Simple and Efficient Computation of Minimal
Weak Control Closure

Abu Naser Masud[0000700027487271208]

School of Innovation, Design and Engineering, Méalardalen University, Sweden
{masud.abunaser}@mdh.se

Abstract. Control dependency is a fundamental concept in many pro-
gram analyses, transformation, parallelization, and compiler optimiza-
tion techniques. An overwhelming number of definitions of control depen-
dency relations are found in the literature that capture various kinds of
program control flow structures. Weak and strong control closure (WCC
and SCC) relations capture nontermination insensitive and sensitive con-
trol dependencies and subsume all previously defined control dependency
relations. In this paper, we have shown that static dependency-based pro-
gram slicing requires the repeated computation of WCC and SCC. The
state-of-the-art WCC algorithm provided by Danicic et al. has the cubic
worst-case complexity in terms of the size of the control flow graph and is
a major obstacle to be used in static program slicing. We have provided
a simple yet efficient method to compute the minimal WCC which has
the quadratic worst-case complexity and proved the correctness of our
algorithms. We implemented ours and the state-of-the-art algorithms in
the Clang/LLVM compiler framework and run experiments on a num-
ber of SPEC CPU 2017 benchmarks. Our method performs a maximum
of 23.8 times and on average 10.6 times faster than the state-of-the-art
method. The performance curves of our WCC algorithm for practical
applications are closer to the NlogN curve in the microsecond scale. Ev-
idently, we improve the practical performance of WCC computation by
an order of magnitude.

Keywords: Control dependency - Weak control closure - Strong control
closure - Program slicing - Nontermination (in)sensitive

1 Introduction

Control dependency is a fundamental concept in many program analyses, trans-
formation, parallelization and compiler optimization techniques. It is used to
express the relation between two program statements such that one decides
whether the other statement can be executed or not. One of the key applications
of control dependency is program slicing [?] that transforms an original program
into a sliced program with respect to a so-called slicing criterion. The slicing
criterion specifies the variables at a particular program point that will affect the
execution of the sliced program. All program instructions in the original pro-
gram that does not affect the slicing criterion are discarded from the sliced code.

2 Abu Naser Masud

Control dependency is used to identify the program instructions that indirectly
affect the slicing criterion due to the execution of conditional expressions in the
loops or conditional instructions.

The standard definition of control dependency provided by Ferrante et al. [?]
has been widely used for over two decades. This definition is provided at the
level of the control flow graph (CFG) representation of a program assuming
that the CFG has a unique end node (i.e. the program has a single exit point).
Several recent articles on control dependency illustrate that this definition does
not sufficiently capture the intended control dependency of programs having
the modern programming language features. For instance, the exception or halt
instructions cause multiple exits of the programs, or reactive systems, web ser-
vices or distributed real-time systems have nonterminating program instructions
without an end node. The standard definition of control dependency did not in-
tend to handle the above systems. The possibility of having nontermination in
the program code introduces two different types of control dependency relations:
the weak and strong control dependencies that are nontermination insensitive
and nontermination sensitive. One of the distinguishing effects between the two
types of control dependencies is that an original nonterminating program re-
mains nonterminating or may be transformed into a terminating program if the
slicing method uses strong or weak control dependence respectively.

Numerous authors provided an overwhelming number of definitions of con-
trol dependencies [?,7,7,?,?] given at the level of CFG and describe computation
methods to obtain such dependencies. Danicic et al. [?] unified all previously
defined control dependence relations by providing the definitions and theoreti-
cal insights of weak and strong control-closure (WCC and SCC) that are most
generalized and capture all non-termination insensitive and nontermination sen-
sitive control dependence relations. Thus, WCC and SCC subsume all control
dependency relations found in the literature. However, Danicic et al. provided
expensive algorithms to compute WCC and SCC. In particular, the algorithms
for computing WCC and SCC have the cubic and quartic worst-case asymp-
totic complexity in terms of the size of the CFG. We have shown that static
program slicing requires the repeated computation of WCC and/or SCC. The
state-of-the-art WCC and SCC algorithms are not only expensive, but the use
of these algorithms in client applications such as program slicing will make these
applications underperforming.

In this article, we have provided a simple and efficient method to compute
WCC. We have formalized several theorems and lemmas demonstrating the
soundness, minimality, and complexity of our algorithm. Our WCC algorithm
has the quadratic worst-case time complexity in terms of the size of the CFG. We
implemented ours and the WCC algorithm of Danicic et al. in the Clang/LLVM
compiler framework [?] and performed experiments on a number of benchmarks
selected from SPEC CPU 2017 [?]. Our algorithm performs a maximum of 23.8
times and on average 10.6 times faster than the WCC algorithm of Danicic
et al. Moreover, the practical performance of our WCC algorithm is closer to
the NlogN curve, and thus we improve the theoretical as well as the practical
performance of WCC computation by an order of magnitude.

Simple and Efficient Computation of Minimal Weak Control Closure 3

Outline The remainder of this paper is organized as follows. Sec. 7?7 provides
some notations and backgrounds on WCC, Sec. 77 illustrates the changes to
be performed in static program slicing due to WCC/SCC, Sec. ?? provides the
detailed description of our WCC computation method, prove the correctness, and
the worst-case time complexity of our method, Sec. 7?7 compares the performance
of ours and the WCC computation method of Danicic et al. on some practical
benchmarks, Sec. 7?7 discusses the related works, and Sec. 7?7 concludes the

paper.

2 Background

We provide the following formal definition of control flow graph (CFG).
Definition 1 (CFG). A CFG is a directed graph (N, E) where

1. N is the set of nodes that includes a Start node from where the execution
starts, at most one End node where the execution terminates normally, Cond
nodes representing boolean conditions, and nonCond nodes; and

2. E C N x N is the relation describing the possible flow of execution in the
graph. An End node has no successor, a Cond node n has at most one true
successor and at most one false successor, and all other nodes have at most
one successor.

Like Danicic et al. [?], we assume the following:

The CFG is deterministic. So, any Cond node n cannot have multiple true
successors and/or multiple false successors.

We allow Cond nodes to have either or both of the successors missing. We
may also have non- End nodes having no successor (i.e. out-degree zero). An
execution that reaches these nodes are silently nonterminating as it is not
performing any action and does not return control to the operating system.
— Ifthe CFG G has no End nodes, then all executions of G are nonterminating.
— Moreover, if a program has multiple terminating exit points, nodes repre-
senting those exit points are connected to the End node to model those
terminations. Thus, the CFG in Def. 77 is sufficiently general to model a
wide-range of real-world intraprocedural programs.

The sets of successor and predecessor nodes of any CFG node n in a CFG
(N, E) are denoted by succ(n) and pred(n) where succ(n) = {m : (n,m) € E}
and pred(n) = {m: (m,n) € E}.

Definition 2 (CFG paths). A path 7 is a sequence ni,na,...,n; of CFG
nodes (denoted by [ny..ny]) such that k > 1 and n;11 € succ(n;) for all 1 <i <
k—1.

A path is non-trivial if it contains at least two nodes. We write m — S to denote
the set of all nodes in the path 7 that are not in the set S. The length of any
path [ny..ng] is & — 1. A trivial path [n] has path length 0.

