
Noname manuscript No.
(will be inserted by the editor)

Specification and Automated Verification of Atomic Concurrent
Real-Time Transactions: Extended Report

Simin Cai · Barbara Gallina · Dag Nyström · Cristina Seceleanu

the date of receipt and acceptance should be inserted later

Abstract Many DataBase Management Systems (DBMS)
need to ensure atomicity and isolation of transactions for
logical data consistency, as well as to guarantee temporal
correctness of the executed transactions. Since the mecha-
nisms for atomicity and isolation may lead to breaching tem-
poral correctness, trade-offs between these properties are of-
ten necessary during the DBMS design. To be able to ad-
dress this concern, we have previously proposed the pattern-
based UPPCART framework, which models the transactions
and the DBMS mechanisms as timed automata, and verifies
the trade-offs with provable guarantee. However, the manual
construction of UPPCART models can require considerable
effort and is prone to errors. In this paper, we advance the
formal analysis of atomic concurrent real-time transactions
with tool-automated construction of UPPCART models. The
latter are generated automatically from our previously pro-
posed UTRAN specifications, which are high-level UML-
based specifications familiar to designers. To achieve this,
we first propose formal definitions for the modeling patterns
in UPPCART, as well as for the pattern-based construction
of DBMS models, respectively. Based on this, we estab-

Simin Cai�
School of Innovation, Design and Engineering, Mälardalen University,
Västerås, Sweden
E-mail: simin.cai@mdh.se

Barbara Gallina
School of Innovation, Design and Engineering, Mälardalen University,
Västerås, Sweden
E-mail: barbara.gallina@mdh.se

Dag Nyström
School of Innovation, Design and Engineering, Mälardalen University,
Västerås, Sweden
E-mail: dag.nystrom@mdh.se

Cristina Seceleanu
School of Innovation, Design and Engineering, Mälardalen University,
Västerås, Sweden
E-mail: cristina.seceleanu@mdh.se

lish a translational semantics from UTRAN specifications to
UPPCART models, and develop a tool that implements the
automated transformation. We also extend the expressive-
ness of UTRAN and UPPCART, to incorporate transaction
sequences and their timing properties. We demonstrate the
specification in UTRAN, automated transformation to UP-
PCART, and verification of the traded-off properties, via an
industrial use case.

Keywords Transaction, Atomicity, Isolation, Temporal
Correctness, Unified Modeling Language, Model Checking

1 Introduction

Many modern computer systems rely on DataBase Manage-
ment Systems (DBMS) to maintain the logical consistency
of critical data, such as to ensure the correct balance of bank
accounts during a bank transfer. By employing a variety of
transaction management mechanisms, DBMS ensures logi-
cal data consistency under complex data management sce-
narios, such as transaction abortions, and concurrent access
of data. Among these mechanisms, Abort Recovery (AR)
restores the consistent state of a database when a transac-
tion is aborted due to errors, and thus achieves atomicity [1].
Rollback, for instance, is a common AR technique that un-
does all changes of an aborted transaction [1]. Concurrency
Control (CC) regulates concurrent access to data from dif-
ferent transactions, which prevents inconsistent data due to
interference, and ensures isolation [1]. A widely adopted CC
technique is to apply locks on the data such that arbitrary ac-
cess is prevented [2]. Together, AR and CC ensure the logi-
cal consistency of critical data that the applications rely on,
hence contributing to the dependability of the overall sys-
tems.

In addition to logical data consistency, another important
factor to the dependability of many database-centric systems

2 Simin Cai et al.

is the temporal correctness of transactions. Examples of sys-
tems where the temporal property is crucial include indus-
trial control systems [3] and automotive systems [4], whose
configurations and states can be stored in databases. Read-
ing an outdated sensor value or calibration parameter could
result in catastrophic consequences such as loss of lives. Fin-
ishing a transaction too late could cause the production pro-
cess fall behind schedule, and lead to economic loss. In such
real-time database systems, transactions must be temporally
correct, meaning that they must be scheduled to use fresh
data, and have to meet specified deadlines [5].

The assurance of atomicity and isolation, however, may
stand at odds with enforcing temporal correctness, because
CC may cause a transaction to be blocked for a long time,
and AR often introduces extra workload when performing
recovery. To make matters worse, some CC algorithms may
directly abort transactions, while the recovery may again
lock the data and block other transactions further, which
entails complex behaviors in time and could lead to dead-
line misses. Therefore, designing a Real-Time DBMS (RT-
DBMS) requires careful trade-offs in transaction manage-
ment [6], with respect to deciding on proper “variants” [7]
of atomicity and isolation, as well as selecting proper AR
and CC mechanisms. To achieve an appropriate trade-off, it
is helpful to specify all three properties explicitly, together
with their supporting AR, CC, and scheduling mechanisms,
in a high-level language if possible familiar to system de-
signers. To ensure the correctness of the trade-off, one should
be able to analyze such specifications, and reason about whether
the properties can be satisfied with the selected mechanisms.

This paper builds on top of our previous work [8], in
which we took an initial step to specify and verify atom-
icity, isolation and temporal correctness in a unified frame-
work. We proposed a UML (Unified Modeling Language)
[9] profile called UTRAN (UML for TRANsactions), for
the specification of transactions with atomicity, isolation and
temporal correctness properties. UTRAN models a trans-
action as an activity, and includes explicit modeling ele-
ments to express atomicity and isolation variants, as well
as the AR, CC and scheduling mechanisms. We also pro-
posed a formal framework, called UPPCART (UPPAAL for
Concurrent Atomic Real-time Transactions) [8], which mod-
els real-time transactions, together with the selected AR,
CC and scheduling mechanisms in the RTDBMS, as a net-
work of UPPAAL Timed Automata (TA) [10]. Constituents
of the UPPCART models are formulated as automata pat-
terns, such that the complexity of the models is tamed, and
reuse of repeatable modeling pieces is enabled. The trans-
actional properties can then be formalized, and verified rig-
orously using the state-of-art UPPAAL model checker [10].
The connection between UTRAN and UPPCART, however,
is still not formally defined, which prohibits automated trans-
formation for practices in complex systems. As a result, the

current construction of UPPCART models requires consid-
erable manual efforts and is prone to error.

In this paper, we contribute to the specification and ver-
ification of atomic concurrent real-time transactions in sev-
eral aspects. We extend UTRAN and UPPCART to sup-
port sequences of transactions, and their end-to-end dead-
lines. Many real-time system designs contain invocation de-
pendencies between transactions, that is, one transaction is
started only after the termination of another. For instance,
an update transaction executed by a sensor may trigger an-
other transaction that updates the speed of the vehicle. In
such cases, it is the end-to-end execution of the entire se-
quence that matters to the system validation. Therefore, we
extend our UTRAN and UPPCART so as to cater for the
specification and analysis of transaction sequences.

In order to help system designers to create consistent
UTRAN specifications, we enhance the UTRAN definition
with syntactic constraints, defined in Object Constraint Lan-
guage (OCL) [11]. Specification errors violating the OCL
constraints can be directly spotted by common UML edi-
tors, such as Eclipse Papyrus 1 and IBM Rational Software
Architect (RSA) 2.

We bridge the gap between UTRAN and UPPCART in
this paper, such that automated transformation is facilitated.
To achieve this, we first propose formal definitions of UP-
PCART patterns and connectors, in terms of UPPAAL TA,
based on which we are able to define the pattern-based con-
struction for UPPCART models. This formalism enables us
to create a translational semantics that maps the syntactic
structures in UTRAN with the UPPCART patterns, which
provides UTRAN with a formal semantics relying on timed
automata. The translation process is implemented in our tool
U2Transformer [12], which transforms high-level UTRAN
specifications, into verifiable UPPCART models.

We also present an industrial use case to demonstrate
the specification, transformation, and verification of trans-
actions using the extended UTRAN and UPPCART. The
use case involves multiple construction vehicles working au-
tonomously in a quarry, with requirements on collision avoid-
ance and mission efficiency. To achieve this, we design a
two-layer collision avoidance system to moderate the behav-
iors of the vehicles. Among them, the global collision avoid-
ance layer is backed by an RTDBMS that stores the map
of the quarry, and prevent vehicles colliding into each other
via concurrency control. The local layer utilizes a local RT-
DBMS for ambient data that are used for obstacle avoidance
by individual vehicles. We use UTRAN to specify the trans-
action sequences and transactions in both layers, as well as
the properties to be ensured. We then transform these spec-
ifications into UPPCART models with U2Transformer, and
verify the correctness of our design.

1 https://www.eclipse.org/papyrus/
2 https://www.ibm.com/developerworks/downloads/r/architect

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 3

In brief, our contributions in this paper are listed as fol-
lows:

– extensions of UTRAN and UPPCART for transaction
sequences;

– OCL constraints for UTRAN;
– a formal definition of pattern-based construction for UP-

PCART;
– a translational semantics from UTRAN to UPPCART,

and tool-supported transformation based on this;
– a use case that demonstrates UTRAN, UPPCART, the

transformation, and the verification.

The remainder of the paper is organized as follows. In
Section 2, we present the preliminaries of the paper. In Sec-
tion 3, we recall and extend the UTRAN profile. Section
4 introduces the formal definition of pattern-based construc-
tion, as well as the extended UPPCART framework. We pro-
pose the translational semantics of UTRAN to UPPCART,
as well as our automated transformation, in Section 5, fol-
lowed by our use case in Section 6. We discuss the related
work in Section 7, after which we conclude the paper and
outline future work in Section 8.

2 Preliminaries

In this section, we present the preliminaries of this paper,
including the concepts of transactions, atomicity, isolation
and temporal correctness (Section 2.1), UML profiles (Sec-
tion 2.2), and UPPAAL timed automata (Section 2.3).

2.1 Real-Time Transactions

A DBMS models read and write operations of data as trans-
actions, and handles data consistency via transaction man-
agement. Traditionally, a transaction is a partially-ordered
set of logically-related operations that as a whole ensures
the ACID properties [1]: Atomicity (a transaction either runs
completely or makes no changes at all), Consistency (trans-
actions executed alone must ensure logical constraints), Iso-
lation (concurrent transactions do not interfere each other),
and Durability (committed changes are made permanent).
The set of operations is called a Work Unit (WU). The scope
of a transaction is usually defined by the following opera-
tions: begin (start a transaction), commit (terminate a trans-
action and make its changes permanent and visible), and
abort (terminate a transaction and recover from its changes).
We consider two types of aborts in a database system: Sys-
tem aborts are caused by system errors or data contentions
and thus are issued by the DBMS. User aborts are started
by clients to stop the transaction on the purpose of fulfilling
application semantics.

As complements to the classical transaction model with
full ACID assurance, a number of other transaction models
that define different variants of transaction properties have
been proposed, as well as the mechanisms to realize them
[7]. In this paper, we focus on the variants of atomicity, iso-
lation, and temporal correctness.

Atomicity Full atomicity achieves an “all-or-nothing” seman-
tics, in which “commit” means completing “all” changes in-
cluded in the transaction, while “abort” means that “noth-
ing” is changed at all. In this paper, we particularly empha-
size the recovery of transactions terminated by errors, and
focus on the variants of atomicity upon transaction abor-
tions.

We refer to the “nothing” semantics of full atomicity as
failure atomicity, which is achieved by rollback, a recovery
mechanism that restores database consistency by undoing
all changes made by the to-be-aborted transaction [1]. Let
us use wj

i to denote that Ti writes Dj . The sequence <w0
1 ,

w1
1> denotes that transaction T1 writes D0 and D1 in or-

der. If T1 gets aborted right after w1
1 , its rollback sequence

is <w1
1 , w0

1>. Due to the performance and functionality re-
strictions of failure atomicity, a number of relaxed atom-
icity variants as options have been proposed, which allow
changes to be partially undone, or recover inconsistency se-
mantically using compensating operations [7,13]. We con-
sider the following abort recovery mechanisms for relaxed
atomicity in this paper. Immediate compensation executes a
sequence of operations immediately upon abortion, in order
to update the database into a consistent state. For instance,
the compensation for the aforementioned aborted transac-
tion T1 may be <w2

1>, that is, to update D2 instead of roll-
back. Deferred compensation, in contrast to the immedi-
ate execution of compensation, executes the compensating
operations to restore consistency as a normal transaction,
scheduled with other transactions. In both variants, design-
ers can decide the operations flexibly depending on the ap-
plication semantics. An atomicity manager with the knowl-
edge of the atomicity variants then performs the designed
recovery at runtime.

Isolation Isolation variants have been proposed as various
levels [7,14], for instance, the Read Uncommitted, Read
Committed, Repeatable Read and Serializable levels in the
SQL-92 standard [15]. An isolation level is defined as the
property to preclude a particular set of phenomena, which
are interleaved transaction executions that can lead to incon-
sistent data. Let us use rji to denote that transaction Ti reads
data Dj . The following sequence <r00 , w0

1 , w1
1 , r10> repre-

sents the execution “T0 reads D0, T1 writes D0, T1 writes
D1, T0 reads D1”. In this execution, T0 reads an old version
of D0 before the change of T1, but a new version of D1 af-
ter the change of T1. Considering that D0 and D1 are a pair

4 Simin Cai et al.

of configuration parameters that are required to always be
updated together, the values read by T0 become inconsistent
in this sequence, which may break the safety requirements.
Therefore, the example execution is considered as an iso-
lation phenomenon, and should be avoided by the required
isolation level, such as the Serializable level [15]. By ad-
justing the precluded phenomena, isolation levels provide a
flexible way to relax isolation according to the particular se-
mantics.

DBMS ensures isolation by applying concurrency con-
trol on the access of data, which regulates the interleaved
transaction executions according to a selected CC algorithm
[2]. We consider a family of commonly applied CC algo-
rithms in this paper, called Pessimistic Concurrency Con-
trol (PCC) algorithms[2]. PCC exploits locking techniques
to prevent unwanted interleavings. Depending on the algo-
rithm, a transaction needs to acquire a specific type of lock
at a certain time point before accessing the data, and re-
leases the lock at a certain time point after the usage of
the data. Upon receiving requests, the CC manager decides
which transactions should obtain the lock, wait for the lock,
or even be aborted, according to the resolution policy of the
selected algorithm. In case a transaction gets aborted by CC,
the atomicity manager may perform the abort and recovery
of the transaction.

