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The DPAC profile establishes a leading 
research profile targeting dependable 
platforms for autonomous systems and 
control, hosted at Mälardalen University. 
DPAC is organized through close col-
laboration and interaction between sev-
eral research groups at MDH and a set 
of participating industrial companies. 
The profile will leverage our solid track 
record of close cooperation to conduct 
excellent research, knowledge transfer, 
and support commercialization with in-
dustrial partners. DPAC shall create syn-
ergy effects between the partners and a 
significant increase in coproduction is to 
be expected. 

The ultimate goal of the DPAC profile is 
to establish a nationally leading and in-
ternationally renowned research centre 
that facilitate close cooperation between 
academia and industry to achieve a sig-
nificant increase in research and avail-
able knowhow on advanced dependable 
platforms for embedded systems. Em-
bedded computer systems are nowadays 
incorporated in many kinds of products 
including many mission critical applica-
tions such as trains, autonomous util-
ity vehicles, aviation, smart grid power 
management etc. These systems offer 
advanced functionality and serve an im-
portant role for the competitiveness of 

companies and the future national and 
global infrastructure. The scientific and 
technical results of DPAC will support 
future innovation by providing depend-
able platforms that can be used to effi-
ciently realize dependable, reliable and 
safe electronically controlled products. 

About DPAC
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This spring we opt to share information be-
tween DPAC partners using a newsletter 
instead of the previously planned DPAC 
spring summit,  which  was  canceled 
due to Covid-19.  The newsletter  high-
lights what is currently ongoing and has 
been achieved in each of the four main 
threads of work in DPAC: The unified 
demonstrator and  the  three subpro-
jects. In addition  to these main activi-
ties, the DPAC core-team is preparing for 
an industrial research school organized 
around DPAC’s main topics and a unify-
ing use-case to which each student’s pro-
ject can contribute. 

During 2019 DPAC  underwent a half-
time evaluation  by  the KK Foundation. 
The evaluation was a success and DPAC 
secured support for the second 
phase which started during fall of 2019 
and  will continue until  fall  2023.  Dur-
ing its first phase, DPAC produced 189 sci-
entific publications and employed 25 re-
searchers. We organized  7  summits, 
where all DPAC partners from  the 
12  participating  companies and MDH 
participated. The summits typically run 
for 25 hours and include both scientific 
and  inspirational lectures, as well as, 
plenty of time for social interaction and 

networking.  In addition, the DPAC pro-
file have grown to include over 25 addi-
tional research projects.  

DPAC will continue as planned, with re-
searchers and industrial partners work-
ing together towards dependable plat-
forms for autonomous systems and 
control, and  as soon as times allow, 
we  will continue with organizing sum-
mits and other joint events.

Welcome to the DPAC 
Newsletter for spring 2020

In phase 2 DPAC will extend its scope to system of systems, implying (e.g.): the systems will be made up from more than one 
node (i.e., they will be distributed systems); the systems need to be able to collaborate with each other (and with humans) to-
wards a common goal; and techniques for system verification and validation has to be extended to manage not only one complex 
system, but also a system of interconnected systems. System of systems are becoming more common and are often associated 
with variable degrees of autonomy that introduces new research challenges described in the respective work packages below. 

The fundamental direction of research performed in phase 1, remains for phase 2 of DPAC and we will continue to organize the 
profile around the demonstrator and three research areas with one project for each area. 

P1: PREDICTABILITY AND DEPENDABILITY IN PARALLEL  
ARCHITECTURES: This area addresses challenges in de-
signing predictability and dependability in parallel archi-
tectures for dependable electronic platforms and chal-
lenges in developing dependable and predictable software 
platforms that execute on such electronic platforms.   
Contact: Saad Mubeen, saad.mubeen@mdh.se

P2: AUTONOMOUS SYSTEMS AND CONTROL:  This area  ad-
dresses  challenges with respect to  achieving dependability 
in autonomous systems. We specifically target control inten-
sive systems that should operate in a dependable, reliable, and 
safe way without a human operator providing detailed control. 
Contact: Mikael Ekström, mikael.ekstrom@mdh.se 

P3: DESIGN METHODOLOGIES: This area addresses chal-
lenges associated with design methodologies used for 
developing dependable platforms and systems. It in-
cludes methodologies to capture and validate correct sets 
of requirements and design assurance, and it addresses 
how we can simplify the complex dependable embed-
ded system models and make analysis more tractable. 
Contact: Håkan Forsberg, hakan.forsberg@mdh.se

DEMONSTRATOR:  This area addresses the design  and imple-
mentation of a predictable  autonomous wheel loader, which 
acts  as  the  unifying use case in DPAC. The wheel loader is 
based on applying  selected results of the research conducted 
in P1, P2, and P3, with respect to dependable architectures, au-
tonomous intelligent algorithms,  and design methodologies. 
Contact: Cristina Seceleanu, cristina.seceleanu@mdh.se

All DPAC publications can be found via the  
DPAC homepage: http://www.es.mdh.se/dpac/
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About DPAC
The DPAC profile establishes a leading research profile targeting dependable platforms for autonomous 
systems and control, hosted at Mälardalen University. DPAC is organized through close collaboration 
and interaction between several research groups at MDH and a set of participating industrial 
companies. The profile will leverage our solid track record of close cooperation to conduct excellent 
research, knowledge transfer, and support commercialization with industrial partners. DPAC shall 
create synergy effects between the partners and a significant increase in coproduction is to be expected.
The ultimate goal of the DPAC profile is to establish a nationally leading and internationally renowned 
research centre that facilitate close cooperation between academia and industry to achieve a significant 
increase in research and available knowhow on advanced dependable platforms for embedded systems. 
Embedded computer systems are nowadays incorporated in many kinds of products including many 
mission critical applications such as trains, autonomous utility vehicles, aviation, smart grid power 
management etc. These systems offer advanced functionality and serve an important role for the 
competitiveness of companies and the future national and global infrastructure. The scientific and 
technical results of DPAC will support future innovation by providing dependable platforms that can be 
used to efficiently realize dependable, reliable and safe electronically controlled products.
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In phase 2 DPAC will extend its scope to system of systems, implying (e.g.): the systems will be made 
up from more than one node (i.e., they will be distributed systems); the systems need to be able to 
collaborate with each other (and with humans) towards a common goal; and techniques for system 
verification and validation has to be extended to manage not only one complex system, but also a 
system of interconnected systems. System of systems are becoming more common and are often 
associated with variable degrees of autonomy that introduces new research challenges described in 
the respective work packages below.
The fundamental direction of research performed in phase 1, remains for phase 2 of DPAC and we 
will continue to organize the profile around the demonstrator and three research areas with one 
project for each area. 

This spring we opt to share information between DPAC partners using a newsletter instead of 
the previously planned DPAC spring summit, which was canceled due to Covid-19. The 
newsletter highlights what is currently ongoing and has been achieved in each of the four main threads of 
work in DPAC: The unified demonstrator and the three subprojects. In addition to these main activities, 
the DPAC core-team is preparing for an industrial research school organized around DPAC’s main 
topics and a unifying use-case to which each student’s project can contribute.

During 2019 DPAC underwent a halftime evaluation by the KK Foundation. The evaluation was a success 
and DPAC secured support for the second phase which started during fall of 2019 and will continue 
until fall 2023. During its first phase, DPAC produced 189 scientific 
publications and employed 25 researchers. We organized 7 summits, where all DPAC partners from the 
12 participating companies and MDH participated. The summits typically run for 25 hours and include 
both scientific and inspirational lectures, as well as, plenty of time for social interaction and networking. In 
addition, the DPAC profile have grown to include over 25 additional research projects.

