
Dependable Platforms for
Autonomous systems and ControlDP

A
C

Newsletter
spring 2020

The DPAC profile establishes a leading
research profile targeting dependable
platforms for autonomous systems and
control, hosted at Mälardalen University.
DPAC is organized through close col-
laboration and interaction between sev-
eral research groups at MDH and a set
of participating industrial companies.
The profile will leverage our solid track
record of close cooperation to conduct
excellent research, knowledge transfer,
and support commercialization with in-
dustrial partners. DPAC shall create syn-
ergy effects between the partners and a
significant increase in coproduction is to
be expected.

The ultimate goal of the DPAC profile is
to establish a nationally leading and in-
ternationally renowned research centre
that facilitate close cooperation between
academia and industry to achieve a sig-
nificant increase in research and avail-
able knowhow on advanced dependable
platforms for embedded systems. Em-
bedded computer systems are nowadays
incorporated in many kinds of products
including many mission critical applica-
tions such as trains, autonomous util-
ity vehicles, aviation, smart grid power
management etc. These systems offer
advanced functionality and serve an im-
portant role for the competitiveness of

companies and the future national and
global infrastructure. The scientific and
technical results of DPAC will support
future innovation by providing depend-
able platforms that can be used to effi-
ciently realize dependable, reliable and
safe electronically controlled products.

About DPAC

CONTENTS
Introduction..3

Project 1..4-5

Project 2..6-7

Project 3..8-9

Demonstrator..................................10-11

3

This spring we opt to share information be-
tween DPAC partners using a newsletter
instead of the previously planned DPAC
spring summit, which was canceled
due to Covid-19. The newsletter high-
lights what is currently ongoing and has
been achieved in each of the four main
threads of work in DPAC: The unified
demonstrator and the three subpro-
jects. In addition to these main activi-
ties, the DPAC core-team is preparing for
an industrial research school organized
around DPAC’s main topics and a unify-
ing use-case to which each student’s pro-
ject can contribute.

During 2019 DPAC underwent a half-
time evaluation by the KK Foundation.
The evaluation was a success and DPAC
secured support for the second
phase which started during fall of 2019
and will continue until fall 2023. Dur-
ing its first phase, DPAC produced 189 sci-
entific publications and employed 25 re-
searchers. We organized 7 summits,
where all DPAC partners from the
12 participating companies and MDH
participated. The summits typically run
for 25 hours and include both scientific
and inspirational lectures, as well as,
plenty of time for social interaction and

networking. In addition, the DPAC pro-
file have grown to include over 25 addi-
tional research projects.

DPAC will continue as planned, with re-
searchers and industrial partners work-
ing together towards dependable plat-
forms for autonomous systems and
control, and as soon as times allow,
we will continue with organizing sum-
mits and other joint events.

Welcome to the DPAC
Newsletter for spring 2020

In phase 2 DPAC will extend its scope to system of systems, implying (e.g.): the systems will be made up from more than one
node (i.e., they will be distributed systems); the systems need to be able to collaborate with each other (and with humans) to-
wards a common goal; and techniques for system verification and validation has to be extended to manage not only one complex
system, but also a system of interconnected systems. System of systems are becoming more common and are often associated
with variable degrees of autonomy that introduces new research challenges described in the respective work packages below.

The fundamental direction of research performed in phase 1, remains for phase 2 of DPAC and we will continue to organize the
profile around the demonstrator and three research areas with one project for each area.

P1: PREDICTABILITY AND DEPENDABILITY IN PARALLEL
ARCHITECTURES: This area addresses challenges in de-
signing predictability and dependability in parallel archi-
tectures for dependable electronic platforms and chal-
lenges in developing dependable and predictable software
platforms that execute on such electronic platforms.
Contact: Saad Mubeen, saad.mubeen@mdh.se

P2: AUTONOMOUS SYSTEMS AND CONTROL: This area ad-
dresses challenges with respect to achieving dependability
in autonomous systems. We specifically target control inten-
sive systems that should operate in a dependable, reliable, and
safe way without a human operator providing detailed control.
Contact: Mikael Ekström, mikael.ekstrom@mdh.se

P3: DESIGN METHODOLOGIES: This area addresses chal-
lenges associated with design methodologies used for
developing dependable platforms and systems. It in-
cludes methodologies to capture and validate correct sets
of requirements and design assurance, and it addresses
how we can simplify the complex dependable embed-
ded system models and make analysis more tractable.
Contact: Håkan Forsberg, hakan.forsberg@mdh.se

DEMONSTRATOR: This area addresses the design and imple-
mentation of a predictable autonomous wheel loader, which
acts as the unifying use case in DPAC. The wheel loader is
based on applying selected results of the research conducted
in P1, P2, and P3, with respect to dependable architectures, au-
tonomous intelligent algorithms, and design methodologies.
Contact: Cristina Seceleanu, cristina.seceleanu@mdh.se

All DPAC publications can be found via the
DPAC homepage: http://www.es.mdh.se/dpac/

Contents
Introduction
Project 1 3
Project 2 5
Project 3 7
Demonstrator9

ABB-logga

About DPAC
The DPAC profile establishes a leading research profile targeting dependable platforms for autonomous
systems and control, hosted at Mälardalen University. DPAC is organized through close collaboration
and interaction between several research groups at MDH and a set of participating industrial
companies. The profile will leverage our solid track record of close cooperation to conduct excellent
research, knowledge transfer, and support commercialization with industrial partners. DPAC shall
create synergy effects between the partners and a significant increase in coproduction is to be expected.
The ultimate goal of the DPAC profile is to establish a nationally leading and internationally renowned
research centre that facilitate close cooperation between academia and industry to achieve a significant
increase in research and available knowhow on advanced dependable platforms for embedded systems.
Embedded computer systems are nowadays incorporated in many kinds of products including many
mission critical applications such as trains, autonomous utility vehicles, aviation, smart grid power
management etc. These systems offer advanced functionality and serve an important role for the
competitiveness of companies and the future national and global infrastructure. The scientific and
technical results of DPAC will support future innovation by providing dependable platforms that can be
used to efficiently realize dependable, reliable and safe electronically controlled products.

MDH-logga

In phase 2 DPAC will extend its scope to system of systems, implying (e.g.): the systems will be made
up from more than one node (i.e., they will be distributed systems); the systems need to be able to
collaborate with each other (and with humans) towards a common goal; and techniques for system
verification and validation has to be extended to manage not only one complex system, but also a
system of interconnected systems. System of systems are becoming more common and are often
associated with variable degrees of autonomy that introduces new research challenges described in
the respective work packages below.
The fundamental direction of research performed in phase 1, remains for phase 2 of DPAC and we
will continue to organize the profile around the demonstrator and three research areas with one
project for each area.

This spring we opt to share information between DPAC partners using a newsletter instead of
the previously planned DPAC spring summit, which was canceled due to Covid-19. The
newsletter highlights what is currently ongoing and has been achieved in each of the four main threads of
work in DPAC: The unified demonstrator and the three subprojects. In addition to these main activities,
the DPAC core-team is preparing for an industrial research school organized around DPAC’s main
topics and a unifying use-case to which each student’s project can contribute.

During 2019 DPAC underwent a halftime evaluation by the KK Foundation. The evaluation was a success
and DPAC secured support for the second phase which started during fall of 2019 and will continue
until fall 2023. During its first phase, DPAC produced 189 scientific
publications and employed 25 researchers. We organized 7 summits, where all DPAC partners from the
12 participating companies and MDH participated. The summits typically run for 25 hours and include
both scientific and inspirational lectures, as well as, plenty of time for social interaction and networking. In
addition, the DPAC profile have grown to include over 25 additional research projects.

DPAC will continue as planned, with researchers and industrial partners working together towards
dependable platforms for autonomous systems and control, and as soon as times allow, we will continue
with organizing summits and other joint events.