4 Abu Naser Masud

Definition 3 (Disjoint paths). Two finite paths [ny..ng] and [mqy..my] such
that k,l > 1 in any CFG G are disjoint paths if and only if no n; is equal to
mj for all1 <i <k and 1 < j < 1. In other words, the paths do not meet at a
common vertex.

Sometimes, we shall use the phrase “two disjoint paths from n” to mean that
there exist two paths ny =n,...,n; and n} = n,...,n] such that [ng..ni] and
[n..nj] are disjoint paths. In other words, the paths are disjoint after the first
common vertex.

Ferrante et al. [?] provided the first formal definition of control dependency
relation based on postdominator [?] relation. Computing postdominator relations
on a CFG G requires that G has a single End node n. and there is a path
from each node n in G to n.. A node n postdominates a node m if and only
if every path from m to n. goes through n. Node n strictly postdominates m
if n postdominates m and n # m. The standard postdominator-based control
dependency relation can then be defined as follows:

Definition 4 (Control Dependency [?,?]). Node n is control dependent on

node m (written m “ n) in the CFG G if (1) there exists a nontrivial path
in G from m ton such that every node m’ € m — {m,n} is postdominated by n,
and (2) m is not strictly postdominated by n.

The relation m <% n implies that there must be two branches of m such that n
is always executed in one branch and may not execute in the other branch.

Ezample 1. The CFG in Fig. 7?7 that we shall use as a running example is
obtained from the perlbench in SPEC CPU2017 [?]. The details of the source
code and the labeling of true and false branches of Cond nodes are omitted for
simplicity. The control dependency graph (CDG) is computed from the CFG
based on computing postdominator relations such that an edge (n,m) in the

CDG represents the control dependency relation n 4 .

Podgurski and Clarke [?] introduced the weak control dependence which is
nontermination sensitive. A number of different nontermination sensitive and
nontermination insensitive control dependency relations conservatively extend-
ing the standard relation above are defined in successive works [?,7,?,7,?]. Dani-
cic et al. [?] unified all previous definitions and presented two generalizations
called weak and strong control closure which are non-termination insensitive
and non-termination sensitive. WCC and SCC capture all the existing non-
termination (in)sensitive control dependency relations found in the literature.
In this paper, we shall focus mostly on the efficient computation of WCC and
occasionally mention SCC. We now recall some relevant definitions and termi-
nologies of WCC from Danicic et al. [?].

Definition 5 (N’-Path). An N'-path is a finite path ny..ng] in a CFG G such
that ny € N and n; € N’ for all1 <i <k —1.

Note that n; may be in N’ in the above definition. Thus, an N’-path from n
ends at a node in N’ and no node in this path are in N’ except m; which may
or may not be in N’.

Simple and Efficient Computation of Minimal Weak Control Closure 5

Fig. 1: (a) CFG obtained from a benchmark in SPEC CPU2017 [?] (we omit the
program instructions for simplicity), (b) control dependency graph computed
using postdominator relations.

Definition 6 (N’-weakly committing vertex). Let G = (N, E) be any CFG.
A node n € N is N'-weakly committing in G if all N'-paths from n have the
same endpoint. In other words, there is at most one element of N' that is first-
reachable’ from n.

Definition 7 (Weak control closure). Let G = (N, E) be any CFG and let
N’ C N. N’ is weakly control-closed in G if and only if all nodes n € N\ N’
that are reachable from N’ are N'-weakly committing in G.

The concept of weakly deciding vertices is introduced to prove that there

exists minimal and unique WCC of a set of nodes N’ C N. Since program
slicing uses control dependence relations to capture all control dependent nodes
affecting the slicing criterion, using minimal WCC in program slicing gives us
smaller nontermination insensitive slices.
Definition 8 (Weakly deciding vertices). A node n € N is N'-weakly de-
ciding in G if and only if there exist two finite proper N'-paths in G that both
start at n and have no other common vertices. WDqg(N') denotes the set of all
N'-weakly deciding vertices in G.

6 Abu Naser Masud

Thus, if there exists an N’-weakly deciding vertex n, then n is not N’-weakly
committing. The WCC of an arbitrary set N’ C N can be formally defined using
weakly deciding vertices as follows:

WCC(N')={n:n € WDg(N'),n is reachable from N’ in G} U N’

Ezample 2. Consider the CFG in Fig. ??7. Let N’ = {ns, ng,n10}. The N’'-paths
in this CFG include ng,...,ns and ng4,...,ng,n4,ns. The path ng,ns, n4, ng
is not an N’-path since n5 € N’. Nodes niz,n13,n14 and ni5 are N'-weakly
committing. However, ng and ng are not N’'-weakly committing due to the N’-
paths [ng..n1g] and [ng..n5], and ng, ns and ng, ng, ng. Nodes ng and ng are thus
N'-weakly deciding and N’ is not weakly control closed. However, all N’-weakly
deciding vertices ny, ng and ng are reachable from N’ and thus N’ U{ny, ng, ng}
is a weak control-closed set capturing all the relevant control dependencies of
N'.

3 Program slicing using WCC and SCC

Program slicing is specified by means of a slicing criterion which is usually a set
of CFG nodes representing program points of interest. Static backward/forward
program slicing then asks to select all program instructions that directly or
indirectly affect/ affected by the computation specified in the slicing criterion.
Static dependence-based program slicing [?,?,?] is performed by constructing a
so-called program dependence graph (PDG) [?]. A PDG explicitly represents the
data and the control dependence relations in the control flow graph (CFG) of
the input program. Any edge n; — no in a PDG represents either the control

dependence relation n; ﬂi) ny or the data dependence relation nq ﬂi) ng. The

relation nq L4 ng holds if no is using the value of a program variable defined at
n1. A PDG is constructed by computing all the data and the control dependence
relations in the CFG of a program beforehand, and then include all edges (n, m)

in the PDG if nq ﬂ N9 Or N ﬂ ng holds. A forward/backward slice includes
the set of all reachable nodes in the PDG from the nodes in the slicing criterion
in the forward/backward direction.

The existence of the numerous kinds of control dependence in the litera-
ture puts us in the dilemma of which control dependence algorithm is to be
used to construct PDG. Control dependence computation algorithms such as
postdominator-based algorithms exist that cannot compute control dependen-
cies from the following code having no exit point:

if (p) { L1: x=x+1; goto L2; } else { L2: print(x); goto L1; }

Building a PDG by using a particular control dependence computation algorithm
may miss computing certain kinds of control dependencies, and the program
slicing may produce unsound results. With the advent of WCC and SCC, we
obtain a more generalized method to compute control closure of a wide-range of
programs. However, the above approach of static program slicing is not feasible

Simple and Efficient Computation of Minimal Weak Control Closure 7

Algorithm 1 (Slicing) Let C be the the slicing criterion, and let S = C.

dd

1. 8= U {m:m—>"n}
nes

S = cl(S")

if (S=S5') then EXIT

else GOTO step 1

™ oo

with WCC and SCC. This is due to the fact that even though WCC and SCC
capture/compute the weak and strong form of control dependencies that are
nontermination (in)sensitive, it is not possible to tell specifically which node
is control dependent on which other nodes. Given any set N’ of CFG nodes,
the weak/strong control closure ¢l(N') of N’ captures all control dependencies

n1 <% ny such that ny € cl(N') implies n1,ng € cl(N'). However, by looking into

the set ¢l(N'), it is not possible to tell if the relation nq “4 5 holds or not for
any ni,ne € cl(N'). Since we cannot compute all individual control dependencies

ny “4 nsy beforehand, it is not possible to compute a PDG from a CFG using
weak or strong control closed sets. However, Alg. ?? can be applied to perform
the static program slicing using weak or strong control closures.

