
Probabilistic Mission Planning and Analysis for
Multi-agent Systems

Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

Mälardalen University, Väster̊as, Sweden
(first.last)@mdh.se

Abstract. Mission planning is one of the crucial problems in the de-
sign of autonomous Multi-Agent Systems (MAS), requiring the agents
to calculate collision-free paths and efficiently schedule their tasks. The
complexity of this problem greatly increases when the number of agents
grows, as well as timing requirements and stochastic behavior of agents
are considered. In this paper, we propose a novel method that inte-
grates statistical model checking and reinforcement learning for mission
planning within such context. Additionally, in order to synthesise mis-
sion plans that are statistically optimal, we employ hybrid automata
to model the continuous movement of agents and moving obstacles, and
estimate the possible delay of the agents’ travelling time when facing un-
predictable obstacles. We show the result of synthesising mission plans,
analyze bottlenecks of the mission plans, and re-plan when pedestrians
suddenly appear, by modelling and verifying a real industrial use case in
UPPAAL SMC.

Keywords: MAS, mission planning, Q-learning, statistical model checking

1 Introduction

Multi-Agent Systems (MAS) draw a wide interest in academia and industry,
mostly due to their autonomous functions that ease people’s daily lives and im-
prove industrial productivity. Mission planning for MAS involves path planning
and task scheduling, and is one of the most critical problems when designing such
systems [4]. There are path-planning algorithms that have already proved useful
for autonomous systems, e.g., RRT [15] and Theta* [5]. These algorithms are
able to calculate collision-free paths towards a destination, yet they do not con-
sider complex requirements and uncertainties in the environment. For instance,
if agents need to prioritize or repetitively execute some tasks, path planning is
not enough. In addition, when the task execution time is uncertain, or some
moving objects such as humans and other machines appear irregularly in the
environment, autonomous agents need to consider these factors when synthesis-
ing mission plans so that the resulting plans are comprehensive. Task scheduling
algorithms are designed to solve the above problems. However, since task schedul-
ing is an NP-hard problem, when the number of agents becomes large, traditional



2 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

methods cannot manage to produce a result even for a simple instance with very
restrictive constraints [1].

In our previous work, we have formally defined and modeled the movement
and task execution of MAS [9], and proposed a combined model-checking and re-
inforcement learning method [10], to synthesise mission plans that are proved to
satisfy complex requirements obtained from industry. However, when the agents
perform some uncertain actions, e.g., unstable time of moving and operating,
or the environment contains some stochastic phenomena, e.g., humans crossing
the roads unpredictably, the proposed method does not provide quantitative
verification and analysis, which is best suited in these cases.

In this paper, we propose an adjusted version of our method called MCRL

(Model Checking + Reinforcement Learning) [10] to provide a means of syn-
thesizing and analyzing mission plans for MAS with uncertainties of the type
mentioned above. The method is based on Stochastic Timed Automata (STA)
and statistical model checking (by employing UPPAAL SMC), and combines the
latter with reinforcement learning. Instead of exhaustively exploring the state
space of the model and looking for the execution traces that satisfy certain re-
quirements, MCRL uses the simulation function of UPPAAL SMC to execute the
model. Then, it adopts a reinforcement learning algorithm, namely Q-learning
[21], to accumulate the rewards of the state-action pairs gathered in the simula-
tion, and populate a Q-table that is used to guide the agents to move safely and
finish tasks within a prescribed time limit. As the STA describe the stochastic
behavior of the agents and uncertain events in the environment by probability
distributions, based on which the simulation is executed, the collected state-
action pairs reflect the possible scenarios that the agents would probably meet
in the environment. Therefore, as long as the simulation generates enough data,
the synthesised mission plans are comprehensive and optimal.

To estimate the possible delays of executing mission plans when the agents
encounter unexpected situations, e.g., pedestrians, we adopt a hybrid-automata
(HA) model of the agents that are equipped with a state-of-the-art collision-
avoidance algorithm based on dipole flow fields [19]. By simulating and statis-
tically verifying the HA model, we can get the estimated travelling time of the
agents [11], respectively, which is then used to construct the STA model that is
used for synthesising mission plans. Next, statistical verification and simulation
of the STA are conducted in UPPAAL SMC in order to analyze the synthesised
mission plans in an environment model containing uncertainties, which is not
feasible by purely using reinforcement learning algorithms. To summarize, the
contributions of this paper are:

– An innovative approach based on MCRL for synthesizing and analyzing mis-
sion plans for MAS that exhibit stochastic behavior.