Temporal Correctness In a real-time database system, tem-
poral correctness consists of transaction timeliness, and tem-
poral data consistency [5]. Timeliness means that transac-
tions should meet their deadlines [5]. Temporal data consis-
tency includes two aspects. Absolute validity requires that
data read by a transaction must not be older than a specified
validity interval. Relative validity requires that, if a trans-
action reads a group of data, these data must be generated
within a specified interval so that the results are temporally
correct. RTDBMS may employ various scheduling policies
to schedule the transaction operations, in order to achieve
better temporal correctness. Commonly applied scheduling
policies include First-In-First-Out (FIFO), round-robin, or
policies based on the priorities of the transactions [2]. In
addition to deadlines and validity intervals, other important
time-related information includes execution times of the op-
erations, and the arrival patterns of transactions (whether a
transaction is started with a period, with a bounded inter-
arrival interval, or randomly) [5].

Since temporal correctness is often crucial to the safety
of the system, full ACID assurance often needs to be re-
laxed such that the former can be guaranteed [6]. For in-
stance, relaxed atomicity with compensation can be adopted,
instead of failure atomicity with rollback [16]. Real-time
CC algorithms often incorporate time-related information of
the transactions to achieve better timeliness. For instance, a
widely applied real-time PCC, Two Phase locking - High

Priority (2PL-HP) [17], takes priorities and abortion into
consideration of its resolution policy. In this algorithm, a
transaction acquires a readlock (writelock) on data before
it performs a read (write) operation, and releases all locks
during commitment. A CC conflict occurs when two trans-
actions try to writelock the same data. In this situation, the
transaction with higher priority will be granted with the lock,
while the transaction with lower priority will be aborted by
the RTDBMS. As a result, transactions with higher priorities
are more likely to meet their deadlines.

2.2 UML Profiles and MARTE

UML is one of the most widely accepted modeling language
in software development, and has been extended for various
application domains [9]. A common way to extend UML
is through profiles. A profile defines a package of stereo-
types, which are domain-specific concepts that extend exist-
ing UML metaclasses, as well as dependencies between the
defined stereotypes. Properties that are specific to these con-
cepts are defined as tagged values associated to the stereo-
types. When a stereotype is applied to a UML modeling el-
ement, the instance of this element becomes an instance of
the domain-specific concept represented by the stereotype,
and extended with its properties.

In addition to develop specification languages for par-
ticular domains, profiles may also be adopted to add sup-
plementary information for the purpose of analysis or code
generation. MARTE (Modeling and Analysis of Real-Time
Embedded systems) [18] is a profile that defines the basic
concepts to support the modeling of real-time and embed-
ded applications, as well as to provide time-related informa-
tion for performance and schedulability analysis. As timing
information is essential for our analysis and thus needs to be
supported in the specifications, we reuse the relevant con-
cepts from MARTE in this paper. The following MARTE
concepts are reused: (i) MARTE::NFP_Duration, a data type
for time intervals; (ii) MARTE::ArrivalPattern, a data type
for arrival patterns, such as periodic, sporadic and aperiodic
patterns.

2.3 UPPAAL Timed Automata and UPPAAL Model
Checker

An UPPAAL Timed Automaton (TA)[10] is defined as a tu-
ple A ::= (L, l0, X, V, I, Act, E), in which:

– L is a finite set of locations,
– l0 is the initial location,
– X is a finite set of clock variables,
– V is a finite set of discrete variables,
– I : L → B(X) assigns invariants to locations, where
B(X) denotes the set of clock constraints,

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 5

C

cl:=0,a:=0

ch!

cl<=3

cl>=1

cl:=0

L1 L2

L3

inc(a)

||

(a) A1

U

ch?
a<5

L4

L5

(b) A2

Fig. 1 A network of timed automata

– Act is a set of synchronization channels,
– E ⊂ L×B(X,V)×Act×R×L, where B(X,V) de-

notes the set of guards, R denotes the set of assignments.

The state of a TA consists of the values of its clock vari-
ables, together with the current location. Multiple TA can
form a Network of Timed Automata (NTA) via parallel com-
position (“||”) [19], by which individual TA are allowed to
carry out internal actions (i.e., interleaving), while pairs of
TA can perform hand-shake synchronization via channels
(see below). The state of an NTA then consists of the val-
ues of all variables in the NTA, together with the currently
visited locations of each TA, respectively.

As an example, Fig. 1 shows an NTA modeling a simple
concurrent real-time system, in which automaton A1 spo-
radically increments a variable a and synchronizes with au-
tomaton A2. A1 consists of a set of locations (L1, L2 and
L3), and edges connecting them. A clock variable cl is de-
fined in A1 to measure the elapse of time, and progresses
continuously at rate 1. A discrete variable a is defined glob-
ally, and shared by A1 and A2. At each location, an automa-
ton may stay at the location, as long as the invariant, which
is a conjunction of clock constraints associated with the lo-
cation, is satisfied. Alternatively and non-deterministically,
the automaton may take a transition along an edge, if the
guard, which is a conjunction of constraints on discrete or
clock variables associated with the edge, is satisfied. In Fig.
1, A1 may delay in L2 as long as cl ≤ 3, or follow the
edge to L3 when cl ≥ 1. Each edge may have an associated
action, which is the synchronization with other automata
via a channel. Binary channels are used to synchronize one
sender (indicated by a mark “!”) with a single receiver (in-
dicated by a mark “?”). In Fig.1, A1 sends a message to A2
via binary channel ch, while taking the edge from L2 to L3.
The synchronization can take place only if both the sender
and the receiver are ready to traverse the edge. A broadcast
channel is used to pass messages between one sender and an
arbitrary number of receivers. When using broadcast chan-
nels, the sender does not block even if some of the receivers
are not ready. An edge may have an assignment, which re-
sets the clocks or updates discrete variables when the edge
is traversed. In UPPAAL TA, both guards and assignments
can be encoded as functions in a subset of the C language,
which brings high flexibility and expressiveness to model-

ing. In our example, when A1 moves from L2 to L3, a is
incremented using the function inc(a).

A location marked as “U” is an urgent location, meaning
that the automaton must leave the location without delay in
time. Another automaton may fire transitions as long as time
does not progress. A location marked as “C” is a committed
location, which indicates no delay in time, and immediate
transition. Another automaton may not fire any transitions,
unless it is also at a committed location.

The UPPAAL model checker can verify properties spec-
ified as UPPAAL queries, in UPPAAL’s property specifi-
cation language [10] that is a decidable subset of Compu-
tation Tree Logic (CTL) [20], possibly added with clock
constraints. For instance, the invariance property “A1 never
reaches location L3” can be specified as “A[]notA1.L3”,
in which “A” is a path quantifier and reads “for all paths”,
whereas “[]” is the “always” temporal operator and speci-
fies that (notA1.L3) is satisfied in all states of a path. If
an invariance property is not satisfied, the model checker
will provide a counterexample. The liveness property “If A1
reaches L2, it will eventually reach L3” can be specified,
using the “leads-to (→)” operator, as “A1.L2 → A1.L3”,
which is equivalent to “A[] (A1.L2 imply A <> A1.L3)”,
where “<>” is the “eventually” temporal operator and spec-
ifies that A1.L3 is satisfied in finite time in at least one state
of a path.

3 UTRAN

In this section, we recall the UTRAN profile firstly proposed
in our previous work [8], and present its extension for trans-
action sequences, as well as the OCL constraints for creat-
ing consistent UTRAN specifications. We first present the
domain model of real-time transactions in Section 3.1, after
which we introduce the UML profile diagram in Section 3.2,
including the OCL constraints.

3.1 Domain View

The domain model of real-time transactions is presented in
Fig. 2. A RTDBMS manages a set of transactions. A transac-
tion can be conceptually modeled as an activity in the UML
activity diagram, which consists of a set of partially-ordered
operations, represented as UML actions in the containing
activity. Two types of operations are considered explicitly in
a transaction: DBOperations and TMOperations. DBOpera-
tions directly perform read and write access to the data. Such
read and write operations, denoted as ReadOP and WriteOP
respectively, are atomic, whose worst-case execution times
are known a priori (assuming a given hardware platform).
A ReadOP may be assigned with an absolute validity inter-
val for the data it reads. TMOperations are the operations

6 Simin Cai et al.

0..1

<< enumeration >>
ARMechanism
<< enumeration >>
ARMechanism

Rollback
ImmediateCompensate
DeferredCompensate

RTDBMSScopeRTDBMSScope

ConcurrencyControl
Algorithm
ConcurrencyControl
Algorithm

LockingRuleLockingRule

LockTypeLockType

UnlockingRuleUnlockingRule

ResolutionPolicyResolutionPolicy

IsolationPhenomenonIsolationPhenomenon

0..*

AtomicitySpecificationAtomicitySpecification

-atomVariant:
AtomicityVariant

Compensati
on
Compensati
on

-relValidity: NFP_Duration

<< enumeration >>
IsolationLevel
<< enumeration >>
IsolationLevel

ReadUncommitted
ReadCommitted
RepeatableRead
Serializable
Customized

1..*

-schedPolicy:
SchedPolicy

<< enumeration >>
SchedPolicy
<< enumeration >>
SchedPolicy

FIFO
RoundRobin
Priority

IsolationSpecificationIsolationSpecification

-level: IsolationLevel

TransactionTransaction

-relDeadline: NFP_Duration

-priority: NFP_Int

ReadOpReadOp
WriteOpWriteOp

OperationOperation

CommitOpCommitOpBeginOpBeginOp AbortOpAbortOp

DBOperationDBOperation TMOperationTMOperation

-execTime:
NFP_Duration-execTime:

NFP_Duration

-execTime:
NFP_Duration

-execTime:
NFP_Duration

-execTime:
NFP_Duration

PrecedenceRelationPrecedenceRelation

predecpredec

UML::ActivityUML::Activity

-pattern: ArrivalPattern

DataDatareadread

writewrite

OperationPartialOrderOperationPartialOrder

MARTE_Library::
BasicNFP_Types:: ArrivalPattern
MARTE_Library::
BasicNFP_Types:: ArrivalPattern

-periodic: Periodic_Pattern
-aperiodic: Aperiodic_Pattern
-sporadic: Sporadic_Pattern
- ...

-max_delay:
NFP_Duration
-min_delay:
NFP_Duration

-id: Integer

UML::ActionUML::Action

successucces

-period: NFP_Duration

-id: Integer

1..*

0..1

<< enumeration >>
AtomicityVariant
<< enumeration >>
AtomicityVariant

FailureAtomicity
RelaxedAtomicity

AbortRecovery
Mechanism
AbortRecovery
Mechanism

-ar: ARMechanism

-cc: CCAlgorithm

<< enumeration >>
CCAlgorithm
<< enumeration >>
CCAlgorithm

2PL-HP
R2PL
...

TemporalCorrectness
Specification
TemporalCorrectness
Specification

-recoverTime: NFP_Duration

-absValidity:
NFP_Duration

0..1

-relValGroup: Integer[*]

Transaction
Sequence
Transaction
Sequence

-id: Integer

successucces

predecpredec

1..*

0..*

0..1

0..1

Fig. 2 Domain model of real-time transactions, extended from [8]. New concept marked with darker frame.

that begin, commit and abort transactions. The times for the
RTDBMS to execute such TMOperations are also known
a priori. A precedence relation describes the order of the
operations, as well as the maximal and minimal delays be-
tween the operations. Such delays may include, not only the
communication overhead, but also the response times of the
client computations that do not interact with the database.

A transaction may be assigned with a TemporalCorrect-
nessSpecification for time-related properties, including the
priority, the relative deadline, and the period (or minimum
inter-arrival time) of the transaction, if applicable. A trans-
action may also have a specified relative validity interval,
for the validity of a group of data read by the transaction,
and the arrival pattern of the transaction, such as periodic,
sporadic and aperiodic.

Atomicity and isolation of transactions are also included
in the domain model. Multiple transactions managed by the
same RTDBMS are related to an RTDBMSScope, which em-
ploys a scheduling policy, selected from FIFO, RoundRobin
and Priority-based. An IsolationSpecification is associated
to the RTDBMSScope, with an IsolationLevel indicating the
variant of isolation that should be provided for the set of
transactions. The IsolationSpecification is associated with a
set of IsolationPhenoma, which are OperationPartialOrders
that represent the illegal sequences of operations.

A ConcurrencyControlAlgorithm defines a set of lock
types to be applied in the lock-based concurrency control.
The rules for obtaining and releasing locks are specified
as LockingRule and UnlockingRule. A resolution policy de-
scribes the resolution of lock conflicts on the shared data.

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 7

<<Metaclass>>
Comment

<<Metaclass>>
Comment

<<Metaclass>>
Activity

<<Metaclass>>
Activity

<<Metaclass>>
Action

<<Metaclass>>
Action

tid: Integer

<<stereotype>>
Transaction

tid: Integer

<<stereotype>>
Transaction

pid: Integer

<<stereotype>>
IsolationPhenomenon

pid: Integer

<<stereotype>>
IsolationPhenomenon

<<stereotype>>
Compensation
<<stereotype>>
Compensation

tid: Integer

<<stereotype>>
Operation

tid: Integer

<<stereotype>>
Operation

<<Metaclass>>
ActivityEdge
<<Metaclass>>
ActivityEdge

max_delay:
MARTE::NFP_Duration
min_delay:
MARTE::NFP_Duration

<<stereotype>>
DelayedNext

max_delay:
MARTE::NFP_Duration
min_delay:
MARTE::NFP_Duration

<<stereotype>>
DelayedNext

execTime:
MARTE::NFP_Duration
did: Integer

<<stereotype>>
DBOperation

execTime:
MARTE::NFP_Duration
did: Integer

<<stereotype>>
DBOperation

<<stereotype>>
WriteOP

<<stereotype>>
WriteOP

execTime:
MARTE::NFP_Duration

<<stereotype>>
TMOperation

execTime:
MARTE::NFP_Duration

<<stereotype>>
TMOperation

<<stereotype>>
BeginOP

<<stereotype>>
BeginOP

<<stereotype>>
CommitOP

<<stereotype>>
CommitOP

<<stereotype>>
AbortOP

<<stereotype>>
AbortOP

<<Metaclass>>
NamedElement
<<Metaclass>>
NamedElement

transactions:
Integer[*]
Sched: SchedPolicy

<<stereotype>>
RTDBMSScope

transactions:
Integer[*]
Sched: SchedPolicy

<<stereotype>>
RTDBMSScope

isolationLevel:
IsolationLevel
disallowedPhenomena:
Integer[*]
cc: CCAlgorithm

<<stereotype>>
IsolationSpecification

isolationLevel:
IsolationLevel
disallowedPhenomena:
Integer[*]
cc: CCAlgorithm

<<stereotype>>
IsolationSpecification

relDeadline:
MARTE::NFP_Duration
priority: Integer
pattern: MARTE::ArrivalPattern
period: MARTE::NFP_Duration
relValidity: MARTE::NFP_Duration
relValGroup: Integer[*]

<<stereotype>>
TemporalCorrectnessSpecification

relDeadline:
MARTE::NFP_Duration
priority: Integer
pattern: MARTE::ArrivalPattern
period: MARTE::NFP_Duration
relValidity: MARTE::NFP_Duration
relValGroup: Integer[*]

<<stereotype>>
TemporalCorrectnessSpecification

atomVariant: AtomicityVariant
arMech: ARMechanism
recoverTime: MARTE::NFP_Duration
compID: Integer

<<stereotype>>
AtomicitySpecification

atomVariant: AtomicityVariant
arMech: ARMechanism
recoverTime: MARTE::NFP_Duration
compID: Integer

<<stereotype>>
AtomicitySpecification

<<Metaclass>>
Comment

<<Metaclass>>
Comment

ReadUncommitted
ReadCommitted
RepeatableRead
Serializable
Customized

<<Enumeration>>
IsolationLevel

ReadUncommitted
ReadCommitted
RepeatableRead
Serializable
Customized

<<Enumeration>>
IsolationLevel

Rollback
ImmediateCompensate
DeferredCompensate

<<Enumeration>>
ARMechanism

Rollback
ImmediateCompensate
DeferredCompensate

<<Enumeration>>
ARMechanism

R2PL
ShortReadlock
2PL-HP

<<Enumeration>>
CCAlgorithm

R2PL
ShortReadlock
2PL-HP

<<Enumeration>>
CCAlgorithm

FIFO
RoundRobin
Priority

<<Enumeration>>
SchedPolicy

FIFO
RoundRobin
Priority

<<Enumeration>>
SchedPolicy

absValidity:
MARTE::NFP_D
uration

<<stereotype>>
ReadOP

absValidity:
MARTE::NFP_D
uration

<<stereotype>>
ReadOP

FailureAtomicity
RelaxedAtomicity

<<Enumeration>>
AtomicityVariant

FailureAtomicity
RelaxedAtomicity

<<Enumeration>>
AtomicityVariant

<<Metaclass>>
StructuredActivityNode

<<Metaclass>>
StructuredActivityNode

transactions: Integer[*]

<<stereotype>>
TransactionSequence

transactions: Integer[*]

<<stereotype>>
TransactionSequence

Fig. 3 UTRAN profile for real-time transactions, extended from [8]. New structure marked with darker frame.