The relation —* denotes the transitive-reflexive closure of ﬂ. The above
algorithm computes the slice set S for backward slicing containing all CFG nodes

that affect the computation at the nodes in C'. For forward slicing, the relation
dd dd
—* has to be computed in the forward direction. To compute the relation —*, we

can build a data dependency graph (DDG) capturing only the data dependency
relations. Then, step 1 in Algorithm ?7? can be accomplished by obtaining the set
of all reachable nodes in the DDG from the nodes in S in the forward /backward
direction.

Algorithm ?? illustrates that step 2 needs to be performed iteratively until
a fixpoint S = S’ is reached. Given any CFG (N, E), Danicic et al. provided
expensive algorithms to compute weak and strong control closures with worst-
case time complexity O(|N|?) and O(]N|*) respectively. These algorithms are
not only computationally expensive, they cause the static forward/backward
program slicing practically inefficient. In the next section, we shall provide an
alternative simple yet practically efficient method of computing a minimal weak
control closed set.

4 Efficient computation of minimal WCC

The relationship between WCC and weakly deciding vertices are the following
(Lemma 51 in [?]): the set of CFG nodes N’ C N is weakly control-closed in the
CFG G = (N, E) iff all N'-weakly deciding vertices in G that are reachable from
N’ are in N'. Moreover, N' UWD¢(N’) is the unique minimal weakly control-
closed subset of N that contains N’ (Theorem 54 in [?]). We perform a simple and
efficient two-step process of computing all N’-weakly deciding vertices WD¢g(N')

8 Abu Naser Masud

m Graph G
CFG G

Fig.2: CFG G used for the informal illustration of our approach. The graph G
is generated by our analysis for the verification of potential N’-weakly deciding
vertices.

followed by checking the reachability of these vertices from N’ to compute the
weakly control-closed subset of N containing N’.

In what follows, let G = (N, E) be a CFG, let N’ C N, and let N be the set
of nodes such that WD¢g(N')UN’ C N C N. The set of all N'-weakly deciding
vertices WD (N') are computed in the following two steps:

1. We compute a set of CFG nodes WD which is an overapproximation of the
set of all N'-weakly deciding vertices, i.e., WDg(N') C WD. The WD set
includes all CFG nodes n such that n has two disjoint N’-paths. However,
WD also contains spurious nodes having overlapping N’-paths or a single
N’ path which are not N’-weakly deciding. Thus, N'= WD U N’ is a weakly
control-closed subset of N containing N’ which is not minimal.

2. For each node n € WD, the above process also indicates all CFG nodes
m € N such that either [n..m] is an N’-path or there exists an N’-path
from n that must go through m. From this information, we build a directed
graph (N, &) such that any edge (n,m) € £ indicates that n is possibly a
weakly deciding vertex, m € N, and there exists an N-path [n..m] in G.
Next, we perform a verification process to check that each node in WD has
two disjoint N’-paths using the graph (N, €) and discard all nodes in WD
that do not have two such paths.

4.1 An informal account of our approach

In this section, we give an informal description of our algorithm to compute the
N'-weakly deciding vertices. The first step of this algorithm keeps track of all
N'-paths (or N-paths to be more specific where N' = N’ initially) in the CFG.
We traverse the CFG backward from the nodes in N’ and record all A-paths at
each visited node of the CFG. During this process, we discover all CFG nodes
n that have more than one N-paths ending at different CFG nodes, and n is
included in WD (and thus n € A) as it is a potential N'-weakly deciding vertex.

Simple and Efficient Computation of Minimal Weak Control Closure 9

T1 =M1 —>MNeg —>MN5 —> N4 —> N3 —> N2 —> N1 — N2
51 P1 = [m1]0 [nﬁ,ml}l [715..7711]2 [n4..m1}3 [713..777,1]4 [ng..m1]5 [nl..ml]ﬁ
TQ =Mz — N5 —> N4 —> N3 —> N2 —> N1 — N2

P2 = [mz]o [1’15]0 [114,7’1,5}1 [ng..n5]2 [n2]0 [nl..ng]l
T3 =mi1 —Neg —> N5 —» N4

SQ P3 = [ml]o [na,mﬂl [ns..m1]2 [114..1711}3

Ty =ma — N5 — Ng — N3 — N2 — N1 — N2

Py =[m2]® [ns5]® [n4,ns]t [n3.ns]® [n2.ns]® [ni.ns)

4

Table 1: The A -paths discovered by our algorithm. CFG nodes are visited in
two different orders denoted by S and S3. T; represents the sequence of visited
CFG nodes and P; represents the sequence of discovered N-paths during the
corresponding visits for 1 <4 < 4. The superscript on a path denotes its length.

In the following, we illustrate this process using the CFG G in Fig. ?? where
mi, Mo € N'.

We have trivial A-paths [m;] and [m2] of lengths zero at CFG nodes m; and
mg respectively. The N-paths from a node are identified from the N-paths of its
successor nodes. The trivial M-path [m4] leads to the N-path [ng, m1] of length
1 which in turn leads to [ns..m1] of length 2. Similarly, [ms] leads to the A/-path
[n5,ma] of length 1. Since two A -paths [n5..m] and [ns, ms] are identified from
ns, ns is included in WD and a new trivial N-path [n5] of length 0 is identified.
Different orders of visiting CFG nodes may produce different A/-paths.

Table 77 presents two possible orders of visiting the CFG nodes. The sequence
of N-paths denoted by P; is produced due to visiting the node sequence T;. Note
that an earlier visit to ms has produced the A-path [nz..m4] of length 5, and
the last visit to me from ny (via the backward edge) in 77 does not produce
any new N-path at ms as it could generate the A-path [n2..m4] of length 7
which is not preferred over [ng..m;] of length 5 by our algorithm. While visiting
the sequence of nodes in T, our algorithm identifies two N -paths [ns..m] and
[n5..m2], and thus it includes nz in WD. Moreover, a new trivial N-path [ns] is
generated, and the successive visits to the remaining sequence of nodes replace
the old N-paths by the newly generated paths of smaller lengths. From the N-
paths [nz..ns] and [nq..m1] at the successor nodes of ns, our algorithm infers
that there exist two N-paths [n2..m1] and [na..ns] from ng, and thus it includes
ny in WD even though no two disjoint N-paths exist in G. Thus, WD is an
overapproximation of WD¢g(N'). When CFG nodes are visited according to the
order specified in Sy, our algorithm does not infer two A/-paths at no, and thus
it becomes more precise by not including ny in WD. Note that this order of
visiting CFG nodes does not affect the soundness (as we prove it later in this
section), but the precision and performance of the first step our analysis, which
is a well-known phenomenon in static program analysis. Note that our algorithm
does not compute path lengths explicitly in generating A -paths; it is accounted
implicitly by our analysis.