– An effective combination of the STA and HA models of MAS, which enables
the estimation of travelling time considering unexpected situations, and thus
produces comprehensive mission plans.

– An evaluation of the method showing the ability of analyzing the bottleneck
of mission plans and re-planning when facing unpredictable moving obstacles.



Probabilistic Mission Planning and Analysis for Multi-agent Systems 3

(a) A STA modeling passengers (b) A STA modeling an airport

Fig. 1. STA modeling a scenario of passengers arriving at an airport and taking off

The remainder of the paper is organized as follows. In Section 2, we introduce
the preliminaries of this paper. Section 3 presents the problem and challenges. In
Section 4, we introduce the adjusted version of MCRL and its combination with
the HA model. Section 5 presents the bottleneck analysis as well as the ability
of re-planning. In Section 6, we compare to related work, before concluding and
outlining possible future work in Section 7.

2 Preliminaries

In this section, we introduce Stochastic Timed Automata and UPPAAL SMC,
reinforcement learning, and a two-layer framework that we have proposed pre-
viously for formal modeling and verification of autonomous agents.

2.1 Stochastic Timed Automata and UPPAAL SMC

UPPAAL SMC [6] is an extension of the tool UPPAAL [14], which supports Sta-
tistical Model Checking (SMC) of Stochastic Timed Automata (STA). STA is a
widely used paradigm for modeling the probabilistic behavior of real-time sys-
tems. The basic elements of STA are locations and edges connecting them. Time
can elapse at locations, which is reflected by the increased values of clock vari-
ables in delayed transitions of STA, whereas transitions between locations are
non-delayed. The delays at locations follow probabilistic distributions, which
are either uniform distributions for time-bounded delays, or exponential distri-
butions (with user-defined rates) for unbounded delays. The choices between
multiple enabled non-delayed transitions are also probabilistic.

Fig. 1 depicts a network of STA modeling the scenario of passengers arriv-
ing at an airport and taking off. Fig. 1(a) shows the model of passengers, who
randomly arrive at the airport. The arriving time follows the exponential dis-
tribution as it is modeled by an unbounded delay at location Arriving. The
constant “5 ” is the exponential rate that can be replaced by any rational num-
ber. The channels (e.g., enter and takeoff ) model the handshaking interaction
between STA. Note that UPPAAL SMC only supports broadcast channels for a
clean semantics of purely non-blocking automata. When a passenger enters an
airport, the corresponding STA moves to location Leaving simultaneously with
the airport STA (Fig. 1(b)) moving from location Wait to Handling, synchro-
nized via the channel enter. Next, the airport STA goes to a branch point leading



4 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

to two locations, namely Crowded and Uncrowded, respectively. The constants,
“20 ” and “80 ”, are the probability weights of the edges marked by the dashed
lines in Fig. 1(b), meaning that the probability of entering a crowded airport
is 80%, and 20% for an uncrowded one. Delays at locations such as location
Crowded are time-bounded, as the locations are constrained by invariants (e.g.,
c <= 10), so the delay time at these locations should not surpass the upper
boundary specified by the invariants, respectively. If the outgoing edges of such
locations are guarded by conditions, e.g., c >= 5 in our case, the STA cannot
leave the locations until the lower boundaries of the guards are exceeded. A uni-
form distribution is set for the time-bounded delays by default in UPPAAL SMC,
which is also adopted in this paper. Variables can be updated by assignments
(e.g., c = 0) or C-code functions on the edges.

2.2 Reinforcement Learning

Reinforcement learning is a branch of machine learning that enables agents to
learn how to take actions by themselves, in an environment. In this paper, we
employ Q-learning [21] as the reinforcement learning algorithm to generate poli-
cies of movement and task execution for agents. A policy is associated with a
state action value function called Q function, where “Q” stands for “quality”.
The optimal Q function satisfies the Bellman optimality equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (1)

where q∗(s, a) represents the expected reward of executing action a at state
s, E denotes the expected value function, R(s, a) is the reward obtained by
taking the action a at state s, γ is a constant of discounting, s′ is the new state
coming from state s by taking action a, max

a′
q∗(s′, a′) represents the maximum

reward that can be achieved by any possible next state-action pair (s′, a′). The
equation means that the expected reward of the state-action pair (s, a) is the
sum of the current reward and the discounted maximum future reward. The
Bellman equation accumulates the Q-values of state-action pairs and guarantees
the values to converge to the maximum Q-value during the learning process [13].
In this paper, we use the simulation function in UPPAAL SMC to gather the
information of state-action pairs in files, and invoke a Java program to parse the
data and run the Q-learning algorithm, so that a Q-table is populated.

