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Abstract—Stereo vision cameras are flexible sensors due to
providing heterogeneous information such as color, luminance,
disparity map (depth), and shape of the objects. Today, Convo-
lutional Neural Networks (CNNs) present the highest accuracy
for the disparity map estimation [1]. However, CNNs require
considerable computing capacity to process billions of floating-
point operations in a real-time fashion. Besides, commercial
stereo cameras produce huge size images (e.g., 10 Megapixels
[2]), which impose a new computational cost to the system.
The problem will be pronounced if we target resource-limited
hardware for the implementation. In this paper, we propose
DenseDisp, an automatic framework that designs a Siamese
neural architecture for disparity map estimation in a reasonable
time. DenseDisp leverages a meta-heuristic multi-objective explo-
ration to discover hardware-friendly architectures by considering
accuracy and network FLOPS as the optimization objectives. We
explore the design space with four different fitness functions to
improve the accuracy-FLOPS trade-off and convergency time of
the DenseDisp. According to the experimental results, DenseDisp
provides up to 39.1x compression rate while losing around 5%
accuracy compared to the state-of-the-art results.

Index Terms—Stereo Vision, Deep Learning, Multi-Objective
Optimization, Neural Architecture Search

I. INTRODUCTION

Stereo cameras are multi-modal vision sensors that are
capable to simultaneously extract relative position of 3D
objects, color, and luminance. Therefore, stereo cameras are
attractive for many applications such as dynamic perception
of surrounding environment in autonomous systems. CNNs
form the skeleton of visual recognition, image segmentation,
and decision making due to providing high accuracy, and ease
of usability. CNNs are favorable for stereo vision tasks when
the classification accuracy is considered. However, processing
CNN-based stereo vision needs huge computing capacity
which is extremely challenging for real-time constraints and
resource-limited hardware. Reasons are ever-evolving nature
of CNNs, containing up to billions of floating-point opera-
tions, and producing high-resolution images by modern stereo
cameras.

Many efforts have been devoted to improve the imple-
mentation efficiency of CNNs [2], [3] by tweaking hyper-
parameters of a CNN architecture because optimizing the
CNN architecture strongly effects accuracy, inference time,
generalization proficiency and memory footprint [3]. Thus,
several architecture and training hyper-parameters, such as
network activation functions and learning rate, should be tuned
in advanced. However, manual optimization is inefficient due
to requiring expertise and considerable trial-and-error.

Recently, Neural Architecture Search (NAS) [4], [5] shows
promising results in relieving us from manual tweaking hyper-
parameters. Unfortunately, most of the NAS methods have
huge computing demands [6], [2] leading them to only be
applicable on small-scale classification tasks with few training
hours, e.g., CIFAR [7]. Several works proposed different
techniques to boost the efficiency of NAS such as HyperNet
[8], [9], weight sharing [10], accuracy prediction [3], and
network transformation [11], [12]. Although these techniques
have some advantages (see Section II), complex architectures
with large-scale datasets, such as Siamese neural network, is
still neglected in research studies.

In this paper, we introduce DenseDisp, a multi-objective
NAS framework that discovers hardware-friendly architectures
by considering network accuracy and total number of floating-
point operations (FLOPS) in the entire network as the explo-
ration objective. The reason of considering network FLOPS as
an implicit representation of hardware resources is the exist-
ing strong correlation between network FLOPS and network
inference time (R2 = 0.8888, pvalue < 0.0015) and network
energy consumption (R2 = 0.9641, pvalue < 0.0001) [13], [3].
DenseDisp directly explores the Siamese architectural space
(see Section III-A) by leveraging Simulated Annealing (SA)
as a fast, but cost-efficient meta-heuristic exploration method.
The main reason of DenseDisp’s performance is the single
solution based nature of SA, while for example the genetic
algorithm is relatively slow due to a population based opti-
mization. However, the quality of our explorations is highly
dependent on the SA fitness function. To this end, we propose
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Fig. 1: A bird’s-eye view of the DenseDisp framework. The DenseDisp block represents the flow-chart of SA as the exploration
algorithm.

four different fitness functions to assess their impact on the
exploration speed and discovering efficiency. Fig. 1 depicts
an overview of the DenseDisp framework. The input of the
DenseDisp consists of two synchronized stream of images
received from the stereo camera, while the output is a dense
Siamese architecture to be executed on a resource constraint
hardware in real-time.