10 Abu Naser Masud

The second step of our algorithm generates a graph G consisting of the set
of nodes N" U WD and the edges (n,m) such that n € WD, n’ € succ(n), and
[n'..m] is the N -path discovered in the first step of the analysis. Thus, [n..m] is
an A-path in the CFG. The graph G in Fig. ?? is generated from the WD set
and the N-paths generated due to visiting node sequences Ty and T5 in Table ?7.
Next, we traverse the graph G from N’ backward; if a node n € WD is reached,
we immediately know one of the N-paths from n and explore the other unvisited
branches of n to look for a second disjoint N-path. For the graph G in Fig. 77, if
ns € WD is reached from my, it ensures that [ns..mq] is an N-path in the CFG.
Next, we look for a second N-path in the other branch of ns. In this particular
case, the immediate successor of ns that is not yet visited is my € N’ such that
[n5..mg] is the second NM-path disjoint from [ns..m1], which verifies that ns is
an N’-weakly deciding vertex. We could have that ms ¢ N’, and in that case,
we traverse the graph G from ms in the forward direction to look for an A-path
different from [ns..m;], include ns in WDg(N') if such a path is found, and
excluded it from WDg(N') otherwise. Similarly, we discover the N-path [ns..ns]
by reaching ny from ns. However, since any A/-path from ns through the other
branch of ny overlaps with [ng..ns], ns is discarded to be a N’-weakly deciding
vertex. When all nodes in WD are verified, we obtain the set WDqg(N') C WD
and the algorithm terminates.

4.2 An overapproximation of the weakly deciding vertices

We perform a backward traversal of the CFG from the nodes in N’. Initially,
N = N’. We maintain a function A(n) for each CFG node n € N. This function
serves the following purposes:

1. If the backward traversal of the CFG visits only one A/-path [n..m], then we
set A(n) = m.

2. If two disjoint A-paths [n..m4] and [n..ms] are visited during the backward
traversal of the CFG, then we set A(n) = n.

We initialize the function A(n) as follows:

=g, e 0

The valuation A(n) = L indicates that no A-path from n is visited yet. If we
visit a CFG node n € N \ N’ with two N’-paths (which may possibly be not
disjoint due to overapproximation), then n is a potential N’-weakly deciding
vertex. In this case, we set A(n) = n, n is included in WD (and hence n € N),
and the function A(n) will not be changed further.

If A(n) # n, then A(n) may be modified multiple times during the walk of
the CFG. If A(n) = m, is modified to A(n) = mg such that n # my # mg, then
there exists a path n,...,ma,...,m; in G such that my,my € N and [n..ms]
is an M-path in G. This may happen when (i) visiting the CFG discovers the
N-path [n..m] such that ms € N, and (ii) in a later visit to msg, mg is included

Simple and Efficient Computation of Minimal Weak Control Closure 11

Algorithm 2 (OverapproxWD) Input: G = (N, E),N’, A, Output: A, WD

1. Initialization:
(a) Set WD =0
(b) Set the worklist W = N’
2. Remove an element n from W. Forall m € pred(n) do the following:
(a) Compute S, ={A(m'):m' € succ(m), A(m’) # L}
if (|Sm| > 1) then GOTO (b) else GOTO (c)
(b) if (A(m) # m) then insert m into W, update A(m) =m, and
add m to WD. GOTO (3).
(c) if (A(m)# m and x € S,,) then (i) obtain y = A(m),
(ii) update A(m) = z, and (iii) if (y # x) then insert m into W.
GOTO (3).
3. if (W is empty) then EXIT else GOTO (2)

in WD (and in N) that invalidates the path [n..m;] as an N-path and obtains
a new N-path [n..m2]. Note that if [n..m] is an A -path and m € N’, then there
exists an N’-path from n that go through m which we prove later in this section.
Alg. 7?7 computes the set WD which is an overapproximation of weakly
control-closed subset of N containing N’. It uses a worklist W to keep track
of which CFG nodes to visit next. Note the following observations for Alg. 77.

— For any node n in W, A(n) # L due to the initializations in Eq. ?? and
steps 2(b) and 2(c).

— The set S,, in step 2(a) is never empty due to the fact that n is a successor
of m and A(n) # L.

— If A(m) = m, then m will never be included in W in 2(b) and 2(c) as further
processing of node m will not give us any new information.

— Since m can only be included in WD in step (2b) if A(m) # m, and A(m) =
m for any m € N’ due to Eq. 7?7, we must have WD NN’ = ().

— Node m can only be included in W in step 2(c) if A(m) = x is updated to
A(m) = y such that y # .

— If any path [n..m] is traversed such that A(m) = m and no node in [n..m] —
{m} is in WD, then m is transferred such that A(n') = m for all n’ €
[n..m] — {m} due to step (2c). Also, note that if A(n) = m, then we must
have A(m) = m.

— The functions A are both the input and the output of the algorithm. This
facilitates computing WD incrementally. This incremental WD computation
will improve the performance of client applications of WCC such as program
slicing (see Alg. 77). We leave the study on the impact of incremental WD
computation on program slicing as a future work.

Theorems ?? and 77 below state the correctness of Alg. 7?7 which we prove
using an auxiliary lemma.

Lemma 1. If A(n) = m and n # m, then there exists an N'-path from n and
all N'-paths from n must include m.

12 Abu Naser Masud

Proof. Since A(n) = m, there exists a path m = [n..m] visited in Alg. ?? from
m backward. The transfer of m to A(n) is only possible if we have S, = {m}
for all z € m — {m} and A(z) = m is set in step (2c¢). Since A(z) # x, no node
z €m—{m}isin WDUN’. Also, there exists a predecessor y of m such that
Sy = {m} which is only possible if A(m) = m. Thus, we must have m € N'UWD
and 7 is a (WD U N')-path.

If m € N’, then the lemma trivially holds. Suppose m = my € N’. Then, we
must have m; € WD, and there exists a successor n; of m; such that A(nq) =
mo. If mg € N’, then my € WD and there exists a successor no of mo such
that A(ng) = ms. Thus, we obtain a subsequence of nodes ny,...,n; such that
A(n;) = myyq for all 1 < ¢ < k and eventually we have my41 € N’ since the
CFG is finite and it is traversed from the nodes in N’ backward. Thus, [n..mj41]
is an N’-path which go through m. O

Corollary 1. If A(n) = m, then m € N'UWD.
Proof. The proof follows from the first part of the proof of Lemma ?7.
Theorem 1. For any WD computed in Alg. 2?7, WDg(N') C WD.