An AtomicitySpecification specifies the atomicity vari-
ant and the desired recovery time. An AtomicitySpecifica-
tion can be attached to a transaction, or to an abort opera-
tion. In the former case, the AtomicitySpecification specifies
the atomicity handling of system abortion by the RTDBMS;
while in the latter, it specifies the handling of user abor-
tion via abort operations. An AtomicitySpecification con-
tains an AtomicityVariant and its corresponding AbortRe-
coveryMechanism. An AtomicityVariant is an enumeration
of the supported atomicity variants, which includes Failure-
Atomicity and RelaxedAtomicity. An AbortRecoveryMecha-
nism can be selected from rollback, immediateCompensate,
and deferredCompensate. Without any AtomicitySpecifica-
tion specified, atomicity is totally relaxed, and the partially
changed data will not be recovered or compensated at all.

In this paper, we also consider transactions with invoca-
tion dependencies, modeled as a TransactionSequence. Its
time-related constraints can be specified in the associated
TemporalCorrectnessSpecification. A transaction in a Trans-
actionSequence can be started only if its prior has terminated
(committed or aborted).

3.2 Profile

This subsection describes our previous UTRAN profile [8],
as well as the extensions to model the TransactionSequence
in the extended domain model. The profile diagram is pre-
sented in Fig. 3, with the new structure marked with darker
frame.

In the existing UTRAN profile, the stereotype «Transac-
tion» extends the UML Activity metaclass, and is mapped to

the Transaction domain element. Each «Transaction» may
be associated with a «TemporalCorrectnessSpecification»,
and an «AtomicitySpecification», both extending the UML
Comment metaclass. A «TemporalCorrectnessSpecification»
contains values of deadline, priority, arrival pattern, period,
and relative validity of the transaction. An «AtomicitySpeci-
fication» specifies the selected AtomicityVariant and Abort-
RecoveryMechanism, as well as the recovery time, and the
reference to the compensation transaction, which is stereo-
typed with «Compensation» that inherits «Transaction».

Each action in a «Transaction» is a stereotyped «Opera-
tion». «DBOperation», «TMOperation» and «ClientOpera-
tion» map the DBOperation, TMOperation and ClientOper-
ation, respectively. A «DBOperation» contains tagged val-
ues that specify the execution time to this operation, and the
reference to the data it accesses. «ReadOP» and «WriteOP»
map the ReadOP and WriteOP, respectively, and both ex-
tend «DBOperation». A «TMOperation» is associated with
the execution time for the transaction management opera-
tion, which can be «BeginOP», «CommitOP», or «Abor-
tOP». The PrecedenceRelation in the domain view is mapped
by the stereotype «DelayedNext», which extends the UML
metaclass ActivityEdge with delays between operations, and
delays between sub-transactions.

The stereotype «RTDBMSScope» maps the RTDBMSS-
cope concept, which contains the transactions managed by
the RTDBMS. The stereotype also specifies the CC algo-
rithm and scheduling policy, selected from the enumerations
CCAlgorithm and SchedPolicy. The stereotype «Isolation-
Specification» maps IsolationSpecation in the domain view,
which specifies the isolation level, as well as the disallowed

8 Simin Cai et al.

phenomena explicitly. Each phenomenon is modeled as an
activity stereotyped as «IsolationPhenomenon», which con-
tains a sequence of actions stereotyped as «Operation».

The new UTRAN profile adds a «TransactionSequence»
that maps the TransactionSequence domain element, which
contains the id’s of the transactions in the sequence. The in-
vocation order and the delays between invocations are spec-
ified via «DelayedNext» associated to «Transaction».

Syntactic Constraints for UTRAN. We present a set of syn-
tactic constraints for correct specifications in UTRAN. These
constraints are formulated in the Object Constraint Language
(OCL) [11], as follows.

1. A «Transaction» must have one «BeginOP», one «Com-
mitOP», and at least one «DBOperation».
Context Transaction
inv: self.operations->select(DBOperation)->size()>=1
inv: self.operations->select(BeginOP)->size()=1
inv: self.operations->select(CommitOP)->size()=1

2. «BeginOP» marks the start of the transaction. «Commi-
tOP» and «AbortOP» mark the end of the transaction.
No «Operation» occurs before a «BeginOP», or after a
«CommitOP» or an «AbortOP».
Context Operation
def: precedingOPs() : Set(Action)=self.incoming.source
def: succeedingOPs() : Set(Action)=self.outgoing.target

inv: self->oclIsTypeOf(BeginOP) implies
(not self->closure(precedingOPs)->exits(Operation))

inv: (self->oclIsTypeOf(CommitOP) or
self->oclIsTypeOf(AbortOP)) implies
(not self->closure(succeedingOPs)->exits(Operation))

3. If ImmediateCompensate is selected as the AR, the com-
pensate transaction is executed by the DBMS with no
delays between its operations. Therefore, in this case,
the max_delay and min_delay values of every «Delayed-
Next» edge in the «Compensation» transaction are 0.
Context AtomicitySpecification
inv: (self.arMech=ARMechanism::ImmediateCompensate)

implies (self.compensation.delayednexts->
forall(max_delay=0 and min_delay=0))

4. Immediate compensation transactions are always exe-
cuted immediately by the DBMS after abortion. There-
fore, they do not have «TemporalCorrectnessSpecifica-
tion».
Context Compensation
inv: (self.atomspec.arMech=

ARMechanism::ImmediateCompensate)
implies (self.tcspec->size()=0)

5. For deferred compensation transactions, the only mean-
ingful value in its «TemporalCorrectnessSpecification»
is priority.
Context Compensation
inv: (self.atomspec.arMech=
ARMechanism::DeferredCompensate) implies
(self.tcspec.relDeadline=null and
self.tcspec.pattern=null and self.tcspec.period=null
and self.tcspec.relValidity=null and
self.tcspec.relValGroup=null)

6. Since cascade abortion introduces high unpredictability
and is hence not desired in real-time systems, we assume
that compensation transactions do not have user abort
operations, and do not get recovered after system abor-
tion. Therefore, a «Compensation» does not have «Abor-
tOp», «AtomicitySpecification», or «TemporalCorrect-
nessSpecification».
Context Compensation
inv: self.tcspec=null
inv: self.atomspec=null
inv: not (self.operations->exists(AbortOp))

7. The execTime and absValidity values of every «Opera-
tion» in the «IsolationPhenomenon» are set to 0.
Context IsolationPhenomenon
inv: self.operations->forall(execTime=0)
inv: self.operations->select(ReadOP)->

forall(absValidity=0)

8. The pattern and the period of the first «Transaction» in
a «TransactionSequence» is the same as the pattern and
the period of the «TransactionSequence», while these at-
tributes of the other «Transactions» are not applicable
(since they are started by the termination of their pre-
vious sub-transactions). If the «TransactionSequence»’s
priority is specified, all «Transactions» inherit this prior-
ity value. The sum of the relative deadlines of all «Trans-
actions» must be smaller than or equal to the the «Trans-
actionSequence»’s relative deadline.
Context TransactionSequence
inv: self.transactions->
first().tcspec.pattern=self.tcspec.pattern
inv: self.transactions->
first().tcspec.period=self.tcspec.period
inv: self.tcspec.priority<>null implies

(self.transactions->forall(tcspec.priority=
self.tcspec.priority))

inv: self.transactions->collect(tcspec.relDeadline)->
sum<=self.tcspec.relDeadline

9. For a periodic or sporadic «Transaction» or «Transac-
tionSequence», its period value should be no smaller
than its relative deadline.
Context TemporalCorrectnessSpecification
inv: (self.pattern=periodic or self.pattern=sporadic)

implies self.period>=self.relDeadline

4 UPPCART framework

In this section, we extend our UPPCART (UPPaal for Con-
current Atomic Real-time Transactions) framework, for pattern-
based formal modeling of real-time transactions with con-
currency control and abort recovery in UPPAAL TA.

Our UPPCART framework, firstly proposed in our pre-
vious work [8], models the transactions, together with the
CC algorithm and the AR mechanisms, as a network of UP-
PAAL TA. Denoted as N , the NTA of the modeled real-time
transactions is defined as follows:

N ::= W1 || ... ||Wn ||ACCManager ||AATManager

||O1 || ... ||Ok ||D1 || ... ||Dm, ||S1 || ... ||Sl,
(1)

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 9

where W1, ..., Wn are work unit automata of transac-
tions T1, ..., Tn, respectively. They also model the work
unit’s interaction with the transaction manager with respect
to concurrency control and abort recovery. ACCManager is
the CCManager automaton that models the CC algorithm,
and interacts with the work unit TA. AATManager is the AT-
Manager automaton that models the atomicity controller of
recovery mechanisms upon abort of transactions. O1, ..., Ok

are IsolationObserver automata that observe the phenomena
to be precluded by isolation, respectively, by monitoring the
behaviors of the work unit automata. When a work unit au-
tomaton performs a particular sequence of transitions repre-
senting a phenomenon, the corresponding IsolationObserver
is notified and moves to a state indicating this occurrence.
D1, ..., Dm are data automata for the data with temporal va-
lidity constraints, respectively. S1, ..., Sl are automata for
transaction sequences, respectively.

For each type of the aforementioned TA in N , we pro-
pose a set of parameterized patterns and connectors for the
pattern-based construction. In the following, we propose a
definition of pattern-based construction, followed by the de-
tailed patterns for UPPCART in the next subsections.

A parameterized pattern of TA is a reusable structure
that models a repetitive behavior or property. Formally, we
defined a parameterized pattern as follows:

PP (Para) ::=(Lpp, Lpinit, Xpp, Vpp, Ipp, Actpp, Epp)

∪ Function,
(2)

where Para is a set of parameters (para1, para2, ...) that
appear in the tuple (Lpp, Lpinit, Xpp, Vpp, Ipp, Actpp, Epp),
and Function is a set of function signatures that appear in
Epp.

A parameterized connector is a structure that connects
two parameterized patterns. Formally, a parameterized con-
nector connecting parameterized patterns PPi and PPj is
defined as follows:

PCon(PPi, PPj ,Para) ::= (Lpp_i ×B(Xpcon, Vpcon)

×Actpcon × Lpp_j) ∪ Function.
(3)

A parameterized pattern can be constructed from sub-
patterns and the connectors connecting them, as the unions
of their locations, variables, invariants, edges, actions, and
parameters.

The instantiation of PP assigns the parameters in Para
with actual values, and provides the functions in Function
with implementations. Using “para = v” to denote the as-
signment of parameter para with value v, we define the in-
stantiated pattern as:

Pj(para1 =v1, para2 = v2, ...) ::=

(Lp_i, Linit_i, Xp_i, Vp_i, Ip_i, Actp_i, Ep_i).

(4)

Similarly, the instantiation of Coni,j assigns the param-
eters is Para with actual values:

Con(Pi, Pj , para1 = v1, para2 = v2, ...) ::=

(Lp_i ×B(Xcon_ij , Vcon_ij)×Actcon_ij × Lp_j),

(5)

which is a set of edges of a TA.
Given a TA A = (L, l0, X, V, I, Act, E), a set of instan-

tiated patterns P, and a set of instantiated connectors CON,
A is a pattern-based construction from P and CON, iff :

– L =
⋃

Pi∈P Lp_i,
–
⋃

Pi∈P Linit_i = {l0},
– X =

⋃
Pi∈P Xp_i

⋃
Conj∈CON Xcon_j ,

– V =
⋃

Pi∈P Vp_i
⋃

Conj∈CON Vcon_j ,
– Act =

⋃
Pi∈P Actp_i

⋃
Conj∈CON Actcon_j ,

– E =
⋃

Pi∈P Ep_i
⋃

CON.

We denote it as A =
⋃̇
(P,CON).

For the convenience of later presentations, we call a pat-
tern a skeleton of TA A, if Linit 6= ∅ .

4.1 Patterns and Connectors for Modeling Work Units

In the following subsections, we introduce the UPPCART
patterns and connectors for each automaton within the par-
allel composition in Equation 1, in the order of the work
unit automaton W , CCManager automaton ACCManager,
ATManager automaton AATManager, IsolationObserver O,
and data automaton D.