Paper Contributions. The main contributions of this paper
is listed below;
• We introduce a fast multi-objective exploration frame-

work, named DenseDisp, that designs Siamese architec-
tures for large-scale tasks in a reasonable time (2 end-to-
end GPU-days).

• We propose a dynamic design space by coding the
architecture as a list of operational nodes with a variable
size (the minimum size of design space is 2010).

• DenseDisp considers the accuracy and the network
FLOPS as the exploration objectives. DenseDisp is able
to optimize an architecture for a wide range of hardware
platforms due to considering a hardware-independent
objective (network FLOPS).

• Finally, we compare DenseDisp with state-of-the-art dis-
parity estimation methods to investigate which method
provides higher accuracy-FLOPS trade-off with less ex-
ploration time. According to the experimental results,
DenseDisp has a positive impacts on the landscape of
optimizing high accurate disparity estimation for the
real-time applications on resource-limited platforms. For
example, autonomous robots with limited battery life are
among the applications that potentially gain from the
DenseDisp framework.

II. RELATED WORK

Recently, NAS has been achieved impressive results in many
machine learning tasks. We categorize NAS research in three
different classes according to their employed optimization
methods: evolutionary algorithms (EA), reinforcement learn-
ing (RL) based approaches, and the efforts on optimizing CNN
for disparity estimation. Plus, we review papers using multiple-
objective optimization and handcrafted resource-aware archi-
tectures.

A. Reinforcement Learning Based Methods

RL-based NAS is composed of two basic components,
a controller and the REINFORCE method. The controller
which is usually based on Long short-term memory (LSTM),
tries to generate the model descriptions of neural networks,
e.g., kernel stride, kernel size, Batch Normalization. The
REINFORCE method is responsible for updating controller
weights by giving reward, e.g., accuracy, to the sampled
architectures. [14] proposed a breakthrough method that uses
a recurrent neural network (RNN) to design layer-wise archi-
tecture options trained by RL to maximize the accuracy of
the generated architectures over the CIFAR-10 dataset. Later
works follow a similar pipeline. NASNet [15] uses a modular
exploration space to reduce the expensive exploration cost of
the large datasets, e.g. ImageNet. NASNet first learns a basic
architectural cell for a small-scale dataset, then it transfers
it to a large-scale dataset by stacking together multiple cell
copies. NASNet also introduced a new regularization tech-
nique which improve the generalization proficiency of the
searched architectures. ENAS improves the low exploration
speed of NAS by proposing a weight sharing scheme across
child models during the NAS process [10]. [12] proposed
an efficient NAS by reusing the current network weights in
exploring new architectures for decreasing a large amount of
the exploration cost. [16], [17] used Q-learning for updating
the controller weights. The aforementioned methods only
focus on accuracy improvement and the network resource
utilization at the inference time is neglected. Recently, several
proposed works try to improve accuracy while considering
resource constraints as an exploration objective in order to
design lightweight architectures. ProxylessNAS [6] directly
explores the architectures for large-scale datasets while con-
sidering architecture latency. Plus, it proposes a path-level
pruning scheme for decreasing high memory consumption of
the conventional RL-based NAS algorithms. MNasNet [18]
considers resource constraints in rewards explicitly. MNasNet
leverages a novel factorized hierarchical exploration space to
make a good balance between flexibility and exploration size.
Most of the RL-based NAS still suffer from the prohibitive
computational demand (e.g., [15] needs thousand GPU-days)
which leads them to utilize proxy tasks, such as training