0

20

40

60

80

2015 2016 2017 2018 2019

Publications

Denna sida är <sid #1>

P1: Predictability and dependability in parallel
architectures:
This area addresses challenges in designing
predictability and dependability in parallel
architectures for dependable electronic platforms and
challenges in developing dependable and predictable
software platforms that execute on such electronic
platforms.
Contact: Saad Mubeen,
saad.mubeen@mdh.se

P2: Autonomous systems and control:
This area addresses challenges with respect
to achieving dependability in autonomous systems.
We specifically target control‐intensive systems that
should operate in a dependable, reliable, and safe way
without a human operator providing detailed control.
Contact: Mikael Ekström,
mikael.ekstrom@mdh.se

P3: Design methodologies:
This area addresses challenges associated with
design methodologies used for developing
dependable platforms and systems. It includes
methodologies to capture and validate correct sets
of requirements and design assurance, and it
addresses how we can simplify the complex
dependable embedded system models and make
analysis more tractable.
Contact: Håkan Forsberg,
hakan.forsberg@mdh.se

Demonstrator:
This area addresses the design and implementation
of a predictable autonomous wheel loader, which
acts as the unifying use case in DPAC. The wheel
loader is based on applying selected results of the
research conducted in P1, P2, and P3, with respect
to dependable architectures, autonomous intelligent
algorithms, and design methodologies.
Contact: Cristina Seceleanu,
cristina.seceleanu@mdh.se

All DPAC publications can be
found via the DPAC homepage:
http://www.es.mdh.se/dpac/

Welcome to the DPAC Newsletter for spring 2020

4

P1: Predictability & Dependability in Distributed Parallel Architectures
Improving on-board data processing using CPU-GPU heterogeneous

architectures for Real-Time Systems

Nandinbaatar Tsog’s Licentiate
thesis, Mälardalen University,
Västerås, December 18, 2019.

Unibap’s collaboration with
MDH on heterogeneous
computing for space
environment is enabling
cloud computing in-orbit.
Unibap is working with the
European Space Agency to
standardize SpaceCloud™
services for cloud computing
on space missions. This
include intelligent data
processing and data storage
and management similarly
to ground based cloud
computing.

Heterogeneous
computing takes
the cloud higher
and into space

Figures and corresponding
material courtesy of Unibap AB.

The alternative executions of parallel
segment eliminates the bottleneck
caused by overuse of accelerators
such as GPUs. Our preliminary
results indicate that up to 90% of
improvement in the schedulability of
task sets can be achieved as
compared to traditional use of
parallel segments.

Characterization of Shared Resource Contention in Multi-core Systems

Methods for finding performance
bottlenecks of algorithms due to
shared resource contention
We investigate parallelization bottlenecks of
parallel fork-join versions of feature
detection algorithms. In collaboration with
Ericsson, we developed methods utilizing
performance counters that pinpoints
performance bottlenecks that happens as a
consequence of shared resource contention.

A technique for alternative
execution of parallel
segments in
heterogeneous
architectures

DenseDisp: A Multi-Objective Search Method for Improving the Accuracy of
Disparity Estimation on Heterogeneous Platforms

In
p

u
t I

m
ag

e

Methods for partitioning systems to
mitigate shared resource contention
In collaboration with ENEA, we investigated
the jailhouse hypervisor – a virtualization
technique used isolate local resources such
as CPU and local caches. We furthermore
developed a last-level cache partitioning
controller using the PALLOC framework in
collaboration with Ericsson to optimize
cache partition assignments.

D
is

p
ar

it
y

M
ap

E
rr

or
 M

ap

Stereo cameras are multi-modal vision sensors
which can extract depth information (disparity
map). Neural networks provide the most accurate
disparity map results. However, execution of neural
vision algorithms needs huge computing capacity
which is extremely challenging for real-time
constraints and resource-limited heterogeneous
hardware. DenseDisp proposes a multi-objective
and fast Neural Architecture Search (NAS) method
that discovers hardware-friendly neural networks by
considering network accuracy and network
floating-point operations as the search objective.
DenseDisp also deploys the optimized neural
network on a wide range of heterogeneous
multi/many-core platforms such as Intel® NC2,
Nvidia Jetson TX2, Google TPU, and FPGA. The
figures illustrate the results of DenseDisp for
predicting the distance of objects for autonomous
vehicles. Our results indicate that DenseDisp
provides up to 9.4x faster execution time while
losing only 5% accuracy compared to the state-of-
the-art results on heterogeneous many-core
platforms.

P1 -PREDICTABILITY & DEPENDABILITY IN DISTRIBUTED PARALLEL ARCHITECTURES

Improving on-board data proces-
sing using CPU-GPU heterogeneous
architectures for Real-Time Systems
Nandinbaatar Tsog’s Licentiate thesis,
Mälardalen University, Västerås,
December 18, 2019.

A technique for alternative execution of parallel segments in
heterogeneous architectures
The alternative executions of parallel segment eliminates the bottleneck caused
by overuse of accelerators such as GPUs. Our preliminary results indicate that up
to 90% of improvement in the schedulability of task sets can be achieved as com-
pared to traditional use of parallel segments.

Heterogeneous computing takes the cloud higher and into space
Unibap’s collaboration with MDH on heterogeneous computing for space environ-
ment is enabling cloud computing in-orbit. Unibap is working with the European
Space Agency to standardize SpaceCloud™ services for cloud computing on space
missions. This include intelligent data processing and data storage and management
similarly to ground based cloud computing.

Figures and corresponding material courtesy of Unibap AB.

Improving On-Board Data Proces-
sing using CPU-GPU Heterogeneous
Architectures for Real-Time Systems
Nandinbaatar Tsog

N
a

n
d

in
b

a
a

ta
r Tso

g
 IM

P
R

O
V

IN
G

 O
N

-B
O

A
R

D
 D

A
TA

 P
R

O
C

ESSIN
G

 U
SIN

G
 C

PU
-G

PU
 H

ETER
O

G
EN

EO
U

S A
R

C
H

ITEC
TU

R
ES FO

R R
EA

L-TIM
E SYSTEM

S
2019

Mälardalen University Licentiate Thesis 286

ISBN 978-91-7485-450-3
ISSN 1651-9256

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

5

P1: Predictability & Dependability in Distributed Parallel Architectures
Improving on-board data processing using CPU-GPU heterogeneous

architectures for Real-Time Systems

Nandinbaatar Tsog’s Licentiate
thesis, Mälardalen University,
Västerås, December 18, 2019.

Unibap’s collaboration with
MDH on heterogeneous
computing for space
environment is enabling
cloud computing in-orbit.
Unibap is working with the
European Space Agency to
standardize SpaceCloud™
services for cloud computing
on space missions. This
include intelligent data
processing and data storage
and management similarly
to ground based cloud
computing.

Heterogeneous
computing takes
the cloud higher
and into space

Figures and corresponding
material courtesy of Unibap AB.

The alternative executions of parallel
segment eliminates the bottleneck
caused by overuse of accelerators
such as GPUs. Our preliminary
results indicate that up to 90% of
improvement in the schedulability of
task sets can be achieved as
compared to traditional use of
parallel segments.

Characterization of Shared Resource Contention in Multi-core Systems

Methods for finding performance
bottlenecks of algorithms due to
shared resource contention
We investigate parallelization bottlenecks of
parallel fork-join versions of feature
detection algorithms. In collaboration with
Ericsson, we developed methods utilizing
performance counters that pinpoints
performance bottlenecks that happens as a
consequence of shared resource contention.

A technique for alternative
execution of parallel
segments in
heterogeneous
architectures

DenseDisp: A Multi-Objective Search Method for Improving the Accuracy of
Disparity Estimation on Heterogeneous Platforms

In
p

u
t I

m
ag

e
Methods for partitioning systems to
mitigate shared resource contention
In collaboration with ENEA, we investigated
the jailhouse hypervisor – a virtualization
technique used isolate local resources such
as CPU and local caches. We furthermore
developed a last-level cache partitioning
controller using the PALLOC framework in
collaboration with Ericsson to optimize
cache partition assignments.

D
is

p
ar

it
y

M
ap

E
rr

or
 M

ap

Stereo cameras are multi-modal vision sensors
which can extract depth information (disparity
map). Neural networks provide the most accurate
disparity map results. However, execution of neural
vision algorithms needs huge computing capacity
which is extremely challenging for real-time
constraints and resource-limited heterogeneous
hardware. DenseDisp proposes a multi-objective
and fast Neural Architecture Search (NAS) method
that discovers hardware-friendly neural networks by
considering network accuracy and network
floating-point operations as the search objective.
DenseDisp also deploys the optimized neural
network on a wide range of heterogeneous
multi/many-core platforms such as Intel® NC2,
Nvidia Jetson TX2, Google TPU, and FPGA. The
figures illustrate the results of DenseDisp for
predicting the distance of objects for autonomous
vehicles. Our results indicate that DenseDisp
provides up to 9.4x faster execution time while
losing only 5% accuracy compared to the state-of-
the-art results on heterogeneous many-core
platforms.