Proof. Suppose the lemma does not hold. So, there exists an N’-weakly deciding
vertex n € WDg(N') such that n ¢ WD. Thus, there are two disjoint N'-
paths from n. Let ny = n,...,ng and m; = n,...,m; be two N’'-paths. Since
ng,m; € N', A(ng) = ng, and A(my;) = my due to Eq. ?77. Alg. ?? traverses these
paths and update A(n;) and A(m;) in step (2c) such that

A(n;) # Land A(m;) # Lforalll<i<kand1<j <l

Since n ¢ WD, |S,| <1 in (2a). Node n has at most two successors according to
the definition of CFG (Def. ?77?). Since A(n2) # L and A(msa) # L, |Sn] < 1is
only possible if A(ny) = A(ms). Let A(n2) = m. Then, we must have A(n) =m
and all N’-paths must include m according to Lemma ??. Thus, we conclude
that n is not an N’-weakly deciding vertex since the N’-paths from n are not
disjoint, and we obtain the contradiction. a

Theorem 2. Alg. 7?7 eventually terminates.

Proof. Alg. 77 iterates as long as there exist elements in W. For all n € N such
that A(n) = n, n is included in WD and it never gets included in W again. If the
value of A(n) remains L, then n is never reached and included in W during the
walk of the CFG. Thus the algorithm can only be nonterminating for some node
n such that A(n) #n # L. According to step (2c) in the algorithm, n can only
be included in W if the new value of A(n) is different from the old one. Thus,
in order for the algorithm to be nonterminating, there exists an infinite update
to A(n) by the sequence of values myq,...,mg, ... such that no two consecutive
values are the same, i.e., m; # my;qq for all i > 1.

According to Lemma ??, A(n) = m; implies that there exists an N’'-path from
n and all N’-paths from n must include m;. Thus, there exists a path [n..m;] in

Simple and Efficient Computation of Minimal Weak Control Closure 13
n Q n n
'ngk—n n

Fig.3: Graph G = (N, &) constructed according to Def. 7?7 from the CFG in
Fig. 77, and A and WD in Example 77

the CFG. If A(n) is updated by m;1, then m; 1 € WD and A(m;11) = myy1.
Node m;41 must be in the path [n..m;] as otherwise we eventually have S,, =
{mi,m;41} in (2a) which will lead to A(n) = n. So, A(n) will never become m;
again in (2c) as all N’'-paths from n must go through m;; € WD. Similarly, if
A(n) is updated by m; o, m; o must be in the path [n..m;11] and A(n) will never
be updated by m;; again. Since the path [n..m;;1] has a finite number of nodes,
A(n) cannot be updated infinitely, and the algorithm eventually terminates. O

Ezample 3. Let N’ = {ns,ng} for the CFG in Fig ??. Alg. 7?7 computes A and
WD as follows:

A(n) = L for n € {ng,n2}

— A(n;) =n,; fori e {4,...,6,8,...,10,14,15,17}
A(n;) = nyp for i € {1,3,11,13}

— A(n7) = ng, A(n12) = nis, A(nie) = nis, A(nig) = nar
- WD = {n47n67n97n107n147n15;n17}

Note that CFG nodes ng, n19, n14, 115, and n17 have no disjoint N'-paths as all
N'-paths from these nodes must go through n1¢. Thus, these nodes do not belong
to WDg(N'). However, we have WDg(N') = {n4,n¢} and WDg(N') C WD
holds.

4.3 Generating minimal weakly deciding vertices

Alg. 77 is sound according to Theorem ?7?. However, as illustrated in Sec. 77,
the WD set computed in this algorithm contains spurious nodes that are not N’-
weakly deciding. In what follows, we provide a general and efficient algorithm to
verify the results obtained from Alg. ?? and discard all incorrectly identified N’-
weakly deciding vertices. Thus, both algorithms together provide minimal and
sound N’-weakly deciding vertices. We first represent the solutions generated by
Alg. 7?7 as a directed graph G as follows:

Definition 9. G = (N, &) is a directed graph, where
~ N =N UWD, and
- &={(n,A(m)) : n € WD, m € succ(n), A(m) # L}.

Note that succ(n) is the set of successors of n in the CFG. In Fig. 7?7, G = (N, €)
is constructed from A and WD in Example 7?7 and the CFG in Fig. 77. Any
graph G constructed according to Def. 7?7 has the following properties:

14 Abu Naser Masud

— If there exists an edge (n,m) in £ such that m € N’, then there exists an
N’-path [n..m] in the CFG G.

— An edge (n,m) in £ such that m € WD implies that there exists an N’-path
from n going through m (from Lemma ?77).

— There exist no successors of a node in N’ since WD N N’ = ().

— Graph G may be an edge-disjoint graph since there may exist N’-weakly
deciding vertices and their N’-paths do not overlap.

— Since our CFG has at most two successors according to Def. 7?7, any node in
G has at most two successors. However, some nodes in G may have self-loop

or only one successor due to the spurious nodes generated in WD. Moreover,
V| < [NT, €] < |E].

The intuitive idea of the verification process is the following. For any n € N,
we consider a predecessor m of n in G. Thus, we know that [m..n] is an N’-path
in the CFG G. If there exist another successor n’ € N’ of m such that n # n/,
then [m..n'] is another N’-path disjoint from [m..n] and m is an N’-weakly
deciding vertex. However, all other successors of m might be from WD instead
of N'. Let succg(m) and predg(m) be the sets of successors and predecessors of
m in G. Then, we traverse G from the nodes in succg(m) \ N’ in the forward
direction to find an N’-path from m which is disjoint from [m..n]. If it visits
a node in N’ different from n, then m is an N’-weakly deciding vertex due to
having two disjoint N’-paths. Otherwise, we exclude m from WD. Most nodes
in WD can be immediately verified by looking into their immediate successors
without traversing the whole graph G. Also, the graph G is usually much smaller
than the CFG. Thus, the whole verification process is practically very efficient.

Given the graph G = (N,), Alg. 77 generates WD,,;,, which is the set of
minimal N’-weakly deciding vertices. Like Alg. ??, we use a function A(n) to
keep track of N’-paths visited from n. Initially, A(n) = L for all n € A"\ N’ and
A(n) = n otherwise. A boolean function T'(n) is set to true if n € N, and T'(n) =
false otherwise. Another boolean function V'(n), which is initially false, is set to
true if n is already verified. The procedure noDisjoint N Path(m, G, Ry, WD min, N')
used in the algorithm traverses the graph G from the nodes in R,, in the forward
direction visiting each node at most once. If a node in N’ U WD,,;, different
from m is visited, then it returns true, otherwise false. During this traversal, no
successors of a node in N’ U WD,,;,, are visited as an N’-path must end at a
node in N’. We skip providing the details of this procedure since it is a simple
graph traversal algorithm. Note that S,, # @ in step (3). This is because there
exists a successor m of n from which n is reached during the backward traversal
of the graph G and A(m) # L.

Theorem ??7 below proves that WD,,,;,, is the minimal weakly control-closed
subset of N containing N'.