2.3 A Two-Layer Framework for Formal Modelling and Verification
of Autonomous Agents

To provide a separation of concerns for the formal modeling and verification
of autonomous agents, we have proposed a two-layer framework [11]. In this
framework, a static layer is responsible for mission planning and only concerns
static obstacles and milestones where the tasks are carried out. The dynamic
layer uses hybrid automata (HA) [12] to model the continuous movement and



Probabilistic Mission Planning and Analysis for Multi-agent Systems 5

(a) An example of HA gen-
erating pedestrians

(b) An example of HA modeling the
linear movement of agents

Fig. 2. Examples of HA model in the dynamic layer of the framework

operations of the agents in UPPAAL SMC. In addition, UPPAAL SMC provides
a “spawning” function to dynamically generate instances of HA models during
the verification, which enables one to mimic the sudden appearance of obstacles
(e.g., pedestrians), which are considered unpredictable before the agents get close
to them.

Fig. 2(a) shows the HA that generates pedestrians. As long as the number
of pedestrians does not exceed a maximum number (i.e., “pedeNum<M”), the
self-loop edge of location G0 is enabled, which invokes the spawning function
to generate an instance of the pedestrian model. The constant “0.1 ” denotes
the rate of the exponential probability distribution of the pedestrians’ appear-
ance. Fig. 2(b) depicts the HA that models the continuous linear movement of
agents. The model contains four locations, representing the four moving sta-
tuses of agents: idle, acceleration, constantly moving, and deceleration. At the
each of the locations, the derivatives of speed and positions are regulated by
Newtonian laws of motion in the form of ordinary differential equations (ODE).
In a nutshell, the HA model describes the continuous movement of agents, and
thus the simulation of the model reflects the agents’ moving trajectories when
circumventing obstacles. For brevity, we refer readers to the literature [11] for
details. In this paper, we use this HA model to generate the moving trajectories
of pedestrians and agents, and UPPAAL SMC to estimate the prolonged traveling
time of the agents caused by collision avoidance, which is used for re-planning.

3 Problem Description

In this section, we introduce the research problem that originates from an indus-
trial use case of an autonomous quarry, containing various autonomous vehicles,
e.g., trucks, wheel loaders, etc. For example, as shown in Fig. 3, in an autonomous
quarry, a wheel loader digs stones at stone piles and loads them into trucks, which
carry the stones to a primary crusher, where stones are crushed into fractions,
and proceed to carry the crushed stones to the secondary crushers, which is
the destination. To accomplish their tasks and guarantee a certain level of pro-



6 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

Fig. 3. An example of an autonomous quarry

ductivity, these autonomous vehicles need to calculate collision-free paths and
schedule their tasks (e.g., digging stones) to finish their jobs within a time frame.
In this paper, henceforth, we name path planning and task scheduling as mission
planning in general. As our solution is generic and suits all kinds of autonomous
systems that need to synthesise mission plans, the autonomous vehicles in this
paper are referred to as autonomous agents [8].

In this paper, path planning is accomplished by the Theta* algorithm [5]
as the environment in the problem is a 2D map and the algorithm is especially
good at generating smooth paths with any-angle turning points in 2D maps. Task
scheduling acquires satisfaction of various requirements, e.g., task assignment,
execution order, and timing requirements. We extract the requirements of the
autonomous quarry from our industrial partner, and generically categorize them
as follows:

– Task Assignment. The task must be assigned to the right milestone containing
the corresponding device.

– Execution Order. The task execution order must be correct, e.g., unloading
into the primary crusher can start only after digging stones finishes.

– Milestone Exclusion. Some milestones containing a device that only allows one
agent to operate at a time are exclusive when they are occupied.

– Timing. Tasks must be completed within a prescribed time frame.