on a smaller dataset [14], [19], or training just for a few
epochs [20]. However, compared to DenseDisp, the requiring
exploration cost of RL-based NAS is unimaginable even
in dreams (DenseDisp directly explores a architecture space
with the minimum size of (2010) in less than 2 GPU days).
AutoDispNet [21] is the contemporary work to DenseDisp
architecture. AutoDispNet is an efficient NAS for large-scale
encoder-decoder architecture. To the best of our knowledge,
AutoDispNet is the only NAS method optimizing disparity
estimation. DenseDisp provides faster search compared to
AutoDispNet while exploring a bigger space with conflicting
objectives (see Section VI-A).

B. Evolutionary Methods

EA have a longer record in optimizing neural architecture
[22]. In general, the best set of architectures is extracted in
each iteration by using a ”mutation” operation over a popula-
tion of candidates. Several works rely on EA including [23],
[24], [3], [2], [25], [26], [27]. In addition, many works utilize
a multi-objective exploration considering resource budget and
classification accuracy [27], [26], [3], [2]. Unfortunately, EA-
based methods need enormous high-performance computing
clusters (hundreds of GPU days), therefore, its usage is prohib-
ited in poor budget circumstances. Moreover, they limit their
usage to small learning tasks. Although DenseDisp is classi-
fied as an EA-based method, it solves existing weaknesses
by proposing a simple single solution based optimization.
In addition, DenseDisp addresses the impact of exploration
objective on the quality of results (see Section VI).

C. Handcrafted Resource-Aware Models

Many handcrafted architectures have been proposed in order
to obtain high accurate results on resource constraint devices.
[28], [29] proposed IGCV models that generalize interleaved
group convolutions to improve the sparsity of the structured
kernels with the same model complexities. MobileNet [30]
proposes inverted residual block to provide a trade-off between
computational costs and accuracy. ShuffleNet [31] employs
depth-wise convolution to reduce the model size while provid-
ing comparable accuracy level. [32] proposes CondenseNet, a
novel combination of dense connectivity with learnable group
convolution for improving the computational efficiency of
DenseNet [33]. Although above architectures provide signifi-
cant results, their design process is highly time-consuming and
needs expertise. In addition, tweaking the hyper-parameters
of these architectures, e.g., learning rate and weight decay,
requires huge trial-and-errors. In comparison, DenseDisp is
an automatic NAS which designs network architectures in a
reasonable time without requiring any prior knowledge such
as using optimized blocks extracted from small-scale tasks.

III. EXPLORATION SPACE

A. Siamese Network Architecture

In general, Siamese neural network is a learning model
that instead of directly classifying an image, tries to learn
the similarity of two input images. It represents the stronger

dissimilarity with distance a target as well. Siamese neural
networks consist of two exact sub-networks (NW (X)) which
are parameterized by W . Siamese sub-networks share identical
weights to measure the similarity between two input data
(X1,X2). The goal of network training is to find W values in
which the Euclidean distance d(X1,X2) = |NW (X1)−NW (X2)|
becomes minimized for the similar input data. The Siamese
neural network is selected as flexible baseline architecture
for disparity estimation where each sub-network processes the
left or the right input image data (Fig. 2). [34] also utilized
Siamese network for stereo vision task. However, instead of
using a hand-crafted design, we leveraged NAS to find effi-
cient Siamese sub-networks (NW (X)) in terms of classification
accuracy and the hardware resource budget represented by
total number of network FLOPS. The Siamese architecture
uses a simple inner product layer as the last layer to join the
two network branches (NW (X1),NW (X2)) leading to decrease
computation time. In this paper, we assume the image pairs are
rectified, thus, the epipolar lines are aligned with the horizontal
image axis. For training the architecture, [34] uses a small left
image patches that were sequentially extracted from a set of
pixels in which ground truth is available for them. While the
size of the left image patch is equal to the network’s receptive
field, a bigger patch is used for the right image by expanding
possible disparities and the size of the receptive field. These
two patches are passed as input to the network for computing
the score of each disparity range (typically 128 or 256). The
Softmax activation function is then applied to the output of
inner product layer over all possible disparities.
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Fig. 2: A general overview of the Siamese neural architec-
ture. NW (X) is the changing part of the network during the
exploration.