P1: Predictability & Dependability in Distributed Parallel Architectures
Improving on-board data processing using CPU-GPU heterogeneous

architectures for Real-Time Systems

Nandinbaatar Tsog’s Licentiate
thesis, Mälardalen University,
Västerås, December 18, 2019.

Unibap’s collaboration with
MDH on heterogeneous
computing for space
environment is enabling
cloud computing in-orbit.
Unibap is working with the
European Space Agency to
standardize SpaceCloud™
services for cloud computing
on space missions. This
include intelligent data
processing and data storage
and management similarly
to ground based cloud
computing.

Heterogeneous
computing takes
the cloud higher
and into space

Figures and corresponding
material courtesy of Unibap AB.

The alternative executions of parallel
segment eliminates the bottleneck
caused by overuse of accelerators
such as GPUs. Our preliminary
results indicate that up to 90% of
improvement in the schedulability of
task sets can be achieved as
compared to traditional use of
parallel segments.

Characterization of Shared Resource Contention in Multi-core Systems

Methods for finding performance
bottlenecks of algorithms due to
shared resource contention
We investigate parallelization bottlenecks of
parallel fork-join versions of feature
detection algorithms. In collaboration with
Ericsson, we developed methods utilizing
performance counters that pinpoints
performance bottlenecks that happens as a
consequence of shared resource contention.

A technique for alternative
execution of parallel
segments in
heterogeneous
architectures

DenseDisp: A Multi-Objective Search Method for Improving the Accuracy of
Disparity Estimation on Heterogeneous Platforms

In
p

u
t I

m
ag

e
Methods for partitioning systems to
mitigate shared resource contention
In collaboration with ENEA, we investigated
the jailhouse hypervisor – a virtualization
technique used isolate local resources such
as CPU and local caches. We furthermore
developed a last-level cache partitioning
controller using the PALLOC framework in
collaboration with Ericsson to optimize
cache partition assignments.

D
is

p
ar

it
y

M
ap

E
rr

or
 M

ap

Stereo cameras are multi-modal vision sensors
which can extract depth information (disparity
map). Neural networks provide the most accurate
disparity map results. However, execution of neural
vision algorithms needs huge computing capacity
which is extremely challenging for real-time
constraints and resource-limited heterogeneous
hardware. DenseDisp proposes a multi-objective
and fast Neural Architecture Search (NAS) method
that discovers hardware-friendly neural networks by
considering network accuracy and network
floating-point operations as the search objective.
DenseDisp also deploys the optimized neural
network on a wide range of heterogeneous
multi/many-core platforms such as Intel® NC2,
Nvidia Jetson TX2, Google TPU, and FPGA. The
figures illustrate the results of DenseDisp for
predicting the distance of objects for autonomous
vehicles. Our results indicate that DenseDisp
provides up to 9.4x faster execution time while
losing only 5% accuracy compared to the state-of-
the-art results on heterogeneous many-core
platforms.

Characterization of Shared Resource
Contention in Multi-core Systems
Methods for finding performance bottle-
necks of algorithms due to shared resource
contention

We investigate parallelization bottlenecks of
parallel fork-join versions of feature detec-
tion algorithms. In collaboration with Erics-
son, we developed methods utilizing perfor-
mance counters that pinpoints performance
bottlenecks that happens as a consequence
of shared resource contention.

Methods for partitioning systems to mitigate shared
resource contention
In collaboration with ENEA, we investigated the jailhouse
hypervisor – a virtualization technique used isolate local
resources such as CPU and local caches. We furthermore
developed a last-level cache partitioning controller using
the PALLOC framework in collaboration with Ericsson to
optimize cache partition assignments.

DenseDisp: A Multi-Objective Search Method for Improving the
Accuracy of Disparity Estimation on Heterogeneous Platforms
Stereo cameras are multi-modal vision sensors which can
extract depth information (disparity map). Neural networks
provide the most accurate disparity map results. However,
execution of neural vision algorithms needs huge comput-
ing capacity which is extremely challenging for real-time
constraints and resource-limited heterogeneous hardware.
DenseDisp proposes a multi-objective and fast Neural Ar-
chitecture Search (NAS) method that discovers hardware-
friendly neural networks by considering network accuracy
and network floating-point operations as the search objec-
tive. DenseDisp also deploys the optimized neural network
on a wide range of heterogeneous multi/many-core plat-
forms such as Intel® NC2, Nvidia Jetson TX2, Google TPU,
and FPGA. The figures illustrate the results of DenseDisp
for predicting the distance of objects for autonomous ve-
hicles. Our results indicate that DenseDisp provides up to
9.4x faster execution time while losing only 5% accuracy
compared to the state-of-the-art results on heterogeneous
many-core platforms.

In
p

ut
 Im

a
g

e
D

is
p

a
rit

y
M

a
p

Er
ro

r M
a

p

P1 -PREDICTABILITY & DEPENDABILITY IN DISTRIBUTED PARALLEL ARCHITECTURES

6

Dependable multi-path planning with obstacle avoidance for multiple robotic agents

Navigation and path planning is one of the grand challenges in robotics. It has implication
for robotic applications in numerous cases in the professional and civil settings including
autonomous driving, autonomous control, automated warehouse systems, etc. The main
aim here is to build a dependable, i.e. safe, reliable and effective, path planning algorithm
for a group of fully autonomous robots that share their working space with humans. In
this project, path planning for multiple co-existing robots is combined with moving obsta-
cle avoidance to develop congestion control. The objective is to implement fault tolerance
and to ensure safe navigation of robots to avoid collisions with operators, other robots and
moving objects in working environment. So far, successful implementation of the dipole
flow field for obstacle avoidance and Petri Net for fault tolerance analysis and congestion
control algorithms has been implemented and demonstrated. Dependable attributes of
proposed algorithms have been evaluated in the Gazebo simulator. In addition, the algo-
rithms have been implemented and tested with the robotic operating system (ROS) and
real robots (Husqvarna, TurtleBot3, etc.) as well.

Autonomous agent architecture for testing the multi-path planning algorithm

The core modules and their functions are Map generation
for 2-D binary maps with static objects and obstacles, Path
initialization for the path from start to destination, Static
flow field configuration for driving the agent back to the
designed path, Collision avoidance for agents and Velocity
planning for adapting the agent’s velocity to the environ-
ment. There are also external modules: Sensor data collec-
tion gathers information from the environment, the inter-
nal model based on the changes in the environment are
managed and applied to the control commands in Update,
The Object classification module receives the data from the
Sensor data collection module to determine which objects
in the environment that are static objects and which ones
are moving objects

Visualisation of an agent with kinematic
parameters and human from (A) a real
world space in (B) a 2D mapping space,
and (C) a simplified visualization used in
the proposed work.

P2 -AUTONOMOUS SYSTEMS AND CONTROL

7

Path simulating, multi-robotic agent orchestration, and mission monitoring and supervision

The Mission management tool (MMT) is a unifying visualisation and interaction tool for critical multi-robot missions. It allows an
operators to manage complex mission through vehicle configuration, multi-agent plan generation, during the mission monitor-
ing as well as intervention. The MMT is thus critical for improving the situational awareness of the operators. In DPAC, the MMT
also functions as the interface to the software solutions for simulations and generation of dependable paths for multi-robots in
complex environments. The MMT allows plug-in solutions for example map integration, and communication with mobile solu-
tions. It is also integrated with generic unmanned aerial vehicles. For demonstration purposes a DJI Mavic Air 2 is used.

MMT - Mission view
Main functionalities are path simulation and path generation (Pro-
ject 3), task-level path planning. orchestration, monitoring

Main Toolbar (1): Provides access to general tools and functions.

Mission Explorer (2): This panel contains all the mission data
and relationship between them. The operator will define mission
goals by dragging and dropping mission items into this panel.

Locations, Tasks and Vehicles (3): Contains a list of all user-
defined locations, tasks and vehicles.

Properties (4): Provides a list of all user-definable properties that
a selected object (location, vehicle, task) might have. This can be
used by the operator to for example change a specific task param-
eter, or the colour used to represent a region on the map.

Plan Outline (5): A Gantt chart that presents all the missions,
both the ones that are running in real time as well as the ones
planned for the future

Map & Map Tools (6): Provides a map of the area and tools to
mark points or regions of interest. The mission plan, vehicle loca-
tions, and visualizations of some mission results can be overlaid
on this panel.