The complexity of path planning of multiple agents increases linearly as the
number of agents grows, because the path-planning algorithm runs on each indi-
vidual agent and it does not consider the paths of other agents, as the collision
avoidance is dealt with when the agents are actually moving. In other words, the
time to calculate paths for multiple agents is the sum of the computation time
of each agent. However, the task-scheduling problem is NP-hard and involves
uncertainties that traditional methods do not consider [1].

– Uncertain execution time of tasks. The execution time of tasks is not a fixed
value, but it is a time interval between the best-case execution time (BCET)
and worst-case execution time (WCET), which are usually different.

– Uncertain movement time. Since some milestones are exclusive, when an agent
approaches an occupied milestone, it most probably should wait until it is
released. The waiting time is uncertain.

– Uncertain environment. Human workers sometimes appear in the sites but
do not always stay there. This requires the agents to avoid those workers



Probabilistic Mission Planning and Analysis for Multi-agent Systems 7

Fig. 4. The process of the MCRL method

at all cost, and adjust their mission plans accordingly, in order to maintain
productivity.

These features make our problem even more difficult than the classic scheduling
problem. For example, if human workers appear irregularly, it is hard to estimate
their influence on the traveling time of agents. We formulate the target problems
of this paper as follows.

Overall Challenge. Given a confined environment containing multiple au-
tonomous agents, several predefined milestones and static obstacles, some un-
predictable moving objects or humans, a set of tasks for the agents to finish in
order to satisfy some requirements, the goal is to synthesize mission plans for
these agents, such that:

– The mission plans satisfy the requirements that are categorized previously;
– The mission plans consider the uncertainties in the environment and handle

them effectively so that the agents could finish tasks under various conditions;
– The solution provides a means of statistical analysis of the synthesised mission

plans to investigate the bottleneck of the plans, and an ability of re-planning
when facing disturbance, e.g., pedestrians.

4 Mission Planning Based on Reinforcement Learning
and Stochastic Timed Automata

In this section, we introduce the modelling of MAS using STA, which is based on
a method called MCRL [10]. MCRL combines model checking and reinforcement
learning, which enables the method to cope with large numbers of agents and
verify the synthesised mission plans. The use of stochastic timed automata in
this paper extends MCRL with the ability of modelling stochastic behaviors. We
also present some queries that are used in this method for statistical analysis of
the mission plans.

4.1 MCRL: Combining Model Checking and Reinforcement
Learning for Mission Planning

Previously, we have presented the formal definitions of agent movement and task
execution and the model-generation algorithms to generate Timed Automata
(TA) for mission-plan synthesis [9]. This initial work provides a theoretical foun-
dation and a tool called TAMAA, based on which a novel approach is designed
to synthesise mission plans, namely MCRL.

Overall Description of MCRL. As Fig. 4 depicts, MCRL consists of three
phases. First, it simulates the TA that models the movement and task execution
of autonomous agents by running the Monte Carlo simulation query in UPPAAL



8 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

SMC. The introduction of the TA model is in the literature [10]. The multi-round
simulation produces the execution traces of the model. Some of them satisfy our
requirements, e.g., finishing tasks in time, correct execution order of tasks; some
traces fail, e.g., exceeding the time limit. The successful traces are assigned with
positive values, which are calculated by (ST −FT )2, where ST is the simulation
time, FT is time of reaching the desired state, e.g., finishing all tasks; whereas
a fixed negative value is assigned to all the failed traces.

Next, the traces and their values are input into the model-training phase,
where a reinforcement learning algorithm, namely Q-learning, is performed to
generate a Q-table. The Q-table contains the state-action pairs and their values
that are accumulated by running Equation (1) using the data of the input traces.
This equation guarantees that the values of state-action pairs converge, as long
as the simulation has produced enough data of execution traces. Eventually, the
Q-table is injected back to the TA model of agents, where a new TA named
conductor is created so that the behavior of the agent model is controlled by it.
The conductor TA looks up the Q-table and chooses the action that owns the
highest value among the available actions at the current state for the agents to
perform. Each agent model has its own conductor TA so that the agents can
make decisions distributedly. However, as the Q-table contains the state-action
pairs of all agents, when their actions conflict, e.g., moving to the same exclusive
milestone simultaneously, the agents can compare their rewards of actions with
others, and let the one having the highest reward to perform. In this way, the
Q-table serves as the mission plan we intend to synthesise. In addition, since
the method utilizes random simulation and reinforcement learning instead of
pure exhaustive model checking, the solution is scalable for systems with large
numbers of agents. For a detailed introduction of the method, we refer readers
to the literature [10].