DPAC will continue as planned, with researchers and industrial partners working together towards 
dependable platforms for autonomous systems and control, and as soon as times allow, we will continue 
with organizing summits and other joint events.
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P1: Predictability and dependability in parallel 
architectures:
This area addresses challenges in designing 
predictability and dependability in parallel 
architectures for dependable electronic platforms and 
challenges in developing dependable and predictable 
software platforms that execute on such electronic 
platforms.
Contact: Saad Mubeen,
saad.mubeen@mdh.se

P2: Autonomous systems and control:
This area addresses challenges with respect 
to achieving dependability in autonomous systems. 
We specifically target control‐intensive systems that 
should operate in a dependable, reliable, and safe way 
without a human operator providing detailed control.
Contact: Mikael Ekström,
mikael.ekstrom@mdh.se

P3: Design methodologies:
This area addresses challenges associated with 
design methodologies used for developing 
dependable platforms and systems. It includes 
methodologies to capture and validate correct sets 
of requirements and design assurance, and it 
addresses how we can simplify the complex 
dependable embedded system models and make 
analysis more tractable.
Contact: Håkan Forsberg,
hakan.forsberg@mdh.se

Demonstrator:
This area addresses the design and implementation 
of a predictable autonomous wheel loader, which 
acts as the unifying use case in DPAC. The wheel 
loader is based on applying selected results of the 
research conducted in P1, P2, and P3, with respect 
to dependable architectures, autonomous intelligent 
algorithms, and design methodologies.
Contact: Cristina Seceleanu,
cristina.seceleanu@mdh.se

All DPAC publications can be 
found via the DPAC homepage:
http://www.es.mdh.se/dpac/

Welcome to the DPAC Newsletter for spring 2020
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P1: Predictability & Dependability in Distributed Parallel Architectures
Improving on-board data processing using CPU-GPU heterogeneous 

architectures for Real-Time Systems

Nandinbaatar Tsog’s Licentiate 
thesis, Mälardalen University, 
Västerås, December 18, 2019.

Unibap’s collaboration with
MDH on heterogeneous
computing for space
environment is enabling
cloud computing in-orbit.
Unibap is working with the
European Space Agency to
standardize SpaceCloud™
services for cloud computing
on space missions. This
include intelligent data
processing and data storage
and management similarly
to ground based cloud
computing.

Heterogeneous 
computing takes 
the cloud higher 
and into space

Figures and corresponding 
material courtesy of Unibap AB.

The alternative executions of parallel
segment eliminates the bottleneck
caused by overuse of accelerators
such as GPUs. Our preliminary
results indicate that up to 90% of
improvement in the schedulability of
task sets can be achieved as
compared to traditional use of
parallel segments.

Characterization of Shared Resource Contention in Multi-core Systems

Methods for finding performance 
bottlenecks of algorithms due to 
shared resource contention
We investigate parallelization bottlenecks of
parallel fork-join versions of feature
detection algorithms. In collaboration with
Ericsson, we developed methods utilizing
performance counters that pinpoints
performance bottlenecks that happens as a
consequence of shared resource contention.

A technique for alternative 
execution of parallel 
segments in 
heterogeneous 
architectures

DenseDisp: A Multi-Objective Search Method for Improving the Accuracy of 
Disparity Estimation on Heterogeneous Platforms
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Methods for partitioning systems to
mitigate shared resource contention
In collaboration with ENEA, we investigated
the jailhouse hypervisor – a virtualization
technique used isolate local resources such
as CPU and local caches. We furthermore
developed a last-level cache partitioning
controller using the PALLOC framework in
collaboration with Ericsson to optimize
cache partition assignments.
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Stereo cameras are multi-modal vision sensors
which can extract depth information (disparity
map). Neural networks provide the most accurate
disparity map results. However, execution of neural
vision algorithms needs huge computing capacity
which is extremely challenging for real-time
constraints and resource-limited heterogeneous
hardware. DenseDisp proposes a multi-objective
and fast Neural Architecture Search (NAS) method
that discovers hardware-friendly neural networks by
considering network accuracy and network
floating-point operations as the search objective.
DenseDisp also deploys the optimized neural
network on a wide range of heterogeneous
multi/many-core platforms such as Intel® NC2,
Nvidia Jetson TX2, Google TPU, and FPGA. The
figures illustrate the results of DenseDisp for
predicting the distance of objects for autonomous
vehicles. Our results indicate that DenseDisp
provides up to 9.4x faster execution time while
losing only 5% accuracy compared to the state-of-
the-art results on heterogeneous many-core
platforms.

P1 -PREDICTABILITY & DEPENDABILITY IN DISTRIBUTED PARALLEL ARCHITECTURES
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sing using CPU-GPU heterogeneous 
architectures for Real-Time Systems
Nandinbaatar Tsog’s Licentiate thesis,  
Mälardalen University, Västerås,  
December 18, 2019.

A technique for alternative execution of parallel segments in  
heterogeneous architectures
The alternative executions of parallel segment eliminates the bottleneck caused 
by overuse of accelerators such as GPUs. Our preliminary results indicate that up 
to 90% of improvement in the schedulability of task sets can be achieved as com-
pared to traditional use of parallel segments.

Heterogeneous computing takes the cloud higher and into space
Unibap’s collaboration with MDH on heterogeneous computing for space environ-
ment is enabling cloud computing in-orbit. Unibap is working with the European 
Space Agency to standardize SpaceCloud™ services for cloud computing on space 
missions. This include intelligent data processing and data storage and management 
similarly to ground based cloud computing.

Figures and corresponding material courtesy of Unibap AB.
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segment eliminates the bottleneck
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results indicate that up to 90% of
improvement in the schedulability of
task sets can be achieved as
compared to traditional use of
parallel segments.

Characterization of Shared Resource Contention in Multi-core Systems

Methods for finding performance 
bottlenecks of algorithms due to 
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We investigate parallelization bottlenecks of
parallel fork-join versions of feature
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performance bottlenecks that happens as a
consequence of shared resource contention.
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developed a last-level cache partitioning
controller using the PALLOC framework in
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cache partition assignments.

D
is

p
ar

it
y 

M
ap

E
rr

or
 M

ap

Stereo cameras are multi-modal vision sensors
which can extract depth information (disparity
map). Neural networks provide the most accurate
disparity map results. However, execution of neural
vision algorithms needs huge computing capacity
which is extremely challenging for real-time
constraints and resource-limited heterogeneous
hardware. DenseDisp proposes a multi-objective
and fast Neural Architecture Search (NAS) method
that discovers hardware-friendly neural networks by
considering network accuracy and network
floating-point operations as the search objective.
DenseDisp also deploys the optimized neural
network on a wide range of heterogeneous
multi/many-core platforms such as Intel® NC2,
Nvidia Jetson TX2, Google TPU, and FPGA. The
figures illustrate the results of DenseDisp for
predicting the distance of objects for autonomous
vehicles. Our results indicate that DenseDisp
provides up to 9.4x faster execution time while
losing only 5% accuracy compared to the state-of-
the-art results on heterogeneous many-core
platforms.

Characterization of Shared Resource 
Contention in Multi-core Systems
Methods for finding performance bottle-
necks of algorithms due to shared resource 
contention

We investigate parallelization bottlenecks of 
parallel fork-join versions of feature detec-
tion algorithms. In collaboration with Erics-
son, we developed methods utilizing perfor-
mance counters that pinpoints performance 
bottlenecks that happens as a consequence 
of shared resource contention.

Methods for partitioning systems to mitigate shared 
resource contention
In collaboration with ENEA, we investigated the jailhouse 
hypervisor – a virtualization technique used isolate local 
resources such as CPU and local caches. We furthermore 
developed a last-level cache partitioning controller using 
the PALLOC framework in collaboration with Ericsson to 
optimize cache partition assignments.

