
Separation of Concerns in Process Compliance
Checking: Divide-and-Conquer

Julieth Patricia Castellanos Ardila and Barbara Gallina

IDT, Mälardalen University, Väster̊as, Sweden
{julieth.castellanos, barbara.gallina}@mdh.se

Abstract. Compliance with multiple standard’s reference models has
the potential to improve process quality but is a challenging task faced
by manufacturers in the safety-critical context. To facilitate this task,
we propose a method for automated process compliance checking that
can be used as a basis for decision making. Our method requires users to
create a knowledge base of formalized requirements and processes check-
able for compliance. In this paper, we exploit the natural separation of
concerns in the state of practice to offer adequate means to facilitate the
creation of the required concepts by using a divide and conquer strategy.
For this, we discuss the impact of process factors in compliance assess-
ment and provide separation of concerns based on SPEM 2.0 (Systems
and Software Process Engineering Metamodel). Then, we illustrate the
defined concerns and discuss our findings.

Keywords: Software Process Compliance Checking · Safety Standards
· SPI · SPEM 2.0 · Separation of Concerns · Divide and Conquer.

1 Introduction

In the safety-critical context, standards commonly prescribe requirements that
include the tasks to be performed, and resources ascribed to such tasks, i.e.,
personnel, work products, tools, and methods, which are also framed with es-
sential properties. With the growing software development complexity, there is
a need to adequately allocated such resources during the software development
lifecycle [25]. However, this task becomes difficult due to software process di-
versity, i.e., the simultaneous use of multiple reference models within a single
project [18]. To tackle this situation, organizations produce generic software
process baselines. In the analysis of these baselines, gaps to best practices could
be discovered [5], and potential improvements, based on standard’s information,
can be performed [4]. Thus, part of the software process improvement effort
required in the safety-critical context is expended in process-based compliance.

A high level of investment in process-based compliance could result in an
improvement in productivity and quality, especially when there is process di-
versity [18]. Process-based compliance could be supported by checking that the
process used to engineer safety-critical systems fulfill the properties set down
by standards at given points. The resulting compliance checking reports can be



2 Castellanos & Gallina

used not only to demonstrate to auditors that process plans fulfill the prescribed
requirements [10], but also to discover essential improvement aspects. Thus, in
previous work [1, 2], we presented a method for automated compliance checking
of processes plans. Our method requires users to: 1) model a formal specification
of the standard requirements by using FCL (Formal Contract Logic) [11] and
2) model a specification of the process plans that are checkable for compliance,
i.e., processes augmented with compliance information, by using SPEM 2.0 (Sys-
tems and Software Process Engineering Metamodel) [16]. Thus, an essential step
of our method is dedicated to creating well-formed specifications.

In this paper, we aim at facilitating the creation of the specifications required
for automated compliance checking. Given the natural separation of concerns in
the state of practice, we try to offer adequate means to support the separated
concepts based on process structure and different standards, by using a divide-
and-conquer strategy. For this, we discuss the impact of process factors in com-
pliance assessment and justify the separation of concerns based on SPEM 2.0
concepts. SPEM 2.0 is a well-defined metamodel that not only permits the mod-
eling of software processes but also the customization of elements to provide
standards-related information. Then, we illustrate the use of the defined con-
cerns with the requirements prescribed in the railway sector. Finally, we discuss
the potential benefits and implications of our work.

The paper is organized as follows. We present essential background in Sec-
tion 2. We discuss the separation of concerns within the regulatory space in
Section 3. We illustrate the defined concerns in Section 4. We discuss our find-
ings in Section 5. We present related work in Section 6. Finally, we conclude the
work and outline future work in Section 7.

2 Background

This section presents essential background required in this paper.

