
More precise construction of static single assignment programs using
reaching definitions

Abu Naser Masud1,∗, Federico Ciccozzi1

aSchool of Innovation, Design and Engineering, Mälardalen University, Väster̊as,Sweden

Abstract

The Static Single Assignment (SSA) form is an intermediate representation used for the analysis
and optimization of programs in modern compilers. The φ-function placement is the most com-
putationally expensive part of converting any program into its SSA form. The most widely-used
φ-function placement algorithms are based on computing dominance frontiers (DF). However, this
kind of algorithms works under the limiting assumption that all variables are defined at the be-
ginning of the program, which is not the case for local variables. In this paper, we introduce an
innovative φ-placement algorithm based on computing reaching definitions (RD), which generates
a precise number of φ-functions. We provided theorems and proofs showing the correctness and
the theoretical computational complexity of our algorithms. We implemented our approach and a
well-known DF-based algorithm in the Clang/LLVM compiler framework, and performed experi-
ments on a number of benchmarks. The results show that the limiting assumption of the DF-based
algorithm when compared with the more accurate results of our RD-based approach leads to gen-
erating up to 87% (69% on average) superfluous φ-functions on all benchmarks, and thus brings
about a significant precision loss. Moreover, even though our approach computes more informa-
tion to generate precise results, it is able to analyze up to 92.96% procedures (65.63% on average)
of all benchmarks with execution time within twice the execution time of the reference DF-based
approach.

Keywords: Static single assignment, program optimization, program transformation, reaching
definition, dataflow analysis

1. Introduction

Most current compilers and virtual machines, including the well-known GNU Compiler Col-
lection (GCC)1, the LLVM Compiler Infrastructure (LLVM)2, and the Java Hotspot3, use the
so-called static single assignment (SSA) form as an intermediate representation (IR) of programs.
SSA programs are often used for efficient program analysis, transformation, optimization, and effi-
cient register allocation. Programs represented in the SSA form require that each variable is defined

∗Corresponding author
Email addresses: masud.abunaser@mdh.se (Abu Naser Masud), federico.ciccozzi@mdh.se (Federico Ciccozzi)

1https://gcc.gnu.org/
2http://llvm.org
3https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

Preprint submitted to Elsevier March 31, 2020

https://gcc.gnu.org/
http://llvm.org
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

exactly once, but it may be used multiple times. Moreover, the variable definition should always
appear before its use.

Any straight-line sequence of non-SSA code can be converted to SSA form by using a suitable
renaming of the program variables that adheres to the definition of SSA program as shown in
Figure 1. However, if the code contains branching instructions, the renaming process becomes
complicated by the fact that multiple definitions of a program variable may reach at control flow
merge points. For example, the print statement in Figure 2 receives two distinct definitions of Y
from two different branches of the if statement. It may be hard, or even impossible, to statically
decide which definition of that variable to use afterwards. Any non-SSA program is transformed to
the SSA form by performing the following two steps:

(i) identifying the merge points in the control flow graph (CFG) of the program to place pseudo-
assignments of the form x = φ(x, . . . , x) for each variable x, where multiple distinct definitions
of x may arrive through different branches of the control flow, and

(ii) renaming each x such that any assignment or pseudo-assignment to x (i.e., a definition of x)
is uniquely renamed and uses the renamed x at each reference of that particular definition.

Each argument of the φ-function corresponds to a particular reaching definition of x coming from
one of the branches. Thus, a so-called join set J+(S) identifying all those merge points requiring
pseudo-assignments for each variable x needs to be constructed, where S is the set of CFG nodes
containing assignments to x.

X=getInput();

X=X+1;
⇒ X1 =getInput();

X2 = X1 + 1;

Figure 1: From non-SSA to SSA form of an straight-line program

X=getInput();

if(X>Y)

Y=Y+1;

else Y=X:

print Y;

⇒

X1 =getInput();

if(X1 > Y1)

Y2 = Y1 + 1;
else Y3 = X1;

Y4 = φ(Y2, Y3);
print Y4;

Figure 2: From non-SSA to SSA form of a program containing branching instructions

Cytron et al. [1] have carried out pioneering work on the establishment of a pragmatically
efficient construction of the SSA form based on computing so called dominance frontiers (DF),
which are relations among CFG nodes based on dominators4. This approach is currently leveraged
by most SSA construction algorithms used by modern compilers, such as LLVM. A closer look to
Cytron et al.’s approach shows that, on the assumption that computing the aforementioned join
set J+(S) is practically inefficient, an efficient alternative would be instead to compute the iterated
dominance frontier DF+(S). This is an approximation that is possible thanks to the equality

4The dominance frontier of a node n is the set of all nodes m such that n dominates an immediate predecessor of
m, but n does not strictly dominate m

2

relation DF+(S) = J+(S), that holds when S contains the Entry node of the CFG [1, 2]. The
set S contains all CFG nodes in which a particular program variable is defined. Since the Entry
node is considered to be included into S due to DF+(S) = J+(S), DF-based SSA construction
methods implicitly consider that all program variables are defined at the beginning of the program.
This is a limiting restriction and it cannot always hold, especially for local variables, which are
mostly declared at the beginning, but defined later in the program. Thus, all DF-based SSA
construction algorithms produce superfluous φ-functions and hence construct larger SSA programs
than necessary.

Our Contribution. In this work, we explore the impact of the seemingly benign equality condition
by which S includes the Entry node of DF+(S) = J+(S). To do so, we provide an algorithm
based on computing reaching definitions (RDs) [3] that can accurately compute the join set J+(S)
where we can freely choose the set S of variable definitions. Computing RDs for SSA construction
is nontrivial and more complex than computing RDs for program analysis. Our novel approach to
compute the J+(S) set is efficient on most of our benchmarks. By including the Entry node into
S, then DF-based approaches and ours produce the same number of φ-functions.

On the other hand, our algorithm is able to produce more accurate φ-functions by considering
that only global variables and formal parameters are defined at the Entry node of the CFG. Our
experiments on a number of benchmarks reveal that DF-based SSA construction approach gener-
ates (i) up to 87% and on an average 69% superfluous φ-functions compared to the φ-functions
generated by our RD-based approach. Our approach is applicable to both structured and unstruc-
tured programs containing dense or sparse variable definitions. Moreover, along with constructing
the SSA form, our RD information can be re-used to optimize the generated SSA program.

Note that this is an invited extended version of the paper entitled “Towards constructing the
SSA form using reaching definitions over dominance frontiers” [4] and published at the IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation. More specifically, this
article has been extended as follows:

• We have included a new section with a detailed description of where and how the DF-based
approach loses precision in computing φ-functions (Section 3).

• We have extended the formal development of RD-based SSA construction in Section 4.2.
Three new algorithms (Algorithms 3 - 5) are included to provide a complete and detailed
picture of how we perform the computation.

• We have added a new section (Section 5) providing discussion about the proof of correctness
of our algorithms and their computational complexity. Section 5.1 provides Theorem 1 and
its proof along with some auxiliary lemmas to prove the correctness of our algorithms and
Section 5.2 includes Theorem 2, some auxiliary lemmas and their proofs stating the compu-
tational complexity of our algorithms.

• We have extended our experimental evaluation by running our solution on six additional
benchmarks, which confirmed our positive results (Section 6).

Paper organization. The remainder of the paper is organized as follows. In Section 2 we provide
core concepts and terminology upon which our approach is based. In Section 3 we provide a
description of precision loss in the DF-based approach. Our RD-based approach is described in
detail in Section 4, while a discussion of the its correctness and computational complexity is given

3

in Section 5. The extended experimental evaluation is presented in Section 6. Related works are
outlined in Section 7 and the paper is concluded by Section 8 with a summary and future work.

2. Background and Terminology

Definition 1 (Control flow graph (CFG)). The CFG of any given program is a directed graph
G = (N,E, entry) where

• N is the set of nodes and each node n ∈ N represents a basic block containing straight-line
sequence of code,

• E ⊆ N ×N is the set of edges representing the program control flow, and

• entry is the unique Entry node representing the starting basic block from where the execution
starts.

Note that the above definition of CFG is intraprocedural. Since SSA construction is usually
performed per procedure, we consider only intraprocedural CFGs. We denote an intraprocedural
CFG G by (N,E) for brevity. A CFG can be reducible [5, 6], when it originates from structured
code, and irreducible otherwise. The set of successor and predecessor nodes of any CFG node n is
denoted by succ(n) and pred(n), respectively. A node n ∈ N is called a join node if |pred(n)| > 1.
The set of program variables that are defined at a CFG node n ∈ N is denoted by def (n).

A finite CFG path π of length k ≥ 0 is the sequence of k + 1 nodes n0, . . . , nk and denoted by
π : n0 → nk such that ni+1 ∈ succ(ni) for all 0 ≤ i ≤ k − 1. We denote the set of all nodes in π by
Nπ = {n0, . . . , nk}, and write n ∈ π or n ∈ Nπ when n is some node ni in π. A path π : n0 → nk is

non-trivial if it contains at least two nodes (i.e. k ≥ 1) and denoted by π : n0
+→ nk. Sometimes,

we abuse the notation and write π−S instead of Nπ \S to indicate the set of nodes that are in Nπ
but not in S.

Two nontrivial paths π1 : n0
+→ nk and π2 : m0

+→ ml converge at node n if the following
conditions hold:

(i) n0 6= m0,
(ii) nk = n and ml = n, and
(iii) ni = mj =⇒ i = k ∨ j = l.

Simply put, paths π1 and π2 converge when they start at different nodes and join at node n, while
being node-disjoint.

Consider the CFG (N,E) and the set S ⊆ N . The join set J(S) includes all join nodes m such

that there is a pair of paths n
+→ m and n′

+→ m from distinct nodes n, n′ ∈ S that converge at
m. If S is the set of CFG nodes containing definitions of a variable x, then J(S) is the smallest
set of join nodes requiring pseudo-assignment to x. As J(S) includes the pseudo-assignments to x,
intuitively, we may require pseudo-assignments to x in the set J(S ∪ J(S)). Thus, it leads to the
iterated join set J+(S), which can be computed iteratively as follows:

J0(S) = J(S)
J i+1(S) = J(S ∪ J i(S))

where there exists k ≥ 0 such that Jk+1(S) = Jk(S) and J+(S) = Jk(S).

4

Standard SSA construction algorithms rely on the concept of dominance frontier in order to
identify join nodes that require the pseudo-assignments or placement of φ-functions. Node n dom-
inates node m (denoted n dom m) if every path from the entry node to m passes through n. Node
n strictly dominates node m if and only if n dom m and n 6= m. The dominance frontier of a CFG
node n, denoted DF (n), is the set of all CFG nodes m such that n dominates a predecessor of m, but
does not strictly dominate m. The dominance frontier of a set of nodes S is DF (S) =

⋃
n∈S DF (n).

The iterated dominance frontier [1] DF+(S) of a set S of nodes can be obtained by the following
iterative computation of DF :

DF 0(S) = DF (S)
DF i+1(S) = DF (S ∪DF i(S))

and there exists k ≥ 0 such that DF k+1(S) = DF k(S) and DF+(S) = DF k(S). In [1], Cytron
et al. proved that J+(S) = DF+(S) if entry ∈ S. Moreover, according to Weiss [2], we have
J(S) = DF+(S), which leads to the conclusion that J+(S) = J(S). It is thus enough to obtain the
smallest set of join nodes J(S) to include φ-functions for the variable x defined by the nodes in S.

