources so that each Partition element can
operate independently. In other words, the Partition element isolates one part
of software from the other in both time and space. Isolation in time means that
each partition gets a reserved share of the core processing time for the execu-
tion of the software allocated to it. Isolation in space means that the memory
available to each core is divided among its partitions. Within RubusMM, any
inter-partition interference is prevented by using memory protection mecha-
nisms. As discussed above, the isolation in time and space is supported by the
Rubus multi-core hypervisor by means of resource-isolation techniques [35].
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Target, TargetLegacy, TargetNew, Core, Partition, Allocator, Allocatable,
as well as their attributes and related references were not part of the previous
RubusMM definition [14]. It is important to note that the modelling elements
describing multi-core processors could have been introduced without modify-
ing the original structural containment. However, this choice would have lim-
ited the usability and flexibility of RubusMM as the allocation choices could
be made early in the development process when relevant information may
not be available. Besides, the allocation mechanism introduced in RubusMM
is common in many automotive domain-specific modelling languages such as
EAST-ADL, AUTOSAR, etc.

4.4 Extending software architectural modelling concepts

Figure 3 shows a fragment of the RubusMM containing elements from the
RCM SW and the RCM COMMON packages for modelling the software ar-
chitecture.

Fig. 3 Fragment of the RCM SW package for modelling the software architecture.

4.4.1 Enforcing correctness of criticality-driven allocation of SW to HW
Within RubusMM, Application models a piece of software implementing

a dedicated functionality, e.g., brake-by-wire. Application has one attribute,
criticalityLevel and contains one or more Mode elements. This containment
is specified through the reference mode. criticalityLevel specifies the level of
safety criticality according to the ISO 26262 automotive safety standard. The
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ISO 26262 standard has four levels of criticality (A to D) where A is the lowest
criticality level, whereas D is the highest criticality level (the Rubus Kernel
supports and is certified for all of them). Application and criticalityLevel along
with the aforementioned allocation mechanism are pivotal in modelling multi-
criticality software on multi-core, where software applications with different
criticality levels cannot be allocated together on the same partition. In order
to prevent such a situation, we enriched RubusMM with a structural constraint
specified by means of the Object Constraint Language (OCL)9 as an invariant
of Partition elements. Listing 1 shows the pseudo-code for such a constraint.

1 FOR each application :: Application allocated to partition :: Partition
2 criticality.add(application.criticalityLevel);
3
4 IF criticality.size() <=1 THEN
5 True
6 ELSE
7 False
8 }

Listing 1 Eclipse OCL constraint avoiding that no Application elements with different
criticality levels are allocated on the same Partition element.

For each Partition element, the constraint retrieves all its allocated Application
elements. Their criticalityLevel values are collected into a set. If the size of the
set is grater than 1, the constraints would return the logical value false which,
in turns, will raise a validation error.

4.4.2 Extending allocability of SW to HW
In RubusMM a software circuit is represented by SWC and it is the lowest-

level hierarchical element that encapsulates basic software functions. A SWC
contains one Interface which groups all its ports. As RubusMM distinguishes
between the data and control flows, an Interface containsPortData and Port-
Trig elements. The PortData elements manage the data communication among
SWC deployed on the same Target. The PortTrig elements manage the acti-
vation of the SWC elements. A PortNetwork is a port for the data communi-
cation of SWC elements deployed on different Target elements. The PortData
elements of a Core are referenced to the PortData elements of the SWC s
allocated on that Core. Similarly, the PortNetwork elements of a Node are
referenced to the PortNetwork elements at SWC level. An Assembly groups
SWC and Assembly elements in a hierarchical fashion. Its reference timing-
Constraint enables the specification of timing constraints, occurrences and
events which are used for timing verification. With respect to the previous
definition, SWC and Assembly have been extended with the inheritance re-
lation from the abstract metaclass Allocatable. A Mode groups Assembly and
SWC elements and it is used for modelling a specific configuration of the soft-
ware architecture (e.g., start-up or error mode). The attribute globalReference
serves for creating a reference among all the Mode elements contributing to
the same mode. With respect to its previous definition, Mode has been ex-
tended with the inheritance relation from the abstract metaclass Allocatable.