Although Q-learning strengthens MCRL’s ability of handling large numbers
of agents, the method provides no means of handling unpredictable events, which
is important as the environment is uncertain. This limitation stems from the use
of timed automata. This modelling language cannot depict the stochastic events
in the environment. For example, when human workers sporadically appear in
the environment, MCRL cannot estimate the possible delay that is caused by
the detour taken by the agents to avoid humans. In addition, industries always
focus on productivity. The waiting time of agents at exclusive milestones is an
unnecessary consumption of time, but it is hard to capture as the waiting time
depends on multiple factors. Original MCRL is not able to provide this kind of
analysis, as it does not use any statistical analysing techniques.

4.2 Stochastic Timed Automata for MCRL

To overcome these shortcomings, we improve MCRL by adopting stochastic timed
automata (STA) as the modelling language and statistical model checking for
verification and analysis. In this section, we present the STA model in detail
such that readers understand how the movement and task execution is modelled
as STA, and how the stochastic behavior is handled by this model.



Probabilistic Mission Planning and Analysis for Multi-agent Systems 9

Fig. 5. The STA modeling an agent executing task T1

STA of Task Execution. Tasks in this paper are operations of the agents that
need to be carried out in a right order and at the specific milestones. For instance,
in the scenario of an autonomous quarry in Fig. 3, tasks for autonomous trucks
can be unloading stones into the primary crushers, charging, etc. Collaborative
tasks are the ones that need more than one agent to perform, e.g., loading stones
at stones piles needs a wheel loader and a truck to accomplish. For mission
planning, a task can be abstracted as time duration between the BCET and
WCET, which is only permitted to start when a set of conditions is satisfied,
e.g., precedent tasks are finished, and staying at the right milestone. The formal
definition of tasks is presented in literature [9].

Fig. 5 depicts an example of the STA modelling an agent executing one of its
tasks, namely T1. For brevity, the execution of other tasks for the same agent,
which should be modelled in the same STA, is not shown in this figure. Note
that the variable id in this figure is the index of the agent. The STA starts from
the location named Idle that represents the status of running no tasks. Agents
are only allowed to move at this status, hence, this location has a self-loop edge
labelled by a synchronization channel go[id] that is used to inform the movement
STA to start moving. Since the milestone that the agent is approaching to might
be occupied and exclusive, the agent probably has to wait. The invariant on
the location Idle (e.g., te[id]<=MT ) and the guard on its self-loop edge (e.g.,
te[id]>=MT ) is for triggering the “moving” command every MT time units, so
that the agent would not wait forever and periodically detects whether the target
milestone is available. The detection is done by the STA of agent movement,
which is introduced in the next section.

If the agent decides to execute task T1, its task execution STA transfers to
location T1. This edge is guarded by a Boolean expression that is composed of
four parts (see Fig. 5). The first Boolean expression cp[id]==B checks if the
agent is at milestone B currently, where the task is permitted. The following
function isReady(TK1) returns a Boolean value indicating whether task T1 is
not finished yet. If T1 is a collaborative task, this function also decides if the
collaborating agents are ready for this task by checking if they are staying at
the same right position, which is milestone B in this case. The Boolean array
named tasks stores the execution status of tasks, namely finished or not, so
tasks[TK2] here checks if the precedent task of T1 is finished. The Boolean
expression !event[id][0] indicates that the event monitored by this agent is not
active, where the number “0 ” is the index of the event that can be replaced.
An event can be a battery-level-low warning, or a critical-damage alert, etc.,
which needs to be prioritized than regular tasks, and responded within a time



10 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

frame. The task execution time is between the BCET and WCET. Therefore, the
invariant on location T1 regulates that the clock variable should not exceed the
WCET of T1, whereas the guard on the outgoing edge of this location decides
the earliest time to leave this location to be later than the BCET. In UPPAAL

SMC, the default probability distribution of time-bounded delays is uniform
distribution. Hence, the execution time of task T1 here is between the BCET

and WCET with equal possibilities.
When the guards hold, agents can take the transition with the execution

of function start(TK1) to start T1. This function changes the variable of the
current task of the agent, and stores the current state of the agent, as well as
the corresponding action taken at this moment into an array. The array, which
represents the execution trace, will be printed by UPPAAL SMC in the end of
the data gathering phase (see Fig. 4). The function finish(TK1) simply changes
the variable of the current task to Idle, and checks if all the tasks have been
finished when the agent should leave the environment and stop.