4.1.1 Work Unit Skeleton (WUS)

A Work Unit (WU) automaton models the work unit of a
transaction and its interaction with the CC and atomicity
managers. A WU Skeleton (WUS), as shown in Fig. 4, is
a parameterized pattern that consists of the common vari-
ables, locations and edges of a WU automaton. The param-
eters, as well as other modeling elements, are listed in Ta-
ble 1. In Fig. 4, the automaton starts from the initial loca-
tion, initializes the transaction with the specified id ti and
priority p using function initialize(ti, p), and moves to the
location ready. Upon receiving the start_trans[ti] message,
it moves to the location trans_started, which represents the
begin of the transaction, and resets clock variable tc. The
location trans_committed indicates the committed state of
the transaction. Between trans_started and trans_committed
are a set of connected instantiated patterns that model the
database and transaction management operations, and de-
lays between the operations. If the value of tc is greater than

10 Simin Cai et al.

Table 1 Modeling elements of the work unit skeleton

Element Type Explanation
ti parameter transaction id
PRIORITY parameter transaction priority
PERIOD parameter period/minimal inter-arrival time of

the transaction
DEADLINE parameter deadline of transaction commit-

ment
RECOVERY_
DEADLINE

parameter deadline of transaction recovery

tc clock
variable

tracking the elapsed time of the
transaction

tr clock
variable

tracking the elapsed time of abort
recovery

start_trans[ti] channel message to start the transaction
initialize(ti,
p)

function initialization of the transaction

the specified DEADLINE, the automaton moves to the loca-
tion miss_deadline, indicating a deadline miss. Otherwise,
it waits until the specified PERIOD has reached, and moves
to begin for the next activation. The location trans_aborted
represents the aborted state of the transaction. If the value
of tr is greater than the specified RECOVERY_DEADLINE,
timeliness is breached, and the WU automaton moves to
miss_deadline.

4.1.2 Operation-CC, Locking and Unlocking Patterns, and
their Connectors

We define patterns to model the begin, commit, read and
write operations in each work unit. Since a transaction may
interact with the CC manager according to the specific CC
algorithm during the operations, our operation patterns also
comprises CC-related activities such as the locking and un-
locking activities. The pattern for modeling basic operations,
the Operation Pattern (OP), is presented in Fig. 5. The
modeling elements are listed in Table 2. In OP, we model the
scheduling policy using three functions, namely, enq_sch(ti),
deq_sch(ti) and sch(). After the start_operation location, the
enq_sch(ti) function is called, which pushes the transaction
into the scheduling queue. On the edges from the location
check_sched, the function sch() checks whether the trans-
action is the next one to be executed. If yes, the automa-
ton moves to do_operation, representing the execution of
the operation; otherwise, the automaton waits at location
wait, until the CPU is released by the occupying transaction
or the RTDBMS, indicated via the signal in the cpu_free
channel. The automaton may stay at do_operation for at
most WCRT_op time units, and at least BCRT_op time units,
which represent the longest and shortest time to complete
the operation. Upon the completion of the operation, a signal
is sent to the IsolationObservers via channel notify_op[ti].
Before reaching finish_operation, the CPU is set to be free,

and the transaction is removed from the scheduling queue by
the function deq_sch(ti). As an example, the corresponding
functions for a priority-based scheduling policy is listed in
Listing 1.

According to the selected CC algorithm, the transaction
needs to lock and unlock data, before or after the opera-
tions. This is modeled by the Locking Pattern (LP, Fig.
6) and Unlocking Pattern (UP, Fig. 7), which are com-
posed with the operation patterns. The modeling elements
are also listed in Table 2. In the Locking pattern, the au-
tomaton sends a request to the CCManager via channel lock-
type[ti][di], in which “locktype” is parameterized for the
particular type of lock, such as a readlock, specified by the
CC algorithm. The automaton then either moves to location
finish_locking, if it is granted by CCManager via channel
grant[ti][di]; or releases CPU and gets blocked at location
wait_for_lock, until CCManager grants it later. In the Un-
locking pattern, the automaton sends the request via channel
unlock[ti][di], which is received and processed by the CC-
Manager. A database operation may lock (or unlock) several
data items altogether, depending on the CC algorithm. The
combination of multiple lock/unlocks are modeled by the
connectors. The connector connecting two Locking patterns
is defined as: Con(LPi, LPj) ::= {finish_locking_i →
start_locking_j}. The connector connecting two Unlock-
ing patterns is defined as: Con(UPi, UPj) ::=

{finish_unlocking_i→ start_unlocking_j}.

Listing 1 Functions for priority-based scheduling

//Push ti to the queue, sorted by priority
void enq_sch(ti) {
...
for(i=0;i<queue.size;i++) {
if(ti.priority < queue[i].priority) {
queue[i+1] = queue[i];
queue[i] = ti;
...} }}

//Delete ti from the queue, and sort the rest
void deq_sch(ti) {
...
for(i=0;i<queue.size;i++) {
if(ti == queue[i]) {
queue[i] = queue[i+1];
...} }}

//Return the first ready transaction in the queue,
//and the CPU is not occupied by others
int sch() {
...
for(i=0;i<queue.size;i++) {
if((cs==i||cs==FREE) && queue[i].state==READY) {
return i; }}}

The composition of LP and UP with OP is illustrated in
Fig. 8, which forms the Operation-CC Pattern (OCCP).
The composition is defined using the following connectors.
The connector that connects an OP with a group of LP is

defined as: Con(OP,LP ′) ::= {check_sched
sch()==ti−−−−−−→

cs:=ti

start_locking_i, finish_locking_j
tp:=0−−−→ do_operation},

in which LP ′ is a pattern composed of a set of LP , starting
with LPi and ending with LPj .

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 11

Fig. 4 Work Unit Skeleton (WUS) for a generic transaction Ti [8]

sch()==ti
tp:=0, cs:=ti

check_sched
C

enq_sch(ti)

sch()!=ti

cpu_free?

do_operation
tp<=WCET_op

C

C

tp>=BCET_op
notify_op[ti]!

cpu_free!
cs:=FREE, deq_sch(ti)

finish_operation

start_operation

wait

notified_observer

Fig. 5 Operation Pattern (OP)[8]

wait[ti][di]?

try_to_lock_di

C

C

C

wait_for_lock

C

cpu_free!
cs:=FREE

grant[ti][di]?
cs:=ti

finish_locking

start_locking

grant[ti][di]?

locktype[ti][di]!

Fig. 6 Locking Pattern (LP)[8]

The connector that connects an OP with a group of UP
is defined as: Con(OP,UP ′)::= {notified_observer −→
start_unlocking_i, finish_unlocking_j

cpu_free!−−−−−−−−−−−−−−−→
cs:=FREE,deq_sch(ti)

finish_operation}, in which UP ′

C

C start_unlocking

finish_unlocking

unlock[ti][di]!

Fig. 7 Unlocking Pattern (UP)[8]

Table 2 Modeling elements of the operation, locking and unlocking
patterns

Element Type Explanation
ti parameter transaction id
di parameter id of data to be accessed
op parameter name of the operation
locktype parameter the type of lock according to the se-

lected CC
BCRT_op
(WCRT_op)

parameter best (worst) case response time of
the operation

tp clock
variable

temporary variable for tracking the
time of individual operations

cs integer
variable

indicating the possession of the
CPU

FREE constant indicating that the CPU is free
cpu_free broadcast

channel
release of CPU

locktype[ti][di] channel request CCManager for a “lock-
type” of lock on data di

grant[ti][di] channel grant of lock on data di from CC-
Manager

wait[ti][di] channel reject of lock on data di from CC-
Manager

unlock[ti][di] channel unlocking data di
notify_op[ti] broadcast

channel
notification of completion of oper-
ation

enq_sch(ti) function adding transaction ti in the schedul-
ing queue

sch() function returning the next transaction from
the scheduling queue according to
the selected policy

deq_sch() function removing transaction ti from the
scheduling queue

12 Simin Cai et al.

sch()==ti
cs:=ti

check_sched

C

C

enq_sch(ti)

sch()!=ti

cpu_free?

do_operation
tp<=WCRT_op

C

C

tp>=BCRT_op
notify_op[ti]!

cpu_free!
cs:=FREE, deq_sch(ti)

finish_operation

start_operation

Instantiated Locking/Unlocking Patterns

Instantiated Locking/Unlocking Patterns

tp:=0

wait

notified_observer

Fig. 8 Operation-CC Pattern (OCCP)[8]

delaytp<=MAX_delay

Fig. 9 Delay Pattern (DP)[8]

is a pattern composed of a set of UP , starting with UPi and
ending with UPj .

The begin OP and commit OP are connected to the work
unit skeleton WUS via the following connectors respectively:

Con(Begin,WUS) ::= {trans_started→
start_operation}, and Con(Commit,WUS) ::=

{finish_operation→ trans_committed}.

4.1.3 Delay Pattern and its Connector

The Delay Pattern (DP) in Fig 9 models the delays between
operations. The automaton may stay at location delay for at
most MAX_delay, which is provided as a parameter.

Assuming that OPi and OPj model the operations be-
fore and after a delay modeled by DP , respectively, the con-
nectors to connect OPi and DP is defined as:
Con(OPi, DP) ::= {finish_operation_i

tp:=0−−−→ delay}.
The connector for connecting DP with OPj is defined as:

Con(DP,OPj) ::= {delay
tp≥MIN_delay−−−−−−−−−−→ start_

operation_j}, in which MIN_delay is a parameter and de-
notes the lower bound of the delay.

4.1.4 Abort and Recovery Patterns, and their Connectors

The abort recovery mechanisms are modeled by the Roll-
backImComp Pattern (RIP, Fig. 10), and the Deferred-

Table 3 Modeling elements of the abort and recovery patterns

Element Type Explanation
ti parameter transaction id
ci parameter id of compensation transaction
op parameter name of the operation
BCRT_op
(WCRT_op)

parameter best (worst) case response time of
the operation

tp clock
variable

temporary variable for tracking the
time of individual operations

tr clock
variable

tracking the recovery time

cs integer
variable

indicating the possession of the CPU

FREE constant indicating that the CPU is free
report_abort[ti] channel message that reports to the ATMan-

ager that the abortion is done
abort_trans[ti] channel message from the ATManager that

starts the abortion
user_abort[ti] channel message that notifies to the ATMan-

ager that a user abort operation is is-
sued

start_trans[ci] channel message that starts the compensation
transaction

notify_abort[ti] broadcast
channel

notification of abortion of the trans-
action

notify_commit
[ci]

broadcast
channel

notification of commitment of the
transaction

cpu_free broadcast
channel

release of CPU

enq_sch(ti) function adding transaction ti in the schedul-
ing queue

sch() function returning the next transaction from
the scheduling queue according to
the selected policy

deq_sch() function removing transaction ti from the
scheduling queue

Comp Pattern (DCP, Fig. 11), respectively, which are com-
posed into the work unit automata. The former (RIP) mod-
els the rollback and immediate compensation mechanisms,
which are executions of series of operations by the DBMS
immediately after the abort. In case of rollback, the recov-
ery operations redo the write operations that have been com-
pleted by the aborted transaction. In case of immediate com-
pensation, the operations are specified for the transaction ex-
plicitly. The latter (DCP) models the deferred compensation
mechanism, which executes a separate transaction for com-
pensation. The modeling elements are listed in Table 3.

In the RIP pattern (Fig. 10), each operation is repre-
sented by a location op_n, at which the automaton may stay
for at most (least) WCRT_opn (BCRT_opn) time units. When
all operations are completed, the completion of recovery is
reported to the ATManager via channel report_abort[ti], re-
moves the transaction from the scheduling queue by func-
tion deq_sch(ti), and notifies the IsolationObserver via chan-
nel notify_abort[ti].

In case of deferred compensation, a compensating trans-
action is modeled as a separate work unit, using the work

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 13

tp <=WCRT_op1

start_rollback/
start_immed_comp

tp >=BCRT_op1
C

tp:=0
op_1

tp:=0
C…

trans_rolledback/
trans_compensated

report_abort[ti]!
deq_sch(ti)

C
notify_abort[ti]!

abort_notified

Fig. 10 RollbackImComp Pattern (RIP)[8]

start_deferred_comp

C

wait_for_comp

C

trans_compensated

start_trans[ci]! notify_commit[ci]?

C

report_abort[ti]!
deq_sch(ti)

C

notify_abort[ti]!

abort_notified

async_report

Fig. 11 DeferredComp Pattern (DCP)[8]

unit skeleton and the operation patterns. The DeferredComp
pattern (Fig. 11) starts the compensation transaction via the
channel start_trans[ci], where ci is the id of the compensat-
ing transaction. The work unit automaton then immediately
reports to ATManager and removes the transaction from the
scheduling queue. When the compensating transaction ci has
committed, the work unit automaton receives the notifica-
tion of ci, and notifies that transaction is aborted and recov-
ered via channel notify_abort[ti].

The above two recovery patterns are composed into a
work unit skeleton via the UserAbort Pattern, if they model
the recovery for user abort; or via the System Abort Con-
nectors, if the recovery is performed for system abort.

UserAbort Pattern. This pattern is defined in Fig. 12. When
the work unit is scheduled as the next one to be executed, ac-
cording to function sch(ti), it issues the abort request to AT-
Manager via channel user_abort[ti]. After it gets the per-
mission from ATManager via channel abort_trans[ti], the
automaton proceeds to the corresponding abort recovery pat-
tern. When the recovery is completed, the automaton sets the
CPU to be free, and moves to location trans_aborted.

The UAP can be composed with the Delay Pattern rep-
resenting the delay before the user abort operation, using the

connector: Con(DP,UAP) ::= {delay tp≥MIN_delay−−−−−−−−−−→
start_user_abort}. The UAP is composed with the work
unit skeleton using the connector: Con(UAP,WUS) ::=

{finish_user
_abort→ trans_aborted}.

System Abort Connectors. System abort and its consequent
recovery activities may take place either during one opera-
tion, or between the execution of two operations. We define
the following connectors to model both behaviors. For the
system abortion that occurs within one operation, we define
Con(OCCP,RIP) and Con(OCCP,DCP) that compose
an instantiated Operation-CC pattern with a RollbackIm-
Compp pattern or a DefComp pattern, respectively, as il-
lustrated in Fig. 13. When the OCCP receives a signal via

sch()==ti
tp:=0, cs:=DBMS

check_sched
C

enq_sch(ti)

sch()!=ti

cpu_free?

start_user_abort

C

user_abort[ti]!

abort_trans[ti]?
tr:=0

Instantiated Abort
Recovery Patterns

C finish_user_abort

cpu_free!
cs:=FREE

U

trans_aborted

call_ATManager

abort_trans[ti]?
tr:=0

Fig. 12 UserAbort pattern[8]

channel abort_trans[ti] from the ATManager, it moves to
the corresponding abort recovery patterns. They are defined
as follows:

Con(OCCP,RIP) ::= {wait abort_trans[ti]?−−−−−−−−−−→
tr:=0

start_

rollback, do_operation
abort_trans[ti]?−−−−−−−−−−→

tr:=0
start_rollback,

wait_for_lock
abort_trans[ti]?−−−−−−−−−−→

tr:=0
start_rollback, }.