Entry

ix++
cond3

I32 i
PERL_Context *cx_n

PERL_SI *si_n

I32 ix=0

Exit

n0

n1

n2

n4

n5

n3

cond1

cond2

n6

(a)

Entry

SV *sv

sv=...
(cond)

return sv

Exit

sv=...
return sv

n0

n1

n2

n3

n4

n5

n6

(b)

Figure 3: CFG skeletons of source code obtained from the 500.perlbench r benchmark in SPEC CPU2017 [7]. Solid
arrows represent CFG edges and dashed arrows represent CFG paths

5

3. Precision loss of DF-based φ-placement methods

DF-based φ-placement methods lose precision due to the assumption that all program variables
are defined at the beginning. In the following, we illustrate this precision loss with some examples
obtained from a real-life benchmark suite SPEC CPU2017 [7].

Consider the CFG skeleton in Figure 3(a). The cycle n0, n1, n2, n3, n0 in the CFG represents a
loop structure in the program code. Variable ix is locally declared inside the loop body at n1 and
defined at n1 and n3. This local declaration of the ix variable is thus not live at n0 and n0 should
not require any pseudo-assignment to the ix variable. However, if we consider that variable ix

is defined at the Entry node in the CFG, then ix is live at n0. Moreover, Entry and n3 are two
distinct definitions of ix reaching n0. Thus, node n0 requires a φ-function for the variable ix.

There exist two more cycles n2, n4, n6, n2 and n2, n4, n5, n6, n2 in the CFG representing different
loop and branching structures in the program code. Variables i, cx n and si n are declared at n5
which are local to these loop and branching instructions. Some nodes in the path from n5 to n6 define
these variables and these definitions reach n6. If we assume that these variables are also defined
at the Entry node which will reach n6 through n4, then node n6 will require φ functions for these
variables. Moreover, the pseudo-definitions of these variables reach n2 along with the definition
at the Entry node and consequently, n2 will require φ functions for these variables. However, all
these pseudo-assignments are not necessary in generating SSA programs and this imprecision in
generating φ-functions is due to the assumption that the Entry node contains definitions of all
program variables. Since variable ix is not live at n0 and variables i, cx n and si n are not live
at n2 and n6, the pseudo-definitions of the variables generated at these nodes are also not live. In
order to remove these dead φ-functions, we need to perform liveness analysis of variables which is
computationally expensive.

DF-based φ-placement methods may even generate unnecessary live pseudo-assignments to vari-
ables. Consider the CFG in Figure 3(b) and the variable sv. This variable is declared at node n0
and defined at node n1. Either the control may reach node n6 from node n1 at which the procedure
exits by returning sv or the control may reach node n2 from node n1. Variable sv is again defined
at node n5 from which the control reaches node n6 and the procedure exits by returning sv. By
considering that sv is defined at the Entry node, two distinct definitions of this variable reach n2.
Thus, node n2 requires a φ-function and n2 becomes a new definition of sv. Similarly, n3 and n4
will require pseudo-definitions for it. However, if we would not consider that this variable is defined
at the Entry node, then these pseudo-definitions would not be required. Note that variable sv is
a live variable during the entire control flow of the program and hence these pseudo-definitions are
also live. So, these unnecessary φ-functions cannot be removed by performing liveness analysis of
program variables.

4. SSA Construction Procedure

In this section, we provide methods to compute the join sets requiring φ functions without
using the concept of dominance frontiers. The method is based on a forward dataflow analysis [3]
accumulating facts about reaching variable definitions at different CFG nodes. In Section 4.1, we
provide Algorithm 1 to perform the dataflow analysis collecting data flow facts which are called
abstract and concrete reaching definitions. In Section 4.2, we develop methods to resolve all abstract
definitions to concrete definitions. These concrete definitions are then used to find the join sets
requiring φ functions. We provide Algorithm 4 (in Section 4.2.4) to resolve the abstract definitions

6

and find the join sets which apply Algorithm 2 (in Section 4.2.2) and 3 (in Section 4.2.3) iteratively
during the resolution process. We skip the renaming phase of the SSA construction in this paper.

Consider the CFG G = (N,E) of the input program, the set of pseudo nodes Nu of N , and
the set Var of program variables. The dataflow domain consists of the set P(N ∪Nu) of variable
definitions. Thus, the definition of a variable x ∈ Var can be a node n ∈ N at which it is defined in
the program code, or a pseudo node nu ∈ Nu representing that x may be defined either at n or at
another CFG node and that definition reaches n. We call any definition n ∈ N a concrete definition
(CD) and nu ∈ Nu an abstract definition (AD). Instead of performing a fixpoint-based dataflow
analysis, we visit each edge exactly once during the dataflow analysis generating facts containing
CDs and ADs. Afterwards, all ADs are resolved to CDs by performing flow analyses of concrete
RDs. In what follows, we assume that n ∈ N , nu ∈ Nu, and nλ can be either n or nu.

4.1. Forward Dataflow Analysis

The dataflow analysis is based on collecting dataflow facts containing CDs and ADs from the
dataflow domain P(N ∪ Nu). Any fact A ⊆ P(N ∪ Nu) for any variable x ∈ Var represents that
either x is defined at a CFG node n ∈ A ∩ N or there may exist a definition of x that reaches n
for any nu ∈ A ∩ Nu. We use the mapping function A◦(n) and A•(n) for each CFG node n ∈ N
collecting relevant facts on reaching definitions. A◦(n) and A•(n) contain facts that are valid at
the entry and exit of node n. The following definition specifies the properties of these mapping
functions:

Definition 2 (Reaching Definition Functions (RDFs)). Consider any CFG G = (N,E), n ∈ N
and ? ∈ {◦, •}. The RDF A?(n) at the CFG node n maps program variables in Var to a set of
dataflow facts in P(N ∪ Nu) (i.e. A?(n) : Var → P(N ∪ Nu)) such that for any x ∈ Var and
mλ ∈ A?(n)(x) the following holds:

1. if mλ ∈ N , then x ∈ def (mλ),

2. mλ 6= n and mλ ∈ N (i.e., mλ = m) imply that there exists a path π : m
+→ n in G such that

x 6∈ def (n′) for all n′ ∈ Nπ \ {m,n} if ? = ◦ or n′ ∈ Nπ \ {m} if ? = •,

3. if mλ ∈ Nu (i.e., mλ = mu) and the AD mu is resolved to a CD m′ ∈ N , then m′ satisfies
conditions (1) and (2) above.

So, A?(n)(x) is the set of all reaching definitions of x at n for ? ∈ {◦, •}. Note that we sometimes
use the set notation of RDFs instead of the functional notation. Thus, we write (x,m) ∈ A?(n)
instead of m ∈ A?(n)(x). The analysis collects facts into the set of reaching definitions (RD)
A◦(n)(x) and A•(n)(x) for all n ∈ N and x ∈ Var according to the following equations:

A•(n) = fn(A◦(n))
A◦(n) =

⋃
m∈pred(n) g(m,A•(m))

(1)

where fn is the transfer function for n, and the function g is defined as follows:

g(m,A•(m)) =
⋃

x∈Var

{
{(x,m′λ)} if (x,m′λ) ∈ A•(m)

{(x,mu)} otherwise
(2)

Any RD m′λ of x at the exit of m is also the reaching definition of x at the entry of n (first case
of g). According to Lemma 1 below, A•(m) can contain at most one definition of x and thus the

7

Input : G = (N,E)
1 forall (n ∈ N ∧ x ∈ Var) do
2 A◦(n)(x) = ∅
3 A•(n)(x) = ∅
4 forall (e ∈ E) do V isit(e) = false
5 W = {(entry, n) : (entry, n) ∈ E}
6 while (W 6= ∅) do
7 (n,m) = select(W)
8 W = W \ {(n,m)}
9 A•(n) = fn(A◦(n))

10 V isit(n,m) = true
11 A◦(m) =

⋃
m′∈pred(m) g(m′,A•(m′))

12 forall (p ∈ succ(m) such that ¬V isit(m, p)) do
13 W = W ∪ {(m, p)}

Algorithm 1: ForwardSinglepassDFAnalysis

first case in g returns a singleton set. In the second case in g, no RD of x at the exit of m is known
during the dataflow analysis, and thus it considers an AD mu of x as the RD at the entry of n. The
AD mu will later be resolved to a CD of x satisfying conditions (1) and (2) in Definition 2, which
we call concretization of mu.

The transfer function fn in Eq. 1 computes A•(n) from A◦(n) variable-wise. Thus, we have
fn(A◦(n)) =

⋃
x∈Var fn,x(A◦(n)(x)) where fn,x is defined as follows:

fn,x(A)=

{n} if x ∈ def (n)∨ | A \Nu |> 1

{nu} if x 6∈ def (n) ∧A ∩Nu 6= ∅∧ | A \Nu |≤ 1

A otherwise

(3)

fn,x produces {n} if x is defined at n or n requires a pseudo definition (i.e. φ-function) since there
exists more than one CD of x at n. In the second case, x is not defined at n, A contains some
abstract RDs and at most one CD. Since the ADs in A are not concretized, the number of CDs of
x at n are inconclusive. Hence, we do not conclude if n requires a pseudo definition for x, and fn,x
produces the set {nu} of AD for x at n. The third case is applicable when A does not include any
AD for x and contains at most one element, and fn,x(A) transfers A from the entry to the exit of
n.

Lemma 1. The set fn,x(A) (i.e. A•(n)(x)) is at most a singleton and | A◦(n)(x) |≤ |pred(n)| for
any n ∈ N and x ∈ Var.

Proof. fn,x(A) is a singleton set due to the first two cases in Eq. 3. The last case is applicable when
| A \ Nu |≤ 1 and A ∩ Nu = ∅ implying that | A |≤ 1 and thus produces at most a singleton set.
In Eq. 1, since A•(m)(x) is at most a singleton set for all x ∈ Var, g(m,A) produces at most a
singleton set for each variable x and each predecessor m of n. Thus, | A◦(n)(x) |≤ |pred(n)|.

Instead of performing a fixpoint computation, we perform the forward dataflow analysis in
Algorithm 1 visiting each edge exactly once and generating RD sets A◦(n)(x) and A•(n)(x) for

8

typedef const char *T;

T Perl_ninstr(T big, T bigend, T

little, T lend)

{

const char *s, *x, fs = *little;

bigend -= lend - little++;

OUTER:

while (big <= bigend)

{

if (*big++ == fs)

{

x=big; s=little;

for (; s < lend; x++,s++)

{

if (*s != *x)

goto OUTER;

}

return (char*)(big-1);

}

}

return NULL;

}

big <= bigend

*big++ == fs

x=big; s=little;

s < lend

*s != *x

x++, s++

F
T

T

F

T

T

F

F

n3

n4

n6

n7

n8n9

n10n11

Entry

 1. const char *x,*s, fs=*little;
2. bigend -= lend - little++

OUTER:

Exit

n0

n1

n2

n12

return (char)(big-1)

goto OUTER

return NULL
n5

Figure 4: Code from the 500.perlbench r benchmark in SPEC CPU2017 [7] (left) and its CFG (right)

each x ∈ Var. The select function picks an element arbitrarily from the worklist W . We avoid
chaotic fixpoint computation as it will be computationally expensive and will not resolve all ADs
into CDs.

Example 1. Consider the source code and its CFG in Figure 4. The sets of RDs generated
by Algorithm 1 for the variable x is shown in Table 1. We assume, like DF-based φ-placement
algorithms, that all variables are defined at the entry node n0. However, unlike DF-based methods,
our approach has the flexibility to consider any arbitrary set of variable definitions at the entry
node. Note that the abstract RDs n2u, n

3
u, and n7u originate from the join nodes n2, n3, and n7.

In the next section, we provide a method to concretize all abstract RDs and detect nodes that
require φ-functions which are also called φ nodes.