2.1 Standards in the Safety-critical Context

Compliance with safety standards typically involves the provision of evidence re-
garding process plans since standards reference frameworks contain requirements
that prescribe artifacts related to the planning of activities [21]. In particular,
process reference models describe a set of tasks to be performed during the de-
velopment of safety-critical systems. For example, ISO 26262 [14], which is the
standard that applies in automotive, proposes a V-model, in which the activities
related to the development of the software are contrasted with the ones related to
verification and validation. The standard DO-178C [19] describes a set of objec-
tives that implicitly define a lifecycle model. ECSS-E-ST-40C [7], which applies
in space software projects, focuses on the definition of software development
phases and their characteristics. In all the standards, the detailed breakdown
of the work can be inferred from the requirements. Moreover, process-related
standards commonly have sections in which they describe the necessary inputs



Title Suppressed Due to Excessive Length 3

and the mandatory outputs of the safety lifecycle phases. The qualification of
personnel may vary from one standard to the other. ISO 26262 mentions the
importance of qualified personnel, but it leaves the decision to the company,
which should have a minimum set of internal requirements in that matter. In
ECSS E-ST-40C, the degree of independence between developers and reviewers
is highlighted. In DO-178C, specific roles are defined for specific phases in the
lifecycle. Similarly, tool qualification is required in the safety-critical context.
In ECSS-E-ST-40C, supporting tools are a customer/supplier agreement that
shall be documented in the plan. A specific standard annex, called DO-330 [20],
defines that for Avionics, the tool qualification is in itself a process necessary to
obtain qualification credit. For ISO 26262, evidence regarding the tool suitabil-
ity for specific uses should be shown. All the standards prescribe methods and
techniques that should be used to perform specific tasks in the form of guidance.

2.2 CENELEC EN 50128

CENELEC EN 50128 [3], which is the standard that focuses on software aspects
regarding control and protection applications in railways, prescribes require-
ments that target the different elements described in Section 2.1. In Table 1, we
recall a set of requirements that apply to the Architecture and Design Phase.

Table 1: CENELEC EN 50128-Architecture and Design Phase [3]
Element Description

Inputs Software Requirements Specification (SRS).

Outputs

Software Architecture Specification (SAS), Software Design Specification (SDS), Soft-
ware Interface Specifications (SIS), Software Integration Test Specification (SITS), Soft-
ware/Hardware Integration Test Specification (SHITS), Software Architecture and De-
sign Verification Report (SADVR).

Tasks

1) Software Architecture Specification, 2) Software Interface Specification, 3) Software
Design Specification, 4) Selection/Creation Coding Standards, 5) Software Integration
Test Specification, 6) Software/Hardware Integration Test Specification, 7) Software Ar-
chitecture and Design Verification Report

Roles
Designer for task 1), 2), 3) and 4). Integrator for tasks 5) and 6). Verifier for task 7).
The designer shall be competent in safety design principles and EN 50128.

Tools Suitable tools with a certificate of validation (e.g., Matlab and MS Word)

Guidelines

Guidance for the Software Architecture Specification task (req-7-3-4-5), guidance for
SAS (req-7-3-4-10), guidance for the SIS (req-7-3-4-19), guidance for SDS (req-7-3-4-
23), guidance for the selection/creating coding standards (req-7-3-4-25), guidance for
the design method selection (req-7-3-4-28), guidance for the software integration test
specification task (req-7-3-4-31), guidance for the software/hardware integration test
specification (req-7-3-4-36), guidance for SHITS (req-7-3-4-37), guidance for the Software
Architecture and Design verification report (req-7-3-4-42)

CENELEC EN 50128 also refers to quality management and continuous im-
provement of the systems within the organizations. Companies may have quality
assurance mechanisms that conform to different frameworks such as Software
Process Improvement and Capability Determination (SPICE), also known as
ISO/IEC 15504. In particular, part 5 [13] provides processes that serve primary
parties during the lifecycle of software. We select the process outcome database



4 Castellanos & Gallina

design, as an example. Process outcomes are essential for determining the result
of the execution of the process.