9 https://projects.eclipse.org/projects/modeling.mdt.ocl
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The metaclasses Allocatable and Allocator together with the reference isAllo-
cated enable the specification of the allocation of software to hardware. More
precisely, an Allocatable element can be deployed to an Allocator element by
setting the isAllocated reference. Application, Allocatable, Allocator, and re-
lated references were not part of the previous RubusMM definition.

5 Modelling the brake-by-wire application

In this section, we leverage the evolved RubusMM for modelling the Brake-by-
wire (BBW) vehicular application, which is an innovative stand-alone braking
system currently deployed in premium electric and hybrid vehicles [9]. In a
nutshell, the BBW application replaces the old-fashioned mechanical linkages
and allows controlling the brakes through electronic means. Figure 4 depicts
a simplified electrical/electronic (E/E) architecture of the BBW application
featuring an anti-lock braking (ABS) function. A sensor attached to the brake

Fig. 4 Simplified E/E architecture of the BBW application.

pedal acquires the signal that corresponds to the position of the pedal. This
signal is sent to a computational unit which translates it into a brake torque.
For each wheel, a sensor acquires the signal that corresponds to the speed of the
wheel. The sensed speed is sent to two computational units. The first unit cal-
culates the individual brake torque for each wheel using the sensed speed and
the computed brake torque. The second unit calculates the speed of the vehicle
using the speed of each wheel. The ABS units use the speed of the vehicle and
sensed wheels brake torques for calculating the optimal brake torque for each
wheel. The actuators on the wheels release the optimal brake torques avoiding
the brakes to lock. Figure 5 shows a RubusMM model depicting the software
architecture of the BBW application. The model consist of 16 software circuits
where i) Brake Pedal models the software operating the sensor on the brake
pedal, ii) Speed FR, Speed FL, Speed RR, and Speed RL model the software op-
erating the speed sensors on the wheels, iii) Brake Torque, Brake Controller,
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Fig. 5 RubusMM model representing the software architecture of the BBW application.

Speed Estimator, ABS FR, ABS FL, ABS RR, and ABS RL model the soft-
ware on the computational units and iv) Brake FR, Brake FL, Brake RR, and
Brake RL model the software operating the actuators on the wheels. In order
to show how the evolved RubusMM supports the modelling of multi-criticality
software systems on multi-core (H1), while ensuring backward compatibility
with legacy single-core ones (H2), we describe three different deployment con-
figurations for the BBW application.

5.1 First configuration: legacy single-core platform

In the first configuration, the BBW application is modelled as a legacy single-
core software system and deployed to a MPC5744P microcontroller10, which is
a 32-bit unicore microcontroller designed for vehicular applications. Figure 6
shows the Ecore serialisation of such a configuration.
As the BBW application is modelled as a legacy single-core system, deployment
on the unicore microcontroller is modelled by the mode containment relation
between TargetLegacy element MPC574xP and Mode element Operational.
Although not providing a clear separation between software and hardware,

10 http://www.nxp.com/assets/documents/data/en/data-sheets/MPC5744P.pdf
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Fig. 6 Serialisation of the BBW application deployed to a unicore microcontroller.

this configuration suits the legacy single-core case as the software cannot be
allocated across different cores (Section 4).

5.2 Second configuration: multi-core platform

In the second configuration, the BBW application is modelled as a multi-core
software system and deployed to an Infineon SAK-TC299TP-128F300S BB
microcontroller11, which is a tri-core microcontroller developed for applica-
tions with high demands of performance and safety. Figure 7 shows an Ecore
serialisation of this configuration. As the reader can notice, in this config-
uration, there is a clear separation between the hardware and the software
elements of the BBW application. The allocation among these elements is
modelled by means of the isAllocated reference. We decided to split the al-
location of the BBW Application on the three available cores as follows12

The software circuits modelling the sensors, the computation units and the
actuators of the two front wheels (WheelSpeed FR, WheelSpeed FR, Abs FR,
Abs FL, Brake FR, Brake FL) are allocated to Core 1 of the SAK-TC299TP-
128F300S BB target, as shown by the arrow in the top-left corner of Figure 7.
Similarly, the SWCs modelling the sensors, the computation units and the
actuators of the two rear wheels (WheelSpeed RR, WheelSpeed RR, Abs RR,
Abs RL, Brake RR, Brake RL) are allocated to Core 2 of the SAK-TC299TP-
128F300S BB target. The remaining SWCs modelling the computational units