DenseDisp: A Multi-Objective Search Method for Improving the  
Accuracy of Disparity Estimation on Heterogeneous Platforms
Stereo cameras are multi-modal vision sensors which can 
extract depth information (disparity map). Neural networks 
provide the most accurate disparity map results. However, 
execution of neural vision algorithms needs huge comput-
ing capacity which is extremely challenging for real-time 
constraints and resource-limited heterogeneous hardware. 
DenseDisp proposes a multi-objective and fast Neural Ar-
chitecture Search (NAS) method that discovers hardware-
friendly neural networks by considering network accuracy 
and network floating-point operations as the search objec-
tive. DenseDisp also deploys the optimized neural network 
on a wide range of heterogeneous multi/many-core plat-
forms such as Intel® NC2, Nvidia Jetson TX2, Google TPU, 
and FPGA. The figures illustrate the results of DenseDisp 
for predicting the distance of objects for autonomous ve-
hicles. Our results indicate that DenseDisp provides up to 
9.4x faster execution time while losing only 5% accuracy 
compared to the state-of-the-art results on heterogeneous 
many-core platforms.
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Dependable multi-path planning with obstacle avoidance for multiple robotic agents

Navigation and path planning is one of the grand challenges in robotics. It has implication 
for robotic applications in numerous cases in the professional and civil settings including 
autonomous driving, autonomous control, automated warehouse systems, etc. The main 
aim here is to build a dependable, i.e. safe, reliable and effective, path planning algorithm 
for a group of fully autonomous robots that share their working space with humans. In 
this project, path planning for multiple co-existing robots is combined with moving obsta-
cle avoidance to develop congestion control. The objective is to implement fault tolerance 
and to ensure safe navigation of robots to avoid collisions with operators, other robots and 
moving objects in working environment. So far, successful implementation of the dipole 
flow field for obstacle avoidance and Petri Net for fault tolerance analysis and congestion 
control algorithms has been implemented and demonstrated. Dependable attributes of 
proposed algorithms have been evaluated in the Gazebo simulator. In addition, the algo-
rithms have been implemented and tested with the robotic operating system (ROS) and 
real robots (Husqvarna, TurtleBot3, etc.) as well.

Autonomous agent architecture for testing the multi-path planning algorithm

The core modules and their functions are Map generation 
for 2-D binary maps with static objects and obstacles, Path 
initialization for the path from start to destination, Static 
flow field configuration for driving the agent back to the  
designed path, Collision avoidance for agents and Velocity 
planning for adapting the agent’s velocity to the environ-
ment. There are also external modules: Sensor data collec-
tion gathers information from the environment, the inter-
nal model based on the changes in the environment are 
managed and applied to the control commands in Update, 
The Object classification module receives the data from the 
Sensor data collection module to determine which objects 
in the environment that are static objects and which ones 
are moving objects

Visualisation of an agent with kinematic 
parameters and human from (A) a real 
world space in (B) a 2D mapping space, 
and (C) a simplified visualization used in 
the proposed work.

P2 -AUTONOMOUS SYSTEMS AND CONTROL
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Path simulating, multi-robotic agent orchestration, and mission monitoring and supervision

The Mission management tool (MMT) is a unifying visualisation and interaction tool for critical multi-robot missions. It allows an 
operators to manage complex mission through vehicle configuration, multi-agent plan generation, during the mission monitor-
ing as well as intervention. The MMT is thus critical for improving the situational awareness of the operators. In DPAC, the MMT 
also functions as the interface to the software solutions for simulations and generation of dependable paths for multi-robots in 
complex environments. The MMT allows plug-in solutions for example map integration, and communication with mobile solu-
tions. It is also integrated with generic unmanned aerial vehicles. For demonstration purposes a DJI Mavic Air 2 is used.

MMT - Mission view
Main functionalities are path simulation and path generation (Pro-
ject 3), task-level path planning. orchestration, monitoring

Main Toolbar (1): Provides access to general tools and functions.

Mission Explorer (2): This panel contains all the mission data 
and relationship between them. The operator will define mission 
goals by dragging and dropping mission items into this panel.

Locations, Tasks and Vehicles (3): Contains a list of all user-
defined locations, tasks and vehicles.

Properties (4): Provides a list of all user-definable properties that 
a selected object (location, vehicle, task) might have. This can be 
used by the operator to for example change a specific task param-
eter, or the colour used to represent a region on the map.

Plan Outline (5): A Gantt chart that presents all the missions, 
both the ones that are running in real time as well as the ones 
planned for the future

Map & Map Tools (6): Provides a map of the area and tools to 
mark points or regions of interest. The mission plan, vehicle loca-
tions, and visualizations of some mission results can be overlaid 
on this panel.

MMT - Asset view 

The asset management view helps 
to visualise how the assets/vehicles 
have moved during the course of a 
mission or a working day. Informa-
tion on speed, fuel, etc. can be seen 
to contribute to the operator’s situa-
tion awareness.

MMT - Data visualisation view

This view allows visualisation and 
analysis of data collected from in-
door and outdoor sensors pre-, dur-
ing, and post-mission. It also allows 
visualisation of fused data, or data 
from other resources.

P2 -AUTONOMOUS SYSTEMS AND CONTROL
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P3: Design methodologies

Fault-Tolerant Deep Neural Networks 
for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications
requires a reliable and secure platform but also a reduction of systematic
faults, e.g., design faults in both hardware and software. In previous
research, we have suggested the use of Overarching Properties (intent,
correctness and acceptability) together with assurance cases to argument
that assurance objectives can be met for future computing platforms,
including those based on machine learning.

Consider for instance the scenario of an aircraft to perform machine vision-
guided approach. In this case, it is of high importance not to mix a highway for
a runway. Once the aircraft is approaching the runway it is more important to
detect obstacles even if they are incorrectly classified rather than not detecting
them at all (it is of little importance whether we detect a motorcycle or a truck
on the landing strip). We believe diverse redundant systems are needed to
cope with the scenarios above. These systems may or may not include the time
domain (i.e. history of classified objects and moving targets) and may consist
of deterministic or statistical monitors. Additional redundant architectures
may be necessary for symmetric faults.

A graphical presentation of an 
assurance case. The top-level 
claim (leftmost) is decomposed 

until each sub-claim can be 
substantiated by evidence. The 

argument part consists of 
strategies used to decompose 

claims and sub-claims. 

A reliable and secure DNN backed up with diverse fault 
tolerant architectures, each specified for a task such as 

detecting transients in the DNN, adversarial attacks, data 
input distortions, untrained input data, reduced false 

negatives or false positives

In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can
be used to perform a structured hazard analysis, along with a method to elicit safety
requirements (called Safety Requirements Elicitation approach, in short SARE) based on
the ontology. Even though the ontology is general, in the sense that it can be applied to
various types of systems, it was however developed primarily for traditional single
systems. As a result, SARE is used to discover the safety requirements that mitigate the
hazards identified for these systems. In the second phase of DPAC we have applied the
ontology on the quarry use-case to evaluate if the ontology can be used on System of
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports
the common characteristics of those systems and that we are able to identify emergent
hazards. We have also proposed a method to abstract system descriptions to further
facilitate the use of the ontology on SoS, and to capture the safety requirements that
mitigate hazards in this kind of systems. The safety requirements, elicited through SARE,
are specified in a way so that they can easily be translated into formal verification
methods. In addition, with the help of our industrial partners we are continuing our work
on tool support that will facilitate the use of the ontology.

Hazard Analysis, Requirements 
Elicitation and Validation

Verification-Driven Iterative Development of Cyber-
Physical System
We used an iterative and incremental approach to 
build formally verified models. The actor-based 
textual modeling language, Rebeca, with model 
checking support is used for formal 
verification. Starting from structured requirements 
and system architecture design, the behavioral 
models, including Rebeca codes, are built.