MMT - Asset view

The asset management view helps
to visualise how the assets/vehicles
have moved during the course of a
mission or a working day. Informa-
tion on speed, fuel, etc. can be seen
to contribute to the operator’s situa-
tion awareness.

MMT - Data visualisation view

This view allows visualisation and
analysis of data collected from in-
door and outdoor sensors pre-, dur-
ing, and post-mission. It also allows
visualisation of fused data, or data
from other resources.

P2 -AUTONOMOUS SYSTEMS AND CONTROL

8

P3: Design methodologies

Fault-Tolerant Deep Neural Networks
for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications
requires a reliable and secure platform but also a reduction of systematic
faults, e.g., design faults in both hardware and software. In previous
research, we have suggested the use of Overarching Properties (intent,
correctness and acceptability) together with assurance cases to argument
that assurance objectives can be met for future computing platforms,
including those based on machine learning.

Consider for instance the scenario of an aircraft to perform machine vision-
guided approach. In this case, it is of high importance not to mix a highway for
a runway. Once the aircraft is approaching the runway it is more important to
detect obstacles even if they are incorrectly classified rather than not detecting
them at all (it is of little importance whether we detect a motorcycle or a truck
on the landing strip). We believe diverse redundant systems are needed to
cope with the scenarios above. These systems may or may not include the time
domain (i.e. history of classified objects and moving targets) and may consist
of deterministic or statistical monitors. Additional redundant architectures
may be necessary for symmetric faults.

A graphical presentation of an
assurance case. The top-level
claim (leftmost) is decomposed

until each sub-claim can be
substantiated by evidence. The

argument part consists of
strategies used to decompose

claims and sub-claims.

A reliable and secure DNN backed up with diverse fault
tolerant architectures, each specified for a task such as

detecting transients in the DNN, adversarial attacks, data
input distortions, untrained input data, reduced false

negatives or false positives

In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can
be used to perform a structured hazard analysis, along with a method to elicit safety
requirements (called Safety Requirements Elicitation approach, in short SARE) based on
the ontology. Even though the ontology is general, in the sense that it can be applied to
various types of systems, it was however developed primarily for traditional single
systems. As a result, SARE is used to discover the safety requirements that mitigate the
hazards identified for these systems. In the second phase of DPAC we have applied the
ontology on the quarry use-case to evaluate if the ontology can be used on System of
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports
the common characteristics of those systems and that we are able to identify emergent
hazards. We have also proposed a method to abstract system descriptions to further
facilitate the use of the ontology on SoS, and to capture the safety requirements that
mitigate hazards in this kind of systems. The safety requirements, elicited through SARE,
are specified in a way so that they can easily be translated into formal verification
methods. In addition, with the help of our industrial partners we are continuing our work
on tool support that will facilitate the use of the ontology.

Hazard Analysis, Requirements
Elicitation and Validation

Verification-Driven Iterative Development of Cyber-
Physical System
We used an iterative and incremental approach to
build formally verified models. The actor-based
textual modeling language, Rebeca, with model
checking support is used for formal
verification. Starting from structured requirements
and system architecture design, the behavioral
models, including Rebeca codes, are built.

Properties of interest are also derived from the
structured requirements, and then model checking is
used to formally verify the properties.
This process can be performed in iterations until
satisfaction of desired properties are ensured, and
possible ambiguities and inconsistencies in
requirements are resolved. The formally verified
models can then be used to develop the executable
code.

The Rebeca codes include the details of the signals
and messages that are passed at the network level
including the timing and this facilitates the
generation of executable code.

Timed Rebeca is an
extension of the Reactive
Object Language, Rebeca,
and is designed for
modeling and verification
of distributed, concurrent
and event-driven
asynchronous systems
with timing constraints.
Timed Rebeca is
supported by a model
checking tool.

Guided approach – an example of multiple different
object detection scenarios

TAMAA: Timed Automata Based Mission Planner
for Multiple Autonomous Agents

Mission planning for autonomous agents (e.g., vehicles,
mobile robots, etc.) involves path planning and task
scheduling. While path planning is supported by some
algorithms, e.g., Dijkstra, A*, Theta* algorithms, its
correctness needs to be guaranteed in the context of
autonomous agents. Task scheduling is a well-known NP-
hard problem that remains outstanding for decades
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for
multiple agents to solve this problem, namely TAMAA.
This approach is based on a state-of-the-art model checker
for real-time systems, called UPPAAL, and is associated
with a GUI called Mission Management Tool (MMT) that is
developed at Mälardalen University.

The figure above depicts the process of TAMAA method.
First, users specify the requirement of autonomous
vehicles and configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that
represent the movement and task execution of agents,
as well as the monitors for special events are
automatically generated by TAMAA, based on the
information of the environment and tasks (step 3).

These TA models are then verified in the UPPAAL
model checker against the requirements that are
formalized as CTL/TCTL ((Timed) Computation Tree
Logic) queries (step 4). The model checker will
generate witnesses of execution that satisfy or violate
the requirements, which are used to synthesize
mission plans (step 5).

To enable TAMAA to solve multi-agent systems that
contain a large numbers of agents, we adopt
reinforcement learning and manage to synthesize
comprehensive mission plans that consider all
possible execution and movement time of the agents.
In short, a Q-learning algorithm processes the traces
obtained by simulation in UPPAAL, and populates a
Q-table, which is then used to form a new restricted
model.

We show that the method is applicable to complex
scenarios like autonomous quarries, overcoming the
scalability problem that is not solved otherwise.

Correctness
Intent

Acceptability

Reliable and Secure
DNN

…

Monitor 1

Monitor 2

Monitor n

In the case of image
classification using DNNs,
correct classification is only
one concern for safety. In
some scenarios it is equally
important to minimize
incorrectly classified images.

P3: Design methodologies

Fault-Tolerant Deep Neural Networks
for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications
requires a reliable and secure platform but also a reduction of systematic
faults, e.g., design faults in both hardware and software. In previous
research, we have suggested the use of Overarching Properties (intent,
correctness and acceptability) together with assurance cases to argument
that assurance objectives can be met for future computing platforms,
including those based on machine learning.

Consider for instance the scenario of an aircraft to perform machine vision-
guided approach. In this case, it is of high importance not to mix a highway for
a runway. Once the aircraft is approaching the runway it is more important to
detect obstacles even if they are incorrectly classified rather than not detecting
them at all (it is of little importance whether we detect a motorcycle or a truck
on the landing strip). We believe diverse redundant systems are needed to
cope with the scenarios above. These systems may or may not include the time
domain (i.e. history of classified objects and moving targets) and may consist
of deterministic or statistical monitors. Additional redundant architectures
may be necessary for symmetric faults.

A graphical presentation of an
assurance case. The top-level
claim (leftmost) is decomposed

until each sub-claim can be
substantiated by evidence. The

argument part consists of
strategies used to decompose

claims and sub-claims.

A reliable and secure DNN backed up with diverse fault
tolerant architectures, each specified for a task such as

detecting transients in the DNN, adversarial attacks, data
input distortions, untrained input data, reduced false

negatives or false positives

In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can
be used to perform a structured hazard analysis, along with a method to elicit safety
requirements (called Safety Requirements Elicitation approach, in short SARE) based on
the ontology. Even though the ontology is general, in the sense that it can be applied to
various types of systems, it was however developed primarily for traditional single
systems. As a result, SARE is used to discover the safety requirements that mitigate the
hazards identified for these systems. In the second phase of DPAC we have applied the
ontology on the quarry use-case to evaluate if the ontology can be used on System of
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports
the common characteristics of those systems and that we are able to identify emergent
hazards. We have also proposed a method to abstract system descriptions to further
facilitate the use of the ontology on SoS, and to capture the safety requirements that
mitigate hazards in this kind of systems. The safety requirements, elicited through SARE,
are specified in a way so that they can easily be translated into formal verification
methods. In addition, with the help of our industrial partners we are continuing our work
on tool support that will facilitate the use of the ontology.

Hazard Analysis, Requirements
Elicitation and Validation

Verification-Driven Iterative Development of Cyber-
Physical System
We used an iterative and incremental approach to
build formally verified models. The actor-based
textual modeling language, Rebeca, with model
checking support is used for formal
verification. Starting from structured requirements
and system architecture design, the behavioral
models, including Rebeca codes, are built.