B. Representation of CNN Exploration Space
We represent the exploration space by using a single

directed list as the genotype where each node in the list
acts the basic operations of the network. Fig. 3 illustrates a
generic example of the genotype coded by a list of operations,
named List A. Let us assume List A has N columns. In this
representation, genotype is a flexible-length representation,
where the size of N varies during the network evolution due
to employing convolutional layers with the Valid padding and
passive nodes. In this representation, passive nodes are defined
as the operational nodes that are not involved in the processing
flow (Op#2 in Fig. 3).

Inspired from [2], We defined twenty one different opera-
tions including batch normalization, and all the combinations
of Convolution 2D specified in Table I. We cannot use Pooling
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Fig. 3: A generic example of a genotype representing a CNN
architecture in the search space.

layer because the size of feature maps in each dimensions
should be odd. Here, we briefly present the procedure of
constructing an architecture by stacking the network opera-
tions. First, we fill List A with random operations selected
from Table I. In our experiments, the initial size of N is 10
columns. Afterwards, we connect the jth column’s node to
the ( j−1)th column’s node in the list. Then, we connect the
output feature maps received from the last node in the List A
(Nod#5 in Fig. 3) to the output node. The passive nodes are not
involved in this procedure. DenseDisp supports two different
mutation operations including: 1© swapping operations of two
random nodes and 2© replacing the operation of an active
node with a valid operation shown in the Table I. The size
of exploration space depends on the length of List A in the
genotype. The length of List A could be varied after mutation
since DenseDisp supports convolution 2D nodes with Valid
padding. Therefore, calculating the exact size of exploration is
impossible. However, the minimum size of exploration space
is 2010 if the length of the lists does not change when we
have only convolution 2D operations with the Same padding.
Obviously, the size of exploration space is much bigger.

TABLE I: The Specification of Node Operations.

Node Operation Value

Parameter
padding {Same, Valid}

Convolution 2D filter size {32, 64}
kernel size {3×3,5×5,7×7,9×9,11×11}

Batch Normalization -

IV. EXPLORATION

NAS is an NP-hard problem with an exponential time
complexity. Thus, there is no polynomial optimization method
to find the exact solution in a reasonable time. Exhaustive
exploration methods for finding global optimum is unfeasible
even for small exploration spaces. For example, [35] requires
around 334 GPU days to exhaustively explore an exploration
space with only 8000 points. Besides the complexity of the
exploration space, evaluation of each architecture is time-
consuming due to the huge training time. DenseDisp utilizes a
meta-heuristic exploration in order to deal with the complexity
of the NAS problem.

Algorithm 1: Pseudo-Code of the DenseDisp Explo-
ration

Input: Training dataset, training and exploration
configurations listed in Table III, exploration space
configuration: List A, and valid node operations specified
in Table I.
Result: Specification of an optimized Siamese
architecture. DenseDisp Exploration (Input)
j := random initial architecture;
Initialize Boltzmann’s constant k, reduction factor c, and
temperature T
TFactor :=−log(TMax/TMin);
Step := 0;
while termination criterion is not satisfied do

Step += 1;
j′ := Mutate( j);
if Energy( j′)< Energy( j) then

j := j′;
else

random r(0,1)
∆ := Energy( j′)−Energy( j);
if r < exp(−∆/(k×T )) then

j := j′;
end if

end if
T := TMax× exp(TFactor× (Step/StepTotal));

end while
return j

Exploration Method. In this paper, we used multi-objective
Simulated Annealing (SA) as exploration method [36]. SA is
a probabilistic single solution based optimization. SA is a fast
optimization compared to population-based evolutionary opti-
mizations such as genetic algorithm, and particle swarm op-
timization. SA works based on emulating the cooling process
of a solid to eventually find a low-energy state. Algorithm 1
presents the pseudo-code of the DenseDisp exploration.