2.3 Software Processes and SPEM 2.0

A software process [8] provides a broad and comprehensive concept to frame
and organize the different tasks required during the development of software. To
ensure understanding, documentation, and exchange of process specifications,
technological support is required [9]. In particular, SPEM 2.0 (Systems and
Software Process Engineering Metamodel) [16] is a software process modeling
language that provides the capability of modeling method content independently
from their use in processes. Method content describes different process elements
as presented in Fig. 1a. Such elements are related to each other, as presented
in Fig. 1b. EPF (Eclipse Process Framework) Composer [6], which was recently
migrated from Eclipse Galileo 3.5.2 to Eclipse Neon 4.6.3. [15], provides the
environment for modeling SPEM 2.0-like process models.

(a) SPEM 2.0 Elements (b) Elements Relationships

Fig. 1: Content Elements Definitions in SPEM 2.0 [16].

2.4 Formal Contract Logic

Formal Contract Logic (FCL) [11] is a logic that supports the modeling of norms
representing obligations and permissions in a normative context that can be
defeated by evolving knowledge. Thus, FCL is classified as a defeasible deontic
logic. In FCL, a rule has the form: r: a1, ..., an ⇒ c, where r is the rule identifier,
a1, ..., an are the propositions that represent the conditions of the applicability
of the norm, and c is the concluding proposition that contains normative effects.

2.5 Automatic Compliance Checking Method

Our method for automated compliance checking of processes plans [1], requires
users to model processes with SPEM 2.0 (recalled in Section 2.3) and formal-
ize standards requirements with FCL (recalled in Section 2.4). Rules in FCL
are composed of propositions that correspond to the properties described in the
requirements of the standard. Such properties can be annotated to the process
tasks that fulfill them. Annotations reflect not only the state of the task but also
the effects such task produces on subsequent tasks. For this reason, FCL propo-
sitions describe compliance effects, which annotated on process models permit



Title Suppressed Due to Excessive Length 5

the derivation of process models checkable for compliance (compliance state rep-
resentation of such processes that permits automatic reasoning). We explain the
modeling part of our method with an example from ISO 26262 presented in [1].
The modeled requirement is obtained from part 6 clause 8, number 8.1, which
states: “Specify software units in accordance with the architectural design and
the associated safety requirements”. The FCL representation of this requirement
is presented in Equation 1.

r2.1 : addressSwUnitDesignProcess⇒ [O]− performSpecifySwUnit

r2.2 : performProvideSwArchitecturalDesign, performProvideSwSafetyRequirements

⇒ [P ]performSpecifySwUnit

r2.2>r2.1

(1)

To create the process models checkable for compliance, we fist need to model
the compliance effects described in the propositions of the rules. For exam-
ple, the rules on Equation 1 contains five propositions, namely addressSWUnit-
DesignProcess, -performSpecifySwUnit, performProvideSwArchitecturalDesign,
performProvideSwSafetyRequirements and performSpecifySwUnit, which are pre-
sented in Fig. 2a. Then, we need to assign such compliance effects to the tasks
that fulfill them. For example, the task Start software Unit Design Process indi-
cates that the process is performed and has two inputs. Therefore the annotated
compliance effects are addressSwUnitDesignProcess, performProvideSwArchi-
tecturalDesign and performProvideSwSafetyRequirements (see Fig. 2b). The
reader can discover more details about the previous modeling in [1].

(a) Compliance Effects. (b) Annotated Task.

Fig. 2: Method for Automatic Compliance Checking: The Modeling Part.

2.6 Separation of Concerns: Divide-and-conquer Strategy

The Romans had a strategy called divide-and-conquer, which considers that one
power breaks another power into more manageable pieces to easier take con-
trol. In software engineering, this strategy is adopted as a principle to manage
complexity [23]. Particularly, divide-and-conquer is seen in the principle of sepa-
ration of concerns [24], which refers to the ability to separate and organize only
those parts (or properties) of a system that are relevant to a particular concept
or to a particular goal. A concern may be defined as a functional notion or more
broadly as any piece of interest or focus.