Properties of interest are also derived from the 
structured requirements, and then model checking is 
used to formally verify the properties.
This process can be performed in iterations until 
satisfaction of desired properties are ensured, and 
possible ambiguities and inconsistencies in 
requirements are resolved. The formally verified 
models can then be used to develop the executable 
code.

The Rebeca codes include the details of the signals 
and messages that are passed at the network level 
including the timing and this facilitates the 
generation of executable code.

Timed Rebeca is an 
extension of the Reactive 
Object Language, Rebeca, 
and is designed for 
modeling and verification 
of distributed, concurrent 
and event-driven 
asynchronous systems 
with timing constraints. 
Timed Rebeca is 
supported by a model 
checking tool.

Guided approach – an example of multiple different 
object detection scenarios

TAMAA: Timed Automata Based Mission Planner 
for Multiple Autonomous Agents

Mission planning for autonomous agents (e.g., vehicles,
mobile robots, etc.) involves path planning and task
scheduling. While path planning is supported by some
algorithms, e.g., Dijkstra, A*, Theta* algorithms, its
correctness needs to be guaranteed in the context of
autonomous agents. Task scheduling is a well-known NP-
hard problem that remains outstanding for decades
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for
multiple agents to solve this problem, namely TAMAA.
This approach is based on a state-of-the-art model checker
for real-time systems, called UPPAAL, and is associated
with a GUI called Mission Management Tool (MMT) that is
developed at Mälardalen University.

The figure above depicts the process of TAMAA method.
First, users specify the requirement of autonomous
vehicles and configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that
represent the movement and task execution of agents,
as well as the monitors for special events are
automatically generated by TAMAA, based on the
information of the environment and tasks (step 3).

These TA models are then verified in the UPPAAL
model checker against the requirements that are
formalized as CTL/TCTL ((Timed) Computation Tree
Logic) queries (step 4). The model checker will
generate witnesses of execution that satisfy or violate
the requirements, which are used to synthesize
mission plans (step 5).

To enable TAMAA to solve multi-agent systems that
contain a large numbers of agents, we adopt
reinforcement learning and manage to synthesize
comprehensive mission plans that consider all
possible execution and movement time of the agents.
In short, a Q-learning algorithm processes the traces
obtained by simulation in UPPAAL, and populates a
Q-table, which is then used to form a new restricted
model.

We show that the method is applicable to complex
scenarios like autonomous quarries, overcoming the
scalability problem that is not solved otherwise.
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In the case of image
classification using DNNs,
correct classification is only
one concern for safety. In
some scenarios it is equally
important to minimize
incorrectly classified images.
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Fault-Tolerant Deep Neural Networks 
for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications
requires a reliable and secure platform but also a reduction of systematic
faults, e.g., design faults in both hardware and software. In previous
research, we have suggested the use of Overarching Properties (intent,
correctness and acceptability) together with assurance cases to argument
that assurance objectives can be met for future computing platforms,
including those based on machine learning.

Consider for instance the scenario of an aircraft to perform machine vision-
guided approach. In this case, it is of high importance not to mix a highway for
a runway. Once the aircraft is approaching the runway it is more important to
detect obstacles even if they are incorrectly classified rather than not detecting
them at all (it is of little importance whether we detect a motorcycle or a truck
on the landing strip). We believe diverse redundant systems are needed to
cope with the scenarios above. These systems may or may not include the time
domain (i.e. history of classified objects and moving targets) and may consist
of deterministic or statistical monitors. Additional redundant architectures
may be necessary for symmetric faults.

A graphical presentation of an 
assurance case. The top-level 
claim (leftmost) is decomposed 

until each sub-claim can be 
substantiated by evidence. The 

argument part consists of 
strategies used to decompose 

claims and sub-claims. 

A reliable and secure DNN backed up with diverse fault 
tolerant architectures, each specified for a task such as 

detecting transients in the DNN, adversarial attacks, data 
input distortions, untrained input data, reduced false 

negatives or false positives

In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can
be used to perform a structured hazard analysis, along with a method to elicit safety
requirements (called Safety Requirements Elicitation approach, in short SARE) based on
the ontology. Even though the ontology is general, in the sense that it can be applied to
various types of systems, it was however developed primarily for traditional single
systems. As a result, SARE is used to discover the safety requirements that mitigate the
hazards identified for these systems. In the second phase of DPAC we have applied the
ontology on the quarry use-case to evaluate if the ontology can be used on System of
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports
the common characteristics of those systems and that we are able to identify emergent
hazards. We have also proposed a method to abstract system descriptions to further
facilitate the use of the ontology on SoS, and to capture the safety requirements that
mitigate hazards in this kind of systems. The safety requirements, elicited through SARE,
are specified in a way so that they can easily be translated into formal verification
methods. In addition, with the help of our industrial partners we are continuing our work
on tool support that will facilitate the use of the ontology.

Hazard Analysis, Requirements 
Elicitation and Validation

Verification-Driven Iterative Development of Cyber-
Physical System
We used an iterative and incremental approach to 
build formally verified models. The actor-based 
textual modeling language, Rebeca, with model 
checking support is used for formal 
verification. Starting from structured requirements 
and system architecture design, the behavioral 
models, including Rebeca codes, are built.

Properties of interest are also derived from the 
structured requirements, and then model checking is 
used to formally verify the properties.
This process can be performed in iterations until 
satisfaction of desired properties are ensured, and 
possible ambiguities and inconsistencies in 
requirements are resolved. The formally verified 
models can then be used to develop the executable 
code.

The Rebeca codes include the details of the signals 
and messages that are passed at the network level 
including the timing and this facilitates the 
generation of executable code.

Timed Rebeca is an 
extension of the Reactive 
Object Language, Rebeca, 
and is designed for 
modeling and verification 
of distributed, concurrent 
and event-driven 
asynchronous systems 
with timing constraints. 
Timed Rebeca is 
supported by a model 
checking tool.

Guided approach – an example of multiple different 
object detection scenarios

TAMAA: Timed Automata Based Mission Planner 
for Multiple Autonomous Agents

Mission planning for autonomous agents (e.g., vehicles,
mobile robots, etc.) involves path planning and task
scheduling. While path planning is supported by some
algorithms, e.g., Dijkstra, A*, Theta* algorithms, its
correctness needs to be guaranteed in the context of
autonomous agents. Task scheduling is a well-known NP-
hard problem that remains outstanding for decades
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for
multiple agents to solve this problem, namely TAMAA.
This approach is based on a state-of-the-art model checker
for real-time systems, called UPPAAL, and is associated
with a GUI called Mission Management Tool (MMT) that is
developed at Mälardalen University.

The figure above depicts the process of TAMAA method.
First, users specify the requirement of autonomous
vehicles and configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that
represent the movement and task execution of agents,
as well as the monitors for special events are
automatically generated by TAMAA, based on the
information of the environment and tasks (step 3).

These TA models are then verified in the UPPAAL
model checker against the requirements that are
formalized as CTL/TCTL ((Timed) Computation Tree
Logic) queries (step 4). The model checker will
generate witnesses of execution that satisfy or violate
the requirements, which are used to synthesize
mission plans (step 5).

To enable TAMAA to solve multi-agent systems that
contain a large numbers of agents, we adopt
reinforcement learning and manage to synthesize
comprehensive mission plans that consider all
possible execution and movement time of the agents.
In short, a Q-learning algorithm processes the traces
obtained by simulation in UPPAAL, and populates a
Q-table, which is then used to form a new restricted
model.