SA iteratively explores for a solution with fewer exploration
objective value. Similar to the fitness function in genetic
algorithm, exploration objective describes the optimality of a
solution. If a reduction in exploration objective is found, the
current solution is replaced with the new generated neighbour,
otherwise the current solution is maintained. To avoid becom-
ing trapped in a local optimum, SA sometimes accepts a bad
solution which increases the value of exploration objective.
The acceptance or rejection of a bad solution is dependent on
a sequence of random numbers with a controlled probability.
The acceptance probability is set to exp(−∆/(k×T )) where T
is the controlling parameter. T is the temperature inspired by
the physical annealing process which is decreased logarithmic
based on the predefined maximum and minimum temperatures
(TMax and TMin). Thus, SA starts with a high value of T (TMax)
for preventing being prematurely trapped in a local optimum.
Most uphill moves will be rejected by approaching T toward



TMin. SA proceeds until no further improvements can be found
or it will be terminated after a certain amount of iterations.
Although SA theoretically may fail to find an optimal solution
for a given budget, the experimental results demonstrate that it
succeeds to find a near-optimal solution in a reasonable time
(end-to-end 2 GPU days).

We use Equation 1 and Equation 2 to calculate the ex-
ploration objective. Normalizing the domain of multiple ob-
jectives is the main difficulty for designing the exploration
objective. In Equation 1, the Size Factor parameter is a proxy
on the network size, where higher Size Factor can be inferred
from dense architecture with few FLOPS. Max FLOPS is the
total number of FLOPS for the largest possible designed archi-
tecture which is dependent to maximum the size of genotype.
In this paper, we consider Max FLOPS equal to 18.7× 106

with assuming genotype with 10 columns. In Equation 2,
The Energy parameter is the exploration objective designed
to be in the range of 0 to 1. The α parameter is a practical
coefficient which determines the intensity of compression.
DenseDisp discovers accurate-oriented architectures for large
α values, while more dense architectures will be designed
by decreasing the value of the α parameter. In the rest of
paper, the terms ”Energy” and ”exploration objective” are used
interchangeably.

The convergency speed of our proposed method is highly
dependent on the proper selection of the α parameter. There-
fore, we consider four different scenarios with different α

values to assess the impact of tweaking the exploration objec-
tive (Energy). Table II presents these four different scenarios
considered in the experiments. Scenario 1 stands for a
balanced exploration when dense and accurate architectures
have equal selection chance. In scenario 2 , DenseDisp tips
the balance slightly in favor of accurate architectures. Unlike
scenario 2 , DenseDisp moves toward discovering more dense
architectures in scenario 3 . In Scenario 4 , DenseDisp gives
an award to the architectures with accuracy more than 0.5
in order to improve the convergence by give more chance of
success to accurate architectures.

Size Factor =
Max FLOPS−FLOPS

Max FLOPS
(1)

Energy= (α×Accuracy)+((1−α)×(1−Size Factor)) (2)

TABLE II: Specification of scenarios considered in the ex-
periments with different α values to tweak the exploration
objective.