4.2. Concretization of Abstract RDs

The dataflow analysis in the previous section generates the sets A◦(n)(x) of RDs for all nodes
n ∈ N and program variables x ∈ Var. A◦(n)(x) may contain ADs and/or CDs of x. If all RDs in
A◦(n)(x) are CDs and A◦(n)(x) contains multiple concrete RDs (i.e. |A◦(n)(x)| > 1), then we can
conclude that n requires a φ function for x. If |A◦(n)(x)| ≤ 1 and all RDs in A◦(n)(x) are CDs,
then we can also conclude that n does not require a φ function. However, if A◦(n)(x) contains ADs
and since some ADs can be concretized to CDs already present in the A◦(n)(x) set, we may not be
able to conclude if A◦(n)(x) will contain more than one CD of x, and hence we cannot conclude if

9

n A◦(n)(x) A•(n)(x) Case of Eq. 3
n0 ∅ {n0} Case (1)
n1 {n0} {n0} Case (3)
n2 {n0, n7u} {n2u} Case (2)
n3 {n2u, n3u} {n3u} Case (2)
n4, n5 {n3u} {n3u} Case (3)
n6 {n3u} {n6} Case (1)
n7 {n6, n10} {n7u} Case (2)
n8, n9, n11 {n7u} {n7u} Case (3)
n10 {n7u} {n10} Case (1)
n12 {n7u, n3u} {n12u } Case (2)

Table 1: The RD sets generated by Algorithm 1 for the code in Figure 4. The last column lists the case number of
Eq. 3 that is applied in computing A•(n)(x)

n requires a φ-function or not for variable x. Thus, in order to decide if n requires a φ-function or
not based on the number of CDs in A◦(n)(x), we need to concretize the abstract RDs.

Our approach to concretize the ADs is to create dependency graphs among abstract and concrete
RDs and perform systematic flow analyses of CDs in the dependency graphs to discover the exact
relationships among ADs and CDs and then resolve the ADs. To illustrate the procedure, consider
the abstract definition nu of x originated from the CFG node n, i.e. A•(n)(x) = {nu} and we
would like to concretize nu. If A◦(n)(x) = {n1λ, n2λ}, then resolving nu depends on the concrete
value of n1λ and n2λ. If niλ is an abstract definition, we consider the contents of A◦(ni)(x) for i = 1, 2.
Suppose m1 ∈ A◦(n1)(x) and m2 ∈ A◦(n2)(x) are the only RDs of x in these sets which are concrete
definitions. We then build the dependency graph containing the nodes nu, n

1
λ, n

2
λ,m

1,m2 and the
edges (m1, n1λ), (m2, n2λ), (n1λ, nu), (n2λ, nu). Systematic flow analysis can reveal that n1λ = m1,
n2λ = m2, and the A•(n)(x) set thus contains two CDs m1 and m2. Node n will then require a
φ-function for x and we can conclude that nu = n. In the following sections, we describe the general
procedure to build the dependency graphs and systematic flow analyses to concretize the ADs.

4.2.1. Generating the Dependency Graph

Consider the mapping function µ(n, x) = A◦(n)(x) for any join node n ∈ N and variable
x ∈ Var. We consider the mapping functions of join nodes because only join nodes can receive
multiple RDs. Thus, µ(n, x) contains RDs of x which are abstract and/or concrete definitions.
If all RDs in µ(n, x) are concrete definitions, then µ(n, x) is considered to be resolved. On the
other hand, if µ(n, x) contains some ADs, then we need to consider the mapping functions of those
CFG nodes from which the ADs in µ(n, x) have originated. Let n = n1 and let n2u ∈ µ(n1, x).
Thus, in order to resolve µ(n, x), we need to concretize n2u which requires looking into the RDs
in µ(n2, x) = A◦(n2)(x). This, in turn, may require successive consideration of the RDs in the
sets µ(n3, x), . . . µ(nk, x). Thus, we need to consider the following system of µ-equations to resolve
µ(n, x):

µ(n1, x) = S1

µ(n2, x) = S2

...
µ(nk, x) = Sk

(4)

10

where n1 = n, ni ∈ N and Si ⊆ N ∪Nu for all 1 ≤ i ≤ k. Moreover, nju appears in St for at least
all 1 ≤ t < j ≤ k. So, each µ(nj , x) = Sj equation is included in this system of equations due to the
reference nju in some St. Intuitively, any niu ∈ Sj and nlu ∈ Si imply that node nj receives an AD of
x from ni, which in turn receives an AD of x from nl and so on. Thus, Eqs. 4 is a slice of the results
generated from Algorithm 1. We need to concretize the ADs in µ(ni, x) ∩Nu for all 1 ≤ i ≤ k to
decide if the CFG node n requires a φ-function for x. It is a challenging problem since Eqs. 4 may
contain cyclic references: resolving µ(ni1 , x) may require resolving µ(ni2 , x) due to the reference
ni2u ∈ µ(ni1 , x) which in turn may require successive resolution of the sets µ(ni3 , x), . . . , µ(nik , x)
and finally resolving µ(nik , x) requires resolving µ(ni1 , x) for some 1 ≤ i1, . . . , ik ≤ k.

In the following sections, we provide an efficient and generic method to solve this system of
equations originated from reducible or irreducible CFGs. We represent the system of µ-equations
by the graph Gαµ and perform a flow analysis of concrete RDs on this graph. α is a node in the
graph Gαµ which depends on the contents of A•(n)(x). If A•(n)(x) contains an AD such that
A•(n)(x)∩Nu 6= ∅, then α ∈ A•(n)(x)∩Nu. Thus, the concretization of α depends on the solution
of Eqs. 4. However, if A•(n)(x)∩Nu = ∅, we simply set α = n. We define the graph Gαµ representing
Eqs. 4 as follows:

Definition 3 (Graph Gαµ). The system of µ(n, x) equations (i.e., Eqs 4) form a directed graph
Gαµ = (Nµ, Eµ) such that

• Nµ = S1 ∪ . . . ∪ Sk ∪ {α}, and

• Eµ = EKµ

where

• E0
µ = {(mλ, α) : mλ ∈ µ(n, x)},

• Ei+1
µ = {(mλ,m

′
u) : (m′u,m

′′
λ) ∈ Eiµ,mλ ∈ µ(m′, x)} for any i > 0, and

• there exists K > 0 such that EKµ = EK−1µ .

The above definition inductively defines the edges of the graph Gαµ : (mλ, α) is an edge in Gαµ for
any mλ ∈ µ(n, x), and if (m′u,m

′′
λ) is already an edge in the graph and there exists mλ ∈ µ(m′, x),

then (mλ,m
′
u) is also an edge in Gαµ . This process progressively generates edges in Gαµ until no more

edges can be added to the graph. Intuitively, if mu ∈ Nµ and there exists a RD m′λ ∈ µ(m,x), then
(m′λ,mu) ∈ Eµ and any concretization of mu depends on m′λ. Note that if m ∈ Nµ is a concrete
RD, then (m′λ,m) is not an edge in Gαµ for any m′λ ∈ µ(m,x) since m is already concretized. Thus,
the graph Gαµ contains all the dependencies among abstract and concrete RDs.

4.2.2. Flow Analysis of Concrete Definitions

Let C ⊆ Nµ be the set of nodes in Gαµ = (Nµ, Eµ) representing CDs of a variable x ∈ Var. The
initial set of CDs includes all nodes nλ ∈ Nµ such that nλ = n and x is defined at n. Since all nodes
in Nµ ∩N include definitions of variable x, C = Nµ ∩N initially. If some mλ ∈ Nµ is resolved to

mλ = m, then we consider mλ as a CD of x. Let Σ : Nµ → P(Ĉ) be the function recording the

flow of concrete RDs in Ĉ = {n : nλ ∈ C} to each node in Gαµ . We define Σ as follows:

Definition 4 (Σ). Let mλ ∈ Nµ, let x ∈ Var, and let C be the set of CDs of x. Σ(mλ) contains

all CDs n such that there exists a path π : nλ
+→ mλ from nλ ∈ Nµ ∩ C in Gαµ where no node in

π − {nλ,mλ} is a CD of x.

11

Thus, Σ(mλ) collects all concrete RDs of x at mλ. Algorithm 2 performs the flow analysis of
CDs according to Definition 4 and returns Σ(mλ) for all nodes mλ in the graph Gαµ . It is a worklist-
based algorithm that records the flow of CD n to Σ(mλ) for the nodes mλ ∈ Nµ and nλ ∈ C. Note
that Algorithm 2 receives Σ and C as input. We shall perform iterative flow analysis to update Σ.
Algorithm 2 is applied iteratively in Algorithm 4 (see Section 4.2.4) to resolve all ADs to CDs. If
there remain some ADs to be resolved to CDs after an application of Algorithm 2 that updated Σ
to Σ′, a new set of CDs C ′ is obtained from C and Σ′ by applying Algorithm 3 (see Section 4.2.3),
and Algorithm 2 is applied again for the inputs Σ′, C ′ and the dependency graph Gαµ to resolve the
remaining ADs.

Input : C ⊆ Nµ, Gαµ = (Nµ, Eµ),Σ, µ, x ∈ Var

1 W = ∅
2 forall nλ ∈ Nµ do
3 V (nλ) = false
4 forall mλ ∈ C do P(nλ,m) = false

5 forall nλ ∈ C ∧mλ ∈ succµ(nλ) do
6 W = W ∪ {(mλ, n)}
7 while (W 6= ∅) do
8 (mλ, n) = select(W)
9 W = W \ {(mλ, n)}

10 if (¬V (mλ)) then Σ(mλ) = ∅
11 Σ(mλ) = Σ(mλ) ∪ {n}
12 V (mλ) = true
13 P(mλ, n) = true
14 if (µ(m,x) ∩Nu 6= ∅ ∨ |µ(m,x)| > 1) then
15 forall (pλ ∈ succ(mλ)∧¬P(pλ, n)) do
16 W = W ∪ {(pλ, n)}

17 return Σ
Algorithm 2: FlowC

Two Boolean functions V and P are maintained in the algorithm so that V (mλ) and P(mλ, n)
decide if mλ is visited and the CD n reaches mλ before. The worklist W is initialized by the pair
(mλ, n) to transfer the CD n to Σ(mλ) where nλ ∈ C and mλ is a successor of nλ in Gαµ . Note
that (mλ, n) is not necessarily an edge in the graph Gαµ , rather n is always a CD to be transferred
to Σ(mλ). The two if instructions at lines 10 and 14 affect the construction of Σ in the following
ways:

• In the first visit to mλ (i.e. V (mλ) = false), we set Σ(mλ) = ∅ which has a profound
implication. Previous flow analysis may generate incorrect Σ(mλ) for some mλ ∈ Nµ. This
may happen when |Σ(m′λ)| > 1 for any parent node m′λ ∈ Nµ of mλ such that the CFG node
m′ may require a φ-function and thus m′λ = m′, but the flow analysis generates Σ(mλ) that
does not contain m′ and may contain the RDs of Σ(m′λ) instead. This is because m′λ = m′

is decided after the flow analysis. Resetting Σ(mλ) = ∅ followed by including n to Σ(mλ)
(line 11) remove all incorrect CDs of x from Σ(mλ) and Σ(mλ) will contain some but not all
correct CDs of x reaching mλ. Later, we reconstruct Σ(mλ) from all predecessors m′λ of mλ.

12

µ(n12, x) = {n3u, n7u}
µ(n3, x) = {n2u, n3u}
µ(n2, x) = {n0, n7u}
µ(n7, x) = {n6, n10}

(a)

n0

nu2

nu3 nu12

n10n6

nu7

(b)

nλ Σ(nλ)

n0 {n0}
n6 {n6}
n10 {n10}
n2
u {n0, n6, n10}
n3
u {n0, n6, n10}
n7
u {n6, n10}
n12
u {n0, n6, n10}

(c)

Figure 5: (a) The system of µ equations obtained from the RDs in Table 1 to concretize n12
u , (b) the graph Gn

12

µ
generated according to Definition 3 from the equations in (a), and (c) the Σ values generated by the flow analysis in
Algorithm 2 where C = {n0, n6, n10}

• The second if instruction at line 14 ensures that mλ is not resolved to a CD of x. As we shall
see in the next section, if m requires a φ-function for x (and hence mλ = m is a CD), we set
µ(m,x) = {m}, and then we get µ(m,x) ∩Nu = ∅ and |µ(m,x)| = 1. However, if m is not a
concrete RD of x, then the CD n can reach all the successor nodes pλ of mλ provided that n
has not reached pλ before.