We show that the method is applicable to complex
scenarios like autonomous quarries, overcoming the
scalability problem that is not solved otherwise.
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In the case of image
classification using DNNs,
correct classification is only
one concern for safety. In
some scenarios it is equally
important to minimize
incorrectly classified images.

Hazard Analysis, Requirements Elicitation and Validation
In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can 
be used to perform a structured hazard analysis, along with a method to elicit safety 
requirements (called Safety Requirements Elicitation approach, in short SARE) based 
on the ontology. Even though the ontology is general, in the sense that it can be applied 
to various types of systems, it was however developed primarily for traditional single 
systems. As a result, SARE is used to discover the safety requirements that mitigate the 
hazards identified for these systems. In the second phase of DPAC we have applied the 
ontology on the quarry use-case to evaluate if the ontology can be used on System of 
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports 
the common characteristics of those systems and that we are able to identify emergent 
hazards. We have also proposed a method to abstract system descriptions to further 
facilitate the use of the ontology on SoS, and to capture the safety requirements that 
mitigate hazards in this kind of systems. The  safety requirements, elicited through 
SARE, are specified in a way so that they can easily be translated into formal verifica-
tion methods. In addition, with the help of our industrial partners we are continuing 
our work on tool support that will facilitate the use of the ontology.

Fault-Tolerant Deep Neural Networks for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications requires a 
reliable and secure platform but also a reduction of systematic faults, e.g., design 
faults in both hardware and software. In previous research, we have suggested the 
use of Overarching Properties (intent, correctness and acceptability) together with 
assurance cases to argument that assurance objectives can be met for future comput-
ing platforms, including those based on machine learning.

Claim 1

Claim 1.1

Claim 1.2

Claim 2
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Evidence
A
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A graphical presentation of an assurance 
case. The top-level claim (leftmost) is decom-
posed until each sub-claim can be substanti-
ated by evidence. The argument part consists 
of strategies used to decompose claims and 
sub-claims. 

In the case of image classification using 
DNNs, correct classification is only one 
concern for safety. In some scenarios it 
is equally important to minimize incor-
rectly classified images.

Consider for instance the scenario of an aircraft to perform machine vision-guided 
approach. In this case, it is of high importance not to mix a highway for a runway. 
Once the aircraft is approaching the runway it is more important to detect obstacles 
even if they are incorrectly classified rather than not detecting them at all (it is of 
little importance whether we detect a motorcycle or a truck on the landing strip). 
We believe diverse redundant systems are needed to cope with the scenarios above. 
These systems may or may not include the time domain (i.e. history of classified 
objects and moving targets) and may consist of deterministic or statistical monitors. 
Additional redundant architectures may be necessary for symmetric faults.

Guided approach – an example of mul-
tiple different object detection scenarios

A reliable and secure DNN backed up with 
diverse fault tolerant architectures, each 
specified for a task such as detecting tran-
sients in the DNN, adversarial attacks, data 
input distortions, untrained input data, re-
duced false negatives or false positives
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Fault-Tolerant Deep Neural Networks 
for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications
requires a reliable and secure platform but also a reduction of systematic
faults, e.g., design faults in both hardware and software. In previous
research, we have suggested the use of Overarching Properties (intent,
correctness and acceptability) together with assurance cases to argument
that assurance objectives can be met for future computing platforms,
including those based on machine learning.

Consider for instance the scenario of an aircraft to perform machine vision-
guided approach. In this case, it is of high importance not to mix a highway for
a runway. Once the aircraft is approaching the runway it is more important to
detect obstacles even if they are incorrectly classified rather than not detecting
them at all (it is of little importance whether we detect a motorcycle or a truck
on the landing strip). We believe diverse redundant systems are needed to
cope with the scenarios above. These systems may or may not include the time
domain (i.e. history of classified objects and moving targets) and may consist
of deterministic or statistical monitors. Additional redundant architectures
may be necessary for symmetric faults.

A graphical presentation of an 
assurance case. The top-level 
claim (leftmost) is decomposed 

until each sub-claim can be 
substantiated by evidence. The 

argument part consists of 
strategies used to decompose 

claims and sub-claims. 

A reliable and secure DNN backed up with diverse fault 
tolerant architectures, each specified for a task such as 

detecting transients in the DNN, adversarial attacks, data 
input distortions, untrained input data, reduced false 

negatives or false positives

In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can
be used to perform a structured hazard analysis, along with a method to elicit safety
requirements (called Safety Requirements Elicitation approach, in short SARE) based on
the ontology. Even though the ontology is general, in the sense that it can be applied to
various types of systems, it was however developed primarily for traditional single
systems. As a result, SARE is used to discover the safety requirements that mitigate the
hazards identified for these systems. In the second phase of DPAC we have applied the
ontology on the quarry use-case to evaluate if the ontology can be used on System of
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports
the common characteristics of those systems and that we are able to identify emergent
hazards. We have also proposed a method to abstract system descriptions to further
facilitate the use of the ontology on SoS, and to capture the safety requirements that
mitigate hazards in this kind of systems. The safety requirements, elicited through SARE,
are specified in a way so that they can easily be translated into formal verification
methods. In addition, with the help of our industrial partners we are continuing our work
on tool support that will facilitate the use of the ontology.

Hazard Analysis, Requirements 
Elicitation and Validation

Verification-Driven Iterative Development of Cyber-
Physical System
We used an iterative and incremental approach to 
build formally verified models. The actor-based 
textual modeling language, Rebeca, with model 
checking support is used for formal 
verification. Starting from structured requirements 
and system architecture design, the behavioral 
models, including Rebeca codes, are built.

Properties of interest are also derived from the 
structured requirements, and then model checking is 
used to formally verify the properties.
This process can be performed in iterations until 
satisfaction of desired properties are ensured, and 
possible ambiguities and inconsistencies in 
requirements are resolved. The formally verified 
models can then be used to develop the executable 
code.

The Rebeca codes include the details of the signals 
and messages that are passed at the network level 
including the timing and this facilitates the 
generation of executable code.

Timed Rebeca is an 
extension of the Reactive 
Object Language, Rebeca, 
and is designed for 
modeling and verification 
of distributed, concurrent 
and event-driven 
asynchronous systems 
with timing constraints. 
Timed Rebeca is 
supported by a model 
checking tool.

Guided approach – an example of multiple different 
object detection scenarios

TAMAA: Timed Automata Based Mission Planner 
for Multiple Autonomous Agents

Mission planning for autonomous agents (e.g., vehicles,
mobile robots, etc.) involves path planning and task
scheduling. While path planning is supported by some
algorithms, e.g., Dijkstra, A*, Theta* algorithms, its
correctness needs to be guaranteed in the context of
autonomous agents. Task scheduling is a well-known NP-
hard problem that remains outstanding for decades
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for
multiple agents to solve this problem, namely TAMAA.
This approach is based on a state-of-the-art model checker
for real-time systems, called UPPAAL, and is associated
with a GUI called Mission Management Tool (MMT) that is
developed at Mälardalen University.

The figure above depicts the process of TAMAA method.
First, users specify the requirement of autonomous
vehicles and configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that
represent the movement and task execution of agents,
as well as the monitors for special events are
automatically generated by TAMAA, based on the
information of the environment and tasks (step 3).

These TA models are then verified in the UPPAAL
model checker against the requirements that are
formalized as CTL/TCTL ((Timed) Computation Tree
Logic) queries (step 4). The model checker will
generate witnesses of execution that satisfy or violate
the requirements, which are used to synthesize
mission plans (step 5).

To enable TAMAA to solve multi-agent systems that
contain a large numbers of agents, we adopt
reinforcement learning and manage to synthesize
comprehensive mission plans that consider all
possible execution and movement time of the agents.
In short, a Q-learning algorithm processes the traces
obtained by simulation in UPPAAL, and populates a
Q-table, which is then used to form a new restricted
model.