Properties of interest are also derived from the
structured requirements, and then model checking is
used to formally verify the properties.
This process can be performed in iterations until
satisfaction of desired properties are ensured, and
possible ambiguities and inconsistencies in
requirements are resolved. The formally verified
models can then be used to develop the executable
code.

The Rebeca codes include the details of the signals
and messages that are passed at the network level
including the timing and this facilitates the
generation of executable code.

Timed Rebeca is an
extension of the Reactive
Object Language, Rebeca,
and is designed for
modeling and verification
of distributed, concurrent
and event-driven
asynchronous systems
with timing constraints.
Timed Rebeca is
supported by a model
checking tool.

Guided approach – an example of multiple different
object detection scenarios

TAMAA: Timed Automata Based Mission Planner
for Multiple Autonomous Agents

Mission planning for autonomous agents (e.g., vehicles,
mobile robots, etc.) involves path planning and task
scheduling. While path planning is supported by some
algorithms, e.g., Dijkstra, A*, Theta* algorithms, its
correctness needs to be guaranteed in the context of
autonomous agents. Task scheduling is a well-known NP-
hard problem that remains outstanding for decades
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for
multiple agents to solve this problem, namely TAMAA.
This approach is based on a state-of-the-art model checker
for real-time systems, called UPPAAL, and is associated
with a GUI called Mission Management Tool (MMT) that is
developed at Mälardalen University.

The figure above depicts the process of TAMAA method.
First, users specify the requirement of autonomous
vehicles and configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that
represent the movement and task execution of agents,
as well as the monitors for special events are
automatically generated by TAMAA, based on the
information of the environment and tasks (step 3).

These TA models are then verified in the UPPAAL
model checker against the requirements that are
formalized as CTL/TCTL ((Timed) Computation Tree
Logic) queries (step 4). The model checker will
generate witnesses of execution that satisfy or violate
the requirements, which are used to synthesize
mission plans (step 5).

To enable TAMAA to solve multi-agent systems that
contain a large numbers of agents, we adopt
reinforcement learning and manage to synthesize
comprehensive mission plans that consider all
possible execution and movement time of the agents.
In short, a Q-learning algorithm processes the traces
obtained by simulation in UPPAAL, and populates a
Q-table, which is then used to form a new restricted
model.

We show that the method is applicable to complex
scenarios like autonomous quarries, overcoming the
scalability problem that is not solved otherwise.

Correctness
Intent

Acceptability

Reliable and Secure
DNN

…

Monitor 1

Monitor 2

Monitor n

In the case of image
classification using DNNs,
correct classification is only
one concern for safety. In
some scenarios it is equally
important to minimize
incorrectly classified images.

Hazard Analysis, Requirements Elicitation and Validation
In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can
be used to perform a structured hazard analysis, along with a method to elicit safety
requirements (called Safety Requirements Elicitation approach, in short SARE) based
on the ontology. Even though the ontology is general, in the sense that it can be applied
to various types of systems, it was however developed primarily for traditional single
systems. As a result, SARE is used to discover the safety requirements that mitigate the
hazards identified for these systems. In the second phase of DPAC we have applied the
ontology on the quarry use-case to evaluate if the ontology can be used on System of
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports
the common characteristics of those systems and that we are able to identify emergent
hazards. We have also proposed a method to abstract system descriptions to further
facilitate the use of the ontology on SoS, and to capture the safety requirements that
mitigate hazards in this kind of systems. The safety requirements, elicited through
SARE, are specified in a way so that they can easily be translated into formal verifica-
tion methods. In addition, with the help of our industrial partners we are continuing
our work on tool support that will facilitate the use of the ontology.

Fault-Tolerant Deep Neural Networks for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications requires a
reliable and secure platform but also a reduction of systematic faults, e.g., design
faults in both hardware and software. In previous research, we have suggested the
use of Overarching Properties (intent, correctness and acceptability) together with
assurance cases to argument that assurance objectives can be met for future comput-
ing platforms, including those based on machine learning.

Claim 1

Claim 1.1

Claim 1.2

Claim 2

Claim

Evidence
A

Evidence
B

Evidence
C

Argument

A graphical presentation of an assurance
case. The top-level claim (leftmost) is decom-
posed until each sub-claim can be substanti-
ated by evidence. The argument part consists
of strategies used to decompose claims and
sub-claims.

In the case of image classification using
DNNs, correct classification is only one
concern for safety. In some scenarios it
is equally important to minimize incor-
rectly classified images.

Consider for instance the scenario of an aircraft to perform machine vision-guided
approach. In this case, it is of high importance not to mix a highway for a runway.
Once the aircraft is approaching the runway it is more important to detect obstacles
even if they are incorrectly classified rather than not detecting them at all (it is of
little importance whether we detect a motorcycle or a truck on the landing strip).
We believe diverse redundant systems are needed to cope with the scenarios above.
These systems may or may not include the time domain (i.e. history of classified
objects and moving targets) and may consist of deterministic or statistical monitors.
Additional redundant architectures may be necessary for symmetric faults.

Guided approach – an example of mul-
tiple different object detection scenarios

A reliable and secure DNN backed up with
diverse fault tolerant architectures, each
specified for a task such as detecting tran-
sients in the DNN, adversarial attacks, data
input distortions, untrained input data, re-
duced false negatives or false positives

P3 -DESIGN METHODOLOGIES

9

P3: Design methodologies

Fault-Tolerant Deep Neural Networks
for Autonomous Systems
The use of Deep Neural Networks (DNNs) in safety-critical applications
requires a reliable and secure platform but also a reduction of systematic
faults, e.g., design faults in both hardware and software. In previous
research, we have suggested the use of Overarching Properties (intent,
correctness and acceptability) together with assurance cases to argument
that assurance objectives can be met for future computing platforms,
including those based on machine learning.

Consider for instance the scenario of an aircraft to perform machine vision-
guided approach. In this case, it is of high importance not to mix a highway for
a runway. Once the aircraft is approaching the runway it is more important to
detect obstacles even if they are incorrectly classified rather than not detecting
them at all (it is of little importance whether we detect a motorcycle or a truck
on the landing strip). We believe diverse redundant systems are needed to
cope with the scenarios above. These systems may or may not include the time
domain (i.e. history of classified objects and moving targets) and may consist
of deterministic or statistical monitors. Additional redundant architectures
may be necessary for symmetric faults.

A graphical presentation of an
assurance case. The top-level
claim (leftmost) is decomposed

until each sub-claim can be
substantiated by evidence. The

argument part consists of
strategies used to decompose

claims and sub-claims.

A reliable and secure DNN backed up with diverse fault
tolerant architectures, each specified for a task such as

detecting transients in the DNN, adversarial attacks, data
input distortions, untrained input data, reduced false

negatives or false positives

In the first phase of DPAC we developed an ontology (called Hazard Ontology), that can
be used to perform a structured hazard analysis, along with a method to elicit safety
requirements (called Safety Requirements Elicitation approach, in short SARE) based on
the ontology. Even though the ontology is general, in the sense that it can be applied to
various types of systems, it was however developed primarily for traditional single
systems. As a result, SARE is used to discover the safety requirements that mitigate the
hazards identified for these systems. In the second phase of DPAC we have applied the
ontology on the quarry use-case to evaluate if the ontology can be used on System of
Systems (SoS). Preliminary results indicate that it can be used on SoS, that is, it supports
the common characteristics of those systems and that we are able to identify emergent
hazards. We have also proposed a method to abstract system descriptions to further
facilitate the use of the ontology on SoS, and to capture the safety requirements that
mitigate hazards in this kind of systems. The safety requirements, elicited through SARE,
are specified in a way so that they can easily be translated into formal verification
methods. In addition, with the help of our industrial partners we are continuing our work
on tool support that will facilitate the use of the ontology.

Hazard Analysis, Requirements
Elicitation and Validation

Verification-Driven Iterative Development of Cyber-
Physical System
We used an iterative and incremental approach to
build formally verified models. The actor-based
textual modeling language, Rebeca, with model
checking support is used for formal
verification. Starting from structured requirements
and system architecture design, the behavioral
models, including Rebeca codes, are built.

Properties of interest are also derived from the
structured requirements, and then model checking is
used to formally verify the properties.
This process can be performed in iterations until
satisfaction of desired properties are ensured, and
possible ambiguities and inconsistencies in
requirements are resolved. The formally verified
models can then be used to develop the executable
code.

The Rebeca codes include the details of the signals
and messages that are passed at the network level
including the timing and this facilitates the
generation of executable code.