Example 2. Consider the RD sets A◦(n)(x) in Table 1 generated by Algorithm 1 for the code in
Figure 4. Suppose we would like to concretize n12u . Figure 5(a) presents the system of µ equations

obtained from the RD sets. The dependency graph Gn
12

µ in Figure 5(b) is generated according to
Definition 3 from this system of µ equations. The table in Figure 5(c) shows the Σ after the flow
analysis of concrete definition in C = {n0, n6, n10}. The first three lines are due to initialization by
Algorithm 4, and the remaining data are generated by the flow analysis in Algorithm 2.

4.2.3. Necessary and Sufficient Conditions for Detecting φ Nodes

Any node mλ ∈ Nµ such that |Σ(mλ)| > 1 is a potential candidate that may require a φ-
function for x. However, the condition |Σ(mλ)| > 1 is necessary but not sufficient for any mλ ∈ Nµ
to require a φ-function. To see why the condition is not sufficient, consider the nodes n2u, n

3
u and

n7u in Figure 5(b), and Σ(n2u) and Σ(n3u) in Figure 5(c). It is obvious that n7u = n7 as distinct CDs
n6 and n10 reach n7u causing n7 to require a φ function for x. n7 is thus a CD of x. Also, n2u = n2

since the CDs n0 and n7 reach n2u. However, note that Σ(n2u) = Σ(n3u) and |Σ(n3u)| > 1. Since
n2u require a φ-function, the pseudo-definition of x at n2 will make n2 a new CD of x which will
invalidate Σ(n3u) = {n0, n6, n10} and a new flow analysis will eventually generate Σ(n3u) = {n2}.
In the following, we define Nodesφ(C,Σ, Gαµ) which is the set of all nodes mλ ∈ Nµ that definitely
requires a φ-function for x.

Definition 5 (Nodesφ(C,Σ, Gαµ)). The set Nodesφ(C,Σ, Gαµ) contains all nodes mλ ∈ Nµ such
that the following conditions hold:

1. |Σ(mλ)| > 1, and

2. there exists a path π : nλ
+→ mλ in Gαµ for any nλ ∈ Σ(mλ) such that |Σ(n′λ)| ≤ 1 and n′λ is

not a CD for all n′λ ∈ π − {mλ, nλ}.

13

Input : C,Σ, (Nµ, Eµ), µ, completed, x ∈ Var
1 Nodesφ(C,Σ, Gαµ) = ∅
2 W =

⋃
mλ∈C succµ(mλ)

3 while (W 6= ∅) do
4 nλ = select(W)
5 W = W \ {nλ}
6 if (¬completed(nλ) ∧ |Σ(nλ)| > 1) then
7 µ(n, x) = {n}
8 Nodesφ(C,Σ, Gαµ) = Nodesφ(C,Σ, Gαµ) ∪ {nλ}
9 else if (¬completed(nλ) ∧ |Σ(nλ)| ≤ 1) then

10 completed(nλ) = true
11 W = W ∪ {n′λ : n′λ ∈ succµ(nλ),¬completed(n′λ)}

12 return Nodesφ(C,Σ, Gαµ)
Algorithm 3: computeNodesφ

Definition 5 provides the necessary and sufficient conditions for any mλ ∈ Nµ to require a φ-
function for x. Intuitively, we find the first node mλ ∈ Nµ along any nontrivial path π : nλ → mλ

from any nλ ∈ Σ(mλ) such that Σ(mλ) contains multiple distinct CDs, and Σ(n′λ) is at most a
singleton for all nodes n′λ in the path π excluding mλ and nλ. Moreover, no node in π − {mλ, nλ}
should be a CD of x. Since n is a concrete definition of x for any nλ ∈ C which reaches mλ

through the path π and no other CD can reach mλ through π except n due to |Σ(n′λ)| ≤ 1 for all
n′λ ∈ π−{mλ, nλ}, there must be another CD of x in Σ(mλ) along with n due to |Σ(mλ)| > 1, and
hence mλ requires a φ-function for x.

Algorithm 3 computes the set of nodes Nodesφ(C,Σ, Gαµ) requiring φ functions for x. It visits

each path π that starts from any successor of any node in C. The sequence of nodes n1λ, . . . , n
k
λ in

π are visited with the following conditions:

• Each node niλ is visited if completed(niλ) is false for all 1 ≤ i ≤ k. completed(niλ) = false if
the concretization process could not decide if niλ requires a φ-function or not.

• For all niλ such that 1 ≤ i < k, |Σ(niλ)| ≤ 1. As we prove Lemma 4 in Section 5.1, |Σ(niλ)| ≤ 1
implies that niλ will never require a φ function for x. Thus, we set completed(niλ) = true to
indicate that we already have a decision about niλ and thus it does not require any further
processing.

• We have two possible scenarios for nkλ: either (i) completed(nk+1
λ) = false and |Σ(nkλ)| > 1,

or (ii) completed(nk+1
λ) = true. In the former case, nkλ is the first reachable node in π such

that Σ(nkλ) contains multiple CDs and thus the CFG node nk requires a φ function for x
according to Definition 5. We include nkλ in Nodesφ(C,Σ, Gαµ) and set µ(nk, x) = {nk} to

indicate the concretization nkλ = nk. In the latter case, nkλ is already resolved and thus the
successors of nkλ are not visited.

Example 3. Consider the graph Gn
12

µ and Σ in Figure 5. We obtain Nodesφ(C,Σ, Gαµ) = {n2u, n7u},
hence there exist paths π1 : n0 → n2u and π2 : n6 → n7u satisfying the conditions in Definition 5.
Thus, n2u and n7u are resolved to CDs n2 and n7. Note that n3u 6∈ Nodesφ(C,Σ, Gαµ) even though

14

|Σ(n3u)| > 1. We do not conclude that n3 requires a φ-function for x as there exists n2u ∈ n0 → n3u
such that |Σ(n2u)| > 1. In fact, the newly resolved CD n2 of x will be the only element in Σ(n3u)
in the next flow analysis. Thus, n3u is resolved to n2, and we conclude that n3 does not require a
φ-function for x after the next flow analysis.

4.2.4. Iterative Flow Analysis

Let C0 = Nµ ∩ N be the set of all initial concrete definitions of x in Gαµ . We apply Algo-
rithm 2 to systematically perform the flow analysis of the concrete definitions in C0 to construct
Σ and then apply Algorithm 3 to compute the set Nodesφ(C0,Σ, G

α
µ) of φ nodes. Since each node

mλ ∈ Nodesφ(C0,Σ, G
α
µ) will contain pseudo-definition of x, m is considered to be a new concrete

definition of x. So, we obtain the set C1 = C0 ∪ Nodesφ(C0,Σ, G
α
µ) of nodes in Gαµ that contain

definitions or require pseudo-definitions of x after the first flow analysis of C0 in Gαµ . Next, for each
mλ ∈ Nodesφ(C0,Σ, G

α
µ), we need to perform the flow analysis of m to the nodes in Gαµ . The flow

analysis will produce C2 ⊇ C1 containing more nodes requiring φ-functions. Thus, we iteratively
perform the flow analysis and compute the set of nodes Nodesφ(Ci,Σ, G

α
µ) for i ≥ 0 requiring φ-

functions for x until no new CDs can be generated. In particular, the following equations describe
a series of computations to detect the set of φ nodes Ci+1 for i ≥ 0:

Σi+1 = FlowC(Ci, G
α
µ ,Σi)

Ci+1 = Ci ∪Nodesφ(Ci,Σi+1, G
α
µ)

(5)

where C0 = Nµ ∩ N , Σ0(nλ) = ∅ for all nλ ∈ Nµ \ C0, Σ0(nλ) = {n} for all nλ ∈ C0, the
FlowC(Ci, G

α
µ ,Σi) set is computed by the flow analysis in Algorithm 2, and Nodesφ(Ci,Σi+1, G

α
µ)

set is computed by the φ node detection method in Algorithm 3. The iterative process terminates
when CL+1 = CL for any L > 0. If |C0| ≤ 1, no node in Gαµ and hence no CFG node ni in G
will require a pseudo-definition of x as each node mλ in Gαµ cannot receive more than one CD. So,
we need a sequence of flow analysis on Gαµ , and since Gαµ is much smaller than the CFG, the flow
analysis is very efficient.

As we mentioned in Section 4.2.2, the flow analysis may produce Σi+1 which may contain
incorrect CDs. Nevertheless, the conditions in Definition 5 are necessary and sufficient to produce
the correct set of nodes Nodesφ(Ci,Σi+1, G

α
µ) that will require φ-functions. The flow analysis in

the next iteration will generate Σi+2 set which will remove some incorrect flow of CDs present in
the Σi+1 set. For example, Σ(n2u) includes both n6 and n10 in Figure 5. However, since Σ(n7u)
satisfies the conditions in Definition 5, n7 is a concrete definition of x that should reach n2u instead
of n6 and n10. Nevertheless, both conditions in Definition 5 are satisfied by n2u to conclude that n2

requires a φ-function for x (i.e. n2u = n2). Such conclusion is due to the following reasons: n0 is
definitely a concrete RD of x at n2u due to condition (2) in Definition 5, and even though n6 and
n10 are not valid CDs of x at n2u, there must be at least one CD due to n6 and/or n10 (in this
case n7). Further flow analysis with respect to {n2u, n7u} will generate Σ which will not contain this
incorrect flow of CDs.

The overall procedure to detect all φ nodes of any given CFG (N,E) for the variables in Var is
provided in Algorithm 4, where Algorithms 2 and 3 are applied iteratively. For each variable x ∈
Var, it computes the set of φ nodes CR(x). The createGraph procedure generates the dependency
graph (Nµ, Eµ) according to Definition 3. The instructions at line 10 of the FlowC procedure
in Algorithm 2 reset Σ(nλ) for some node nλ in the dependency graph which not only removes
some incorrect CDs but also some correct CDs as well from the Σ(nλ) set. We reconstruct Σ(nλ)
by applying the reConstructΣ procedure at line 20 of Algorithm 4 and assign the reconstructed

15

Input : (N,E),Var
1 Apply Alg. 1 to compute A◦ and A• sets
2 forall (n ∈ N ∧ x ∈ Var) do µ(n, x) = A◦(n)(x)
3 forall x ∈ Var do
4 CR(x) = ∅
5 forall (join nodes n ∈ N) do resolved(n) = false
6 forall (join nodes n ∈ N such that resolved(n) = false) do
7 (Nµ, Eµ) = createGraph(n, µ,A•)
8 C0 = {nλ : nλ ∈ Nµ, x ∈ def(n)}
9 forall (nλ ∈ Nµ) do

10 Σ(nλ) = ∅
11 completed(nλ) = false

12 forall (mλ ∈ C0) do Σ(mλ) = {mλ}
13 C = C0

14 while (C 6= ∅) do
15 Σ = FlowC(C, (Nµ, Eµ),Σ, µ, x)
16 forall (mλ ∈ C) do completed(mλ) = true
17 C = computeNodesφ(C,Σ, (Nµ,Eµ), µ, completed, x)
18 CR(x) = CR(x) ∪ C
19 forall (nλ ∈ Nµ) do
20 A◦(n)(x) = reConstructΣ(nλ,Σ, (Nµ, Eµ), x, µ)
21 resolved(n) = true

22 return (CR)
Algorithm 4: IterativeFlow

Input : nλ,Σ, (Nµ, Eµ), x ∈ Var, µ
1 Σ(nλ) = ∅
2 forall (n′λ ∈ predµ(nλ)) do
3 if (µ(n′, x) = {n′} ∨ (n′λ = nλ ∧ x ∈ def (n))) then
4 Σ(nλ) = Σ(nλ) ∪ {n′}
5 else
6 Σ(nλ) = Σ(nλ) ∪ Σ(n′λ)

7 return (Σ(nλ))
Algorithm 5: reConstructΣ

16

value to A◦(n)(x) such that it contains all the concrete RDs of x at n. Algorithm 5 illustrates the
reConstructΣ procedure. After resetting Σ(nλ) to an empty set, it considers each predecessor n′λ
of nλ and update Σ(nλ) in one of the following ways:

• The condition µ(n′, x) = {n′} holds if n′ requires a φ function for x (see line 7 in Algorithm 3).
n′ is thus a CD of x and n′ is included in Σ(nλ).