6 Castellanos & Gallina

3 Separation of Concerns within the Regulatory Space

The relationship between the requirements imposed by safety standards (recalled
in Section 2.1) and the targeted software processes (recalled in Section 2.3) is
complex. The reason is that a single requirement may be impacting one element
in the process, causing effects to several elements. Moreover, each element in a
process may be impacted by several requirements. In addition, software process
diversity, as recalled in the introductory part, may lead to problems in the un-
derstanding of what is needed for managing the compliance. Thus, we have a
compact set of requirements, which we need to manage appropriately. By apply-
ing the divide-and-conquer strategy, we could break down such complexity and
provide a better view of the requirements.

Separation of concerns (recalled in Section 2.6) applied to the regulatory
space could be oriented to the process-specific factors. In particular, the aspects
that requirements regulate are the tasks, their specific order, the mandatory
input and outputs of the tasks, the personnel performing the tasks, the tools as
well as the recommended techniques that should be used to do the tasks. Thus,
the concept of a task is central, to which properties such as the definition of
roles, inputs, outputs, tools, and techniques must apply.

However, requirements not only define the properties of the tasks. For ex-
ample, roles and tools should have a qualification. This kind of requirements
does not directly affect the tasks. They directly affect other elements, which in
turn have effects on tasks. Thus, a process can be deemed compliant if we can
demonstrate that the process contains the permitted tasks, such tasks have as-
sociated the prescribed roles, inputs, outputs, tools, and techniques, and if the
associated elements have associated their related properties. With such consid-
eration, dividing requirements in terms of the elements they target, as well as
the specific properties defined for each element, seems to be the natural way in
which concerns should be separated.

According to SPEM 2.0 (recalled in Section 2.3), a task is performed by a
role, requires inputs and provides outputs, is guided by guidance, and a tool
is used (see Fig. 1b). Thus, the tasks are the central elements, to which the
other elements are allocated. Our method for compliance checking (recalled in
Section 2.5), requires that all the properties defined by the requirements of the
standard are also allocated (or annotated) to the tasks included in the process
plan since such annotations describe the permitted compliance states of the
tasks. An abstraction of such a concept can be seen in Fig. 2b. However, not
only tasks provide compliance effects to the overall process. As we previously
concluded, elements different from tasks too.

Fig. 3: Annotated Role.

Thus, we propose a new abstraction of
model annotation, in which tasks will no
longer be the placeholder of the compliance ef-
fects caused by the process elements ascribed
to them. Instead, every element will carry out
its own responsibility in terms of compliance
information (see Fig. 3). The novelty of the approach is threefold. First, we free



Title Suppressed Due to Excessive Length 7

the tasks from unnecessary annotations. Second, annotations on shared process
elements should be done only once in a process model. Third, annotated elements
have the potential to be reused in other processes and easily re-checked.

To facilitate the creation of compliance effects, which later can be used to
form the propositions of the rules in FCL (recalled in section 2.4), we propose
two aspects. The first aspect is the definition of icons, which includes the de-
scription of the targeted elements, as presented in Table 2. The second aspect
is the definition of templates that facilitate the creation of compliance effects,
as presented in Table 3. Both, icons and templates are based on the concepts
described in SPEM 2.0 in Fig. 1.

Table 2: Icons Describing Specific Compliance Effects.
Role Work Product Guidance Tool

Task
Definition Property Definition Property Definition Property Definition Property

Table 3: Compliance Effects Targeting Differentiated Process Elements
Element target Definitional propositions Property-based Propositions

In/Output elements provide{Element} {Element}with{Property}
Roles performedBy{Role} {Role}with{Property}
Tools used{Tool} {Tool}with{Property}
Guidelines guidedBy{Guidance} {Guidance}with{Property}

Tasks perform{Task}

4 Illustrative Example

We illustrate the separation of concerns in the regulatory space by taking into
account the requirements for the architecture and design phase proposed by
CENELEC EN 50128 (see Section 2.2). Initially, we need to classify the require-
ments in terms of the process elements they target. This operation is already
presented in Table 1. From this division, we can describe the definitional and
property-based propositions derived from these requirements by using the propo-
sitions templates shown in Table 3, and the icons described in Table 2. Then, we
model them as SPEM 2.0-like elements in the guidance part of EPF Composer.
Fig. 4 presents the instantiation of the templates with the predefined icons.
For example, the designer should be defined (definitional proposition), and the
designer should have competence in safety design and EN 50128 (two property-
oriented propositions). The previous propositions are highlighted in red in Fig. 4.
A similar analysis is done with all the requirements.