Theorem 3. For any WD, computed in Alg. 2?7, WDg(N') = WD pin.
Proof. “C”: Let n € WDg(N’). According to Theorem ??, WDg(N') C WD

and thus n € WD. Suppose m1, mg € succ(n) since there exist two disjoint N'-
paths from n, and also assume that A(m;) = n! for ¢ = 1,2. Thus, (n,n}) is an

Simple and Efficient Computation of Minimal Weak Control Closure 15

Algorithm 3 (VerifyWDV) Input: G = (N, €) and N', Output: WD 1,

1. Initialization :
(a) Forall (n € N\ N')
An)=1,V(n)=
(b) Forall (n € N') do
A(n) =n, V(n) = true, and T(n) = true
(c) Set the worklist W =, cn+ Predg(n), and set WDyin = 0
2. if (W is empty) then EXIT else remove n from W and set V(n) = true
3. Compute the following sets:

do
false, and T'(n) = false

Sn = {A(m) : m € succg(n), A(m) # 1}

= {m:m € succg(n), A(m) = L}
Let m € Sy. if (|Sn| > 1) then GOTO (a) else GOTO (b)
(a) Set A(n) =n. if (T(n) = false) then WD,in, = WDmin U {n}. GOTO (4)
(b) if (noDisjointNPath(m,G, Rn, WDumin, N')) then set A(n) = A(m) and
GOTO (4) else GOTO (a)
4. Forall (n' € predg(n) such that V(n') = false) do
wW=wu{n'}
GOTO (2)

edge in G for i = 1,2. According to Corollary ??, nt € N'UWD. If nt & N', we
can show similarly that there exists a node n% such that (nf,n}) is an edge in G
for some 1 <4 < 2 and ny, € N’UWD. Since graph G and the CFG G are finite,
eventually we have the following sequence of edges

(n, n%)? (n}lvn%)v et (nlleflvnllc) and (nvn%)v (nivn%)v et (nl2717 nl2)
such that ni,n% € N’ for some k,l > 1. The graph G is traversed backward
from ni € N’ and n will be reached in successive iterations in Alg. ??. Thus, n
is reached by traversing an N’-path [n..nj] backward. Either another N’-path
[n..n?] will be discovered immediately during the construction of S, in step (3) or
it will be discovered by calling the procedure noDisjointNPath and we eventually
have n € WD, ;.

“D7”: Let n € WD,,i,. Thus, there exists anode m € N’ such that n is reached
during traversing the graph G backward and thus [n..m] is an N’-path. Also,
there exists a successor m’ # m of n such that either m’ € N’ or noDisjointNPath

procedure traverses an N’-path from ms which is disjoint from [n..m].Thus,
n € WDg(N') due to having two disjoint N’-paths.

4.4 Computing minimal WCC

After obtaining the WD,,,;,, set containing minimal N’-weakly deciding vertices,
computing minimal WCC requires checking the reachability of these nodes from
the nodes in N’. Alg. 7?7 below provides the complete picture of computing
minimal WCC.

Algorithm 4 (minimalWCC) Input: G = (N, E) and N’, Output: WCC

16 Abu Naser Masud

. Apply Eq. 7?7 to initialize A and set WCC = N’

. (A, WD) = OverapproxWD(G, N")

. Construct G = (N, €) according to Def. 7?

WD pnin = VerifyWDV (G, N')

Traverse G forward from the nodes in N’ visiting each node n € N at most
once and include n to WCC' ifn € WD, in

Ezample /4. For the graph G in Fig. ??(b) and N’ = {ns5,ng}, Alg. ?? generates

WD,in = {n4,ng}. Alg. 2?7 computes WCC = {ng4,ns,ng,ng} for the CFG in
Fig. 2?7 and N’ as above.

G o te

4.5 Worst-case time complexity
Lemma 2. The worst-case time complexity of Alg. 77 is O(|N|?).

Proof. The worst-case time complexity is dominated by the costs in step (2) of
Alg. 77, Since |succ(n)| < 2 for any CFG node n, all the operations in steps
(2a)-(2c) have constant complexity. However, after removing a node n from W,
all the predecessors of n are visited. If the CFG G has no N’-weakly deciding
vertices, then Alg. ?7? visits at most |N| nodes and |E| edges after which the
operation y # x in (2¢) is always false, no node will be inserted in W, and thus
the cost will be O(|N|+|E|). In order to obtain a vertex in WD, it needs to visit
at most |N| nodes and |E| edges and the maximum cost will be O(|N| + | E]).
If a node n is included in WD, then we set A(n) = n and n will never be
included in W afterwards due to the first conditional instruction in step (2c).
Since we can have at most |N| N'-weakly deciding vertices, the total worst-case
cost will be O((|N|+|E|)*|N]). Since any CFG node has at most two successors,
O(]E|) = O(|N|), and thus the worst-case time complexity is O(|N|?).

Lemma 3. The worst-case time complezity of Alg. 7?7 is O(|N|?).

Proof. The initialization steps in Alg. 77 have the worst-case cost O(|[N]). The
worst-case cost of Alg. ?? is dominated by the main loop in steps (2)-(4). This
main loop iterates at most [N times since (i) once an element is removed from
W, it is marked as visited and never inserted into W again, and (ii) the loop
iterates as long as there are elements in W. Computing the sets S,, and R,
have constant costs since |succg(n)| < 2. The costs of all other operations in
step (3) are also constant except the noDisjointNPath procedure which has the
worst-case cost of O(|N|+|€]) as it is a simple forward graph traversal algorithm
visiting each node and edge at most once and other operations have constant
cost. Step (4) visits the edges in € to insert elements in W and cannot visit more
than |€| edges. Thus, the dominating cost of Alg. ?7 is O((JN] + |€]) x |N]).
Since [N| < N, |€] < E, and O(|N|) = O(|E|), O(]N|?) is the worst-case time
complexity of this algorithm.

Theorem 4. The worst-case time complexity of Alg. 77 is O(|N|?).

Proof. The worst-case time complexity of Alg. 7?7 is dominated by the Veri fyWDV
and OverapproxWD procedures which have the worst-case time complexity
O(|N|?) according to Lemma ?? and ??.

Simple and Efficient Computation of Minimal Weak Control Closure 17

benchmarks KLOC #Proc Twee Tweep Speedup
1 Mecf 3 40 9.6 56.7 5.9
2 Nab 24 327 55.1 418.6 7.6
3 Xz 33 465 40.5 116.5 2.9
4 X264 96 1449 155.7 896.0 5.8
5 Imagick 259 2586 334.8 2268.9 6.8
6 Perlbench 362 2460 1523.3 32134.8 21.1
7 GCC 1304 17827 26658.1 634413.9 23.8
Average Speedup = 10.6

Table 2: Experimental results on selected benchmarks from SPEC CPU 2017 [?]

5 Experimental evaluation

We implemented ours and the weak control closure algorithms of Danicic et al. [?]
in the Clang/LLVM compiler framework [?] and run experiments in an Intel(R)
Core(TM) i7-7567U CPU with 3.50GHz. The experiments are performed on a
number of benchmarks consisting of approximately 2081 KLOC written in C
language.

Table ?? shows experimental results performed on seven benchmarks selected
from the SPEC CPU 2017 [?]. The #Proc column indicates the number of pro-
cedures analyzed in the respective benchmarks, Ty, and Tyeep columns show
total runtime of the algorithms of ours and Danicic et al., and the Speedup
column indicates the speedup of our approach over Danicic et al. which is cal-
culated as Tyyeep /Twee. Each procedure is analyzed 10 times and the N'-sets are
chosen randomly for each run. All times are recorded in microseconds which are
converted to milliseconds and the analysis times reported in Table ?? are the
average of 10 runs.