• The condition nλ = n′λ corresponds to a self loop from nλ to itself in the dependency graph
(Nµ, Eµ). This happens when there is a cycle in the CFG through the join node n and no
node in any path from n to itself defines n. However, if the CFG node n defines the variable x
then we consider n as a CD of x and include n in Σ(nλ). Otherwise, we ignore any RD coming
through this edge as it is the same RD that goes out from nλ and it should not contribute
deciding if n requires a φ function or not for x.

• In any other case, n′λ is not a CD and thus |Σ(n′λ)| ≤ 1 and we include the element of Σ(n′λ)
in Σ(nλ).

Our experiments that we discuss in Section 6 show that this approach is fairly efficient for most
benchmark codes since Gαµ is usually very small in size and the source code contains sparse variable
definitions. Our algorithm may take longer time if the code contains dense variable definitions.

5. Correctness and Computational Complexity

5.1. Correctness of Computing φ Nodes

In the remainder of this section, we assume the following:

• (N,E) is the CFG of any program,

• Nu is the set of pseudo nodes related to N

• Gαµ = (Nµ, Eµ) be any dependency graph generated according to Definition 3,

• C ⊆ Nµ be the set of CDs for the variable x ∈ Var,

• Σ records the flow of CDs in C in Algorithm 2, and

• Nodesφ(C,Σ, Gαµ) is the set of φ nodes computed in Algorithm 3.

In this section, we provide Theorem 1 to state the correctness of Algorithm 4. We prove this
theorem with the aid of some auxiliary lemmas which also give us more insight about the algorithms
provided in Section 4.

Lemma 2. Algorithm 2 computes Σ according to Definition 4.

Proof. During the initialization phase in Algorithm 2, two boolean functions V (mλ) and P (mλ, n)
are set to false for all nodes mλ ∈ Nµ and all CDs nλ ∈ C. V (mλ) and P (mλ, n) indicate that
the iterative flow analysis in the algorithm has not visited mλ and the CD n is not included to
Σ(mλ), respectively. During the iterative flow analysis, Σ(mλ) is reset to an empty set to discard
previously stored values in Σ(mλ) when V (mλ) is false. The worklist W is initialized by the pair
(mλ, n) to transfer the CD n to Σ(mλ) where nλ ∈ C and mλ is a successor of nλ in Gαµ .

17

At each iteration in the while loop, Algorithm 2 traverses the path π in Definition 4 by selecting
(and removing) an element (mλ, n) from the worklist W and including the CD n to Σ(mλ). Next,
if mλ is not resolved to a CD (i.e. the conditions at line 14 in the algorithm are satisfied) satisfying
the condition on path π in Definition 4, and n is not transferred to Σ(pλ) for the successor pλ of
mλ (i.e. P (pλ, n) = false), (pλ, n) is included in W to transfer n to Σ(pλ). Thus, all CDs n is
transferred to Σ(mλ) for each visited node mλ in π in Algorithm 2 until there are no successors to
mλ or mλ is resolved to a CD.

Lemma 3. Algorithm 3 computes Nodesφ(C,Σ, Gαµ) according to Definition 5.

Proof. Algorithm 3 receives the boolean function completed(nλ) as input such that completed(nλ) =
true if nλ ∈ C, and completed(nλ) = false otherwise. It starts visiting the path π in Definition 5
from the successors of the nodes in C by keeping them in the worklist W and selecting each
of them to process at a time. At each iteration in the while loop, if completed(nλ) = false
implying that nλ is not yet visited, and |Σ(mλ)| ≤ 1 implying that condition 2 in Definition 5 is
satisfied, the successors n′λ of nλ are included in W to visit in the successive iterations. However,
if completed(nλ) = false (and thus nλ is not yet visited) and |Σ(mλ)| > 1 implying that condition
1 in Definition 5 is satisfied, nλ is included in Nodesφ(C,Σ, Gαµ). Note that if nλ is included in
Nodesφ(C,Σ, Gαµ), path π is not extended beyond nλ by not including successors of nλ in W . Thus,
Algorithm 3 computes Nodesφ(C,Σ, Gαµ) according to Definition 5.

Lemma 4. Let mλ ∈ Nµ \ C be any node in Nµ. If |Σ(mλ)| ≤ 1, then Σ(mλ) will be unchanged
by a further application of Algorithm 2 with a different C set, and mλ cannot be a φ node for x.

Proof. We first prove that Σ(mλ) 6= ∅. The edges in the dependency graph (Nµ, Eµ) are con-
structed inductively in Definition 3 such that if (m′u,m

′′
λ) ∈ Eµ and there exists mλ ∈ µ(m′, x) then

(mλ,m
′
u) ∈ Eµ. Thus, (mλ,m

′
u) is an edge in (Nµ, Eµ) since m′u ∈ Nu. If (mλ, nλ) is any edge in

Eµ and mλ = m (i.e. mλ ∈ N), then m is a CD of x (i.e. x ∈ def(x)) and there is no incoming
edge to mλ in (Nµ, Eµ). Thus, (Nµ, Eµ) is a connected graph. Let C0 = {n : n ∈ Nµ, x ∈ def(x)}
be the initial set of CDs of x. Then, any node nλ ∈ Nµ is reachable from a node in C0. So, the
first flow analysis in Algorithm 2 with respect to C = C0 will produce Σ such that Σ(mλ) 6= ∅ for
any mλ ∈ Nµ. If mλ is visited by a further application of Algorithm 2, an element (mλ, n) must be
selected from W and n is included in Σ(mλ) during the execution of the while loop in Algorithm 2.
Thus, Σ(mλ) 6= ∅.

Since |Σ(mλ)| ≤ 1, let Σ(mλ) = {n} for some nλ ∈ Nµ. Thus, there exists a path π : nλ
+→ mλ

in the graph (Nµ, Eµ) and no node n′λ ∈ π − {nλ,mλ} is a CD of x according to Definition 4 (i.e.
either |µ(n′, x)| ≥ 2 or µ(n′, x)∩Nu 6= ∅ at line 14 in Algorithm 2). Moreover, |Σ(mλ)| ≤ 1 implies
|Σ(n′λ)| ≤ 1 since otherwise any element in Σ(n′λ) other than n would also be included in Σ(mλ)
due to the path π.

If there exists m′λ ∈ Nµ such that |Σ(m′λ)| > 1, m′λ is a potential candidate to become a CD of
x. However, we argue that if m′λ can be resolved to a CD of x such that m′λ = m′, then m′ cannot
be included in Σ(mλ). Since all elements of Σ(m′λ) are not included in Σ(mλ), either there exists
no path from m′λ to mλ or all paths from m′λ to mλ go through nλ which is a CD of x. In any
case, Σ(mλ) (and also Σ(n′λ)) cannot receive any other CD of x in further flow analysis except n
according to Definition 4. Thus, Σ(mλ) will never be changed and the condition |Σ(mλ)| ≤ 1 will
hold in further flow analysis having different CDs C ′ ⊆ Nµ and mλ will never be a φ node for x.

18

Lemma 5. No two CDs in C can reach any mλ ∈ Nµ \Nodesφ(C,Σ, Gαµ), and mλ cannot become
a φ node for x due to C.

Proof. Let Ĉ = {n : nλ ∈ C}. Algorithm 3 computes the set Nodesφ(C,Σ, Gαµ) of φ nodes
according to Definition 5 (Lemma 3). Now, suppose there exists a node mλ ∈ Nµ such that mλ 6∈
Nodesφ(C,Σ, Gαµ) but Σ(mλ)∩Ĉ 6= ∅. For each CD n ∈ Σ(mλ)∩Ĉ, there exists a path π : nλ

+→ mλ

in the graph (Nµ, Eµ) through which n is transferred to Σ(mλ). Since mλ 6∈ Nodesφ(C,Σ, Gαµ),
either condition (1) or (2) in Definition 5 does not hold. In the former case, |Σ(mλ)| ≤ 1 and mλ

cannot become a φ node for x according to Lemma 4. In the latter case, for all n ∈ Σ(mλ) ∩ Ĉ,

for all paths π : nλ
+→ mλ in the graph (Nµ, Eµ), there exists a node n′λ ∈ π − {nλ,mλ} such

that |Σ(n′λ)| > 1 or n′λ is a CD. Assume that n′λ is the first reachable from nλ in case there
are multiple nodes in π having multiple CDs. Then, either n′λ ∈ Nodesφ(C,Σ, Gαµ) is a φ node
for x according to Definition 5 or n′λ is the CD n′. In any case, the CD n will not reach mλ

through n′λ according to Definition 4 in the next flow analysis. Since this happens for all paths

π : nλ
+→ mλ from nλ ∈ C for all n ∈ Σ(mλ) ∩ Ĉ, no CD of x from C will reach Σ(mλ). Thus, for

any mλ ∈ Nµ \Nodesφ(C,Σ, Gαµ), our assumption Σ(mλ) ∩ Ĉ 6= ∅ leads to either |Σ(mλ)| ≤ 1 or

the contradiction that a CD n ∈ Σ(mλ) ∩ Ĉ reaches Σ(mλ). So, Nodesφ(C,Σ, Gαµ) is the only set
of φ nodes receiving multiple CDs from C for x.

Lemma 6. If Algorithm 3 computes Nodesφ(C,Σ, Gαµ) = ∅, then either completed(nλ) = true or
|Σ(nλ)| ≤ 1 for any nλ ∈ Nµ.

Proof. We obtain Nodesφ(C,Σ, Gαµ) = ∅ if there exists no mλ ∈ Nµ visited by Algorithm 3 such
that completed(mλ) = false and |Σ(mλ)| > 1. Thus, the lemma holds for all visited nodes mλ ∈ Nµ
by the algorithm. However, assume that there exists a node mλ ∈ Nµ such that completed(mλ) =
false, |Σ(mλ)| > 1, and it is not visited by the algorithm. This is possible only when there

exists a path π : nλ
+→ mλ for any n ∈ Σ(mλ) and there exists n′λ ∈ π − {nλ,mλ} such that

completed(n′λ) = true. Note that nλ ∈ C, and if completed(n′λ) = true, then no successors
of n′λ are visited. The iterative flow analysis in Algorithm 4 calls Algorithm 3 iteratively, and
completed(n′λ) can be set to true due to a previous call to Algorithm 3 in one of the following ways:

• n′λ was included in Nodesφ(C,Σ, Gαµ) in the previous call to Algorithm 3 (at line 17 in Algo-
rithm 4) and completed(n′λ) was set to true in the next iteration (line 16 in Algorithm 4).

• path π was visited in a previous call to Algorithm 3, the conditions completed(mλ) = false
and |Σ(mλ)| ≤ 1 held for node mλ, and completed(n′λ) was set to true during visiting π.