Con(OCCP,DCP) ::= {wait abort_trans[ti]?−−−−−−−−−−→
tr:=0

start_deferred_op, do_operation
abort_trans[ti]?−−−−−−−−−−→

tr:=0

start_deferred_op, wait_for_lock
abort_trans[ti]?−−−−−−−−−−→

tr:=0

start_deferred_op}.
For system aborts that occur between operations, we de-

fine the following connectors that connect a Delay pattern
with a RollbackImCompp pattern or a DefComp pattern:

Con(DP,RIP) ::= {delay abort_trans[ti]?−−−−−−−−−−→
tr:=0

start_rollback}.

14 Simin Cai et al.

abort_trans[ti]?
tr:=0

Instantiated
Operation-CC

Pattern

Instantiated Abort
Recovery Patterns

U trans_aborted

Fig. 13 System Abort Connector Con(OCCP,RIP) and
Con(OCCP,DCP)[8]

Con(DP,DCP) ::= {delay abort_trans[ti]?−−−−−−−−−−→
tr:=0

start_deferred_op}.
In addition, to connect the recovery patterns with the

work unit skeleton, we define connectors Con(RIP,WUS)

::= {abort_notified→ trans_aborted}, and Con(DCP,

WUS) ::= {abort_notified→ trans_aborted}.

4.1.5 Pattern-based Construction of a WU Automaton

With these definitions of patterns and connectors, a work
unit automaton W is a pattern-based construction, as fol-
lows:

W ::=
⋃̇

({WUS}
⋃

OCCP
⋃

UAP
⋃

DP,CON), (6)

in which,

– WUS is an instantiated WUS for the basic structure of
W ;

– OCCP a set of instantiated OCCP, each representing a
begin, commit, read or write operation;

– UAP is a set of instantiated UAP, each representing a
user abort operation;

– DP is a set of instantiated DP, each representing a delay
between two operations;

– CON is a set of instantiated connectors: Con(Begin,

WUS), Con(Commit,WUS), Con(UAP,WUS),
Con(DP,OCCP), Con(OCCP,DP), for each OCCP,
DP and UAP.

The pattern-based construction of a WU automaton is
illustrated in Fig. 14.

4.2 Patterns and Connectors for Modeling
TransactionSequence

The modeling units in this subsection model the basic struc-
ture of a TransactionSequence, as well as the interactions
between the TransactionSequence and its sub-transactions.

4.2.1 TransactionSequence Skeleton (TSS)

The skeleton of a TransactionSequence, presented in Fig.
15, resembles the work unit skeleton of a transaction, in
which its basic locations represent the ready, start, termina-
tion and deadline-missing states, respectively. A clock vari-
able ts keeps track of the time spent by the sequence. If the
value of ts exceeds the specified deadline, the automaton
will reach the miss_deadline location.

4.2.2 Sequence Sub-transaction Pattern (SSP)

A TransactionSequence skeleton incorporates a series of in-
stantiated Sequence Sub-transaction Patterns (SSP), shown
in Fig. 16, which models the behavior of starting a sub-
transaction and waiting for its termination. The Transaction-
Sequence automaton starts a sub-transaction ti by sending a
message via the start_trans[ti] channel, which is received
by the WU automaton of transaction ti. Then the Transac-
tionSequence automaton waits for the broadcast signals of
either commitment or abortion of ti.

4.2.3 TransactionSequence Connectors

To connect a TransactionSequence with its sub-transactions,
we define the following connectors: Con(TSS, SSPi) ::=
{seq_started→ start_sub_i}, and Con(SSPj , TSS)

::= {sub_j_terminated→ seq_terminated}.
We also define the following connectors to connect two

sub-transaction with delay between them: Con(SSPi, DP)

::= {sub_i_terminated
tp:=0−−−→ delay}, and Con(DP,

SSPj) ::= {delay
tp≥MIN_delay−−−−−−−−−−→ start_sub_j}, in which

DP is a delay pattern.
With these definitions of patterns and connectors, we de-

fine an TransactionSequence automaton S as the following
pattern-based construction:

S ::=
⋃̇

({TSS}
⋃

SSP
⋃

DP,CON), (7)

in which,

– TSS is an instantiated TSS for the basic structure of the
sequence automaton;

– SSP a set of instantiated SSP, each representing the con-
trol of a sub-transaction;

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 15

trans_started

U trans_committed

Operations with CC and abort
recovery

C

…

tc:=0

ready

U

miss_deadline

trans_aborted

tc>DEADLINE tr>RECOVERY_DEADLINE

C

initialize(ti, p)

…tc<=DEADLINE

tc<=PERIOD
tc>=PERIOD
tc:=0

tr<=RECOVERY_DEADLINE

wait

initial

start_trans[ti]?

Delays

Fig. 14 Illustration of pattern-based construction of a WU automaton

C

U

ts>DEADLINE
miss_deadline

Instantiated Delay Pattern

ts<=PERIOD

ts>=PERIOD
ts:=0

wait
C

_terminated

ready

…

initial

ts<=DEADLINE

initialize(si, p)

start_trans[si]?
ts:=0

_started

Instantiated SSP

seq

seq

Fig. 15 TransactionSequence Skeleton (TSS)

start_trans[ti]!

C
notify_commit[ti]? notify_abort[ti]?

C

sub_ti_started

sub_ti_terminated

start_sub_�

Fig. 16 Sequence Sub-transaction Pattern (SSP)

– DP is a set of instantiated DP, each representing a delay
between two sub-transactions;

– CON is a set of the following instantiated connectors:
Con(TSS, SSP), Con(SSP, TSS), Con(DP,SSP),
Con(SSP,DP), for each SSP and DP.

4.3 CCManager Skeleton (CCS)

The CCManager skeleton, presented in Fig. 17, provides
a common structure for modeling various CC algorithms,
and the interaction with the transactions and the atomicity
manager. Table 4 lists the functions to encode the resolution
policy of a CC algorithm. In this skeleton, the CCManager
calls satisfyPolicy() when it receives a locking request, in or-
der to decide whether the requester should be granted with
the lock. If the function returns true, and no other transac-
tions should be aborted, as suggested by needAbort(), the re-
quester is granted with the lock. If any transactions need to
be aborted due to concurrency conflicts, CCManager sends
a signal to ATManager via channel cc_conf, and waits until
all abort and recovery are processed, before it grants the lock
to the requester. On the other hand, if satisfyPolicy() returns
false, the requester either gets aborted, decided needAbort()
according to the CC algorithm, or gets blocked and has to
wait.

In case the CCManager receives an unlocking request, it
updates the status of the transaction and the locks, and grants

16 Simin Cai et al.

Table 4 Modeling elements of the CCManager skeleton

Element Type Explanation
LOCKTYPE parameter type of the lock
request_id integer

variable
id of the requesting transaction

data_id integer
variable

id of the requested data

next_id integer
variable

id of the next transaction to be
granted with locks

cs_dbms integer
variable

indicating critical section for han-
dling request atomically

satisfy boolean
variable

indicating whether the requester
should be granted with the lock

cc_conf channel notification of CC conflict to AT-
Manager

cc_conf_
handled channel resolution of CC conflict by AT-

Manager
satisfy
Policy() function checking if the requester should be

granted with the lock according to
the selected CC algorithm

needAbort() function checking if any transaction should
be aborted due to CC

getNext() function getting the next transaction to be
granted with locks

update
Request() function updating status of transaction and

data on request
update
Grant() function updating status of transaction and

data after grant
update
Reject() function updating status of transaction and

data after reject
update
Unlock() function updating status of transaction and

data after unlock

locks to all legitimated blocked transactions, decided by the
getNext() function.

Automaton ACCManager is then constructed by instan-
tiating the CCManager skeleton, according to the selected
CC algorithm. For instance, Listing 2 shows the function
satisfyPolicy() of the CCManager that models the conflict
detection of the 2PL-HP algorithm.

Listing 2 Functions for 2PL-HP CCManager

//Check if the requester should be granted with the lock
bool satisfyPolicy() {

...
if(data_id not locked) return true;
else if(data_id is readlocked) {
if(locktype == readlock) return true;
if(locker has lower priority) return true;
else return false;
} else {
if(locker has lower priority) return true;
else return false; }}

Table 5 Modeling elements of the ATManager skeleton

Element Type Explanation
abort_id integer

variable
id of the aborting transaction

error_type integer
variable

type of error that causes abortion

CC constant indicating the abortion caused by
CC

USER constant indicating the abortion caused by
user abort operation

cc_conf channel notification of CC conflict to AT-
Manager

cc_conf
_handled channel resolution of CC conflict by AT-

Manager
report_abort[ti] channel message that reports to the ATMan-

ager that the abortion is done
abort_trans[ti] channel message from the ATManager that

starts the abortion
user_abort[ti] channel message that notifies to the AT-

Manager that a user abort operation
is issued

getAbort() function getting the transaction to be
aborted

updateAbort() function updating status of transaction and
data after the transaction gets
aborted

4.4 ATManager Skeleton (ATS)

We separate the atomicity control model into an ATMan-
ager automaton, and the abort recovery parts in work unit
automata. The ATManager models the decisions on aborted
transactions upon errors, conflicts or user’s instructions. The
work unit automata include the instantiated abort recovery
patterns that model the selected mechanisms for the specific
transactions. We distinguish two types of abort, which are
user abort that is issued by a client using an abort opera-
tion deliberately, and system abort that occurs due to internal
conflicts and system failures, such as CC conflicts.

Our ATManager skeleton provides a common structure
for modeling the atomicity manager. The proposed skele-
ton, as shown in Fig. 18 and Table 5, the ATManager may
receive user abort requests via user_abort[i] channel, or sys-
tem abort due to CC via cc_conf channel from CCManager.
Other types of errors, such as communication errors, can be
modeled in a similar way. The function getAbort() speci-
fies the logic to decide the transaction to be aborted. The
automaton then sends the abort signal to the correspond-
ing work unit automaton via channel abort_trans[abort_id],
and waits until the abort is done by the work unit automa-
ton. ATManager then updates the status and locks of transac-
tions and data using the function updateAbort(), and checks
if more transactions need to be aborted. The construction of
automaton A_ATManager is achieved by instantiating this
ATManager Skeleton.

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 17

C

C

C

C

C

cs_dbms==0
i:trans_t, j:data_t
locktype[i][j]?
updateRequest(i,j,LOCKTYPE),
cs_dbms:=1

cs_dbms==0
i:trans_t, j:data_t
unlock[i][j]?
updateUnlock(), cs_dbms:=1

next_id==-1
cs_dbms:=0

getNext()

needAbort()
cc_conf!

!needAbort()
grant[request_id][data_id]!
updateGrant()satisfyPolicy()

satisfy:=true

!satisfyPolicy()
satisfy:=false next_id!=-1

grant[next][data_id]!
updateGrant(), getNext()

lock_request_received unlock_request_received

decide_grant

decide_reject

decide_grant_next

call_ATManager

grant[request_id][data_id]!
updateGrant()

!needAbort()
wait[request_id][data_id]!
updateReject()

C

cc_conf_handled?

C

cs_dbms:=0

idle

atomicity_resolved

needAbort()
cc_conf!

call_ATManager2

C
cc_conf_handled? atomicity_resolved2

C

cs_dbms:=0

Fig. 17 TA skeleton for the CCManager[8]

cc_conf_detected

C
getAbort()

C
cc_conf?
error_type:=CC

abort_id!=-1
abort_trans[abort_id]!

C

report_abort[abort_id]?
updateAbort(), getAbort()

abort_id==-1 && error_type==CC
cc_conf_handled!

idle
do_abort abort_done

i:trans_t
user_abort[i]?

abort_id:=i, error_type:=USER

user_abort_detected
C

start_abort

abort_id==-1 && error_type==USER

Fig. 18 TA skeleton for the ATManager[8]

isolation_phenomenon

notify_read [ti][tj]?

notify_write[tm][dn]?

…

r_i_j

r_i_j_w_m_n

idle

C

notify_commit[ti]?
/notify_abort[ti]?

notify_commit[ti]?
/notify_abort[ti]?

ti_committed/
ti_aborted

Fig. 19 IsolationObserver skeleton[8]

Fig. 20 TA skeleton for data[8]

4.5 IsolationObserver Skeleton (IOS)

The skeleton for an IsolationObserver is shown in Fig. 19.
Each IsolationObserver observes a specified sequence of op-
erations, by accepting the corresponding notification mes-
sages from the work unit automata via the notify_op[ti][di]
channel when an operation is completed. If the monitored
sequence indicating the phenomeon occurs, the automaton
moves to the isolation_phenomenon location.

4.6 Data Skeleton (DS)

Fig. 20 presents the skeleton of data. The clock variable age
is reset every time a write operation is performed on the data.
The value of age hence represents how old the data is since
the last update.

4.7 Summary of Modeling

Given a set of transactions and the selected CC and AR
mechanisms, the UPPCART model of the RTDBMS can be
created by the parallel composition of its component TA,
which are constructed via the pattern-based construction by
instantiating our proposed patterns and connectors. Formally,
the pattern-based construction of the RTDBMS is defined as
follows:

N ::= W1 || ... ||Wn ||ACCManager ||AATManager

||O1 || ... ||Ok ||D1 || ... ||Dm, ||S1 || ... ||Sl,

in which:

– Wi ::=
⋃̇
({WUSi}

⋃
OCCPi

⋃
UAPi

⋃
DPi,CONi),

– ACCManager ::=
⋃̇
({CCS}, ∅),

– AATManager ::=
⋃̇
({ATS}, ∅),

– Oi ::=
⋃̇
({IOSi}, ∅),

18 Simin Cai et al.

Table 6 UPPAAL query patterns for verifying transactional properties[8]

Property Type Property Description UPPAAL Query Pattern
Atomicity Ti aborted due to ERRORTYPE is eventu-

ally rolled back (compensated)
(ATManager.abort_id == i &&
ATManager.error_type == ERRORTY PE)
→ Ai.trans_rolledback (Ai.trans_compensated)

Isolation The specified isolation phenomena never
occur

A [] not (O1.isolation_phenomenon || ... ||
On.isolation_phenomenon)

Timeliness Ti never misses its deadline A [] notAi.miss_deadline
Absolute Validity When read by Ti, Dj is never older than the

absolute validity interval AVI(j)
A [] (Ai.read_di_done imply

Dj.age <= AV I(j))
Relative Validity Whenever Ti reads Dj or Dl, the age differ-

ences of Dj and Dl is smaller than or equal
to the relative validity interval RVI(j,l)

A[] ((Ai.read_dj_done ||Ai.read_dl_done) imply

((Dj.age−Dl.age <= RV I(j, l))&&
(Dl.age−Dj.age <= RV I(j, l))))

– Di ::=
⋃̇
({DSi}, ∅),

– Si ::=
⋃̇
({TSSi}

⋃
SSPi

⋃
DPi,CONi).