11 http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/
aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
12 It is important to note that this allocation is arbitrary hence other, still valid, allocations

are possible.
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Fig. 7 Serialisation of the BBW application deployed to a tri-core microcontroller.

are allocated to Core 3 of the SAK-TC299TP-128F300S BB target. As dis-
cussed in Section 4, the evolved RubusMM leverages a clearer separation of
concerns as well as an explicit and more flexible allocation mechanism. For in-
stance, let us suppose that the allocation specified in Figure 7 does not satisfy
a given set of fault-tolerance requirements. One way of addressing this issue
would be to model a lockstep configuration of the BBW application where
each core runs a copy of the complete software in parallel. In order to model
a lockstep configuration with the evolved RubusMM it would be sufficient to
change the isAllocated reference of the BBW Application, only. In particular,
the isAllocated reference of the BBW Application should point to Core1, Core2
and Core3 13.

5.3 Third configuration: multi-criticality on multi-core platform

In the third configuration, we consider the Proactive Wiper (PW) vehicular
application in addition to the BBW one. We model these two applications as a
multi-core software system with different criticality levels and deploy them into
the aforementioned tri-core microcontroller. The PW is a stand-alone system
which uses the information from the vehicle’s front camera, radar and rain
sensor for preventing sudden water splashes (caused by large vehicles) to give

13 It should be noted that a redundant configuration as the one described above would
require a voting software mechanism to be defined and allocated. While this is a valid
concern, for the sake of verbosity, we focus on the BBW and its allocation, only.
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the driver an unclear view14. Figure 8 depicts a simplified E/E architecture
of the PW application. A radar positioned on the front of the vehicle acquires

Fig. 8 Simplified E/E architecture of the PW application.

the signal that corresponds to the presence of objects ahead. Such a signal is
used in conjunction with the signal from the camera for establishing whether
these object could be large vehicles approaching from the opposite direction.
A rain sensor attached to windscreen of the vehicle acquires the signal that
corresponds to the quantity of water that is raining. This signal, together with
the information on the large vehicles, is sent to a computational unit which
decides if it is necessary to activate the windscreen wipers. Eventually, the
actuators on the wipers will give the driver a clear view.

Fig. 9 RubusMM model representing the software architecture of the PW application.

Figure 9 shows the RubusMM model describing the software architecture
of the PW application. The model consist of 5 software circuits where i) Rain

14 https://semcon.com/paw/
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models the software operating the rain sensor, ii) Radar and Camera model
the software operating the front radar and camera, respectively, Computation
models the software on the computational units and iv) Wipers models the
software operating the actuator on the windscreen wipers. Figure 10 shows the
Ecore serialisation of the model depicting the third configuration. In this con-
figuration, the System Vehicle is composed of a Target element (modelling the
tri-core microcontroller) and two Application elements (modelling the BBW
and PW applications). According to the ISO 26262 [2] standard, the BBW
and PW Application elements have different criticality levels (as shown in
Figure 10). In particular, we assigned the criticality level D to the BBW
Application element whereas the criticality level A to the PW Application
element.

As applications with different criticality levels cannot be allocated to the
same partition, the Core1 element is partitioned into two Partition elements
(Partition1 and Partition2 ) and the BBW and PW Application elements are
allocated as follows. For the BBW Application, the WheelSpeed FR, Wheel-
Speed FL, Abs FR, Abs FL, Brake FR, Brake FL software circuits are allo-
cated to Partition 1 ; the (WheelSpeed RR, WheelSpeed RL, Abs RR, Abs RL,
Brake RR, Brake RL) software circuits are allocated to Core 2 while the re-
maining software circuits are allocated to Core 3. The PW Application is
allocated to Partition 2 a shown by the arrow. If we would have attempted to

Fig. 10 Serialisation of the BBW and PW applications deployed to a tri-core microcon-
troller as multi-criticality system.

allocate the PW Application to Partition 1, the OCL contraint described in
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Sec. 4 would have generated a validation error and prevented us from allocating
applications with different criticality levels on the same partition.