In the former case, n′ is a CD and n cannot be transferred to Σ(mλ) according to Definition 4.
In Algorithm 3, we set µ(n′, x) = n′ and Σ(mλ) cannot include n due to line 13 in Algorithm 2.
In the latter case, |Σ(mλ)| ≤ 1 implies that Σ(mλ) will not be changed in further flow analysis
according to Lemma 4, n ∈ Σ(mλ) implies that n ∈ Σ(n′λ) as n passes through n′λ, and this implies
that n ∈ C ∩ C ′ where C ′ is the set of CD in the previous call to Algorithm 3. However, this is
impossible since completed(nλ) is set to true for all nλ ∈ C ′ (line 16 in Algorithm 4) and another
call to Algorithm 3 will not include any nλ ∈ C ′ in C since completed(nλ) = true.

Thus, our only assumption that completed(mλ) = false and |Σ(mλ)| > 1 cannot be true.

Theorem 1. Let n ∈ N be any join node. The iterative flow analysis in Algorithm 4 terminates
after computing all φ nodes for x from (Nµ, Eµ).

19

Proof. Iterative flow analysis is performed by the while loop (lines 14-18) in Algorithm 4 after
obtaining the initial set of CDs C0 of x. C0 contains all nodes nλ ∈ Nµ that define the variable x.
The flow analysis in Algorithm 2 is applied to compute Σ, all nodes in C0 are marked as completed,
and the analysis in Algorithm 3 then computes the set C1 = Nodesφ(C0,Σ, G

α
µ) ⊆ Nµ of φ nodes

for x. No nodes in C0 are included in C1 (i.e. C0 ∩ C1 = ∅) as C1 only considers all nodes that
are not marked as completed. According to Lemma 5, no other nodes in Nµ \ C1 can become φ
nodes for x due to C0. Then, C1 becomes the new set of CDs. The iterative flow analysis repeats
this process: it generates the set of φ nodes C2, . . . , CL in successive order and mark all nodes in
Ci as completed before generating Ci+1 for all 1 ≤ i < L and Ci ∩ Cj = ∅ for any 1 ≤ i, j ≤ L.
This process cannot repeat forever since Ci ∩ Cj = ∅ and we eventually get CL = ∅. According
to Lemma 5, there can be no other φ nodes except Ci due to the CDs Ci−1 for all 1 < i ≤ L.
According to Lemma 6, CL = ∅ implies that completed(nλ) = true or |Σ(nλ)| ≤ 1 for any nλ ∈ Nµ.
Thus, the iterative flow analysis computes all φ nodes for x from (Nµ, Eµ) and no more φ nodes
can be generated.

5.2. Computational Complexity

We assume the following for the remainder of this section.

• N and E are the number of CFG nodes and edges in the CFG (N,E),

• Nµ and Eµ are the number of nodes and edges in the dependency graph (Nµ, Eµ),

• V is the number of variables in Var, and

• K is the maximum in-degree of any join node in the CFG (N,E).

Lemma 7. The worst-case time complexity of Algorithm 1 is O(NVK).

Proof. The first forall loop at line 1 and the second forall loop at line 4 in Algorithm 1 will
iterate NV and E times and each operation under these loops will take constant time. Thus, the
worst case complexity of these two loops will be O(NV) and O(E). The complexity of Algorithm 1
is dominated by the while loop as follows.

• The while loop iterates as long as the worklist W is not empty. In each iteration of this loop,
an edge is removed from W and marked as visited. An edge is included in W at line 13 if it
was not visited before. Thus, this loop iterates at most E times.

• |A◦(n)(x)| ≤ |pred(n)| for any n ∈ N and any x ∈ Var according to Lemma 1 and |pred(n)| ≤
K. Thus, |A◦(n)| ≤ KV. Computing A•(n) at line 9 by means of applying the transfer
function in Eq. 3 will require at most KV steps as each element in the set A◦(n) will have to
be examined at most once.

• |A•(n)(x)| ≤ 1 for any n ∈ N and any x ∈ Var according to Lemma 1. By choosing suitable
data structures such as hash tables for A•, computing g(m,A•(m)) in Eq. 2 will require
at most V operations and thus the instruction at line 12 in Algorithm 1 will require KV
operations.

• |succ(m)| ≤ 2 for any CFG node m and thus the forall loop at line 12 will iterate at most
twice.

20

• All other operations in Algorithm 1 will take constant time. Thus the worst-case time com-
plexity of the while loop is O(EVK).

Since any CFG node has at most two successors, O(E) = O(N), and O(NVK) is the worst-case
time complexity of Algorithm 1.

Lemma 8. The number of edges of any dependency graph (Nµ, Eµ) is at most KNµ.

Proof. According to Definition 3, each edge (mλ,m
′
u) in the graph (Nµ, Eµ) is constructed from

an element mλ ∈ µ(m′, x) where x ∈ Var is the variable of interest for (Nµ, Eµ) and m′u is a node
in Nµ. µ(m′, x) is A◦(m′)(x) which contains RDs of x and each RD of m′ is due to one of the
incoming edges of m′. Since K is the maximum in-degree of any node, |µ(m′, x)| ≤ K. Thus, each
node m′u ∈ Nµ in the graph (Nµ, Eµ) contributes at most K edges due to µ(m′, x), and thus the
graph can have at most KNµ edges (i.e. Eµ ≤ KNµ).

Lemma 9. The worst-case time complexity of Algorithm 2 is O(|C|KNµ).

Proof. We divide the worst-case time complexity of Algorithm 2 as follows:

• The worst-case time complexity of the first forall loop is O(|C|Nµ) as this loop iterates Nµ

times, the forall loop inside it iterates |C| times and all operations inside these loops take
constant time.

• The worst-case time complexity of the forall loop at line 5 is O(|C|KNµ) as this loop iterates
at most |C|Eµ ≤ |C|KNµ times (Lemma 8) and inserting an element in the worklist W can
be performed in constant time.

• In the while loop, an element (mλ, n) is removed from the worklist W and marked as processed
by setting P(mλ, n) to true. Then, each successor pλ of mλ is paired with n and included in W
if P(pλ, n) is not processed (lines 15-16). W always contains pairs (mλ, n) such that (mλ ∈ Nµ
and n ∈ C. Thus, W can contain at most |C|Nµ elements and the while loop iterates at most
|C|Nµ times. The conditions in the if instruction at line 14 requires examining at most two
elements of µ(m,x). Except the forall loop at line 15, all other operations in the while loop
can be performed in O(1) time, and thus the worst-case time complexity of the instructions
from line 7 to 14 is O(|C|Nµ).

• The forall loop at line 15 can visit all the outgoing edges of mλ once the pair (mλ, n) is
removed from W . Each node mλ can have at most K successors as illustrated in the proof of
Lemma 8. Since the while loop can iterate at most |C|Nµ times, and the instruction at line
16 can be performed in constant time, the worst-case time complexity of the instructions in
lines 15-16 is O(|C|KNµ).

Since O(|C|KNµ) dominates other computational time complexity, O(|C|KNµ) is the worst-case
time complexity of Algorithm 2.

Lemma 10. The worst-case time complexity of Algorithm 3 is O(KNµ).

Proof. The worst-case complexity of initializing the worklist W at line 2 is O(|C|K) since it requires
visiting all the successors of each node in C and any node in C has at most K successors (as
illustrated in the proof of Lemma 8). Since |C| ≤ Nµ, O(KNµ) is the worst-case complexity of
initializing W .

21

In each iteration of the while loop, a node nλ ∈ Nµ ∩W is removed from W . If completed(nλ)
is false and |Σ(nλ)| ≤ 1, completed(nλ) is set to true and the successors of nλ are included in W ;
W is not updated otherwise. Thus, the while loop does not visit a node in Nµ more than once and
it can iterate at most Nµ times. All operations in the while loop can be performed in O(1) time
except the instruction at line 11 to update W . Updating W at line 11 requires visiting the edges
in Eµ and no edge needs to be visited more than once since each node nλ ∈ Nµ can be included in
W at most once. Thus, during the entire execution of the while loop, W can be updated at most
Eµ times. So, the worst-case time complexity of the while loop, which is dominated by the update
instruction at line 11, is O(Nµ+Eµ). Note that Nµ is additive to Eµ instead of being multiplicative
in the complexity order since only a part of the edges in Eµ are visited for each visited node nλ ∈ Nµ
in the while loop which adds up to Eµ by the end of the loop. O(Nµ + Eµ) is effectively O(KNµ)
since Eµ ≤ KNµ, and O(KNµ) is the worst-case time complexity of Algorithm 3.

Theorem 2. Given the CFG (N,E) and the set Var of program variables, the worst-case time
complexity of Algorithm 4 is O(KN3V +KN2V2).

Proof. First, we examine the worst-case time complexity of the forall loop at line 6.

• The createGraph procedure at line 7 generates the graph (Nµ, Eµ) according to Definition 3.
It requires examining at most Nµ number of µ sets each containing at most K elements to
construct Nµ nodes and Eµ edges. Thus, the worst-case time complexity of the createGraph
procedure is O(Nµ + Eµ) which is equivalent to O(KNµ) since Eµ ≤ KNµ (Lemma 8).

• The worst-case time complexity of constructing the C0 set at line 8 is O(NµV), and the
forall loop at line 9 and the forall loop at line 12 each are O(Nµ).

• Consider the while loop which spans between lines 14 and 18 in Algorithm 4. The FlowC
procedure at line 15 and the computeNodesφ procedure at line 17 apply Algorithm 2 and
Algorithm 3 having the worst-case time complexity O(|C|KNµ) and O(KNµ) respectively
(Lemma 9 and 10). The complexity of the forall loop at line 16 is O(Nµ) since this loop
iterates at most |C| ≤ Nµ times containing an instruction that can be executed in constant
time. The union operation at line 18 will require at most Nµ operations since the size of the
C set obtained from Algorithm 3 cannot include more than Nµ elements. So, O(|C|KNµ) is
the dominating cost in each iteration of this loop.

The C set obtained from Algorithm 3 includes all nodes mλ ∈ Nµ such that completed(mλ) =
false and completed(mλ) is set to true afterwards. Thus, if C1 and C2 are two C sets in
two iterations of this loop, then C1 ∩ C2 = ∅. Suppose this loop iterates L times generating
the sequence of C sets C1, . . . , CL such that CL = ∅ and C0 is the initial C set. Thus,⋃

0≤i≤L Ci ⊆ Nµ and Ci ∩ Cj = ∅ for all 1 ≤ i 6= j ≤ L. Thus, we can express the worst-case
time complexity of the while loop as O(|C0|KNµ + . . .+ |CL−1|KNµ) which is equivalent to
O(KNµ

2) since |C0|+ . . .+ |CL−1| ≤ Nµ.

• The forall loop at line 19 will execute Nµ times. In each iteration of this loop, the
reConstructΣ procedure in Algorithm 5 is called. In Algorithm 5, the forall loop at line 2
iterates at most K times since the predecessors of any node nλ ∈ Nµ is obtained from the
µ(n, x) set in Definition 3 which can contain at most K elements. The conditions in the if

instruction at line 3 checks if n′ is a CD or not. All operations in the if block at lines 3-4

22

benchmarks App. area KLOC nCFG nVars #Proc
1 544.nab r Molecular dynamics 24 104080 36920 6540
2 557.xz r data compression 33 20400 3450 3620
3 505.perlbench r Perl interpreter 362 636650 126220 18158
4 502.gcc r GNU C compiler 1304 3666660 762610 178270
5 505.mcf r Route planning 3 8240 2940 400
6 525.x264 r Video compression 96 149130 33740 14490
7 538.imagick r Image manipulation 259 309310 101720 25860

Table 2: SPEC CPU2017 [7] benchmarks containing C code for a diverse range of applications

can be performed in constant time except checking the inclusion operation x ∈ def (n) which
will take at most V operations.

Since reConstructΣ procedure is called after obtaining an empty set CL from Algorithm 3
and either completed(mλ) = true or |Σ(mλ)| ≤ 1 for any mλ ∈ Nµ according to Lemma 6, if
mλ is not a CD, then we must have |Σ(mλ)| ≤ 1. Thus, |Σ(n′λ)| ≤ 1 in the else block at line
6 and hence line 6 can be performed in constant time. Thus, the worst-case time complexity
of the reConstructΣ procedure is O(KV) and the worst-case time complexity of the forall

loop at line 19 is O(KNµV).