The next step is to annotate the compliance effects defined in Fig. 4 into a
process plan. For simplicity, we described a process plan taking into account the
process elements described in the standard, recalled in Table 1 (see Fig. 5). As



8 Castellanos & Gallina

(a) (b)

Fig. 4: CENELEC EN 50128 - Architecture and Design Phase.

we can see in Fig. 5, the process plan contains a series of tasks and elements
ascribed to such tasks. To annotate the effect, we need to compare each element
in Fig. 5 with the list of compliance effects in Fig. 4. In this case, the names
of the process elements can be found in the names of the compliance effects
since both models are taken from the standard. Thus, the annotation process is
straightforward.

Fig. 5: Process Plan Targeting the Architecture and Design Phase

Fig. 6 shows the annotation of the task SW Design Definition. As the figure
depicts, this task has one direct CENELEC EN 50128-related compliance effect,
i.e., performSoftwareDesignDefinition. The remaining eight compliance effects
are allocated to the elements that directly fulfill them, e.g., the task is performed
by a designer, who should have a certificate of UML, and that has knowledge of
EN 50128. As we can see in Fig. 5, some tasks are done by the same role. e.g., the



Title Suppressed Due to Excessive Length 9

designer should perform the first four tasks, and the same tools should be used.
Thus, our approach simplifies the annotations process since all those indirect
compliance effects are not required to be annotated in each task. To make the
process also compliant with ISO/IEC 15504, the outcome prescribed by the effect
provideDatabase (we assume it was modeled as in Fig. 4), should be included in
the modeling of the process (see the work product Database highlighted with a
dotted line in Fig. 6).

Fig. 6: Task and their Ascribed Elements Annotated with Compliance Effects

5 Discussion

In this section, we present a discussion regarding our method.

5.1 Compliance-related Process Information

Compliance management can benefit from our proposed modeling strategy. First,
the icons describing definitions (see Table 2) will correspond to the software pro-
cess elements required in a fully compliant process plan. Thus, such visual de-
scriptions make the process engineer compliance-aware during software process
modeling. Second, the templates presented in Table 3 aim at relating process
elements with their properties. Thus, discovering the compliance effects, which
the software process element produces in the context of the whole process, is
facilitated. Third, as every process element carries out its compliance informa-
tion, the annotation process is more efficient since it is expected that tasks share
their associated elements, i.e., roles, guidance, tools, and work products (See
Fig. 6). Moreover, compliance effects from different standards can be added to
software process elements without limitations, helping to define multi-compliant
process-checkable for compliance. Finally, we propose a standardized template-
based mechanism for creating definitional and property-based compliance effects
(See Table 3). Such mechanism can also be exploited for automating the gen-
eration of standard(s)-compliant process components that can be reused when
assembling the processes required in different projects.

5.2 Software Process Diversity

Software process diversity is common in safety-related context, as recalled in
the introductory part. Our approach implicitly takes into consideration process



10 Castellanos & Gallina

diversity by providing a method that facilitates the selection of compliance arti-
facts as needed for specific compliance frameworks. In particular, the definition
of compliance effects, as presented in Fig. 4, could help in the creation of compli-
ance artifacts from one standard, that can also be enriched with the compliance
effects of related standards, as depicted in Fig. 6, for configuring process mod-
els that are multi-compliant. This aspect results in the utilization of cohesive
process components that have distinctive value attributes. Besides, process com-
ponents that do not receive significant levels of resource commitments in terms of
compliance could be identified as potentially less useful and could be eliminated
without significantly impacting project outcomes.