The pattern-based construction allows large parts of ex-
isting models to be reused, in case a different CC or AR is
selected, and the models need to be updated. An example is
presented in our previous work [21], which demonstrates the
easy adjustments when different CC algorithms are selected
for the same sets of transactions and data.

It is possible to extend UPPCART to model more va-
rieties of transaction management and behaviors. For in-
stance, one can also add a TA to the parallel composition,
to model the dispatching pattern of transactions from the
clients. This TA sends signals via the start_trans[i] channel
to each Wi, with a specific order and predefined intervals.
It may even receive the notify_commit[i] signals from Wi,
such that the end-to-end deadline of a sequence of transac-
tions can be monitored.

4.8 Verification

With the transactions as well as the atomicity and concur-
rency control mechanisms modeled in UPPAAL TA, we are
able to formally verify the atomicity, isolation and temporal
correctness properties using UPPAAL Model Checker.

Table 6 lists the patterns to formalize the properties in
UPPAAL queries. Among them, atomicity is formalized as a
liveness property, that the automaton Ai representing trans-
action Ti eventually reaches the dedicated trans_rollback or
trans_compensated location if the abort_id equals i. Isola-
tion and temporal correctness are formalized as invariance
properties. The isolation property is specified as that the iso-
lation_phenomenon locations are not reachable. The time-
liness property is formalized as that the miss_deadline lo-
cation of the analyzed Ti is not reachable, while temporal
validity properties are formalized as that the states where
the ages of data exceed their thresholds are never reachable.

5 From UTRAN to UPPCART

We provide a translational semantics from UTRAN to UP-
PCART, in order to bridge the gap between the high-level
description of transactions and the verifiable models for rea-
soning about the transaction properties. In this way, the for-
mal semantics of UTRAN are defined using UPPAAL TA,
which also lays the foundation of automated transformation
from UTRAN to UPPCART models. In this section, we first
introduce the semantic definitions of UTRAN (Section 5.1),
followed by the tool automation for the transformation (Sec-
tion 5.2).

5.1 Translational Semantics of UTRAN

We encode the formal semantics of UTRAN in terms of UP-
PCART as follows:

Definition 1 (Semantics of «RTDBMSScope») An «RT-
DBMSScope» in UTRAN is formally defined as an UPP-
CART NTA NRTDBMS , whose definition is given in Equa-
tion 1.

Definition 2 (Semantics of «IsolationSpecification») An
«IsolationSpecification» in the «RTDBMSScope» is formally
defined as ACCManager and a set of IsolationObservers in
NRTDBMS . The ACCManager is an instantiation of the CC-
Manager skeleton with the selected CC algorithm, that is,
the value of CCAlgorithm in the «IsolationSpecification».
An «IsolationPhenomenon» specified in the «IsolationSpec-
ification» is defined as an instantiated IsolationObserver skele-
ton.

Definition 3 (Semantics of «Transaction») A «Transaction»
Ti in the «RTDBMSScope» is formally defined as a work
unit TA Wi, according to Equation 6, in the parallel compo-
sition of NRTDBMS .

The «Operations» within a «Transaction» are defined as
follows:

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 19

Definition 4 (Semantics of «BeginOp», «CommitOp»,
«ReadOp» and «WriteOp») A «BeginOp», «CommitOp»,
«ReadOp» or «WriteOp» is formally defined as an instanti-
ated OCCP. The data j read by «ReadOP» r, with r.did ==

j and r.absV alidity > 0, is defined as a Data automaton
Dij by instantiating the Data skeleton.

Depending on the value of CCAlgorithm in the «Iso-
lationSpecification», the OCCP is defined by composing an
OP (operation), with zero or more LP (locking) or UP (un-
locking).

For instance, if CCAlgorithm ∈ {2PL-HP,R2PL},
the operations with CC are defined as follows:

– For the «BeginOP», OCCPbegin ::=
⋃̇
({OPbegin}, ∅).

– For each «ReadOP» r, with r.tid == i and r.did ==

j, OCCPi ::=
⋃̇
({OPi, LPi}, {Con(OPi, LPi)}), in

which the parameter locktype in LPi is readlock.
– For each «WriteOP» w, with w.tid == i and w.did ==

j, OCCPi ::=
⋃̇
({OPi, LPi}, {Con(OPi, LPi)}), in

which the parameter locktype in LPi is writelock.
– For the «CommitOP», OCCPcommit ::=

⋃̇
({OPcommit

}
⋃
UP ′, {Con(OPcommit, UP ′)}), in which UP ′ is a

pattern composed of a set of unlocking patterns for all
data read or written by the transaction.

If CCAlgorithm ∈ {ShortReadlock}, the operations
with CC are defined as follows:

– For the «BeginOP», OCCPbegin ::=
⋃̇
({OPbegin}, ∅).

– For each «ReadOP» r, with r.tid == i and r.did == j,
OCCPi ::=

⋃̇
({OPi, LPi, UPi}, {Con(OPi, LPi),

Con(OPi, UPi)}), in which the parameter locktype in
LPi is readlock.

– For each «WriteOP» w, with w.tid == i and w.did ==

j, OCCPi ::=
⋃̇
({OPi, LPi}, {Con(OPi, LPi)}), in

which the parameter locktype in LPi is writelock.
– For the «CommitOP», OCCPcommit ::=

⋃̇
({OPcommit

}
⋃
UP ′, {Con(OPcommit, UP ′)}), in which UP ′ is a

pattern composed of a set of unlocking patterns for all
data writen by the transaction.

Definition 5 (Semantics of «DelayedNext») A «Delayed-
Next» edge is formally defined as an instantiated DP, to-
gether with connectors Con(OCCPi, DP) and Con(DP,

OCCPj), where OCCPi and OCCPj are the source and
target «Operation» of the «DelayedNext», respectively.

Definition 6 (Semantics of «AtomicitySpecification») An
«AtomicitySpecification» associated with the «Transaction»
is formally defined as a construction of patterns and connec-
tors, depending on the values in the specification. We de-
fine a Con(OCCP,RIP) for each OCCP, if arMech ∈
{Rollback, ImmediateCompensate}; or a Con(OCCP,

DCP) for each OCCP, if arMech ∈ {DeferredCompen

-sate}. For each DP, we define a Con(DP,RIP) or a Con

(DP,DCP).

Definition 7 (Semantics of «AbortOp») Each «AbortOp»
is formally defined as an instantiated UAP, which is com-
posed with a Con(OCCP,RIP) or a Con(OCCP,DCP),
depending on the value of attribute arMech in the associ-
ated «AtomicitySpecification».

Definition 8 (Semantics of «TransactionSequence») A
«TransactionSequence» Seqi is formally defined as a TA Si,
according to Equation 7, whose construction elements are
defined by the following:

1. Each «Transaction» in the sequence is defined as an in-
stantiated Sequence Sub-transaction Pattern (SSP), to-
gether with the connectors Con(TSS, SSP) and Con(

SSP, TSS).
2. Each «DelayedNext» between the «Transactions» is de-

fined as an instantiated DP, as well as instantiated con-
nectors Con(DP,SSP) and Con(SSP,DP).

5.2 Automated Transformation

Automated transformation from UTRAN specifications to
UPPCART models can reduce the efforts of system design-
ers by shielding them from the under-the-hood formalism.
In this section, we develop a JAVA-based tool, called U2-
Transformer [12], which provides automated transformation
based on the previously mentioned mapping.

The architecture of U2Transformer is presented in Fig.
21, and consists of a UTRAN module, an UPPCART mod-
ule, and a utilities module. The UTRAN module contains
a set of JAVA classes that represent the UTRAN elements
in the specification. Typically, every stereotyped element,
such as a «Transaction», has its corresponding JAVA class
as the intermediate JAVA structure. The UPPCART mod-
ule contains the intermediate JAVA representation for the
UPPCART models, and is composed of three sub-modules.
The UPPCART.structures sub-module contains the interme-
diate structures for the UPPCART timed automata. The UP-
PCART.queries sub-module implements the UPPAAL queries
for the property specifications. In addition, the UPPCART.udf
sub-module contains the predefined user-defined functions
for the selected concurrency control and scheduling algo-
rithms in UPPCART, such as satisfyPolicy() for the 2PL-HP
concurrency control algorithm.

The utilities module contains a class, called UTRAN-
Parser, which reads a UTRAN specification in the XML for-
mat, and creates a corresponding intermediate JAVA struc-
ture for each UTRAN element. The other class UPPCART-
Generator implements the translational semantics in Sec-
tion 5.1 for each internal JAVA-based UTRAN structure, and
generates its mapped JAVA-based UPPCART structure. The
latter is then converted to an XML-format UPPAAL model,
also by UPPCARTGenerator.

20 Simin Cai et al.

Fig. 21 Architecture of U2Transformer

U2

UTRAN
specification

UPPCART
models

(XML for
UPPAAL)

(XML in Eclipse
Papyrus or IBM RSA)

UTRAN
profile

JAVA
internal

for
UTRAN

JAVA
internal

for
UPPCART

Fig. 22 Transformation workflow using U2Transformer

The transformation workflow is presented in Fig. 22.
U2Transformer accepts a system model defined in UML with
the UTRAN profile, created in common UML editors in-
cluding Eclipse Papyrus modeling environment 3 and IBM
Rational Software Architect (RSA) environment 4, in their
respective XML format. A command-line interface is pro-
vided by the tool for the user to specify the editor in use.
Then a three-step process is performed by U2Transformer.
In the first step, the tool converts the UTRAN specifica-
tion in XML into intermediate data structures in JAVA. This
step is performed by the UTRANParser module. The sec-
ond step is performed by the UPPCARTGenerator module,
which converts the internal UTRAN structures to internal
UPPCART structures, and returns the XML-format UPP-
CART models for the UPPAAL tool.

3 https://www.eclipse.org/papyrus/
4 https://www.ibm.com/developerworks/downloads/r/architect

The core algorithm used by U2Transformer for transla-
tion is listed in Algorithm. 1. The source code of the tool
is included in the our repository [12]. The tool accepts a
UTRAN activity diagram specifying the RTDBMS and trans-
actions as input, and returns a UPPCART model. The afore-
mentioned skeletons and patterns are used to construct the
model.

The main procedure MODELNTA traverses elements in
the specification, and starts with «Transactions». When a
«Transaction» is discovered, the tool constructs a work unit
automaton for the transaction (line 5). The construction of
work unit automata is done by the procedure MODELWUA
(lines 20 to 28), which calls procedure MODELOP (lines 30
to 35) to construct instantiated patterns for operations with
CC, and procedure MODELATOMICITY (lines 37 to 54)
to model the «AtomicitySpecification» of the user abort op-
erations. The main procedure then generates the atomicity
aspects from the «AtomicitySpecification» for the system

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 21

Algorithm 1 Model Construction Algorithm
1: Input: a UTRAN specification, denoted as U
2: Output: a Network of Timed Automata, NTA
3: procedure MODELNTA(U)
4: for each «Transaction» T in U do
5: call modelWUA(T)
6: if T has an AtomicityVariant as VARIANT then
7: call modelAtomicity(SYSABORT, VARIANT)
8: end if
9: instantiate a Delay pattern for each «DelayedNext»

10: end for
11: for each «TransactionSequence» S in U do
12: call modelSequence(S)
13: end for
14: create CCManager using CCManager Skeleton
15: create ATManager using ATManager Skeleton
16: create an IsolationObserver using IsolationObserver Skeleton for each «IsolationPhenomenon» in U
17: instantiate the functions in the NTA according to the selected CCAlgorithm and SchedPolicy
18: end procedure
19:
20: procedure MODELWUA(T)
21: create a WU automaton W using the Work Unit Skeleton
22: for each «BeginOp», «CommitOp», «ReadOp» and «WriteOp» in T, denoted as P do
23: call modelOP(W, P)
24: end for
25: for for each «AbortOp» P in T, whose AtomicityVariant as VARIANT do
26: call modelAtomicity(USERABORT, VARIANT)
27: end for
28: end procedure
29:
30: procedure MODELOP(A, P)
31: instantiate Operation-CC pattern for P in A
32: if transaction needs to lock/unlock data D before/after P according to CCAlgorithm then
33: insert instantiated Locking/Unlocking patterns before/after P
34: end if
35: end procedure
36:
37: procedure MODELATOMICITY(TYPE, VARIANT)
38: if TYPE is USERABORT then
39: instantiate a UserAbort pattern
40: else if TYPE is SYSABORT then
41: instantiate a SystemAbort pattern
42: end if
43: call modelAbortRecovery(VARIANT)
44: end procedure
45:
46: procedure MODELABORTRECOVERY(VARIANT)
47: if VARIANT is Rollback then
48: instantiate RollbackImComp pattern, rollback operations are the operations completed before abort
49: else if VARIANT is ImmediateCompensation then
50: instantiate RollbackImComp pattern, compensation operations are listed in the associated «Compensation»
51: else if VARIANT is DeferredCompensation then
52: instantiate DeferredComp pattern, call constructWUA(C) for the associated «Compensation» C
53: end if
54: end procedure
55:
56: procedure MODELSEQUENCE(S)
57: create a TransactionSequence automaton TS by instantiating the Transaction Sequence Skeleton
58: for each «Transaction» in TS, denoted as Sub do
59: call modelSub(TS, Sub)
60: end for
61: end procedure
62:
63: procedure MODELSUB(S)
64: instantiate Sequence Sub-transaction pattern and connect to S
65: end procedure

22 Simin Cai et al.

abort of this transaction, by calling MODELATOMICITY
(line 7), followed by creating the delays between the opera-
tions within this transaction (line 9).

After all «Transactions» are processed, the main pro-
cedure MODELNTA continues to traverse the specification
and scans for «TransactionSequences» (line 11). For each
«TransactionSequence», it calls the MODELSEQUENCE pro-
cedure (line 12), which constructs an automaton for the se-
quence, and adds models of the sub-transactions into the se-
quence (lines 56-65).

The main procedure MODELNTA then creates automata
for CCManager (line 11) and ATManager (line 12), using
the annotations in the UTRAN specification. After that, for
each «IsolationPhenomenon», the tool generates an Isola-
tionObservers (line 13). Before ending, the main procedure
instantiates the functions in the automata models with the
specific code for the selected CCAlgorithm and SchedPolicy
(line 14), which are predefined in the UPPCART.udf mod-
ule.