Thus, O(KNµ
2 + KNµV) is the dominating worst-case time complexity of each iteration of the

forall loop at line 6. This loop iterates at most the number of join nodes in the CFG (N,E).
Moreover Nµ ≤ N. Thus, the worst-case time complexity of this loop is O(KN3 + KN2V). This
is the dominating cost of the forall loop at line 3 which iterates V times. Thus, the worst-case
time complexity of the forall loop at line 3 is O(KN3V + KN2V2). Since the worst-case time
complexity of Algorithm 1 at line 1 is O(KNV) and the worst-case cost of the forall loop at line
2 can be O(NV), O(KN3V +KN2V2) is the worst-case time complexity of Algorithm 4.

6. Experimental Evaluation

We implemented both ours and the DF-based φ-placement approach of Cytron et al. [1] in the
Clang/LLVM compiler framework [8]. We performed the experiments on an Intel(R) Core(TM)
i7-7567U CPU with 3.50GHz leveraging a number of SPEC CPU2017 [7] benchmarks consisting
of approximately 2081 KLOC. SPEC is a set of industry-standardized, CPU intensive suites for
measuring and comparing, among others, compute intensive performance and compilers. Table 2
shows the seven benchmarks selected from the SPEC CPU2017 [7], which are written in C code.
nCFG, nVars, and #Proc indicate the number of basic blocks in the CFG representation of the C
code, program variables, and procedures in the respective benchmarks, respectively.

Note that we could not analyze some source files as Clang excluded the code in the source files
or failed to parse them. If the path of some headers included in a source file could not be resolved,
Clang failed to parse the source file. Also, Clang excluded the code in a source file when the code was
under macros like ifdef and the Clang preprocessor had no definitions of these macros. Thereby,
we excluded these files from our analysis. We analyzed each procedure separately. The number
of program variables reported in the nVar column of Table 2 is the total number of variables of
all analyzed procedures in the respective benchmark. Thus, global variables that may be used in
multiple procedures are accounted multiple times in the nVar column.

23

benchmarks φRD φDF φRDE φDFE %φ-sup %φ-supE
1 544.nab r 26960 44600 2400 7400 65.43 51.47
2 557.xz r 820 1300 150 320 58.53 46.27
3 505.perlbench r 124210 220340 19370 46830 77.39 65.50
4 502.gcc r 430910 807190 65530 191290 87.32 68.56
5 505.mcf r 3090 4730 250 710 53.07 41.55
6 525.x264 r 23750 40030 3050 7500 68.55 57.15
7 538.imagick r 38320 67750 10730 31590 76.80 31.06
8 (Average) 69.59 51.65

Table 3: Comparing the φ-functions generated by our φ-placement approach (Algorithm 4) and the approach of
Cytron et al. [1]

benchmarks P2 P5 P5M %P2 %P5 %P5M

1 544.nab r 3594 2279 667 54.95 34.85 10.20
2 557.xz r 3365 242 13 92.96 6.69 0.36
3 505.perlbench r 9469 5211 3478 52.15 28.70 19.15
4 502.gcc r 116257 45567 16446 65.21 25.56 9.23
5 505.mcf r 143 183 74 35.75 45.75 18.5
6 525.x264 r 10911 2617 962 75.30 18.06 6.64
7 538.imagick r 18583 5958 1319 71.86 23.04 5.10
8 (Average) 65.63 25.09 9.28

Table 4: Comparing execution time of our approach and the approach of Cytron et al.

We compare the number of φ-functions generated by our approach (Algorithm 4) and the ap-
proach of Cytron et al., in Table 3. The symbols φRD and φDF in Table 3 indicate the total
number of φ-functions generated by our RD-based approach and the DF-based approach of Cytron
et al. in the respective benchmarks. Moreover, φRDE and φDFE in the table indicate the number
of φ-functions generated at the exit node of the CFG. Local variables at the exit node are not
live variables and hence we can remove φ functions generated at this node. If we assume that all
program variables are defined at the beginning (i.e. def (entry) is the set of all program variables of
the analyzed procedure), then the DF-based approach and ours generate exactly the same number
of φ-functions. However, our RD-based approach considers that only global variables and formal
parameters are defined at the entry node of the CFG.

As shown in Table 3, φDF is significantly higher than φRD. Since our approach generates φ-
functions based on witnessing RDs, our results on generating φ-functions are more precise. In
%φ-sup and %φ-supE columns in Table 3, we report on the number of superfluous φ-functions in
percentage as generated by the DF-based approach compared to our RD-based approach due to the
assumption that all program variable definitions are at the entry node of the CFG. We calculate
%φ-sup and %φ-supE as follows:

φ-sup = (φDFφRD
− 1) · 100

φ-supE = ((φDF−φDFE)
φRD−φRDE − 1) · 100

As it can be seen in Table 3 and Figure 6(a), the DF-based approach generates more than
50% superfluous φ-functions in all benchmarks, up to 87.32% and on average 69.59% superfluous

24

φ-functions when comparing the results with our RD-based approach. If we remove all φ-functions
from the exit node of the CFG, then the DF-based approach generates on average 51.65% and up
to 68.56% superfluous φ-functions.

Since we are computing more information to be precise in generating φ-functions, our approach
is expected to be computationally more expensive than DF-based approaches. In Table 4, we
compare the average execution time of our approach and the approach of Cytron et al. [1]. In order
to make such a comparison, we calculate the mean time of 10 executions of the approaches. P2,
P5, and P5M columns indicate the number of analyzed procedures where the execution time of our
RD-based approach is at most two times, more than two times to at most five times, and more than
five times than the DF-based approach respectively. We calculate the percentage of procedures
that could be analyzed by at most i times by the RD-based approach compared to the DF-based
approach in the %Pi column for any i ∈ {2, 5, 5M} where 5M means “more than 5”. We calculate
%Pi = Pi

P · 100, where P is the total number of procedures in the respective benchmarks provided
in the #Proc column in Table 2. As Table 4 and Figure 6(b) indicate, our approach could finish
computing φ-functions for:

• 65.63% procedures on an average and up to 92.96% procedures with the execution time within
twice the execution time of the DF-based approach;

• 25.09% procedures on an average and up to 45.75% procedures with the execution time more
than twice and within five times the execution time of the DF-based approach;

• 9.28% procedures on an average and up to 19.15% procedures with the execution time more
than five times the execution time of the DF-based approach.

In Table 5 we closely inspect the analysis results obtained from the DF-based and RD-based
approaches on some of the source files from the 505.perlbench r benchmark. T indicates the exe-
cution time of 30 executions of the analyses in seconds. T1 column indicates the execution time of
Algorithm 1, TIter column indicates the average execution time of Algorithm 4 for iterative flow
analysis, which excludes the execution time of Algorithm 1, TRD is the sum of T1 and TIter, which
is the total execution time of our RD-based approach, and TDF indicates the execution time of the
DF-based approach. As it can be seen in Figure 7 (a), (b), and in the rightmost column in Table 5,
the DF-based approach generates up to 169% and on an average 74% superfluous φ-functions when
comparing the results with our RD-based approach from the selected source files of 505.perlbench r
benchmark listed in Table 5 due to the limiting assumption that all program variables are defined
at the beginning. This average result (i.e. 74% superfluous φ-functions) is within the range of the
superfluous φ-functions generated by the DF-based approach compared to the RD-based approach
in our benchmarks, as shown in the %φ-sup column in Table 3. The peak number (i.e. 169%
superfluous φ-functions) on the individual source code in the 505.perlbench benchmark is also not
uncommon in the separate analysis of individual source code in other benchmarks.

Regarding the execution time, the DF-based approach performs better than ours. As can be
seen from the TRD and TDF columns, there is no noticeable execution time differences between
the two approaches in most cases. However, there exist few cases, namely pp pack.c, regcomp.c,
toke.c, regexec.c (more particularly, some functions in these source codes), that take considerably
more time for our RD-based approach. The shape of the execution time graphs in Figure 8(a)
and 8(b) reveals that this is due to the iterative flow analysis in Algorithm 4. Since Algorithm 1
visits each edge exactly once per-variable, it is efficient in practice, as well as Algorithm 4, except
some exceptional cases. Evidently, our approach produces significantly fewer φ-functions and also

25

65,43
58,54

77,39

87,32

53,07

68,55

76,80

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Percentage of superfluous φ functions generated by DF-based
approach

%φ-sup %φ-supE %φ-sup (Average) %φ-supE (Average)

(a)

54,95

92,96

52,15

65,21

35,75

75,30
71,86

34,85

6,69

28,70
25,56

45,75

18,06
23,04

10,20

0,36

19,15

9,23

18,50

6,64 5,10

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

EXECUTION TIME FOR PERCENTAGE OF PROCEDURES

%P2 %P5 %P5M %P2 (Average) %P5 (Average) %P5M (Average)

(b)

Figure 6: (a) Percentage of superfluous φ-functions computed by DF-based approach in comparison with our RD-
based approach in all benchmarks, (b) Execution time of RD-based approach for percentage of procedures with
respect to DF-based approach. Numbers 1-7 in the horizontal axis indicate the benchmarks in Table 3

26

Code nCFG nVars T1 TIter TRD TDF φRD φDF %φ-sup
1 scope.c 669 241 0.078 0.088 0.166 0.034 114 182 59.65
2 Opcode.c 372 236 0.013 0.021 0.035 0.024 77 180 133.77
3 pp sort.c 612 228 0.053 0.107 0.160 0.037 278 483 73.74
4 vutil.c 621 89 0.030 0.058 0.088 0.036 152 219 44.08
5 perly.c 454 36 0.818 0.112 0.931 0.028 113 130 15.04
6 pad.c 689 236 0.045 0.083 0.128 0.040 177 341 92.66
7 util.c 1426 402 0.043 0.053 0.097 0.070 202 370 83.17
8 pp sys.c 2212 575 0.094 0.155 0.249 0.118 310 607 95.81
9 doop.c 781 189 0.052 0.116 0.168 0.049 245 413 68.57
10 pp.c 5470 1048 0.283 0.689 0.972 0.326 835 1500 79.64
11 numeric.c 737 125 0.035 0.048 0.084 0.041 168 203 20.83
12 universal.c 696 284 0.022 0.036 0.058 0.039 79 152 92.41
13 pp hot.c 2623 456 0.181 0.511 0.692 0.165 500 846 69.20
14 utf8.c 2018 444 0.122 0.262 0.384 0.126 427 708 65.81
15 op.c 6793 1303 0.643 1.479 2.122 0.401 1156 2268 96.19
16 pp pack.c 2707 270 0.709 7.591 8.300 0.191 956 1442 44.78
17 hv.c 1388 416 0.090 0.202 0.292 0.075 284 566 99.30
18 pp ctl.c 3100 748 0.274 0.559 0.834 0.202 629 1113 76.95
19 perl.c 1385 673 0.167 0.383 0.550 0.086 522 679 33.08
20 doio.c 1018 223 0.084 0.153 0.238 0.061 173 299 72.83
21 sv.c 5927 1147 0.606 2.737 3.344 0.381 1419 2330 64.20
22 mg.c 1623 393 0.169 0.146 0.315 0.091 219 459 100.44
23 mro core.c 891 152 0.067 0.248 0.316 0.053 188 393 109.04
24 gv.c 2500 477 0.231 0.799 1.031 0.248 378 730 93.12
25 regcomp.c 8633 1094 1.677 25.396 27.073 2.792 2184 3562 63.10
26 toke.c 5922 757 5.525 27.759 33.284 0.477 1574 2810 78.53
27 regexec.c 4959 445 1.977 11.427 13.405 0.494 1307 2096 60.37
28 dump.c 1482 274 0.178 1.347 1.525 0.110 176 474 169.32

Table 5: Execution time and number of φ-functions generated by our approach and the approach of Cytron et al.