5.3 Relation with the SPI Manifesto

The application of standards best practices is a way to learn from the experience
of the functional experts. Such experience is valuable to define and improve
specific, project-oriented software processes. Our approach provides a method
for deploying compliant-related pieces required for controlling knowledge across
standards and projects (as presented in Fig. 4). A process engineer can play
with such pieces and learn how to use them to satisfy the demands, not only
of the applicable standard(s) but also the company and customer needs. In this
way, our approach addresses principle 4 of SPI Manifesto[17], which states that
SPI creates a learning organization. Moreover, having a model of the required
pieces could help the definition and improvement of baseline process models (see
Fig. 5). The resulting artifacts aim not only at enabling certification according to
the standard but also to change existing habits in the organization, incrementing
their awareness regarding best practices and therefore making the business more
successful. Thus, our approach also addresses principle 6 of SPI Manifesto, which
states the use of dynamic and adaptable models as needed.

6 Related Work

In this section, we discuss other approaches that have proposed the separation
of concerns for facilitating compliance checking with FCL. In [22], four types
of control tags are defined for compliance checking of business processes. These
control tags consist of the state and operations of propositions about the con-
ditions that are to be checked on a task and are typed-linked, namely control
tags represent compliance effects. Such tags are: the flow tag, which represents a
control that would impact on the flow of the process activities; data tag, which
identifies the data retention and lineage requirements; the resource tag, which
represent access, role management and authorization; finally, time tag, which
represents controls for meeting time constraints such as deadlines and maximum
durations. Our work, as in [22], describes the compliance effects based on the
type of elements that are present in a process. However, contrary to [22], we
further separate the definition of the elements from the properties allocated to
these elements, i.e., we propose definitional and property-oriented compliance



Title Suppressed Due to Excessive Length 11

effects. Moreover, we provide a template for creating the compliance effect and
icons that facilitate their description and its subsequent annotation in process
elements. In [12], the concept of data tag described in [22] is revisited to create
a methodology that permits their extraction from business process logs. Con-
trary to the work presented in [12], the extraction of our compliance effects is
performed directly from the standards and not from process logs since we aim at
having a faithful representation of the requirements prescribed by the standard
at design time.

7 Conclusions and Future Work

(Process-oriented) Safety standards define process elements and their properties.
Similarly, process modeling languages, such as SPEM 2.0, provide definitions
that match precisely with the ones described in the standards. In this paper, we
took advantage of these characteristics to offer a natural separation of concerns
that could be applicable in compliance checking. From the definition of concerns,
we proposed a template to describe the compliance effects that are expected
from the process elements. Moreover, we proposed icons for their representation
that permit their identification and annotation on the corresponding process
elements. Our approach offers adequate means to support the separated concepts
based on process competence and different standards, and thus it may facilitate
the modeling part of our method for automated compliance checking.

Future work includes the evaluation of our approach in terms of usability. In
addition, to put the approach into practice, extensions to the current algorithm
used for compliance checking must be designed and implemented to permit the
inclusion of co-occurrent compliance effects, which are annotated in process el-
ements ascribed to tasks, into the compliance analysis. Moreover, to facilitate
further the annotation process, algorithms that permit automatic mapping be-
tween compliance effects and company-specific processes, as well as algorithms
that automatically permit the creation of process elements from the definitional
compliance effects, should be created.