In this section, we use-cased the BBW application in three different deploy-
ment configurations for describing the applicability of the evolved RubusMM.
In the first configuration, we deployed the BBW application into a single-core
microcontroller for demonstrating the suitability of the evolved RubusMM for
describing legacy vehicular software systems. In the second configuration, the
BBW application was deployed into a tri-core microcontroller to show how
the evolved RubusMM could support the development of upcoming vehicular
software systems on multi-core. Finally, in the third configuration we consid-
ered the PW application in addition to the BBW one for demonstrating the
applicability of the evolved RubusMM in modelling multi-criticality vehicular
software.

We model these two applications as a multi-core software system with
different criticality levels and deploy them into the aforementioned tri-core
microcontroller.

6 Discussion

In this work, we proposed an evolution of the Rubus Component Model (RCM),
in terms of its metamodel RubusMM, for developing multi-criticality software
systems to be deployed on single- and multi-core as well as on mixed archi-
tectures (C1). The proposed evolution ensures backward compatibility with
legacy software systems modelled with RubusMM and does not cause any
modification to the Rubus run-time layer and certified Rubus Kernel (C2).
Both of the previous challenges can be seen as critical preconditions of any
complex software in general: it is, at least economically, not affordable to throw
away the past history of development efforts due to compatibility problems; if
(parts of) the designed product undergoes certification processes, it is desirable
to avoid expensive and long-lasting tool re-certification issues due to refine-
ments. Since Rubus targets the vehicular domain, we devote the remainder
of this section to reason about backward compatibility and avoidance of re-
certification due to the needs conveyed by modelling multi-criticality systems
and corresponding introduced features.

Functional safety is paramount in the vehicular domain. To earn accep-
tance, solutions like Rubus must provide certified run-time support, e.g., real-
time operating system, along with modelling languages able to capture all the
characteristics of vehicular applications. In this respect, we extended RubusMM
(the Rubus metamodel formalising its component model) according to the vir-
tualisation design option, as described in [42], which enables the reuse of the
certified Rubus Kernel. The Rubus Kernel is certified according to the ISO
26262 standard ASIL D while Rubus ICE (i.e., the development environment
supporting Rubus) is undergoing the same certification. On the one hand,
the reuse of the Rubus Kernel makes unnecessary the explicit modelling of the
memory since the mapping of data ports to physical memory is handled by the
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Need Feature(s) Extension

Enhance separation of
concerns

We introduced packages and removed
structural containment relations

See Section 4.1

Extend timing mod-
elling

We introduced timingConstraint refer-
ence for several elements in RubusMM.
We introduced Core and Partition el-
ements (and related references and at-
tributes)

See Section 4.2

Extend hardware mod-
elling concepts

We introduced Target, TargetNew, Tar-
getLegacy, Core, Partition, Allocator el-
ements. We introduced isAllocated refer-
ence and the speed, type and numberOf-
Cores attributes

See Section 4.3

Extend software archi-
tectural modelling

We introduced Application and Allocat-
able, elements. We introduced the criti-
calityLevel attribute and the OCL con-
straint

See Section 4.4

Table 1 Summary of features in relation to needs

kernel itself. On the other hand, it makes the current definition of RubusMM
not suited for approaches where explicit modelling of the memory is required.
Moreover, despite the Rubus Kernel footprint is significantly small, the virtu-
alised design option increases the overall footprint of the developed vehicular
application since each core or partition can host a separate instance of the
Rubus Kernel.

6.1 Evolution of RubusMM

In the following subsections we discuss our contributions in evolving RubusMM
in terms of the extensions described in Section 4, and summarised against
needs in Table 1, also from a cross-language perspective, in order to potentially
support similar evolution processes of other languages.