Timed Rebeca is an
extension of the Reactive
Object Language, Rebeca,
and is designed for
modeling and verification
of distributed, concurrent
and event-driven
asynchronous systems
with timing constraints.
Timed Rebeca is
supported by a model
checking tool.

Guided approach – an example of multiple different
object detection scenarios

TAMAA: Timed Automata Based Mission Planner
for Multiple Autonomous Agents

Mission planning for autonomous agents (e.g., vehicles,
mobile robots, etc.) involves path planning and task
scheduling. While path planning is supported by some
algorithms, e.g., Dijkstra, A*, Theta* algorithms, its
correctness needs to be guaranteed in the context of
autonomous agents. Task scheduling is a well-known NP-
hard problem that remains outstanding for decades
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for
multiple agents to solve this problem, namely TAMAA.
This approach is based on a state-of-the-art model checker
for real-time systems, called UPPAAL, and is associated
with a GUI called Mission Management Tool (MMT) that is
developed at Mälardalen University.

The figure above depicts the process of TAMAA method.
First, users specify the requirement of autonomous
vehicles and configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that
represent the movement and task execution of agents,
as well as the monitors for special events are
automatically generated by TAMAA, based on the
information of the environment and tasks (step 3).

These TA models are then verified in the UPPAAL
model checker against the requirements that are
formalized as CTL/TCTL ((Timed) Computation Tree
Logic) queries (step 4). The model checker will
generate witnesses of execution that satisfy or violate
the requirements, which are used to synthesize
mission plans (step 5).

To enable TAMAA to solve multi-agent systems that
contain a large numbers of agents, we adopt
reinforcement learning and manage to synthesize
comprehensive mission plans that consider all
possible execution and movement time of the agents.
In short, a Q-learning algorithm processes the traces
obtained by simulation in UPPAAL, and populates a
Q-table, which is then used to form a new restricted
model.

We show that the method is applicable to complex
scenarios like autonomous quarries, overcoming the
scalability problem that is not solved otherwise.

Correctness
Intent

Acceptability

Reliable and Secure
DNN

…

Monitor 1

Monitor 2

Monitor n

In the case of image
classification using DNNs,
correct classification is only
one concern for safety. In
some scenarios it is equally
important to minimize
incorrectly classified images.

Verification-Driven Iterative Development of Cyber-Physical System
We used an iterative and incremental approach to build
formally verified models. The actor-based textual mod-
eling language, Rebeca, with model checking support is
used for formal verification. Starting from structured
requirements and system architecture design, the be-
havioral models, including Rebeca codes, are built.

Properties of interest are also derived from the struc-
tured requirements, and then model checking is used
to formally verify the properties.

This process can be performed in iterations until satis-
faction of desired properties are ensured, and possible
ambiguities and inconsistencies in requirements are re-
solved. The formally verified models can then be used
to develop the executable code.

The Rebeca codes include the details of the sig-
nals and messages that are passed at the

network level including the timing
and this facilitates the generation

of executable code.

Timed Rebeca is an extension of
the Reactive Object Language, Re-
beca, and is designed for modeling
and verification of distributed,
concurrent and event-driven asyn-
chronous systems with timing con-
straints. Timed Rebeca is supported
by a model checking tool.

Mission planning for autonomous agents (e.g., vehicles, mobile
robots, etc.) involves path planning and task scheduling. While
path planning is supported by some algorithms, e.g., Dijkstra,
A*, Theta* algorithms, its correctness needs to be guaranteed
in the context of autonomous agents. Task scheduling is a well-
known NP-hard problem that remains outstanding for decades
especially when facing multi-agent systems.

We design a timed-automata-based mission planner for mul-
tiple agents to solve this problem, namely TAMAA. This ap-
proach is based on a state-of-the-art model checker for real-
time systems, called UPPAAL, and is associated with a GUI
called Mission Management Tool (MMT) that is developed at
Mälardalen University.

The figure above depicts the process of TAMAA method. First,
users specify the requirement of autonomous vehicles and
configure the environment and tasks for the

vehicles in MMT (steps 1 and 2). Next, TA models that repre-
sent the movement and task execution of agents, as well as
the monitors for special events are automatically generated
by TAMAA, based on the information of the environment and
tasks (step 3).

These TA models are then verified in the UPPAAL model check-
er against the requirements that are formalized as CTL/TCTL
((Timed) Computation Tree Logic) queries (step 4). The model
checker will generate witnesses of execution that satisfy or
violate the requirements, which are used to synthesize mis-
sion plans (step 5).

To enable TAMAA to solve multi-agent systems that contain a
large numbers of agents, we adopt reinforcement learning and
manage to synthesize comprehensive mission plans that con-
sider all possible execution and movement time of the agents.
In short, a Q-learning algorithm processes the traces obtained
by simulation in UPPAAL, and populates a Q-table, which is
then used to form a new restricted model.

We show that the method is applicable to complex scenarios
like autonomous quarries, overcoming the scalability problem
that is not solved otherwise.

TAMAA: Timed Automata Based Mission Planner for Multiple Autonomous Agents

P3 -DESIGN METHODOLOGIES

(a) Train

trainStatus
!isRunning

lea
veStati

on()
afte

r (t2
)

trai
nStatu

s = tru
e

isR
unning =

 fal
se

trainStatus = false

running() after (t1)

isRunning = true

! trainStatus
!isRunning

trainStatus
isRunning

approachStation() after (t1)
trainStatus = false
isRunning = false

! trainStatus
! isRunning
Unlocked
Opened

trainStatus
! isRunning

Unlocked
Opened

trainStatus
! isRunning
Unlocked

Closed

trainStatus
! isRunning

Locked
Closed

! trainStatus
! isRunning

Locked
Closed

! trainStatus
! isRunning

Unlocked
Closed

train.leaveStation() after (t2)

door.closeDoor()

door.lo
ck

Door()
train.approachStation() after (t1)

do
or

.un
lo

ck
Doo

r()

door.openDoor(

)

trainStatus
isRunning

Locked
Closed

train.running() after (t1)

(c) Controller(b) Door

Unlocked
Opened

Locked
Closed

Unlocked
Closed

closeDoor()lockDoor()

openDoor()unlockDoor()

(d) Passenger

P

passengerO
penD

oor()

1 env bbyyttee networkDelayDoor = 3;
2 env bbyyttee networkDelayTrain = 0;
3 env bbyyttee reactionDelay = 1;
4 env bbyyttee passengerPeriod = 5;
5 env sshhoorrtt runningTime = 233;
6 env sshhoorrtt atStationTime = 50;
7 rreeaaccttiivveeccllaassss Controller(23){
8 kknnoowwnnrreebbeeccss{
9 Door door;
10 Train train;
11 }
12 ssttaatteevvaarrss{
13 bboooolleeaann isClosed;
14 bboooolleeaann isLocked;
15 bboooolleeaann trainStatus;
16 bboooolleeaann commandToMove;
17 }
18 Controller(){
19 trainStatus = ttrruuee;
20 commandToMove = ffaallssee;
21 isClosed = ffaallssee;
22 isLocked = ffaallssee;
23 }
24 mmssggssrrvv setDoorStatus(bboooolleeaann close, bboooolleeaann lock) {
25 isClosed = close;
26 isLocked = lock;
27 sseellff.driveController();
28 }

29 mmssggssrrvv setTrainStatus(bboooolleeaann status,
 BBoooolleeaann isRunning){

30 trainStatus = status;
31 commandToMove = isRunning;
32 sseellff.driveController();
33 }
34 mmssggssrrvv driveController(){
35 iiff(trainStatus){ // leave the station
36 iiff(!isClosed || !isLocked) {
37 iiff(!isClosed)
38 door.closeDoor() after(networkDelayDoor);
39 iiff(!isLocked)

40 door.lockDoor()
 after(reactionDelay + networkDelayDoor);

41 }
42 iiff(isClosed && isLocked && !commandToMove)
43 train.running() after(networkDelayTrain);
44 }// end of if(trainStatus)
45 eellssee iiff(!trainStatus){ // arrive to the station
46 iiff(isClosed || isLocked) {
47 iiff(isLocked)
48 door.unlockDoor() after(networkDelayDoor);
49 iiff(isClosed)

50 door.openDoor()
 after(reactionDelay + networkDelayDoor);