27

0

1 000

2 000

3 000

4 000

5 000

6 000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

φ-RD φ-DF

(a)

59,65

133,77

73,74

44,08

15,04

92,66
83,17

95,81

68,57

79,64

20,83

92,41

69,2 65,81

96,19

44,78

99,3

76,95

33,08

72,83
64,2

100,44
109,04

93,12

63,1

78,53

60,37

169,32

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

(b)

Figure 7: Comparing the results in Table 5: (a) the number of generated φ-functions by DF and RD-based approaches,
and (b) percentage of superfluous φ functions generated by the DF-based approach in comparison with the RD-based
approach. Numbers in the horizontal axis indicate the source code listed in Table 5

28

(a)

(b)

Figure 8: Comparing the results on execution time in Table 5: (a) execution times by the DF-based and RD-based
SSA construction approaches, and (b) execution times of Algorithm 1 (i.e. TAlg.1) versus Algorithm 4-Algorithm 1
(i.e. TAlg.2). Numbers in the horizontal axis indicate the source code listed in Table 5

29

generates RD information that can reduce the lookup time of reaching variable definitions during
the renaming phase of the SSA construction.

7. Related Work

The first approach to generate the set of nodes that require pseudo assignments, or φ-functions,
dates back to the work of Shapiro and Saint [9]. Subsequent contributions include the work of
(i) Reif and Tarjan [10] providing a complex φ-placement algorithm in a bottom-up walk of the
dominator tree, and (ii) Rosen et al. [11] generating SSA form for reducible programs. However,
Cytron et al. [1] presented the first practically efficient algorithm based on computing dominance
frontiers to generate the SSA intermediate representation of programs. This algorithm behaves
linearly in practice in most typical cases that became popular and widely used afterwards. Since
then, computing dominance frontiers has become the most common approach to compute the join
sets in SSA construction algorithms. Even though the algorithm of Cytron et al. [1] is practically
efficient, it has the nonlinear computational complexity since the size of the dominance frontiers
sets can have quadratic growth in terms of the size of the CFG. Thus, myriad efforts were given to
improve the theoretical complexity of dominance frontiers based φ placement algorithms.

Algorithms having linear or almost linear complexity for φ-placements in the size of the CFG
have been proposed, but are practically not as efficient as the original classic algorithm of Cytron
et al. The theoretical complexity of these algorithms is expressed per variable in the program code;
this requires repeated application of these algorithms for multiple variables and thus performs
many redundant computations that lead to reduced efficiency. Sreedhar and Gao [12] proposed an
algorithm that can construct DF sets on-the-fly by using so-called DJ graphs and reported a linear
time behavior based-on complexity analysis and observations on some practical applications. They
claimed that it outperformed the one of Cytron et al. by factors of 5 to 10 on their experimental
benchmarks. Bilardi and Pingali [13] presented a systematic study of φ-placement algorithms by
using the merge relation on CFG nodes and derived all known properties of the SSA form. Their
framework led them to present both known and new algorithms for φ-placement and the asymptotic
complexity of the new algorithms match the known best algorithms in the literature. By using their
framework, they evaluated the algorithm of Sreedhar and Gao and discovered that this algorithm
is not competitive with the algorithm of Cytron et al. Choi et al. [14] presented an approach to
compute a variation of SSA program called pruned SSA form that removed dead φ-functions. Their
approach needs prior computation of the dominator tree and the dominance frontiers. Briggs et
al. [15] provided improvements of SSA construction algorithms presented by Cytron et al. in which
they computed semi-pruned SSA, a smaller SSA form than the one computed by Cytron et al.
Even though the semi-pruned SSA is smaller than the minimal SSA computed by Cytron et al.,
it is still based on computing the dominance frontier. All these methods are based on computing
dominance frontiers that have the implicit assumption that all program variables are defined at the
beginning of the program that leads them to produces superfluous φ-functions. On the other hand,
our RD-based φ-placement algorithm can freely choose the set of program variables defined at the
beginning, and thus able to produce more accurate φ-functions.

There exists a number of simple SSA construction algorithms that work directly on the abstract
syntax tree (AST) representation of the programs. Brandis and Mössenböck [16] provided a single-
pass analysis of structured programs to construct SSA form that does not require constructing the
dominator tree or dominance frontier relation. Click and Paleczny [17, 18] generated φ-functions
during generating graph-based intermediate program representation, which is neither a pruned nor

30

a minimal SSA form [19]. Aycock and Horspool’s [20] SSA construction algorithm produces minimal
SSA form for reducible programs. Braun et al. [19] presented a simple SSA construction algorithm
from the AST representation of the program that neither computes dominator trees nor dominance
frontiers. However, the authors reported that the number of generated SSA instructions produced
by their methods is similar to what Cytron et al.’s method computed when implemented in LLVM.

Our SSA construction approach which only deals with scalar variables is orthogonal to the
practical methods modeling aliasing, non-scalar variables such as structures or arrays, and indirect
memory operations in the SSA form [21, 22, 23].

8. Conclusion and Future work

Most SSA construction algorithms are based on computing dominance frontiers, which is very
efficient for reducible programs. However, the correctness and precision condition (i.e., DF+(S) =
J+(S)) of any DF-based method depends on the limiting assumption that all program variables
are defined at the beginning (i.e., S contains the entry node), which is not always the case for
local variables. To understand the impact of this assumption, we have developed a novel RD-based
φ-placement algorithm that generates the optimal number of φ-functions without considering the
limiting assumption and is fairly efficient in most cases. We assume that all global variables and
formal parameters are defined at the beginning of the program. Our experimental evaluation reveals
that the reference DF-based approach generates (i) up to 87% and on average 69% superfluous φ-
functions on all benchmarks, and (ii) up to 169% and on an average 74% superfluous φ-functions
on an individual benchmark when comparing the results with our RD-based method. Our RD-
based φ-placement algorithm can be seen as a reference method computing an optimal number
of φ-functions. Future work includes improving the theoretical complexity as well as performing
practical optimizations of the RD-based method in generating different kinds of SSA programs.

Acknowledgment

This research is supported by the Knowledge Foundation through the MOMENTUM and the
HERO projects led by the Mälardalen University.

CRediT author statement

Abu Naser Masud: Conceptualization, Investigation, Methodology, Software, Data curation,
Writing- Original draft preparation. Visualization, Validation. Federico Ciccozzi: Writing -
Review and Editing, Project administration, Funding acquisition, Validation.

References

[1] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. K. Zadeck, Efficiently Computing
Static Single Assignment Form and the Control Dependence Graph, ACM Trans. Program.
Lang. Syst. 13 (4) (1991) pp. 451–490.

[2] M. Weiss, The Transitive Closure of Control Dependence: The Iterated Join, ACM Lett.
Program. Lang. Syst. 1 (2) (1992) pp. 178–190.

31

[3] F. Nielson, H. R. Nielson, C. Hankin, Principles of Program Analysis, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1999.

[4] A. N. Masud, F. Ciccozzi, Towards constructing the SSA form using reaching definitions over
dominance frontiers, in: IEEE International Working Conference on Source Code Analysis and
Manipulation, 2019.

[5] M. S. Hecht, J. D. Ullman, Flow Graph Reducibility, in: Proceedings of the Fourth Annual
ACM Symposium on Theory of Computing, STOC ’72, ACM, New York, NY, USA, 1972, pp.
238–250.

[6] F. E. Allen, Control Flow Analysis, in: Proceedings of a Symposium on Compiler Optimization,
ACM, New York, NY, USA, 1970, pp. 1–19.

[7] J. Bucek, K.-D. Lange, J. v. Kistowski, SPEC CPU2017: Next-Generation Compute Bench-
mark, in: Companion of the 2018 ACM/SPEC International Conference on Performance En-
gineering, ICPE ’18, ACM, New York, NY, USA, 2018, pp. 41–42.

[8] C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation, in: Proceedings of the International Symposium on Code Generation and Op-
timization: Feedback-directed and Runtime Optimization, CGO ’04, IEEE Computer Society,
Washington, DC, USA, 2004.

[9] R. M. Shapiro, H. Saint, The representation of algorithms, Tech. Rep. Report CA-7002-1432,
Massachusetts Computer Associates (02 1970).

[10] J. H. Reif, Symbolic Program Analysis in Almost Linear Time, in: Proceedings of the 5th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’78,
ACM, New York, NY, USA, 1978, pp. 76–83.

[11] B. K. Rosen, M. N. Wegman, F. K. Zadeck, Global Value Numbers and Redundant Compu-
tations, in: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’88, ACM, New York, NY, USA, 1988, pp. 12–27.

[12] V. C. Sreedhar, G. R. Gao, A Linear Time Algorithm for Placing Φ-nodes, in: Proceedings
of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’95, ACM, New York, NY, USA, 1995, pp. 62–73.

[13] G. Bilardi, K. Pingali, Algorithms for Computing the Static Single Assignment Form, J. ACM
50 (3) (2003) pp. 375–425.

[14] J.-D. Choi, R. Cytron, J. Ferrante, Automatic Construction of Sparse Data Flow Evaluation
Graphs, in: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’91, ACM, New York, NY, USA, 1991, pp. 55–66.

[15] P. Briggs, K. D. Cooper, T. J. Harvey, L. T. Simpson, Practical Improvements to the Construc-
tion and Destruction of Static Single Assignment Form, Softw. Pract. Exper. 28 (8) (1998) pp.
859–881.

[16] M. M. Brandis, H. Mössenböck, Single-pass Generation of Static Single-assignment Form for
Structured Languages, ACM Trans. Program. Lang. Syst. 16 (6) (1994) pp. 1684–1698.

32

[17] C. Click, M. Paleczny, A Simple Graph-based Intermediate Representation, SIGPLAN Not.
30 (3) (1995) pp. 35–49.

[18] C. Click, M. Paleczny, A Simple Graph-based Intermediate Representation, in: Papers from
the 1995 ACM SIGPLAN Workshop on Intermediate Representations, IR ’95, ACM, New
York, NY, USA, 1995, pp. 35–49.

[19] M. Braun, S. Buchwald, S. Hack, R. Leißa, C. Mallon, A. Zwinkau, Simple and Efficient
Construction of Static Single Assignment Form, in: Proceedings of the 22Nd International
Conference on Compiler Construction, CC’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp.
102–122.

[20] J. Aycock, R. N. Horspool, Simple Generation of Static Single-Assignment Form, in: Proceed-
ings of the 9th International Conference on Compiler Construction, CC ’00, Springer-Verlag,
London, UK, 2000, pp. 110–124.

[21] D. Novillo, Memory SSA - A Unified Approach for Sparsely Representing Memory Operations,
in: Proceedings of the GCC Developers’ Summit, 2007.

[22] F. C. Chow, S. Chan, S.-M. Liu, R. Lo, M. Streich, Effective Representation of Aliases and
Indirect Memory Operations in SSA Form, in: Proceedings of the 6th International Conference
on Compiler Construction, CC ’96, Springer-Verlag, London, UK, 1996, pp. 253–267.

[23] Y. Sui, H. Yan, Z. Zheng, Y. Zhang, J. Xue, Parallel construction of interprocedural memory
SSA form, Journal of Systems and Software 146 (2018) pp. 186–195.

33

	Introduction
	Background and Terminology
	Precision loss of DF-based -placement methods
	SSA Construction Procedure
	Forward Dataflow Analysis
	Concretization of Abstract RDs
	Generating the Dependency Graph
	Flow Analysis of Concrete Definitions
	Necessary and Sufficient Conditions for Detecting Nodes
	Iterative Flow Analysis

	Correctness and Computational Complexity
	Correctness of Computing Nodes
	Computational Complexity

	Experimental Evaluation
	Related Work
	Conclusion and Future work