5.3 Validation of U2Transformer

As the first step of validation, we create a series of unit
test cases to test the individual mappings in Section 5.1.
They generate pieces of UPPCART models corresponding
to the selected subsets of UTRAN concepts. These cases
include transformation of single transaction with only one
type of the properties, as well as sequences of transactions
with multiple properties. The generated models are manu-
ally checked for their correctness. The test units are written
using the JUnit framework, and are included in the source
files of the tool.

We also apply a common approach to test model trans-
formation, that is, to compare the automatically generated
model with an expected output model [22]. We use the ex-
ample UTRAN specification and its manually-generated cor-
responding UPPCART model from our previous work [8] as
a reference for the validation.

The UTRAN example in [8] specifies the transactions
managing the configuration data and mission status of an
autonomous wheel loader. It involves three ordinary trans-
actions, one compensation transaction, five data objects, as
well as the atomicity, isolation and temporal correctness spec-
ifications. The UPPCART model is created manually by the
authors, which is a network of UPPAAL TA that conforms
to Equation 1. We use the same UTRAN specification as the
input of U2Transformer, and run the translation. The gen-
erated UPPCART model contains the same elements (e.g.,
individual automata and global variables) as the manually
created model, and satisfy the same atomicity, isolation and
temporal correctness properties.

6 Case Study

In this section, we demonstrate UTRAN, UPPCART and the
tool-supported transformation, via the specification and ver-
ification of a transaction-based system.

Autonomous construction vehicles such as wheel load-
ers and excavators are considered as a promising trend to
reduce costs and avoid safety hazards in construction and
mining sites. In this case study, we consider a quarry where
raw materials (e.g., iron ores) are mined by excavators, and
transported by a group of wheel loaders to crushers deployed
on the site. A mission is decided for each wheel loader and
excavator, which follows a designed path in order to com-
plete its job, such as transportation of materials, and main-
tenance activities, such as charging the battery. In order to
ensure safety while maintaining productivity, we design a
two-layer collision avoidance system to prevent collisions
between vehicles achieved by the global collision avoidance
layer, as well as with obstacles such as rocks and holes,
achieved by the local collision avoidance layer. The func-
tionalities of both layers rely on the data management and
transaction control provided by their DBMS. In the follow-
ing subsections, we present the design of the DBMS in these
two layers, as well as the verification of the crucial tempo-
ral and logical properties using our proposed framework and
tool, respectively.

6.1 Global Collision Avoidance Layer

The center of the global collision avoidance layer is a global
DBMS that stores the map of the quarry, which is divided
into smaller cells of a grid. The mission of a vehicle is rep-
resented as a sequence of cells that it should visit. Fig. 23
presents the map of the quarry in our case study. Three wheel
loaders are deployed at Cells 7, 10 and 17, whose plans are
determined to carry materials to the crushers at Cells 9 and
18, respectively. On the way back from the crushers, some
of the wheel loaders are scheduled to refuel at the charging
stations at Cell 12, as shown in their paths respectively. An
excavator digs the ores at Cell 11. From time to time, the
excavator also needs to charge at Cell 12. As illustrated in
the figure, the vehicles not only share the crushers and the
power stations, but their paths also overlap in multiple cells.

In order to avoid collision with each other, the vehicles
are not allowed to operate in the same cell simultaneously.
To achieve optimal productivity, each wheel loader is sched-
uled to operate its mission with a specific period, and is ex-
pected to finish by a given deadline. In addition, since there
are more wheel loaders than excavators, it is further required
to allow the excavator to be charged whenever necessary for
better productivity. In other words, the excavator should be
prioritized to use the charging station.

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 23

L1

L2

E1

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Wheel loader Excavator Crusher Power station

L3

Fig. 23 Map and paths of vehicles in our case study

w1 c1 w2 c2 w3

Cell1 Cell2 Cell3

1 2 21 3

n: lock data Cell n

n: unlock data Cell n

start

c3
3T1 T2 T3

Mission

Tn: transaction representing passing Cell n
wn: writing operation on Cell n
cn: committing operation of Tn

Fig. 24 Illustration of collision avoidance through transactions and CC

We achieve global collision avoidance by leveraging con-
currency control of the DBMS to prevent multiple vehicles
operating in the same cell simultaneously. The key idea is
to let a vehicle lock the cell before entering it, and unlock
it when the vehicle is about to leave the cell. As illustrated
in Fig. 24, the entire path of a vehicle is modeled as trans-
action sequence, while the activity of passing an individual
cell, including the performed job in it, is modeled as a trans-
action. Before entering a cell, a vehicle starts a transaction
and performs a write operation on the cell data, which re-
sults in a lock on the cell. Before the vehicle leaves the cell,
it commits the transaction, which releases the lock and al-
lows other vehicles to enter this cell. We assume the com-
mitting vehicle is in full stop before entering the next cell.

Therefore, even if another vehicle may enter the unlocked
cell before the committing vehicle leaves, these two are not
operating their tasks simultaneously, and hence are consid-
ered safe. To ensure immediate access of the high-priority
vehicle, we apply a priority-based CC (2PL-HP [17]), which
aborts the low-priority transaction when two transactions try
to lock the same data.

Based on this, we identify 4 transaction sequences in
the global layer, each for one vehicle in Fig. 23; with a to-
tal number of 20 transactions, each controlling one vehicle
passing one cell. The sequences and transactions are listed in
Table 7. For temporal correctness, in this case study we fo-
cus on the end-to-end deadlines of the sequences. The isola-
tion constraint imposed by safety requires that two vehicles

24 Simin Cai et al.

Table 7 Transactions in the global collision avoidance layer

Vehicle Transaction
Sequence

Contained Trans-
actions

Sequence
Deadline

Atomicity Isolation

L1 S1L1 G17, G18, G13,
G12, G17

2000s When G12 (charging) gets
aborted, redo G12

Vehicles should not access the power station
simultaneously. That is, transactions do not
access Cell 12 simultaneously.L2 S2L2 G7, G8, G9, G14,

G13, G12, G7
2100s When G12 (charging) gets

aborted, redo G12
L3 S3L3 G1, G9, G10 2500s
E1 S4E1 G11, G12, G11 2400s

Fig. 25 Excerpt of the UTRAN specification for the global layer using the Papyrus tool

should not use the same cell, especially the power station,
that is, no simultaneous access to Cell 12. In addition, since
the excavator has a higher priority, the wheel loaders L1 and
L2 may be aborted when they are using the power station.
We hence add the atomicity requirement that when charging
gets aborted, the vehicle should redo the charging later when
the station is free.

6.1.1 Specification in UTRAN

Fig. 25 presents an excerpt from the Eclipse Papyrus tool
that exhibits the specification of transaction sequence S1L1.
The sequence contains five «Transactions». Each «Trans-
action» includes three «Operations»: one «BeginOP», one
«WriteOP» that writes the cell data, and one «CommitOP».
The time to perform the operation in the cell (e.g., digging,
cruising, crushing, or charging) is specified as the delay in
the «DelayedNext» edge between the «WriteOP» and the
«CommitOP». The timing properties of S1L1 are specified
in its attached «TemporalCorrectnessSpecification». «Trans-
action» G12 is associated with an «AtomicitySpecification»,
which refers to «Compensation» RedoCharge1 as its deferred
compensating transaction. An «IsolationPhenomenon», E1-

L1Conflict, specifies the interleavings that results in the si-
multaneous access of Cell 12, which should be prevented
by the CC. The complete specification can be found in our
online repository [12].

6.1.2 Construction of UPPCART Models

We applied U2Transformer to generate UPPCART models.
As shown in Fig. 26, we used the command-line interface
to specify the Eclipse Papyrus format, the path to the input
UTRAN file, and the output path for the generated UPPAAL
model. The transformation took 4.097 seconds.

Fig. 27 shows an example of the generated UPPCART
model for S1L1, which corresponds to the «TransactionSe-
quence» S1L1 in Fig. 25. The main structure of this TA is an
instantiation of the TransactionSequence Skeleton and rep-
resents the basic structure of the sequence S1L1. Its sub-
transactions, including G17, G18, G13, G12, and G17_2,
are modeled by instantiation of the sub-transaction patterns,
respectively.

Optimization. During the simulation and verification of the
generated models, we realize that the number of channels is

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 25

Fig. 26 Transformation of the UTRAN specification using U2Transformer

Fig. 27 Excerpt of the UPPCART models for S1L1 from the UPPAAL tool

Table 8 Verification results of the global collision avoidance layer

Property Type UPPAAL Query Pattern Explored
States

Memory
Consump-
tion

Verification
Time

Result

Timeliness A [] not S1L1.miss_deadline 40950261 3054896KB 6161s Satisfied
Timeliness A [] not S2L2.miss_deadline 40950261 3054944KB 6208s Satisfied
Timeliness A [] not S3L3.miss_deadline 40950261 3054888KB 6229s Satisfied
Timeliness A [] not S4E1.miss_deadline 40950261 3054968KB 6178s Satisfied

Atomicity E <> (ATManager.abort_id == 1 &&
ATManager.error_type == CC)

36840129 2988620KB 5687s Satisfied

(ATManager.abort_id == 1 &&
ATManager.error_type == CC)
→ S1G12.trans_def_compensated

40467738 3083780KB 6444s Satisfied

Atomicity E <> (ATManager.abort_id == 2 &&
ATManager.error_type == CC)

36839868 2988480KB 5613s Satisfied

(ATManager.abort_id == 2 &&
ATManager.error_type == CC)
→ S2G12.trans_def_compensated

40470864 3083812KB 6452s Satisfied

Isolation A [] not (IsolationObserver1.isolation_phenomenon ||
IsolationObserver1.isolation_phenomenon ||
IsolationObserver1.isolation_phenomenon ||
IsolationObserver1.isolation_phenomenon ||
IsolationObserver1.isolation_phenomenon ||
IsolationObserver1.isolation_phenomenon)

40950261 3057276KB 6165s Satisfied

large, which causes very long time for UPPAAL to reach a
conclusion. For instance, we have a matrix of channels for
write locks, whose number is a multiplication of the num-
ber of transactions and the number of data. This contributes
greatly to the state space, which results in extremely long
verification time. Therefore, we have performed a few opti-
mizations in the TA models. First, we merge the begin oper-
ation with the write operation in each sub-transaction. This

is because the delays between these two operations are neg-
ligible (in milliseconds) compared with the mission time (in
hundreds or thousands of seconds). This way, we can re-
duce the channels related to the begin operations. Second,
since within each sequence, only one sub-transaction can be
executed at any time, we therefore use the sequence ID to
identify its sub-transactions in the channels. This consider-
ably reduces the number of channels without changing the

26 Simin Cai et al.

semantics of the models. For instance, the number of chan-
nels for write locks is now a multiplication of the number
of sequences and the number of data, which is significantly
smaller than using separate transaction ID’s. Both the orig-
inal and the optimized UPPCART models are presented in
our online repository [12].

6.1.3 Verification of the Global Layer

We verify the optimized models against the requirements us-
ing the UPPAAL model checker (version 4.1.19). The veri-
fication PC is equipped with an Intel i7-4800MQ CPU (2.70
GHz, 8 cores), 16GB memory, and Ubuntu 16.04 (64-bit).
The verification results, presented in Table 8, show that the
current design satisfies all imposed requirements.

6.2 Local Collision Avoidance Layer

The local collision avoidance layer allows a vehicle to move
around an obstacle in its way, by monitoring the surround-
ings using a camera, a sensor and a lidar. Timely update and
access of the surrounding data, as well as correct reaction
to the detection of obstacles, are crucial to the safety of the
vehicle. The data and all related transactions are listed in Ta-
ble 9. In our case, these data are stored in the vehicle’s local
DBMS, and updated periodically by transactions Update-
Camera, UpdateSensor, and UpdateLidar respectively. An-
other transaction MoveVehicle reads these data, and checks
if any obstacle occurs. If the path is clear, the vehicle moves
forward for a period of time, and commits the transaction. If
an obstacle occurs, the MoveVehicle transaction is aborted,
after which a compensation AvoidObstacle is started to move
around the obstacle, and updates a log with the obstacle po-
sition for the future updates of vehicle paths.

Similar to the design of the global layer, we specify the
local layer in UTRAN, as presented in Fig. 28. Each trans-
action in Table 9 is specified as an activity stereotyped with
«Transaction» (or «Compensation» for AvoidObstacle), with
their properties specified in the attached «TemporalCorrect-
nessSpecification» and «AtomicitySpecification». We gen-
erate the UPPAAL models from this UTRAN specification
using our tool. The complete specifications and the TA mod-
els are presented in our online repository [12].

The verification results of the local collision avoidance
layer are listed in Table 10. The desired atomicity and tem-
poral correctness properties are satisfied by the current de-
sign, according to the verification results.

7 Related Work

Researchers have made a number of efforts in the speci-
fication of transaction-based systems and their properties.

Among them, ASSET [23] and KALA [24] specify flexi-
ble transaction models with procedural languages, in which
operations and AR mechanisms are specified using primi-
tives provided by the languages. ReflecTS [25] allows spec-
ification of various ACID properties of flexible transaction
models. Compared to these works, our supports specifica-
tion of temporal correctness for transactions and transaction
sequences, and the selection of CC algorithms. Several high-
level description languages opt for extending UML with el-
ements related to the topic. In the real-database profile pro-
posed by Marouane et al. [26], the authors extend MATRE
for real-time database systems and incorporate timing prop-
erties such as transaction timeliness. However, neither trans-
action sequence nor atomicity or isolation are their focus.
Unified Transaction Modeling Language (UTML) [27] and
its extension [28] extend UML for transactions with vari-
ous selection of the ACID properties. In these works, atom-
icity and isolation are treated as monolithic properties re-
spectively, rather than a spectrum of variants. Temporal cor-
rectness of transactions and transaction sequences is not ad-
dressed.

Some influential work include the Business Process Ex-
ecution Language (BPEL) [29], the Business Process Model
and Notation (BPMN) [30], and their decedents. Both BPEL
and BPMN are XML-based, high-level description languages
for specifying business processes, which can be considered
as a flexible transaction model with various atomicity op-
tions. Rollback and compensation can be specified at trans-
action level and for internal activities. Invocation dependen-
cies between transactions are also supported by these lan-
guages. Charfi et al. [31] and Sun et al. [32] introduce ex-
tra concepts for transactions to BPEL, which allow explicit
specification of atomicity policies. Compared with their work,
our proposed profile can specify variants of isolation for a
group of transactions, as well as timing properties for trans-
actions and transaction sequences. Watahiki et al. [33] pro-
pose to strengthen BPMN with temporal constraints, and
generate UPPAAL models for verification. Isolation and CC
are out of the scope of this framework.