Scenario Value

1 α = 0.50
2 α = 0.56
3 α = 0.44

4
α = 0.44

if Accuracy > 0.5 then Energy+= 0.1

V. EXPERIMENTAL SETUP

KITTI-2015 [37] is a dataset of real world images that
consist of 200 training and 200 test stereo pairs with the
dimensions of height 376 pixels and width 1240 pixels.
Compared to gray-scale images of KITTI-2012, KITTI-2015
directly processes on the RGB data. In this paper, we used the
KITTI-2015 dataset for the the evaluations. Inspired by [3], we
define the Lookahead E poch as the number of required train-
ing epochs for partially evaluating each architecture during the
exploration step. Using partial evaluation for predicting the
superiority of each network, trained by #Lookahead E poch,
can highly accelerate the procedure of evaluating architectures.
In this paper, we consider Lookahead E poch equal to 500
epochs since we can have 82% of maximum loss reduction
after 500 epochs as shown in Fig. 4 (the loss reduction for the
best model during the full training is illustrated in Fig. 4).
Table III summarizes the setup of experiments utilized for
the full training and exploration steps. Finally, we stop the
exploration procedure if it cannot find any energy reduction
after 10 iterations.
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Fig. 4: The proceeding of the loss function during the full
training of the final optimized DenseDisp architecture (Ta-
ble IV).

VI. EVALUATION

In this section, we evaluate the performance of DenseDisp
on the KITTI-2015 dataset, and compare it with state-of-
the-art solutions. Disparity Estimation Performance, Infer-
ence/Exploration Speed, Analyzing Exploration Scenarios, Ex-
ploration Convergency, and Mutation Pattern of Dominant
Node Operations are recorded as the evaluation metrics over
different exploration scenarios.

A. Disparity Estimation Performance

Table IV shows the accuracy of our DenseDisp archi-
tecture compared to existing networks. We select the best
accuracy-FLOPS trade-off for the full training generated by
the fourth scenario. Our DenseDisp architecture achieves
90.03% accuracy with 0.56 second inference time and 1.03M
parameters/1.56M multiply-adds (FLOPS), achieving a higher
accuracy-FLOPS trade-off for resource constraint disparity



TABLE III: The setup configuration of the training and explo-
ration steps.

Full-Training Parameters Value
Activation Function Relu

# Epochs 4000
Batch Size 128

Disparity Range 128
Optimizer AdaGrad

Learning Rate (lr) 0.01 and if (epoch>2400) then
lr = lr/5 after each 800 epochs

Exploration Parameters Value

# Lookahead Epoch 500
Batch Size 8

Total Steps (StepTotal) 50000
Boltzmann’s Constant k 1.3807×10−23J ·K−1

Max Temperature (TMax) 25000
Min Temperature (TMin) 2.5

Hardware Configuration Value

GPU Nvidia GTX 2080
GPU Memory 11 GB

System Memory 64 GB

estimation. We observed that the median filter can significantly
refine the intensity of the output disparity map (providing
2% accuracy enhancement). Median filter is an effective
anon-linear digital filtering method that can be leveraged for
reducing impulsive noises without smoothing the image edges
[39]. In this paper, we applied a simple 2D median filter with
a filter size of 15× 15 pixels on the output of DenseDisp
(Table IV).

DenseDisp provides 3.2×/3× faster inference time com-
pared to GA-Net-deep as the most accurate network, while
loses 8.16%/6.09% accuracy without/with considering median
filter, respectively. In comparison with AutoDispNet-BOHB-
C as an automatically designed architecture, DenseDisp
has 39.91× more network compression rate, while loses
7.79%/5.81% accuracy without/with considering median filter,
respectively. It should be considered that unlike AutoDispNet-
BOHB-C, we did not use any post optimization on the model
hyper-parameters to improve the accuracy of the designed
architecture. In terms of exploration time, DenseDisp runs 24×
faster optimization time (exploration + full training) which
significantly outperforms AutoDispNet framework.