We show that the method is applicable to complex
scenarios like autonomous quarries, overcoming the
scalability problem that is not solved otherwise.
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In the case of image
classification using DNNs,
correct classification is only
one concern for safety. In
some scenarios it is equally
important to minimize
incorrectly classified images.

Verification-Driven Iterative Development of Cyber-Physical System
We used an iterative and incremental approach to build 
formally verified models. The actor-based textual mod-
eling language, Rebeca, with model checking support is 
used for formal verification. Starting from   structured 
requirements and system architecture design, the be-
havioral models, including Rebeca codes, are built. 

Properties of interest are also derived from the struc-
tured requirements, and then model checking is used 
to formally verify the properties.

This process can be performed in iterations until satis-
faction of desired properties are ensured, and possible 
ambiguities and inconsistencies in requirements are re-
solved. The formally verified models can then be used 
to develop the executable code.

The Rebeca codes include the details of the sig-
nals and messages that are passed at the 

network level including the timing 
and this facilitates the generation 

of  executable code. 

Timed Rebeca is an extension of 
the Reactive Object Language, Re-
beca, and is designed for modeling 
and verification of distributed, 
concurrent and event-driven asyn-
chronous systems with timing con-
straints. Timed Rebeca is supported 
by a model checking tool.

Mission planning for autonomous agents (e.g., vehicles, mobile 
robots, etc.) involves path planning and task scheduling. While 
path planning is supported by some algorithms, e.g., Dijkstra, 
A*, Theta* algorithms, its correctness needs to be guaranteed 
in the context of autonomous agents. Task scheduling is a well-
known NP-hard problem that remains outstanding for decades 
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for mul-
tiple agents to solve this problem, namely TAMAA. This ap-
proach is based on a state-of-the-art model checker for real-
time systems, called  UPPAAL, and is associated with a GUI 
called Mission Management Tool (MMT) that is developed at 
Mälardalen University. 

The figure above depicts the process of TAMAA method. First, 
users specify the requirement of autonomous vehicles and 
configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that repre-
sent the movement and task execution of agents, as well as 
the monitors for special events are automatically generated 
by TAMAA, based on the information of the environment and 
tasks (step 3).

These TA models are then verified in the UPPAAL model check-
er against the requirements that are formalized as CTL/TCTL 
((Timed) Computation Tree Logic) queries (step 4). The model 
checker will generate witnesses of execution that satisfy or 
violate the requirements, which are used to synthesize mis-
sion plans (step 5).

To enable TAMAA to solve multi-agent systems that contain a 
large numbers of agents, we adopt reinforcement learning and 
manage to synthesize comprehensive mission plans that con-
sider all possible execution and movement time of the agents. 
In short, a Q-learning algorithm processes the traces obtained 
by simulation in UPPAAL, and populates a Q-table, which is 
then used to form a new restricted model.

We show that the method is applicable to complex scenarios 
like autonomous quarries, overcoming the scalability problem 
that is not solved otherwise.

TAMAA: Timed Automata Based Mission Planner for Multiple Autonomous Agents
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1 env bbyyttee networkDelayDoor = 3; 
2 env bbyyttee networkDelayTrain = 0; 
3 env bbyyttee reactionDelay = 1; 
4 env bbyyttee passengerPeriod = 5; 
5 env sshhoorrtt runningTime = 233; 
6 env sshhoorrtt atStationTime = 50; 
7 rreeaaccttiivveeccllaassss Controller(23){  
8       kknnoowwnnrreebbeeccss{ 
9      Door door; 
10      Train train; 
11    } 
12       ssttaatteevvaarrss{ 
13       bboooolleeaann isClosed; 
14  bboooolleeaann isLocked; 
15  bboooolleeaann trainStatus; 
16  bboooolleeaann commandToMove; 
17    } 
18    Controller(){ 
19  trainStatus = ttrruuee; 
20  commandToMove = ffaallssee; 
21  isClosed = ffaallssee; 
22  isLocked = ffaallssee; 
23    } 
24 mmssggssrrvv setDoorStatus(bboooolleeaann close, bboooolleeaann lock) { 
25      isClosed = close; 
26  isLocked = lock;  
27  sseellff.driveController(); 
28    } 

29       mmssggssrrvv setTrainStatus(bboooolleeaann status, 
                                                  BBoooolleeaann  isRunning){ 

30  trainStatus = status; 
31  commandToMove = isRunning; 
32  sseellff.driveController(); 
33    }  
34       mmssggssrrvv driveController(){ 
35  iiff(trainStatus){ // leave the station 
36                 iiff(!isClosed || !isLocked) { 
37       iiff(!isClosed)  
38 door.closeDoor() after(networkDelayDoor); 
39        iiff(!isLocked)  

40             door.lockDoor() 
            after(reactionDelay  + networkDelayDoor); 

41       } 
42                 iiff(isClosed && isLocked && !commandToMove)  
43      train.running() after(networkDelayTrain); 
44  }// end of if(trainStatus) 
45  eellssee iiff(!trainStatus){ // arrive to the station 
46      iiff(isClosed || isLocked) { 
47   iiff(isLocked)  
48             door.unlockDoor() after(networkDelayDoor); 
49   iiff(isClosed)  

50 door.openDoor() 
             after(reactionDelay  + networkDelayDoor); 

51      }  } // end of else if(!trainStatus)    
52      } // end of driveController()  
53    } //end of the Controller class  
54 } //end of the Controller class 
55 rreeaaccttiivveeccllaassss Train(5){ 
56       kknnoowwnnrreebbeeccss{  
57  Controller controller;  
58    } 
59       ssttaatteevvaarrss{ 
60  bboooolleeaann status; 
61  bboooolleeaann isRun; 
62    } 
63    Train(){ 
64  status = ttrruuee; 
65  isRun = ffaallssee; 
66      sseellff.leaveStation(); 
67    } 
68       mmssggssrrvv leaveStation(){ 
69  status = ttrruuee; 
70  isRun = ffaallssee; 

71  controller.setTrainStatus(status, isRun) 
      after(networkDelayTrain); 

  

72    }  
73       mmssggssrrvv running(){   
74           isRun = ttrruuee; 

75           controller.setTrainStatus(status, isRun) 
     after(networkDelayTrain); 

76           sseellff.approachStation() after(runningTime);  
77    } 
78       mmssggssrrvv approachStation(){  
79  status = ffaallssee;  
80  isRun = ffaallssee; 

81 controller.setTrainStatus(status) 
after(networkDelayTrain);   

82      sseellff.leaveStation() after(atStationTime);  
83    }  
84 } //end of the Train class  
85 rreeaaccttiivveeccllaassss Door(15){ 
86       kknnoowwnnrreebbeeccss{ 
87  Controller controller; 
88    } 
89       ssttaatteevvaarrss{ 
90  bboooolleeaann isDoorClosed; 
91  bboooolleeaann isDoorLocked; 
92    } 
93    Door(){ 
 94  isDoorClosed = ffaallssee; 
 95  isDoorLocked = ffaallssee; 
 96    } 
 97       mmssggssrrvv closeDoor(){ 
 98  isDoorClosed = ttrruuee;  

 99 controller.setDoorStatus(isDoorClosed, 
isDoorLocked) after(networkDelayDoor); 

100    }  
101       mmssggssrrvv lockDoor(){ 
102  iiff (isDoorClosed){   

         // The door is only locked if the door is closed. 
103     isDoorLocked = ttrruuee; 
104  } 

105 controller.setDoorStatus(isDoorClosed,              
isDoorLocked) after(networkDelayDoor); 

106    } 
107       mmssggssrrvv unlockDoor(){ 
108      isDoorLocked = ffaallssee; 