Enhance separation of concerns

Separation of concerns is a key aspects of (modelling) languages, especially
those supporting the component-based design pattern [37]. Before this ex-
tension, and due to the fact that the language was meant to only support
one single type of target hardware platform, RubusMM was fairly monolithic,
blending software, hardware, and analysis aspects together. This made the
RubusMM definition not easy to understand and thereby hard to extend.
As first step of evolving it, we enforced separation of concerns by separating
metamodelling concepts in three packages. Before to opt for this separation, we
attempted to achieve our evolution goals by re-arranging metaconcepts using
the existing flat structure, but we could not succeed due to potential circular
containments and multiple (invalid) specialisations of metaconcepts. Without
enforcement of separation of concerns of the original RubusMM modelling con-
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cepts, we could have not been able to provide the subsequent extensions nor
open up for possible further extensions (see Section 7).

Extend timing modelling concepts
In Section 2, we pointed out high-precision timing analysis as one of the main
reasons that made RubusMM appreciated in the vehicular domain and its evo-
lution for multi-core and multi-criticality compelling. In this work, we have ex-
plicitly addressed the modelling of timing information, i.e., timing constraints,
occurrences and events at several levels of the structural hierarchy by means
of the reference timingConstraint. This information is required to perform
the timing analysis of the software architectures of vehicular systems. Besides
ensuring full compatibility with the existing model-based timing analysis pro-
vided by Rubus, this enables the use of the most recent timing analysis for
multi-criticality software systems on multi-core [20] [21]. Without the evolu-
tion provided in this paper, the timing analysis for multi-criticality software
systems on multi-core would not have been possible at different levels of the
structural hierarchy due to the missing structural and timing information.

Extend hardware modelling concepts
The addition of modelling of multi-core hardware architectures was one of the
core extensions being part of the RubusMM evolution. For providing that,
we added the needed metaconcepts without modifying any existing hierarchi-
cal structures (as in the case of, e.g., Target and Partition) and introduced
the new metaconcepts as leaves in the metamodel hierarchy (as in the case of,
e.g., Core and Partition). Evolution of a language and the framework support-
ing it cannot overlook compatibility with previous versions of the language and
the existing artefacts conforming to it. The evolution of RubusMM was not an
exception, especially since Rubus is an industrial framework, and thereby the
ability to keep compatibility with legacy models (and related artefacts) was
pivotal. In the case of RubusMM, compatibility issues could arise concern-
ing legacy models starring the old hardware modelling concept of single-core
processors only. As part of the language evolution, we decided to go for an
additive change, by keeping the old hardware modelling structure and adding
the new concepts in a brand new set of metaconcepts. Both are valid (mutually
exclusive) options for hardware modelling in the evolved RubusMM. While we
were able to approach back-compatibility in this non-disruptive way due to
the rather simplicity of the involved evolution, in other cases it may not be
possible to do so. In such cases, a valid alternative could be a semi-automated
patching mechanism for guiding the modeller in importing (and co-evolving)
legacy models to conform to the evolved language.

Extend software modelling concepts
Regarding evolution of software modelling concepts, we introduced a compe-
tent support for modelling software applications with multi-criticality as well
as the possibility to flexibly allocate them to specific hardware components.
The previous RubusMM version, especially through the hindering structural
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containment between Target and Mode, did not allow allocation of different
software components to different cores according to their criticality level. We
extended RubusMM with a set of allocation metaconcepts that is more flexible
and provides multiple allocation strategies to the engineer. The introduced al-
location metaconcepts, with embedded variability modelling capabilities, can
also be leveraged by model transformations for automatically generating sets
of potential allocation candidates, all in a single model with variability points
discerning different candidates, as we have shown in a spin-off of this work [18].
It is important to note that, besides allowing any combination of software ap-
plications with specific criticality levels to be allocated to any core, we provide
an automated validation mechanism to enforce criticality-safe grouping ac-
cording to the ISO 26262 automotive safety standard. More specifically, we do
not allow software applications with different criticality levels to be allocated
together on the same partition.