References

1. Castellanos Ardila, J.P., Gallina, B., Ul Muram, F.: Enabling Compliance Checking
against Safety Standards from SPEM 2.0 Process Models. In: Euromicro Confer-
ence on Software Engineering and Advanced Applications. pp. 45 – 49 (2018)

2. Castellanos Ardila, J.P., Gallina, B., UL Muram, F.: Transforming SPEM 2.0-
compatible Process Models into Models Checkable for Compliance. In: 18th Inter-
national SPICE Conference (2018)

3. CENELEC: EN 50128. Railway Applications-Communication, Signaling and Pro-
cessing Systems Software for Railway Control and Protection Systems. British
Standards Institution (2011)

4. Crabtree, C., Seaman, C., Norcio, A.: Exploring Language in Software Process
Elicitation: A Grounded Theory Approach. In: 3rd International Symposium on
Empirical Software Engineering and Measurement. pp. 324–335 (2009)



12 Castellanos & Gallina

5. Eckey, M., Greiner, C., Peisl, T.: Why Do Organizations Focus on Assessments
Instead of Their Process-Improvement Objectives? In: European Conference on
Software Process Improvement. pp. 392–401 (2019)

6. Eclipse: Eclipse Process Framework (EPF) Composer. (2018),
https://www.eclipse.org/epf/

7. ECSS: ECSS-E-ST-40C, Space Engineering Software (2009)
8. Fuggetta, A.: Software Process Patterns: A Roadmap. In: International Conference

on Software Engineering,. pp. 25–34 (2000)
9. Gallina, B., Pitchai, K., Lundqvist, K.: S-TunExSPEM: Towards an Extension of

SPEM 2.0 to Model and Exchange Tunable Safety-oriented Processes. Software
Engineering Research, Management and Applications 496, 215–230 (2014)

10. Gallina, B., Ul Muram, F., Castellanos Ardila, J.: Compliance of Agilized (Soft-
ware) Development Processes with Safety Standards: a Vision. In: 4th international
workshop on Agile Development of Safety-Critical Software. pp. 1–6 (2018)

11. Governatori, G.: Representing Business Contracts in RuleML. International Jour-
nal of Cooperative Information Systems. pp. 181–216 (2005)

12. Hashmi, M., Governatori, G., Wynn, M.: Business Process Data Compliance. In:
International Workshop on Rules and Rule Markup Languages for the Semantic
Web. vol. 7438 LNCS, pp. 32–46 (2012)

13. ISO/IEC 15504-5: Information Technology - Process assessment - An Exemplar
Software Life Cycle Process Assessment model (2012)

14. ISO/TC 22/SC 32: ISO 26262: Road Vehicles Functional Safety (2018),
https://www.iso.org/standard/68383.html

15. Javed, M., Gallina, B.: Get EPF Composer back to the future: a trip from Galileo
to Photon after 11 years. In: EclipseCon (2018)

16. OMG: Software & Systems Process Engineering Meta-Model Specification. Version
2.0. (2008)

17. Pries-Heje, J., Johansen, J.: The SPI Manifesto (2009),
https://2020.eurospi.net/images/eurospi/DownloadCenter/spi manifesto.pdf

18. Ramasubbu, N., Bharadwaj, A., Tayi, G.K.: Software Process Diversity: Concep-
tualization, Measurement, and Analysis of impact on Project Performance. Man-
agement Information Systems 39(4), 787–807 (2015)

19. RTCA/DO-178C: Software Considerations in Airborne Systems and Equipment
Certification. (2011)

20. RTCA/DO-330: Software Tool Qualification Considerations. (2012)
21. Ruiz, A., Juez, G., Espinoza, H., de la Vara, J.L., Larrucea, X.: Reuse of safety

certification artefacts across standards and domains: A systematic approach. Re-
liability Engineering & System Safety 158, 153–171 (2017)

22. Sadiq, S., Governatori, G., Namiri, K.: Modeling Control Objectives for Business
Process Compliance. In: International conference on business process management.
pp. 149–164 (2007)

23. Smith, D.: The Design of Divide and Conquer Algorithms. Science of Computer
Programming 5, 37–58 (1985)

24. Sommerville, I.: Software Engineering. Pearson, ninth edn. (2011)
25. Yilmaz, M., O’Connor, R.: A Market Based Approach for Resolving Resource Con-

strained Task Allocation Problems in a Software Development Process. European
Conference on Software Process Improvement pp. 25–36 (2012)