 109 controller.setDoorStatus(isDoorClosed, 
isDoorLocked) after(networkDelayDoor); 

110    } 
111       mmssggssrrvv openDoor(){ 

         // The door is only opened if the door is not locked. 
112  IIff  (!isDoorLocked){ 
113     isDoorClosed = ffaallssee; 
114  } 

115 controller.setDoorStatus(isDoorClosed, 
isDoorLocked) after(networkDelayDoor);  

116    }  
117 } //end of the Door class  
118 rreeaaccttiivveeccllaassss Passenger(5){ 
119       kknnoowwnnrreebbeeccss{ 
120  Door door; 
121    } 
122    Passenger(){ 
123  sseellff.passengerOpenDoor() after(passengerPeriod); 
124    } 
125       mmssggssrrvv passengerOpenDoor(){ 
126  door.openDoor();  
127  sseellff.passengerOpenDoor() after(passengerPeriod); 
128    } 
129 } //end of the Passenger class 
130 mmaaiinn { 
131       Controller controller(door, train):(); 
132       Door door(controller):();  
133       Train train(controller):();  
134       Passenger passenger(door):(); 
135       } 

  
  
  

 

Assertion1: ( ! ( !door.isDoorClosed && door.isDoorLocked ) );
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Intelligent Path Planning and Collision Avoidance via Dipole Flow Field Technique  
Intelligent Path Planning: We employ the A*/Theta* algorithm to generate an initial shortest path for AWL,  from the starting 
position to the destination. The A* or Theta* algorithm generates smooth paths with few turns, by exploring the map and calcu-
lating the cost of nodes by the function f(n) = g(n) + h(n), where n is the current node being explored, g(n) is the Euclidean dis-
tance from the starting node to n, and h(n) is the estimated cheapest cost from n to the destination. In each search iteration, the 
node with the lowest cost among the nodes that have been explored is selected, and its reachable neighbors are also explored by 
calculating their costs. The iteration is eventually ended if the destination is found or all reachable nodes have been explored.

Dipole Flow Field (DFF) for Collision Avoidance: We model every object as a source of magnetic dipole field, in which the mag-
netic moment is aligned with the moving direction, and the magnitude of the magnetic moment is proportional to the velocity. 
DFF has two components: (i) The static flow field force that attracts the vehicle to its goal, ensuring that the vehicle avoids the 
static obstacles on the map, and (ii) the dynamic dipole field that generates forces that push the vehicle away from the dynamic 
obstacle, once encountered, based on the latter’s respective moving direction and velocity. The obstacle detection relies on data 
collected from AWL sensors and on executing recognition algorithms based on deep learning, to determine the presence of 
obstacles. 

•	 Assume that the shortest path is 
the connection of several line seg-
ments (Figure a).

•	 The static flow field is created 
within the neighbourhood of the 
line segment (Figure b).

•	 The flow field force at a point 𝑝 is 
given by

• Assume that the shortest path is the 
connection of several line segments 
(Figure a).

• The static flow field is created within 
the neighbourhood of the line 
segment (Figure b).

• The flow field force at a point 𝑝  is 
given by

𝑭𝑓𝑙𝑜𝑤 𝒑 = 𝐹𝑎(𝒑) + 𝑭𝑟(𝒑)

      𝐹𝑎(𝒑): Attractive forces to the initial
path
      𝑭𝑟(𝒑 ): Repulsive forces from static
obstacles

Figure a. Figure b.

DEMONSTRATOR
-AUTONOMOUS WHEEL LOADER FROM VOLVO CE

AWL Scenario and Challenges
Scenario: The use case focuses on autonomous wheel loaders (AWLs) that are driver-less vehicles that are utilized to transport 
materials in a quarry site. An AWL digs a given stone pile and carries an amount of stones to a primary crusher that crushes the 
stones at given fractions, after which the crusher unloads the stones onto the conveyor belt. Next, the AWL moves to the other 
end of the conveyor belt and loads the crushed stones. It then continues moving to the secondary crusher to unload the stones, 
which finishes one round in the job cycle.  The AWL must avoid static obstacles (e.g., holes and rocks on the ground) as well as 
possible dynamic obstacles (e.g., other mobile machines or humans), in an optimal manner in order to keep productivity high.  

Design and implementation challenges: 
(i) dependable and accurate algorithms for 
obstacle detection, path planning, and 
collision avoidance (P2), (ii) design-
time verification of requirements 
and analysis of behavior assuming 
unpredictable occurrence of dy-
namic obstacles (P3), (iii) pre-
dictable platform for AWL 
to run the mentioned al-
gorithms (P1), and (iv) 
implementation and 
performance evalua-
tion of the proposed 
algorithms on the 
proposed platform 
(P1, P2, P3).   
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DEMONSTRATOR
-AUTONOMOUS WHEEL LOADER FROM VOLVO CE

Formal Modeling, Verification and Performance Evaluation of AWL Behavior
The AWL has a large set of functional and extra-functional requirements, including end-to-end deadlines for a mission, and 
energy consumption constraints. In order to ensure the dependability of the AWL at design time, we perform the following:

•	 Employ our framework TAMAA (Timed-Automata-based planner for Multiple Autonomous Agents) to automatically gene-
rate mission plans (including path planning and operation scheduling) for the AWL, by automating the generation of for-
mal models as networks of timed automata (TA) or stochastic timed automata (STA),  and integrating the model-checking 
tool (UPPAAL) and the Mission Management Tool (MMT) in one platform (Figure c).

•	 Model and verify the AWL’s behavior (path computation, obstacle avoidance, end-to-end deadlines) with respect to the 
synthesized mission plan, and the A*/Theta* and dipole flow field algorithms encoded in UPPAAL (Figure d). 

•	 Formally verify the safety and performance of the AWL’s behavior under certain adaptive policies and dynamic changes 
encoded in Rebeca, by employing the integrated development environment Afra.  

Implementation of the Path Planning and Dipole Flow Field Algorithms on a Heterogeneous System Architecture 
(HSA)-compliant Reference Platform
To assess the predictability and performance of our solutions, we implement the 
path planning and dipole flow field algorithms on an HSA architecture (Figure f ), 
which uses 4 CPU cores, 6/8 GPU computing units, all on the same chip. We use an 
open source run-time API called Heterogeneous-compute Interface for Portability 
(HIP), with a C++ kernel language. The code is portable on AMD and NVIDIA GPU 
hardware.

Solution: Initialize an attractive force (return_force in Figure g) from the start to the goal points of the path in the map grid. 
Compute the minimum distance, min_dist, in the CPU, and on each generated segment calculate the distance to the goal. This 
is implemented as parallel GPU threads.  

Each GPU thread computes the attractive force only if the distance is lower than min_dist.

The threads synchronize, and only the GPU thread that returns the minimum distance yields the final result to the CPU, the 
rest are masked. 

Figure f.

Figure e.

Figure d.

Figure c.

Demonstrator: Autonomous Wheel Loader from Volvo CE

Intelligent Path Planning and Collision Avoidance via 
Dipole Flow Field Technique  

Intelligent Path Planning: We employ the A*/Theta* algorithm to generate an initial shortest path for
AWL, from the starting position to the destination. The A* or Theta* algorithm generates smooth paths with
few turns, by exploring the map and calculating the cost of nodes by the function f(n) = g(n) + h(n), where n
is the current node being explored, g(n) is the Euclidean distance from the starting node to n, and h(n) is the
estimated cheapest cost from n to the destination. In each search iteration, the node with the lowest cost
among the nodes that have been explored is selected, and its reachable neighbors are also explored by
calculating their costs. The iteration is eventually ended if the destination is found or all reachable nodes have
been explored.