6.2 Applicability and outlook

We showed the applicability of the extended RubusMM through the Brake-
by-wire application. In particular, we modelled the functional software ar-
chitecture of the BBW application and provided three different deployment
configurations of varying complexity. In this respect, the functional software
architecture in Figure 5 describes the BBW application coming from our in-
dustrial partner, Volvo Group. In the first configuration, we used the extended
RubusMM for modelling a legacy RCM application. In the second configura-
tion, we showed the applicability of the evolved RCM in modelling vehicular
software applications on multi-core. It is worth noting that, despite several
allocations of the BBW software components to the tri-core micro-controller
could have been possible, we showed one of them (Figure 7) and discussed
the realisation of a lockstep allocation configuration, only. In fact, our focus
was to demonstrate the flexibility of the evolved RubusMM with respect to
allocation strategies rather than discuss the generation of the whole space of
possible allocations.

The RCM evolution described in this work has paved the way to the lat-
est release of the Rubus Component Model, namely RCM V.5, currently used
within the commercial integrated development environment Rubus ICE. What
is more, the challenges and opportunities that arose during this research work
have contributed to the definition of several collaborative research projects
between academia and industry such as Automation in High-performance Cy-
ber Physical Systems Development (A-CPS)15 and Heterogeneous systems and
software-hardware integration (HERO)16.

15 http://www.es.mdh.se/projects/520-Automation_in_High_performance_Cyber_Physical_
Systems_Development
16 http://www.es.mdh.se/projects/511-HERO
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7 Conclusion and Future Work

In this work, we discussed the evolution of the Rubus Component Model
(RCM), in terms of its metamodel RubusMM, for modelling software sys-
tems to be deployed on single-, multi-core as well as on mixed architectures
while ensuring backward compatibility with legacy RCM software systems
and compliance to the Rubus run-time layer and certified Rubus Kernel. The
proposed evolution enables support for modelling multi-criticality of software
components and validity checks for their allocation to cores. We considered
an industrial vehicular application to assess the applicability of the evolved
RCM, also in terms of backward compatibility.

One line of future work will investigate how to support the analysis and ver-
ification of vehicular embedded systems with multi-criticality levels on multi-
core with respect to predictable timing behaviour. To this end, we will investi-
gate how to adapt the certified Rubus Kernel for providing run-time support
to these systems on multi-core.

In [19], we investigated how to provide automatic support for the allocation
of software to hardware. In particular, we developed model transformations
that, starting from a model with no modelled allocations and a set of timing
constraints, produced a set of models featuring the set of different allocations
of software to hardware optimised for satisfying the set of timing constraints.
Despite the generation of models is transparent to the engineer and it can
be guided through logic constraints, issues about scalability and performance
may remain open. In this respect, another line of future investigation encom-
passes the study of a smarter generation process which could i) narrow and
cluster the space of the generated models and ii) use different non functional
properties for pruning the set of the generated models. In addition, we are
planning to represent the set of generated models by means of the compact
notation presented in [18]. Such a notation uses modelling with variability
for representing a multitude of models with one single model with variability
points.

Due to the terrific data-throughput induced by vehicular software func-
tions, domain experts are investigating the use of heterogeneous platforms
built of several different computational units (multi-core central processing
units, graphic processing units, etc.) on a single board. In this respect, a fu-
ture evolution of RCM will provide support for modelling and analysis software
for these platforms.
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Moves: A model-driven methodology for vehicular embedded systems. Journal of IEEE
Access, 6:6424–6445, 2018.

20. Burns A. and Davis R. Mixed Criticality Systems - A Review, eighth edition. Technical
report, 2013.

21. Burns A. and Davis Robert I. A survey of research into mixed criticality systems. ACM
Comput. Surv., 50(6):82:1–82:37, 2017.

22. Cicchetti A., Ciccozzi F., Mazzini S., Puri S., Panunzio M., Zovi A., and Vardanega
T. Chess: a model-driven engineering tool environment for aiding the development
of complex industrial systems. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2012.

23. Crespo A., Ripoll I., and Masmano M. Partitioned embedded architecture based on
hypervisor: The xtratum approach. In Proceedings of the 2010 European Dependable
Computing Conference, EDCC ’10. IEEE Computer Society, 2010.



From single- to multi-core and multi-criticality model-based vehicular systems 29

24. Esper A., and Nélis G., Nelissen V., and Tovar E. How realistic is the mixed-criticality
real-time system model? In Proceedings of the 23rd International Conference on Real
Time and Networks Systems. ACM, 2015.
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