Regarding the correctness, both algorithms compute the same weakly control
closed sets. As shown in Table 77, we obtain the highest and the lowest speedup
of 23.8 and 2.9 from the GCC and the Xz benchmarks, and an average speedup
from all benchmarks is 10.6. The Xz benchmark provides the lowest speedup due
to the fact that it has fewer procedures than GCC' and the sizes of the CFGs for
most procedures in this benchmark are very small; the average size of a CFG (i.e.
number of CFG nodes) is only 8 per procedure. On the other hand, GCC has
38 times more procedures than Xz and the average size of a CFG per procedure
is 20. Also, the greater speedups are obtained in larger CFGs. There are 171
and 55 procedures in GCC with the size of the CFGs greater than 200 and 500
respectively and the maximum CFG size is 15912, whereas the maximum CFG
size in Xz is 87. For benchmarks like Mcf and Nab, even though they have fewer
procedures than Xz, the average CFG size per procedure in these benchmarks
are 21 and 16.

Since Alg. 7?7 and 7?7 dominates the computational complexity of computing
WCC, we compare the execution times of these algorithms in Fig. 7?. We also
plotted the functions NlogN and N? to compare the execution curves of the
algorithms with these functions. All times are measured in microseconds and an
average of 10 runs. If there exist several CFGs with the same size, we keep the

18 Abu Naser Masud

Comparing execution times of Alg. 2and Alg.3 Comparing execution times of Alg.2and Alg.3
for perlbench for imagick
----- N ===eAlg.2 Alg.3 Nlogh ===N"2 eseeN =mmplg.2 ——Alg.3 NlogN ===N"2

Hundreds
Hundreds

]
J
Bgd

JL.YNYY.Y M“‘Mﬁi,,,‘! (T 0

pvia) U I
[
1 eeeeces ‘.W/-.u.....

1 5 9 13172125293337414549535761656973 1 10 19 28 37 46 55 64 73 82 091

Comparing execution times of Alg.2and Alg. 3 Comparing execution times of Alg. 2 and Alg. 3
for nab for x264
----- N ===-Ag.2 Alg.3 NlogN ===N"2 sesesN === Ag2 Alg.3 NiogN ===N"2

Hundreds
Hundreds

1 5 9 13 17 21 25 29 33 37 41 45 49 53 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Fig. 4: Comparing execution times of Alg. 7?7 and ?7?. Execution time curves are
also compared with the NlogIN and N2 functions where N represents the num-
ber of nodes in the CFG. X-axis represents selected CFGs from the respective
benchmarks. Y-axis represents either the execution times of the algorithms mea-
sured in microseconds or the value of NlogN and N2. All charts are displayed
in the logarithmic scale.

execution time of only one of them. As illustrated in the figure, Alg. ?? performs
consistently. However, the performance of Alg. ?? varies above or below the
performance of Alg. ?7. This due to the fact that it shows optimal performance
when noDisjointNPath procedure is called minimally. The performance curves
of both algorithms are closer to the NlogN curve for perlbench benchmark and
closer to the linear curve for other benchmarks depicted in Fig. 77 when the times
are measured in microseconds. In the appendix, we provide execution curves of
other benchmarks.

We also have evaluated our algorithms by performing the same experiments
on a virtual machine (VM) running on the real machine as specified above. The
virtual machine uses a 64-bit Ubuntu OS with 10 GB RAM having 2 cores and
the real machine runs Mac OS Version 10.15.4 with 16GB RAM. Due to random-
ization, the experiments have different N’ sets. We obtain a maximum speedup
of 12 for Perlbench and an average speedup of 5.7 on all benchmarks from the
experiments on the VM. Even though we obtain a smaller speedup compared
to the speedup on the real machine, our algorithm is still several times faster
than the WCC computation of Danicic et al., and we obtain similar perfor-

Simple and Efficient Computation of Minimal Weak Control Closure 19

mance curves for all benchmarks on VM. Evidently, our algorithm improves the
state-of-the-art computation of weak control closure by an order of magnitude.

6 Related Work

Denning and Denning [?] are the pioneers to use dominator-based approach to
identify program instructions influenced by the conditional instructions in the
context of information-flow security. Weiser [?], the pioneer and prominent au-
thor in program slicing, used their approach in program slicing. However, the
first formal definition of control dependence is provided by Ferrante et al. [?]
in developing the program dependence graph (PDG) which is being used for
program slicing and program optimization. This definition became standard af-
terward and is being used for over two decades.

Podgurski and Clarke [?] provided two control dependence relations called
weak and strong syntactic dependence. The strong control dependence corre-
sponds to the standard control dependence relation. The weak control depen-
dence subsumes the strong control dependence relation in the sense that any
strong control dependence relation is also a weak control dependence. Moreover,
the weak control dependence relation is nontermination sensitive. Bilardi and
Pingali [?] provided a generalized framework for the standard and the weak con-
trol dependence relation of Podgurski and Clarke by means of the dominance
relation parameterized with respect to a set of CFG paths. Different classes of
CFG path set provides different control dependence relations.

Ranganath et al. [?,?] considered CFGs possibly having multiple end nodes
or no end node. These kinds of CFGs originate from programs containing modern
program instructions like exceptions or nonterminating constructs often found in
web services or distributed systems. They also considered low-level code such as
JVM producing irreducible CFGs, and defined a number of control dependency
relations that are nontermination (in)sensitive and conservatively extend the
standard control dependency relation. The worst-case time complexity of the
algorithms for computing their control dependences is O(|N|*log|N|) where |N|
is the number of vertices of the CFG.

The control dependence relations defined later are progressively generalized
than the earlier definitions, but one may be baffled by the overwhelming number
of such definitions, e.g. in [?], to choose the right one. Danicic et al. [?] uni-
fied all previously defined control dependence relations and provided the most
generalized non-termination insensitive and nontermination sensitive control de-
pendence called weak and strong control-closure. These definitions are based on
the weak and strong projections which are the underlying semantics for control
dependence developed by the authors. These semantics are opposite to that of
Podgurski and Clark in the sense that Danicic et al.’s weak (resp. strong) relation
is similar to Podgurski and Clark’s strong (resp. weak) relation. The worst-case
time complexity of their weak and strong control closure algorithms are O(|N|?)
and O(|N|*) where |N| is the number of vertices of the CFG. Léchenet et al. [?]
provided automated proof of correctness in the Coq proof assistant for the weak

20 Abu Naser Masud

control closure algorithm of Danicic et al. and presented an efficient algorithm
to compute such control closure. The efficiency of their method is demonstrated
by experimental evaluation. However, no complexity analysis of their algorithm
is provided.

Khanfar et al. [?] developed an algorithm to compute all direct control depen-
dencies to a particular program statement for using it in demand-driven slicing.
Their method only works for programs that must have a unique exit point.
Neither the computational complexity nor the practical performance benefits
of their algorithm are stated. On the other hand, we compute minimal weak
control closure for programs that do not have such restrictions. Our method
improves the theoretical computational complexity of computing weak control
closure than the state-of-the-art methods, and it is also practically efficient.