51 } } // end of else if(!trainStatus)
52 } // end of driveController()
53 } //end of the Controller class
54 } //end of the Controller class
55 rreeaaccttiivveeccllaassss Train(5){
56 kknnoowwnnrreebbeeccss{
57 Controller controller;
58 }
59 ssttaatteevvaarrss{
60 bboooolleeaann status;
61 bboooolleeaann isRun;
62 }
63 Train(){
64 status = ttrruuee;
65 isRun = ffaallssee;
66 sseellff.leaveStation();
67 }
68 mmssggssrrvv leaveStation(){
69 status = ttrruuee;
70 isRun = ffaallssee;

71 controller.setTrainStatus(status, isRun)
 after(networkDelayTrain);

72 }
73 mmssggssrrvv running(){
74 isRun = ttrruuee;

75 controller.setTrainStatus(status, isRun)
 after(networkDelayTrain);

76 sseellff.approachStation() after(runningTime);
77 }
78 mmssggssrrvv approachStation(){
79 status = ffaallssee;
80 isRun = ffaallssee;

81 controller.setTrainStatus(status)
after(networkDelayTrain);

82 sseellff.leaveStation() after(atStationTime);
83 }
84 } //end of the Train class
85 rreeaaccttiivveeccllaassss Door(15){
86 kknnoowwnnrreebbeeccss{
87 Controller controller;
88 }
89 ssttaatteevvaarrss{
90 bboooolleeaann isDoorClosed;
91 bboooolleeaann isDoorLocked;
92 }
93 Door(){
 94 isDoorClosed = ffaallssee;
 95 isDoorLocked = ffaallssee;
 96 }
 97 mmssggssrrvv closeDoor(){
 98 isDoorClosed = ttrruuee;

 99 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

100 }
101 mmssggssrrvv lockDoor(){
102 iiff (isDoorClosed){

 // The door is only locked if the door is closed.
103 isDoorLocked = ttrruuee;
104 }

105 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

106 }
107 mmssggssrrvv unlockDoor(){
108 isDoorLocked = ffaallssee;

 109 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

110 }
111 mmssggssrrvv openDoor(){

 // The door is only opened if the door is not locked.
112 IIff (!isDoorLocked){
113 isDoorClosed = ffaallssee;
114 }

115 controller.setDoorStatus(isDoorClosed,
isDoorLocked) after(networkDelayDoor);

116 }
117 } //end of the Door class
118 rreeaaccttiivveeccllaassss Passenger(5){
119 kknnoowwnnrreebbeeccss{
120 Door door;
121 }
122 Passenger(){
123 sseellff.passengerOpenDoor() after(passengerPeriod);
124 }
125 mmssggssrrvv passengerOpenDoor(){
126 door.openDoor();
127 sseellff.passengerOpenDoor() after(passengerPeriod);
128 }
129 } //end of the Passenger class
130 mmaaiinn {
131 Controller controller(door, train):();
132 Door door(controller):();
133 Train train(controller):();
134 Passenger passenger(door):();
135 }

Assertion1: (! (!door.isDoorClosed && door.isDoorLocked));

10

Intelligent Path Planning and Collision Avoidance via Dipole Flow Field Technique
Intelligent Path Planning: We employ the A*/Theta* algorithm to generate an initial shortest path for AWL, from the starting
position to the destination. The A* or Theta* algorithm generates smooth paths with few turns, by exploring the map and calcu-
lating the cost of nodes by the function f(n) = g(n) + h(n), where n is the current node being explored, g(n) is the Euclidean dis-
tance from the starting node to n, and h(n) is the estimated cheapest cost from n to the destination. In each search iteration, the
node with the lowest cost among the nodes that have been explored is selected, and its reachable neighbors are also explored by
calculating their costs. The iteration is eventually ended if the destination is found or all reachable nodes have been explored.

Dipole Flow Field (DFF) for Collision Avoidance: We model every object as a source of magnetic dipole field, in which the mag-
netic moment is aligned with the moving direction, and the magnitude of the magnetic moment is proportional to the velocity.
DFF has two components: (i) The static flow field force that attracts the vehicle to its goal, ensuring that the vehicle avoids the
static obstacles on the map, and (ii) the dynamic dipole field that generates forces that push the vehicle away from the dynamic
obstacle, once encountered, based on the latter’s respective moving direction and velocity. The obstacle detection relies on data
collected from AWL sensors and on executing recognition algorithms based on deep learning, to determine the presence of
obstacles.

•	 Assume that the shortest path is
the connection of several line seg-
ments (Figure a).

•	 The static flow field is created
within the neighbourhood of the
line segment (Figure b).

•	 The flow field force at a point 𝑝 is
given by

• Assume that the shortest path is the
connection of several line segments
(Figure a).

• The static flow field is created within
the neighbourhood of the line
segment (Figure b).

• The flow field force at a point 𝑝 is
given by

𝑭𝑓𝑙𝑜𝑤 𝒑 = 𝐹𝑎(𝒑) + 𝑭𝑟(𝒑)

 𝐹𝑎(𝒑): Attractive forces to the initial
path
 𝑭𝑟(𝒑): Repulsive forces from static
obstacles

Figure a. Figure b.

DEMONSTRATOR
-AUTONOMOUS WHEEL LOADER FROM VOLVO CE

AWL Scenario and Challenges
Scenario: The use case focuses on autonomous wheel loaders (AWLs) that are driver-less vehicles that are utilized to transport
materials in a quarry site. An AWL digs a given stone pile and carries an amount of stones to a primary crusher that crushes the
stones at given fractions, after which the crusher unloads the stones onto the conveyor belt. Next, the AWL moves to the other
end of the conveyor belt and loads the crushed stones. It then continues moving to the secondary crusher to unload the stones,
which finishes one round in the job cycle. The AWL must avoid static obstacles (e.g., holes and rocks on the ground) as well as
possible dynamic obstacles (e.g., other mobile machines or humans), in an optimal manner in order to keep productivity high.

Design and implementation challenges:
(i) dependable and accurate algorithms for
obstacle detection, path planning, and
collision avoidance (P2), (ii) design-
time verification of requirements
and analysis of behavior assuming
unpredictable occurrence of dy-
namic obstacles (P3), (iii) pre-
dictable platform for AWL
to run the mentioned al-
gorithms (P1), and (iv)
implementation and
performance evalua-
tion of the proposed
algorithms on the
proposed platform
(P1, P2, P3).

11

DEMONSTRATOR
-AUTONOMOUS WHEEL LOADER FROM VOLVO CE

Formal Modeling, Verification and Performance Evaluation of AWL Behavior
The AWL has a large set of functional and extra-functional requirements, including end-to-end deadlines for a mission, and
energy consumption constraints. In order to ensure the dependability of the AWL at design time, we perform the following:

•	 Employ our framework TAMAA (Timed-Automata-based planner for Multiple Autonomous Agents) to automatically gene-
rate mission plans (including path planning and operation scheduling) for the AWL, by automating the generation of for-
mal models as networks of timed automata (TA) or stochastic timed automata (STA), and integrating the model-checking
tool (UPPAAL) and the Mission Management Tool (MMT) in one platform (Figure c).

•	 Model and verify the AWL’s behavior (path computation, obstacle avoidance, end-to-end deadlines) with respect to the
synthesized mission plan, and the A*/Theta* and dipole flow field algorithms encoded in UPPAAL (Figure d).

•	 Formally verify the safety and performance of the AWL’s behavior under certain adaptive policies and dynamic changes
encoded in Rebeca, by employing the integrated development environment Afra.

Implementation of the Path Planning and Dipole Flow Field Algorithms on a Heterogeneous System Architecture
(HSA)-compliant Reference Platform
To assess the predictability and performance of our solutions, we implement the
path planning and dipole flow field algorithms on an HSA architecture (Figure f),
which uses 4 CPU cores, 6/8 GPU computing units, all on the same chip. We use an
open source run-time API called Heterogeneous-compute Interface for Portability
(HIP), with a C++ kernel language. The code is portable on AMD and NVIDIA GPU
hardware.

Solution: Initialize an attractive force (return_force in Figure g) from the start to the goal points of the path in the map grid.
Compute the minimum distance, min_dist, in the CPU, and on each generated segment calculate the distance to the goal. This
is implemented as parallel GPU threads.

Each GPU thread computes the attractive force only if the distance is lower than min_dist.

The threads synchronize, and only the GPU thread that returns the minimum distance yields the final result to the CPU, the
rest are masked.

Figure f.

Figure e.

Figure d.

Figure c.