Dipole Flow Field (DFF) for Collision Avoidance: We model every object as a source of magnetic
dipole field, in which the magnetic moment is aligned with the moving direction, and the magnitude of the
magnetic moment is proportional to the velocity. DFF has two components: (i) The static flow field force that
attracts the vehicle to its goal, ensuring that the vehicle avoids the static obstacles on the map, and (ii) the
dynamic dipole field that generates forces that push the vehicle away from the dynamic obstacle, once
encountered, based on the latter’s respective moving direction and velocity. The obstacle detection relies on
data collected from AWL sensors and on executing recognition algorithms based on deep learning, to
determine the presence of obstacles.

Scenario: The use case focuses on autonomous wheel loaders (AWLs) that are driver-less vehicles that are utilized to transport materials in
a quarry site. An AWL digs a given stone pile and carries an amount of stones to a primary crusher that crushes the stones at given fractions,
after which the crusher unloads the stones onto the conveyor belt. Next, the AWL moves to the other end of the conveyor belt and loads the
crushed stones. It then continues moving to the secondary crusher to unload the stones, which finishes one round in the job cycle. The AWL
must avoid static obstacles (e.g., holes and rocks on the ground) as well as possible dynamic obstacles (e.g., other mobile machines or
humans), in an optimal manner in order to keep productivity high.

Design and implementation challenges: (i) dependable and accurate algorithms for obstacle detection, path planning, and collision
avoidance (P2), (ii) design-time verification of requirements and analysis of behavior assuming unpredictable occurrence of dynamic
obstacles (P3), (iii) predictable platform for AWL to run the mentioned algorithms (P1), and (iv) implementation and performance
evaluation of the proposed algorithms on the proposed platform (P1, P2, P3).

AWL Scenario and Challenges

Formal Modeling, Verification and Performance Evaluation of AWL Behavior

Implementation of the Path Planning and Dipole Flow Field Algorithms on 
a Heterogeneous System Architecture (HSA)-compliant Reference Platform    

• Assume that the shortest path is the 
connection of several line segments 
(Figure a).

• The static flow field is created within 
the neighbourhood of the line 
segment (Figure b).

• The flow field force at a point 𝑝𝑝𝑝𝑝 is 
given by

𝑭𝑭𝑭𝑭𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝒑𝒑𝒑𝒑 = 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎(𝒑𝒑𝒑𝒑) + 𝑭𝑭𝑭𝑭𝑟𝑟𝑟𝑟(𝒑𝒑𝒑𝒑)

𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎(𝒑𝒑𝒑𝒑): Attractive forces to the initial
path

𝑭𝑭𝑭𝑭𝑟𝑟𝑟𝑟(𝒑𝒑𝒑𝒑): Repulsive forces from static
obstacles

Figure a. 

Figure b.

• Deadline misses
• Deadlock
• Starvation 
• Fuel outage
• Collisions
• Wrong movements

• Consumed Fuel
• Emitted CO2
• Transported Material
• Operation time
• Travel Distances

Formal Verification
Rebeca Model of 

Environment 
and AWL Behavior 

Safety Assurance Performance Evaluation

The AWL has a large set of functional and extra-functional requirements, including end-to-end deadlines for a mission, and energy
consumption constraints. In order to ensure the dependability of the AWL at design time, we perform the following:
• Employ our framework TAMAA (Timed-Automata-based planner for Multiple Autonomous Agents) to automatically generate

mission plans (including path planning and operation scheduling) for the AWL, by automating the generation of formal models as
networks of timed automata (TA) or stochastic timed automata (STA), and integrating the model-checking tool (UPPAAL) and the
Mission Management Tool (MMT) in one platform (Figure c).

• Model and verify the AWL’s behavior (path computation, obstacle avoidance, end-to-end deadlines) with respect to the
synthesized mission plan, and the A*/Theta* and dipole flow field algorithms encoded in UPPAAL (Figure d).

• Formally verify the safety and performance of the AWL’s behavior under certain adaptive policies and dynamic changes encoded in
Rebeca, by employing the integrated development environment Afra.

Figure f.

Figure e.

Figure c.

UPPAAL-based AWL Modeling and Formal Verification

TAMAA-based Synthesized Mission Plans for AWL

Solution: Initialize an attractive force (return_force in
Figure g) from the start to the goal points of the path in the
map grid. Compute the minimum distance, min_dist, in the
CPU, and on each generated segment calculate the distance
to the goal. This is implemented as parallel GPU threads.

Each GPU thread computes the attractive force only if the
distance is lower than min_dist.

The threads synchronize, and only the GPU thread that
returns the minimum distance yields the final result to the
CPU, the rest are masked.

Figure d.

To assess the predictability and performance of our solutions, we
implement the path planning and dipole flow field algorithms on an
HSA architecture (Figure f), which uses 4 CPU cores, 6/8 GPU
computing units, all on the same chip. We use an open source run-
time API called Heterogeneous-compute Interface for Portability
(HIP), with a C++ kernel language. The code is portable on AMD
and NVIDIA GPU hardware.

__global__
void kernel_Theta2FlowForce(Point2f *s, Point2f *end, float *s
egment_len,

float *x, float *y, float *nx, float *ny,
int num_of_segment, Point2f *return_force_)

{
// Calculate the coordinate in which the kernel function runs
unsigned i = hipThreadIdx_x + hipBlockIdx_x*hipBlockDim_x;

if(i < num_of_segment) {
dist = sqrt((s->x - x[i])*(s->x - x[i]) + (s->y - y[i])*(s->y -

y[i])) + 1e-12;
if (dist < min_dist) { ... }

// Wait until all threads finish computing the minimum 
distance

// and updating dipole force components
__syncthreads();

if(i == 0) {
// Determine the thread with minimum distance ,
// obtained from the parallel computation

min_dist_shared = min_dist_arr[j];
}}

// Wait until the minimum distance is determined by the first 
thread

__syncthreads();
if(i == min_index){

// Calculate attractive force
// Only the unmasked kernel thread does this 

}}}

Figure g.

TAMAA-based Synthesized Mission Plans for AWL

UPPAAL-based AWL Modeling and Formal Verification

Rebeca Model of 
Environment  

and AWL Behavior 

•	 Deadline misses
•	 Deadlock
•	 Starvation 
•	 Fuel outage
•	 Collisions
•	 Wrong movements

Safety Assurance Performance
•	 Consumed Fuel
•	 Emitted CO2
•	 Transported Material
•	 Operation time
•	 Travel Distances

Formal Verification

Figure g.



Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden

E-mail: info@mdh.se  Web: www.mdh.se

About MDH
MDH is one of Sweden’s largest HEIs, with 16 000 students 
reading courses and programmes in Business, Health, Engi-
neering and Education. At MDH, research is conducted within 
all areas of education to address the challenges of society, and 
of this the research in future energy and embedded systems is 
internationally outstanding. MDH’s close cooperation with the 
private and public sectors enables us to help people feel better 
and the earth to last longer. MDH is located on both sides of 
Lake Mälaren, with campuses in Eskilstuna and Västerås.

About KKS
The Knowledge Foundation funds research and compe-
tence  development at Sweden’s university colleges and new 
universities with the purpose of strengthening Sweden’s com-
petitiveness. We provide funding when activities are conduct-
ed in collaboration between academic staff and business sec-
tor partners. The aim is to build internationally competitive, 
integrated research and education environments. Our mission 
is to strengthen Sweden’s competitiveness, and we know that 
collaborative projects between academia and industry create 
great benefits for both parties. The Foundation was established 
in 1994 with a founding capital of 3.6 billion SEK, and has now 
invested some 9.3 billion SEK in over 2 500 projects.

DPAC
Profile leader: Kristina Lundqvist
kristina.lundqvist@mdh.se
+46(0)73 960 74 40
www.es.mdh.se/dpac