7 Conclusion and future work

Danicic et al. provided two generalizations called weak and strong control closure
(WCC and SCC) that subsume all existing nontermination insensitive and non-
termination sensitive control dependency relations. However, their algorithms to
compute these relations have cubic and quartic worst-case complexity in terms
of the size of the CFG which is not acceptable for client applications of WCC
and/or SCC such as program slicing. In this paper, we have developed an effi-
cient and easy to understand method of computing minimal WCC. We provided
the theoretical correctness of our method. Our WCC computation method has
the quadratic worst-case time complexity in terms of the size of the CFG. We
experimentally evaluated the algorithms for computing WCC of ours and Dani-
cic et al. on practical benchmarks and obtained the highest 23.8 and on average
10.6 speedups compared to the state-of-the-art method. The performance of our
WCC algorithm for practical applications is closer to either NlogN or linear
curve in most cases when time is measured in microseconds. Thus we improve
the practical performance of WCC computation by an order of magnitude.

We have applied our algorithms of computing minimal weakly deciding ver-
tices in the computation of strongly control closed sets, implemented ours and
the state-of-the-art SCC method in the Clang/LLVM framework, and evaluated
these algorithms on practical benchmarks. We also obtained similar speedups in
computing SCC. However, we have not included our SCC computation method
in this paper due to space limitations.

As regards future work, our algorithm to compute minimal weakly deciding
vertices can be applied to compute minimal SSA programs. Recently, Masud and
Ciccozzi [?,?] showed that the standard dominance frontier-based SSA construc-
tion method increases the size of the SSA program by computing a significant
amount of unnecessary ¢ functions. However, they provided complex and expen-
sive algorithms that can generate minimal SSA programs. Our algorithm can
be adapted to get an efficient alternative method in computing minimal SSA
programs. Another future direction would be to compute WCC and SCC for
interprocedural programs.

Simple and Efficient Computation of Minimal Weak Control Closure 21

Acknowledgment

This research is supported by the Knowledge Foundation through the HERO
project.

References

10.

11.

12.

. Amtoft, T.: Correctness of practical slicing for modern program structures. Tech.

rep., Department of Computing and Information Sciences, Kansas State University
(2007)

Bilardi, G., Pingali, K.: A framework for generalized control dependence. SIG-
PLAN Not. 31(5), 291-300 (May 1996). https://doi.org/10.1145/249069.231435
Bucek, J., Lange, K.D., v. Kistowski, J.: Spec cpu2017: Next-generation compute
benchmark. In: Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering. pp. 41-42. ICPE 18, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3185768.3185771

Danicic, S., Barraclough, R., Harman, M., Howroyd, J.D., Kiss, A., Laurence, M.:
A unifying theory of control dependence and its application to arbitrary program
structures. Theoretical Computer Science 412(49), 6809-6842 (2011)

Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Commun. ACM 20(7), 504-513 (Jul 1977). https://doi.org/10.1145/359636.359712
Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319-349 (Jul 1987).
https://doi.org/10.1145/24039.24041

Khanfar, H., Lisper, B., Masud, A.N.: Static backward program slicing for safety-
critical systems. In: de la Puente, J.A., Vardanega, T. (eds.) Reliable Software
Technologies - Ada-Europe 2015 - 20th Ada-Europe International Conference
on Reliable Software Technologies, Madrid Spain, June 22-26, 2015, Proceed-
ings. Lecture Notes in Computer Science, vol. 9111, pp. 50-65. Springer (2015).
https://doi.org/10.1007/978-3-319-19584-1_4

Khanfar, H., Lisper, B., Mubeen, S.: Demand-driven static backward slicing
for unstructured programs. Tech. rep. (May 2019), http://www.es.mdh.se/
publications/5511-

Lattner, C., Adve, V.: The LLVM Compiler Framework and Infrastructure Tu-
torial. In: LCPC’04 Mini Workshop on Compiler Research Infrastructures. West
Lafayette, Indiana (Sep 2004)

Léchenet, J.C., Kosmatov, N., Le Gall, P.: Fast computation of arbitrary control
dependencies. In: Russo, A., Schiirr, A. (eds.) Fundamental Approaches to Software
Engineering. pp. 207-224. Springer International Publishing, Cham (2018)
Lisper, B., Masud, A.N., Khanfar, H.: Static backward demand-driven slicing. In:
Asai, K., Sagonas, K. (eds.) Proceedings of the 2015 Workshop on Partial Evalua-
tion and Program Manipulation, PEPM, Mumbai, India, January 15-17, 2015. pp.
115-126. ACM (2015). https://doi.org/10.1145/2678015.2682538

Masud, A.N., Ciccozzi, F.: Towards constructing the SSA form using reach-
ing definitions over dominance frontiers. In: 19th International Working Con-
ference on Source Code Analysis and Manipulation, SCAM 2019, Cleve-
land, OH, USA, September 30 - October 1, 2019. pp. 23-33. IEEE (2019).
https://doi.org/10.1109/SCAM.2019.00012

22

13.

14.

15.

16.

17.

18.

19.

20.

Abu Naser Masud

Masud, A.N., Ciccozzi, F.: More precise construction of static single assignment
programs using reaching definitions. Journal of Systems and Software 166, 110590
(2020). https://doi.org/10.1016/j.jss.2020.110590

Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. SIGSOFT Softw. Eng. Notes 9(3), 177-184 (Apr 1984).
https://doi.org/10.1145/390010.808263

Pingali, K., Bilardi, G.: Optimal control dependence computation and the roman
chariots problem. ACM Trans. Program. Lang. Syst. 19(3), 462-491 (May 1997)
Podgurski, A., Clarke, L.A.: A formal model of program dependences and its im-
plications for software testing, debugging, and maintenance. IEEE Trans. Softw.
Eng. 16(9), 965-979 (Sep 1990)

Prosser, R.T.: Applications of boolean matrices to the analysis of flow diagrams.
In: Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM
Computer Conference. pp. 133-138. IRE-AIEE-ACM ’59 (Eastern), ACM, New
York, NY, USA (1959)

Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. In: Eu-
ropean Symposium on Programming. LNCS, vol. 3444, pp. 77-93. Springer-Verlag
(2005)

Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5) (Aug 2007)

Weiser, M.: Program slicing. In: Proc. 5th International Conference on Software
Engineering. pp. 439-449. ICSE ’81, IEEE Press, Piscataway, NJ, USA (1981),
http://dl.acm.org/citation.cfm?id=800078.802557

Simple and Efficient Computation of Minimal Weak Control Closure 23

A Appendix

Comparing execution times of Alg. 2and Alg. 3 Comparing execution times of Alg.2and Alg. 3
for xz for mcf
seseeN=mm=meplg D Alg.3 NlogN === N"2 eseseN ===oplg.2 Alg.2 NlogN ==—==N"2

100 1000

10

Hundreds
Hundreds
.
8

0,1

Comparing execution times of Alg. 2and Alg. 3
for gcc

soceeN mm=meopg.2 Alg.3 NlogN =—=N"2

10000000

Hundreds

Fig.5: Comparing execution times of Alg. ??7 and ?7. Execution time curves are
also compared with the NlogN and N2 functions where N represents the num-
ber of nodes in the CFG. X-axis represents selected CFGs from the respective
benchmarks. Y-axis represents either the execution times of the algorithms mea-
sured in microseconds or the value of NlogN and N2. All charts are displayed
in the logarithmic scale.