As for formal modeling and analysis of transaction prop-
erties, the ACTA framework [34] specifies transaction mod-
els in first order logic and allows for formal reasoning. Derks
et al. [13] propose to model and verify transactions with
atomicity variants in Petri nets. Gallina [7] uses higher-order
logic to specify transaction properties, which can be for-
mally analyzed by the Alloy tool. A number of formal lan-
guages for transaction models have been discussed by Gal-
lina [7]. However, these frameworks are restricted in the for-
mal specification and analysis of ACID, while timeliness,
especially the impact of CC and abort recovery mechanisms
on the time, are not included. In a more recent work, Liu et
al. [35] model a transaction model using Maude, and analyze
only properties regarding logical consistency. Lanotte et al.

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 27

Table 9 Transactions in the local collision avoidance layer

Transaction Description Period Deadline Atomicity Temporal Correctness
UpdateCamera Write camera 200ms 150ms When MoveVehicle is aborted,

execute AvoidObstacle for
compensation immediately.

The absolute validity intervals of
camera, sensor and lidar are
400ms. The relative validity
interval of the group {camera,
sensor, lidar} read by
MoveVehicle is 400ms.

UpdateSensor Write sensor 200ms 150ms
UpdateLidar Write lidar 200ms 150ms
MoveVehicle Read camera, snesor and lidar,

If no obstacles, move forward
1200ms. Otherwise, abort.

2000ms 2000ms

AvoidObstacle Move around the obstacle.
Write log.

Fig. 28 Excerpt of the UTRAN specification for the local layer using the Papyrus tool

[36] propose a timed-automata-based language for long run-
ning transactions with timing constraints. Committing pro-
tocols for atomicity variants can be modeled and analyzed.
In contrast to these works, our work provides a formal frame-
work for modeling transactions together with abort recovery
and CC mechanisms, in which atomicity, isolation, tempo-
ral correctness, as well as their impacts on each other, can
be analyzed in a unified framework. Our recent work [37]
proposes the UPPCART-SMC framework, which models the
transaction system as stochastic timed automata, and applies
statistical model checking [38] to analyze the same proper-
ties as we do in this paper. Although UPPCART-SMC avoids
the state explosion problem and thus can analyze large sys-
tems, it only provides probabilistic assurance of the prop-
erties. On the contrary, UPPCART in this paper applies ex-
haustive model checking and provides a formal guarantee of
the properties.

Pattern-based techniques have been considered useful in
modeling real-time systems with timed automata. Dong et
al. [39] propose a set of TA patterns for common timing

constraints, such as delay and deadline. Mekki et al. [40]
introduce TA observer patterns for time-related requirement
in UML statecharts. Étienne André [41] proposes a set of
TA observer patterns for timing constraints and behaviors
of real-time systems. In our work, we also apply pattern-
based techniques to model real-time transactions. We pro-
vide a formal definition of patterns and pattern-based mod-
eling in our context. Our patterns are not only used to model
time-related behaviors and observe timing properties, but
also used to specify transaction management mechanisms
and capture data inconsistency.

8 Conclusions and Future Work

In this paper, we have presented a high-level specification
language that extends our previously proposed UTRAN pro-
file. In addition to the specification of transactions with atom-
icity, isolation and temporal correctness properties, the ex-
tended UTRAN profile also supports specification of trans-

28 Simin Cai et al.

Table 10 Verification results of the local collision avoidance layer

Property
Type

UPPAAL Query Pattern Explored
States

Memory Con-
sumption

Verification
Time

Result

Timeliness A [] notUpdateCamera.miss_deadline 6752 45872KB 0.13s Satisfied
Timeliness A [] notUpdateSensor.miss_deadline 6752 45872KB 0.14s Satisfied
Timeliness A [] notUpdateLidar.miss_deadline 6752 45872KB 0.14s Satisfied
Timeliness A [] notMoveV ehicle.miss_deadline 6752 45872KB 0.13s Satisfied
Absolute
Validity

A [] (camera.age ≤ 40) 6821 45872KB 0.2s Satisfied

Absolute
Validity

A [] (sensor.age ≤ 40) 6821 45872KB 0.19s Satisfied

Absolute
Validity

A [] (lidar.age ≤ 40) 6821 45872KB 0.2s Satisfied

Relative
Validity

A [] ((MoveV ehicle.finish_readCamera ||MoveV ehicle.
finish_readSensor ||MoveV ehicle.finish_readLidar)
imply (camera.age− sensor.age ≤ 40&&
camera.age− lidar.age ≤ 40&& sensor.age− lidar.age ≤ 40
&& sensor.age−camera.age ≤ 40&& lidar.age−sensor.age ≤ 40
&& lidar.age− camera.age ≤ 40))

39804 45872KB 1.62s Satisfied

Atomicity E <> (ATManager.abort_id == 4 &&
ATManager.error_type == USER)

3675 28976KB 0.03s Satisfied

(ATManager.abort_id == 4 &&
ATManager.error_type == USER)
→MoveV ehicle.trans_imme_compensated

25008 43084KB 0.16s Satisfied

action sequences and their timing constraints. We have also
extended our previously proposed UPPCART framework, a
pattern-based formal framework that models transactions in
UPPAAL timed automata, with counterparts for transaction
sequences.

We have proposed a formal definition of pattern-based
construction of UPPCART models, based on which we are
able to provide a mapping between the UTRAN elements
and UPPCART patterns, and automate the transformation
from UTRAN to UPPCART. Designers can specify the trans-
actions in UML diagrams with UTRAN using existing UML
editors, and transform them into formal models that can be
rigorously analyzed by UPPAAL. The automated transfor-
mation is supported by our tool U2Transformer.

We also have performed an industrial use case that in-
volves collision avoidance of autonomous vehicles via trans-
action management. In the case study, we applied UTRAN
to specify the transactions in the system, and transformed
them into UPPCART models using U2Transformer. The de-
sired atomicity, isolation and temporal correctness proper-
ties were successfully verified by UPPAAL model checker.
A lesson learned from the use case is that, the automatically
generated models can be further optimized according to the
application semantics. By reducing, for instance, the num-
ber of channels, the models may achieve much smaller state
space and result in much shorter verification time and lower
memory consumption. This is important for large systems
since we use exhaustive model checking for the analysis.
Such optimization, admittedly, requires knowledge in for-
mal modeling with UPPAAL. Nevertheless, our proposed

tool automation greatly reduces the efforts to construct the
formal models.

One of our future work is to develop a better tool chain
that integrates specification, model generation and verifi-
cation, which are currently realized in separate tools. Se-
lection between UPPCART and UPPCART-SMC, based on
heuristics such as verification time or memory consumption,
may also be supported by too automation in the future. An-
other future work is to incorporate the verification of the
user-defined functions for different transaction management
mechanisms, which are encoded in C, and can be verified
using existing program verifiers.

Acknowledgment

The Swedish Research Council (VR) is gratefully acknowl-
edged for supporting this research by the project “Adequacy-
based Testing of Extra-Functional Properties of Embedded
Systems”.

References

1. J. Gray, A. Reuter, Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann Publishers Inc., 1992.

2. R. A. Elmasri, S. B. Navathe, Fundamentals of Database Systems,
Addison-Wesley Longman Publishing Co., Inc., 2004.

3. S. Han, et al., On co-scheduling of update and control transac-
tions in real-time sensing and control systems: Algorithms, analy-
sis, and performance, IEEE Transactions on Knowledge and Data
Engineering 25 (2013) 2325–2342.

Specification and Automated Verification of Atomic Concurrent Real-Time Transactions: Extended Report 29

4. S. Cai, B. Gallina, D. Nyström, C. Seceleanu, Customized real-
time data management for automotive systems: A case study, in:
The 43rd Annual Conference of the IEEE Industrial Electronics
Society, 2017, pp. 8397–8404.

5. K. Ramamritham, Real-time databases, Distributed and Parallel
Databases 1 (2) (1993) 199–226.

6. J. A. Stankovic, et al., Misconceptions about real-time databases,
Computer 32 (6) (1999) 29–36.

7. B. Gallina, Prisma: a software product line-oriented process for
the requirements engineering of flexible transaction models, Ph.D.
thesis, University of Luxembourg (2010).

8. S. Cai, B. Gallina, D. Nyström, C. Seceleanu, Specification and
formal verification of atomic concurrent real-time transactions, in:
The 23rd IEEE Pacific Rim International Symposium on Depend-
able Computing, 2018.

9. The unified modeling language specification version 2.5.1, Stan-
dard, OMG, accessed on: 2019-01-09.
URL https://www.omg.org/spec/UML/2.5.1/

10. K. Larsen, et al., Uppaal in a nutshell, International Journal on
Software Tools for Technology Transfer 1 (1997) 134–152.

11. Object constraint language version 2.4, Standard, OMG, accessed
on: 2019-01-09.
URL https://www.omg.org/spec/OCL/2.4

12. S. Cai, The code repository, accessed on: 2019-08-30. Password:
SOSYM2019.
URL https://www.idt.mdh.se/personal/sica/
sosym/

13. W. Derks, J. Dehnert, P. Grefen, W. Jonker, Customized atomicity
specification for transactional workflows, in: The Proceedings of
the 3rd International Symposium on Cooperative Database Sys-
tems for Advanced Applications, 2001, pp. 140–147.

14. A. Adya, et al., Generalized isolation level definitions, in: Pro-
ceedings of the 16th International Conference on Data Engineer-
ing, 2000, pp. 67–78.

15. ISO/IEC 9075:1992 Database Language SQL, Standard, Interna-
tional Organization for Standardization.

16. N. Soparkar, et al., Adaptive commitment for distributed real-time
transactions, in: Proceedings of the third Conference on Informa-
tion and Knowledge Management, 1994, pp. 187–194.

17. R. K. Abbott, H. Garcia-Molina, Scheduling real-time transac-
tions: A performance evaluation, ACM Transactions on Database
Systems 17 (1992) 513–560.

18. Uml profile for marte specification version 1.1, Standard, OMG.
URL https://www.omg.org/spec/MARTE/1.1/

19. R. Milner, Communication and concurrency, Vol. 84, Prentice hall
New York etc., 1989.

20. E. M. Clarke, et al., Automatic verification of finite-state concur-
rent systems using temporal logic specifications, ACM Transac-
tions on Programming Languages and Systems 8 (2) (1986) 244–
263.

21. S. Cai, B. Gallina, D. Nyström, C. Seceleanu, A formal approach
for flexible modeling and analysis of transaction timeliness and
isolation, in: Proceedings of the 24th International Conference on
Real-Time Networks and Systems, 2016, pp. 3–12.

22. J.-M. Mottu, B. Baudry, Y. Le Traon, Model transformation test-
ing: oracle issue, in: 2008 IEEE International Conference on Soft-
ware Testing Verification and Validation Workshop, IEEE, 2008,
pp. 105–112.

23. A. Biliris, S. Dar, N. Gehani, H. Jagadish, K. Ramamritham, As-
set: A system for supporting extended transactions, in: ACM SIG-
MOD Record, Vol. 23, 1994, pp. 44–54.

24. J. Fabry, T. D’Hondt, Kala: Kernel aspect language for advanced
transactions, in: Proceedings of the 2006 ACM Symposium on
Applied Computing, 2006, pp. 1615–1620.

25. A.-B. Arntsen, R. Karlsen, Reflects: a flexible transaction service
framework, in: Proceedings of the 4th workshop on Reflective and
adaptive middleware systems, ACM, 2005, p. 4.

26. H. Marouane, C. Duvallet, A. Makni, R. Bouaziz, B. Sadeg, An
uml profile for representing real-time design patterns, Journal of
King Saud University-Computer and Information Sciences.

27. G. Nektarios, S. Christodoulakis, Utml: Unified transaction mod-
eling language, in: Proceedings of the 3rd International Confer-
ence on Web Information Systems Engineering, 2002, pp. 115–
126.

28. D. Distante, G. Rossi, G. Canfora, S. Tilley, A comprehensive de-
sign model for integrating business processes in web applications,
International Journal of Web Engineering and Technology 3 (1)
(2006) 43–72.

29. Web services business process execution language version 2.0,
Standard, OASIS.
URL http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

30. Business process model and notation specification version 2.0,
Standard, OMG.
URL https://www.omg.org/spec/BPMN/2.0/

31. A. Charfi, B. Schmeling, M. Mezini, Transactional bpel processes
with ao4bpel aspects, in: Fifth European Conference on Web Ser-
vices, 2007, pp. 149–158.

32. C.-a. Sun, E. el Khoury, M. Aiello, Transaction management
in service-oriented systems: Requirements and a proposal, IEEE
Transactions on Services Computing 4 (2) (2011) 167–180.

33. K. Watahiki, F. Ishikawa, K. Hiraishi, Formal verification of
business processes with temporal and resource constraints, in:
IEEE International Conference on Systems, Man, and Cybernet-
ics, 2011, pp. 1173–1180.

34. P. K. Chrysanthis, K. Ramamritham, Synthesis of extended trans-
action models using acta, ACM Transactions on Database Systems
19 (1994) 450–491.

35. S. Liu, P. C. Ölveczky, M. R. Rahman, J. Ganhotra, I. Gupta,
J. Meseguer, Formal modeling and analysis of ramp transaction
systems, in: Proceedings of the 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 1700–1707.

36. R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, A. Troina, Mod-
eling long-running transactions with communicating hierarchical
timed automata, in: Formal Methods for Open Object-Based Dis-
tributed Systems, Springer, 2006, pp. 108–122.

37. S. Cai, B. Gallina, D. Nyström, C. Seceleanu, Statistical model
checking for real-time database management systems: a case
study, in: Proceedings of the 24th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), IEEE, 2019.

38. A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen,
J. Van Vliet, Z. Wang, Statistical model checking for networks
of priced timed automata, in: International Conference on Formal
Modeling and Analysis of Timed Systems, Springer, 2011, pp. 80–
96.

39. J. S. Dong, P. Hao, S. Qin, J. Sun, W. Yi, Timed automata patterns,
IEEE Transactions on Software Engineering 34 (6) (2008) 844–
859.

40. A. Mekki, M. Ghazel, A. Toguyeni, Validating time-constrained
systems using uml statecharts patterns and timed automata ob-
servers, in: 3rd International Workshop on Verification and Evalu-
ation of Computer and Communication Systems, 2009.

41. É. André, Observer patterns for real-time systems, in: 2013 18th
International Conference on Engineering of Complex Computer
Systems, IEEE, 2013, pp. 125–134.

42. R. Alur, D. L. Dill, A theory of timed automata, Theoretical com-
puter science 126 (2) (1994) 183–235.

43. A. Zarras, V. Issarny, A framework for systematic synthesis of
transactional middleware, in: Middleware’98, 1998, pp. 257–272.