B. Analyzing Exploration Scenarios

Fig. 6 pictures the error-FLOPS trade-off between im-
proved architectures (solutions with successful mutation) over
different exploration objective scenarios. Scenario 1 pro-
vides better balance between FLOPS and Error compared
to a accurate-oriented exploration (Scenario 2 ) and dense-
oriented exploration (Scenario 3 ). Scenario 2 presents more
accurate results with more FLOPS compared to Scenario 3 .
Scenario 4 (α = 0.44 + Award) outperforms compared to
other exploration scenarios due to eliminating weak solutions.
In addition, Scenario 4 fins more improved architectures
over exploration time by escaping from local optima. The
architecture with the best trade-off selected for the final full
training is indicated by a green circle in Fig. 6.
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Fig. 6: FLOPS-error trade-off over different exploration sce-
narios. The green circle indicates the best designed architecture
by DenseDisp selected for final full training.

C. Exploration Convergency

Fig. 5 illustrates the proceeding of FLOPS, Accuracy, and
Energy over exploration iterations for the improved archi-
tectures (solutions with successful mutation). According to
Fig. 5.a, in all the scenarios we find solutions with continuous
reduction in FLOPS. On the other hand, DenseDisp does not
necessarily approach toward improving accuracy (Fig. 5.b).
Fig. 5.c shows the convergency of the exploration objective
(Energy) guaranteeing that DenseDisp is always approaching
toward improved solutions by decreasing the Energy level of
improved architectures.

D. Analyzing Mutation Pattern of the Dominant Node Oper-
ations

Fig. 7 presents the contribution of each node operations
(scenario 4 ) in the discovered solutions over proceeding of
the exploration method. Obviously, the kernel with size 5×5
and the Same padding (Same:5x5) is the dominant operation
in the first random initial solution (iteration=1). However, the
kernel with size 3×3 and the Valid padding (Valid:3x3) shows
promising results by occupying more than 60% of nodes after
180 iterations. It means that DenseDisp selects Valid:3x3 as
a superior operation since a small kernel size can extract the
tiny features of the image which is extremely important for
finding corresponding pixels in two stereo images.

E. Disparity Map Outputs

Fig. 8 shows the results of CNN-based disparity estimation
produced by DenseDisp (with/without median filtering).

VII. CONCLUSION

Directly solving the NAS problem on large scale tasks such
as KITTI-2015 is highly expensive, as each architecture takes
days to converge. Although many existing approaches perform
architecture exploration on smaller tasks such as CIFAR-10,
using small proxy tasks is not efficient when the architecture
size is taken into account [18]. In this paper, we first present
a varying exploration space to provide a vast options for
network selection. Then, we performed a direct architecture



TABLE IV: Comparing DenseDisp with other state-of-the-art methods on KITTI-2015 dataset.

Architecture Accuracy (%) Params FLOPS Exploration Compression Exploration Cost GPU H.W.
D1−all ×106 ×106 Method Rate† (%) (GPU Days) Latency (Sec.) Platform

AutoDispNet-BOHB-C†[21] 97.82 37 61 RL 1 42 - 1x GTX 1080ti
Content-CNN [34] 95.46 7 2 Hand-Crafted 35.5 - 1 1x Titan Xp
GA-Net-deep [38] 98.19 - - Hand-Crafted - - 1.8 1x Tesla P40
DenseDisp (Ours) 90.03 1.03 1.56 Meta-heuristic 39.1 2 0.56 1x GTX 2080
DenseDisp + Median Filter (Ours) 92.01 1.03 1.56 - 39.1 2 0.6 1x GTX 2080
† The baseline for comparing the compressing rate. Our considerable results are in green cells.
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Fig. 5: Convergency of the (a) Accuracy, (b) FLOPS, and (c)
Energy parameters.

Fig. 7: Analyzing dominance pattern of each node operation
(Table I) in the mutated architectures over proceeding the
search iterations.

exploration since utilizing the pre-learnt cells in exploring new
architectures for new task is not guaranteed to be efficient [6].
Third, we consider the network FLOPS along with accuracy
as the exploration objectives to discover architectures with
balanced FLOPS-accuracy trade-off for resource-constraint
hardware.
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