STA of Agent Movement Fig. 6(a) depicts a scenario containing an intersec-
tion where pedestrians keep crossing the road every once a while. An autonomous
vehicle starting from position A1 intends to go to A2. Though going straightly
to A2 is the shortest path, potential collision avoidance might increase the trav-
elling time, as shown by the blue trajectory. Therefore, the vehicle can alterna-
tively choose to detour via position B1, as shown by the violet trajectory. As
the HA described in Section 2.3 model the probable appearance of human work-
ers and the continuous movement of agents equipped with a collision-avoidance
algorithm based on dipole flow fields [19], we can verify the HA model against
queries in the following forms in order to obtain the prolonged travelling time
and its probabilities.

Pr[<=T](<> arrived) (2)

Pr[<=T]([] arrived imply t <= TL), (3)

where T is the simulation time, arrived is a Boolean variable indicating if the
agent arrives at the destination or not, t is a clock variable, and TL is an inte-
ger indicating the time limit. Query (2) calculates the probability of the agent
reaching the destination, and Query (3) further calculates the probability of al-
ways arriving at the destination within TL time units. The results are probability
intervals and we use the average value to estimate the probability of travelling
time, which is used in the STA of movement.

Fig. 6(b) shows a part of the movement STA modelling the movement from A1
to A2. As there are two alternative paths, the STA starts with a non-deterministic
choice between two transitions to location A1B1A2 or a branch point. The
function isOver() returns a Boolean value of whether the agent has finished all
tasks and should stop. The update function move(0,A1,A2) changes the current
position of the agent, and stores the current state-action pair into the array,
which is similar to the function start() in Fig. 5. When the agent chooses to
go via position B1, which does not have any pedestrians, the STA transfers to
the location A1B1A2 representing the duration of travelling. When the least
travelling time has passed, e.g., 15 time units travelling via B1, the STA can



Probabilistic Mission Planning and Analysis for Multi-agent Systems 11

(a) A scenario of an intersec-
tion containing pedestrians

(b) The STA modeling the possible move-
ment of agents

Fig. 6. A scenario of intersection and the STA modeling the movement of agents

transfer to location PA2, as long as the milestone A2 is not occupied. If the
travelling time is uncertain by the influence of pedestrians, the STA transfers to
a branch point that leads to different locations representing different probable
travelling duration, e.g., location A1A2 1. After verifying the HA of agents (see
Figure 2 for an example) against queries similar to Queries (2) and (3), and
replacing TL with different numbers, we can obtain that going to position A2
straightly can cost 10 or 18 time units, and their probabilities are 40% and
60%, respectively, which are depicted in Fig. 6(b). In the STA of movement, a
synchronization channel named go[id] is used to get commands from the task
execution STA (Fig. 5). So the verification of agents is for an integrated model
composing the STA of agent movement and task execution.

In UPPAAL SMC, a simulation query composed as following randomly exe-
cutes the model for R rounds and T time units in each round,

simulate[<=T;R] {ds[0].cs,ds[0].act,ds[0].value,...}:tasks[TK1], (4)

where ds is the array variable whose type is a structure, cs and act are the
elements of the structure representing the current state and action, respectively,
value is the reward or penalty assigned to the pair. The definitions of the states
and actions are in the literature [10]. The predicate in the end of the query
regulates that the data in the curly brackets are printed only when the predicate
is true. In this query, when the agent finishes task T1, the elements in ds are
printed. The simulation needs to run multiple runs for obtaining enough state-
action pairs that simulate various situations that the agents would encounter.
Hence, the Q-learning algorithm, which uses the state-action pairs as input,
would cover various cases comprehensively so that the final mission plans can
satisfy various properties in an environment model containing uncertainties.

MCRL Revisited Now that the TA of task execution and movement are ad-
justed to STA, the simulation query in UPPAAL SMC would explore the state
space of the model based on the probability distributions defined in the STA. The
model-training phase that uses the state-action pairs representing the stochastic
behavior of agents would generate mission plans that are statistically optimal.