Demonstrator: Autonomous Wheel Loader from Volvo CE

Intelligent Path Planning and Collision Avoidance via
Dipole Flow Field Technique

Intelligent Path Planning: We employ the A*/Theta* algorithm to generate an initial shortest path for
AWL, from the starting position to the destination. The A* or Theta* algorithm generates smooth paths with
few turns, by exploring the map and calculating the cost of nodes by the function f(n) = g(n) + h(n), where n
is the current node being explored, g(n) is the Euclidean distance from the starting node to n, and h(n) is the
estimated cheapest cost from n to the destination. In each search iteration, the node with the lowest cost
among the nodes that have been explored is selected, and its reachable neighbors are also explored by
calculating their costs. The iteration is eventually ended if the destination is found or all reachable nodes have
been explored.

Dipole Flow Field (DFF) for Collision Avoidance: We model every object as a source of magnetic
dipole field, in which the magnetic moment is aligned with the moving direction, and the magnitude of the
magnetic moment is proportional to the velocity. DFF has two components: (i) The static flow field force that
attracts the vehicle to its goal, ensuring that the vehicle avoids the static obstacles on the map, and (ii) the
dynamic dipole field that generates forces that push the vehicle away from the dynamic obstacle, once
encountered, based on the latter’s respective moving direction and velocity. The obstacle detection relies on
data collected from AWL sensors and on executing recognition algorithms based on deep learning, to
determine the presence of obstacles.

Scenario: The use case focuses on autonomous wheel loaders (AWLs) that are driver-less vehicles that are utilized to transport materials in
a quarry site. An AWL digs a given stone pile and carries an amount of stones to a primary crusher that crushes the stones at given fractions,
after which the crusher unloads the stones onto the conveyor belt. Next, the AWL moves to the other end of the conveyor belt and loads the
crushed stones. It then continues moving to the secondary crusher to unload the stones, which finishes one round in the job cycle. The AWL
must avoid static obstacles (e.g., holes and rocks on the ground) as well as possible dynamic obstacles (e.g., other mobile machines or
humans), in an optimal manner in order to keep productivity high.

Design and implementation challenges: (i) dependable and accurate algorithms for obstacle detection, path planning, and collision
avoidance (P2), (ii) design-time verification of requirements and analysis of behavior assuming unpredictable occurrence of dynamic
obstacles (P3), (iii) predictable platform for AWL to run the mentioned algorithms (P1), and (iv) implementation and performance
evaluation of the proposed algorithms on the proposed platform (P1, P2, P3).

AWL Scenario and Challenges

Formal Modeling, Verification and Performance Evaluation of AWL Behavior

Implementation of the Path Planning and Dipole Flow Field Algorithms on
a Heterogeneous System Architecture (HSA)-compliant Reference Platform

• Assume that the shortest path is the
connection of several line segments
(Figure a).

• The static flow field is created within
the neighbourhood of the line
segment (Figure b).

• The flow field force at a point 𝑝𝑝𝑝𝑝 is
given by

𝑭𝑭𝑭𝑭𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝒑𝒑𝒑𝒑 = 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎(𝒑𝒑𝒑𝒑) + 𝑭𝑭𝑭𝑭𝑟𝑟𝑟𝑟(𝒑𝒑𝒑𝒑)

𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎(𝒑𝒑𝒑𝒑): Attractive forces to the initial
path

𝑭𝑭𝑭𝑭𝑟𝑟𝑟𝑟(𝒑𝒑𝒑𝒑): Repulsive forces from static
obstacles

Figure a.

Figure b.

• Deadline misses
• Deadlock
• Starvation
• Fuel outage
• Collisions
• Wrong movements

• Consumed Fuel
• Emitted CO2
• Transported Material
• Operation time
• Travel Distances

Formal Verification
Rebeca Model of

Environment
and AWL Behavior

Safety Assurance Performance Evaluation

The AWL has a large set of functional and extra-functional requirements, including end-to-end deadlines for a mission, and energy
consumption constraints. In order to ensure the dependability of the AWL at design time, we perform the following:
• Employ our framework TAMAA (Timed-Automata-based planner for Multiple Autonomous Agents) to automatically generate

mission plans (including path planning and operation scheduling) for the AWL, by automating the generation of formal models as
networks of timed automata (TA) or stochastic timed automata (STA), and integrating the model-checking tool (UPPAAL) and the
Mission Management Tool (MMT) in one platform (Figure c).

• Model and verify the AWL’s behavior (path computation, obstacle avoidance, end-to-end deadlines) with respect to the
synthesized mission plan, and the A*/Theta* and dipole flow field algorithms encoded in UPPAAL (Figure d).

• Formally verify the safety and performance of the AWL’s behavior under certain adaptive policies and dynamic changes encoded in
Rebeca, by employing the integrated development environment Afra.

Figure f.

Figure e.

Figure c.

UPPAAL-based AWL Modeling and Formal Verification

TAMAA-based Synthesized Mission Plans for AWL

Solution: Initialize an attractive force (return_force in
Figure g) from the start to the goal points of the path in the
map grid. Compute the minimum distance, min_dist, in the
CPU, and on each generated segment calculate the distance
to the goal. This is implemented as parallel GPU threads.

Each GPU thread computes the attractive force only if the
distance is lower than min_dist.

The threads synchronize, and only the GPU thread that
returns the minimum distance yields the final result to the
CPU, the rest are masked.

Figure d.

To assess the predictability and performance of our solutions, we
implement the path planning and dipole flow field algorithms on an
HSA architecture (Figure f), which uses 4 CPU cores, 6/8 GPU
computing units, all on the same chip. We use an open source run-
time API called Heterogeneous-compute Interface for Portability
(HIP), with a C++ kernel language. The code is portable on AMD
and NVIDIA GPU hardware.

__global__
void kernel_Theta2FlowForce(Point2f *s, Point2f *end, float *s
egment_len,

float *x, float *y, float *nx, float *ny,
int num_of_segment, Point2f *return_force_)

{
// Calculate the coordinate in which the kernel function runs
unsigned i = hipThreadIdx_x + hipBlockIdx_x*hipBlockDim_x;

if(i < num_of_segment) {
dist = sqrt((s->x - x[i])*(s->x - x[i]) + (s->y - y[i])*(s->y -

y[i])) + 1e-12;
if (dist < min_dist) { ... }

// Wait until all threads finish computing the minimum
distance

// and updating dipole force components
__syncthreads();

if(i == 0) {
// Determine the thread with minimum distance ,
// obtained from the parallel computation

min_dist_shared = min_dist_arr[j];
}}

// Wait until the minimum distance is determined by the first
thread

__syncthreads();
if(i == min_index){

// Calculate attractive force
// Only the unmasked kernel thread does this

}}}

Figure g.

TAMAA-based Synthesized Mission Plans for AWL

UPPAAL-based AWL Modeling and Formal Verification

Rebeca Model of
Environment

and AWL Behavior

•	 Deadline misses
•	 Deadlock
•	 Starvation
•	 Fuel outage
•	 Collisions
•	 Wrong movements

Safety Assurance Performance
•	 Consumed Fuel
•	 Emitted CO2
•	 Transported Material
•	 Operation time
•	 Travel Distances

Formal Verification

Figure g.

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden

E-mail: info@mdh.se Web: www.mdh.se

About MDH
MDH is one of Sweden’s largest HEIs, with 16 000 students
reading courses and programmes in Business, Health, Engi-
neering and Education. At MDH, research is conducted within
all areas of education to address the challenges of society, and
of this the research in future energy and embedded systems is
internationally outstanding. MDH’s close cooperation with the
private and public sectors enables us to help people feel better
and the earth to last longer. MDH is located on both sides of
Lake Mälaren, with campuses in Eskilstuna and Västerås.

About KKS
The Knowledge Foundation funds research and compe-
tence development at Sweden’s university colleges and new
universities with the purpose of strengthening Sweden’s com-
petitiveness. We provide funding when activities are conduct-
ed in collaboration between academic staff and business sec-
tor partners. The aim is to build internationally competitive,
integrated research and education environments. Our mission
is to strengthen Sweden’s competitiveness, and we know that
collaborative projects between academia and industry create
great benefits for both parties. The Foundation was established
in 1994 with a founding capital of 3.6 billion SEK, and has now
invested some 9.3 billion SEK in over 2 500 projects.

DPAC
Profile leader: Kristina Lundqvist
kristina.lundqvist@mdh.se
+46(0)73 960 74 40
www.es.mdh.se/dpac