12 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

Fig. 7. An experimental scenario containing 4 autonomous agents

Table 1. Tasks for the autonomous agents in the experiment

Task BCET WCET Precedent task Milestone

Wheel loader
Dig 2 2 none Stone pile (A)

Unload 1 4 Dig Stone pile (A)

Truck

Load I 1 4 Dig Stone pile (A)
Unload I 4 4 Load I Primary crusher (B or C)
Load II 2 3 Unload I Primary crusher (B or C)

Unload II 3 5 Load II Secondary crusher (D)

5 Statistical Verification and Analysis of the Use Case:
an Autonomous Quarry

In this section, we evaluate our method by demonstrating a statistical verification
and analysis on our use case: an autonomous quarry (as shown in Fig. 3). The
experiments are conducted in UPPAAL 4.1.24. Most of the statistical parameters
are set to the default values in UPPAAL SMC, except the probability of false
negatives (α), which is 0.001, and probability uncertainty (ε), which is 0.001.
The experimental scenario is depicted in Fig. 7. Tasks for those agents are shown
in Table 1. Milestones A to D are exclusive, thus only one truck is allowed at one
time. As there are two primary crushers, the trucks need to choose one of them
to perform tasks, which take uncertain execution time. The agents must carry
all the stones to the secondary crusher, and the job need to be accomplished
within a time frame.

5.1 Mission Plan Synthesis

After building the STA and running MCRL by using UPPAAL SMC and our Java
program of the Q-learning algorithm, we successfully synthesize mission plans for
agents. By verifying queries as following, we demonstrate the synthesized mission
plans satisfy different kinds of requirements that are described in Section 3.

– Task Assignment. Query (5) checks the probability of agent n performing task
Ti at milestone Pi. The results for all tasks in Table 1 are above 99.8%.

Pr[<=T]([] ten.Ti imply mn.Pi) (5)

– Execution Order. Query (6) checks the probability that when agent n is per-
forming task Ti, its precedent task Tj has finished. UPPAAL SMC returns that
the results for tasks that have precedent tasks are above 99.8%.

Pr[<=T]([] ten.Ti imply ten.tasks[j]) (6)



Probabilistic Mission Planning and Analysis for Multi-agent Systems 13

(a) Probabilities of waiting at milestones (b) Waiting time at milestone D

Fig. 8. Bottleneck analysis of the scenario in Figure 7

– Milestone Exclusion. Query (7) checks the probability that when agent n is
at an exclusive milestone named Pi, other agents are not there. The results
for milestones A to D are above 99.8%.

Pr[<=T]([] mn.Pi imply !(m0.Pi && ... && mn−1.Pi && mn+1.Pi ...)) (7)

– Timing. Query (8) checks the probability of agent n travelling through all
milestones and finishing all tasks within TL time units. If we set TL to be 10
and 25 for wheel loaders and trucks, the results are above 99.8%.

Pr[<=T]([] (ten.tasks[0] && ... && ten.tasks[M-1]) imply x < TL) (8)

In these queries, ten and mn are the task execution STA and movement STA of
agent n, respectively, ten.tasts is a Boolean array for storing the task execution
status of agent n, namely true for finished tasks, and false for unfinished ones,
M is the number of tasks, and x is a global clock variable that is only reset when
all tasks finish.

5.2 Bottleneck Analysis

To perform this analysis, we verify the reformed model equipped with Q-tables
against queries in the following form of Query (9) to get the waiting time at
different milestones during the process of transferring stones.

Pr[<=T](<> m0.wt[i] + m1.wt[i] + ... + mn.wt[i] > TL), (9)

where T is the simulation time, m0 to mn are the movement STA of agents 0 to n,
wt[i] refers to the waiting time at milestone i, and TL is an integer estimating the
waiting time. By setting TL to zero and replacing the index i with the indices
of milestones A to D, one can investigate the probability of waiting at each
milestone (see Fig. 8(a)). By replacing the integer TL with different values and
fixing the index i to some certain milestone, one can estimate the waiting time
at the milestone and the corresponding probability (see Fig. 8(b)). In UPPAAL

SMC, the result of a probability estimation property (e.g., Query (9)) is given as
a probability interval with a confidence level. Hence, the probabilities in Fig. 8
are presented as ranges from the lower boundaries to the upper boundaries. As
shown in Fig. 8(a), the probabilities of waiting at milestones A to D are always
larger than zero, and the average probability of waiting at milestone D is the
highest. We specifically estimate the waiting time at milestone D. As shown in
Fig. 8(b), the waiting time is most likely less than 2 time units.



14 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

5.3 Travelling Timed Estimation and Re-Planning

When the autonomous agents encounter pedestrians, they must run collision-
avoidance algorithms to compute a new path to bypass the pedestrians, and
that would possibly affect the travelling time significantly such that it is even
quicker to take another path. We call the ability of agents choosing another path
when encountering moving obstacles re-planning. In the scenario depicted in Fig.
7, if the number of autonomous trucks is decreased to one, the truck is free to
choose between primary crushers at milestones B and C, as no other trucks
are competing with it. Since the primary crusher at milestone C is closer to
the secondary crusher, the Q-learning algorithm enables the autonomous truck
to choose milestone C rather than milestone B as the precedent position of
milestone D. We can verify this phenomenon by checking Query (10):

Pr[<=T] ([] m0.D imply (viaC && !viaB)), (10)

where viaC and viaB are Boolean variables, which are turned to true when the
agent sets off from the starting point, i.e., milestone A, and reaches milestones C
and B, respectively, and are turned back to false when the agent leaves milestone
D. Hence, Query (10) checks the probability of an agent going to location D via
location C but not location B.

However, if pedestrians keep walking near milestone C and thus block the
path (see Fig. 7), it could take longer time if the agent sticks to the original
path plan (i.e., travelling via milestone C). By using the HA model depicted
in Fig. 2(a), we can generate instances of the pedestrian model dynamically
during verification. Then we verify the HA model that describes the continuous
movement of agents (see Fig. 2(b) for an example of linear movement) together
with the pedestrian model against queries in the form of Queries (2) and (3),
in order to estimate the prolonged travelling time between milestones A and C,
and the corresponding probabilities. Next, we encode the new travelling time
and its probabilities into the movement STA and synthesize mission plans.

Fig. 9 shows two situations of the scenario, where pedestrians are few and
crossing the road quickly (Fig. 9(a)), as well as pedestrians are many and walking
slowly (Fig. 9(c)), which causes congestion on the road. The situation with fewer
pedestrians results in the movement STA that is partly shown in Fig. 9(b), where
the probability of going to milestone C quickly is 83% (i.e., t >= 3 ), whereas
33% is the probability of moving slowly (i.e., t >= 10 ). Similarly, the situation
containing many pedestrians results in the movement STA partly depicted in
Fig. 9(d), where the chance of agents moving slowly is much larger than the
chance of moving quickly.

Verifying Query (10) against the model that is partly shown in Fig. 9(d)
produces a result of a range of low probabilities, where as if query is changed to
check the probability of agents going via milestone B, the result is much higher.
This shows that MCRL enables the agents to re-plan a better path when the
irregular appearance of pedestrians influences the path plans.



Probabilistic Mission Planning and Analysis for Multi-agent Systems 15

(a) The number of pedestrians. Exponential
rate of the generator: 0.1. Existing time: 1

(b) The resulting movement STA in
the situation with a few pedestrians

(c) The number of pedestrians. Exponential
rate of the generator: 0.2. Existing time: 5

(d) The resulting movement STA in
the situation with many pedestrians

Fig. 9. The Number and frequency of pedestrians and the movement STA

6 Related Work

Motion-plan synthesis has arisen a wide interest of research in recent years. Nikou
et al. [16] present a method of automatic controller synthesis for multi-agent
systems under the presence of uncertainties. Sadraddini et al. [17] propose an
approach of synthesising control strategies for positive and monotone systems,
which satisfy requirements formalized by Signal Temporal Logic, and demon-
strate their method on a traffic management case study. Wang et al. [20] propose
a novel formulation based on Partially Observable Markov Decision Processes to
synthesis policies over a vast space of probability distributions. Although having
promising results, these methods are not applied in industrial systems, which
requires solutions to be practically usable and scalable.

To model the uncertain behavior of the autonomous agents and environment,
Markov Decision Process and Probabilistic Computation Tree Logic (PCTL)
have been adopted by many studies. A solution of behavior verification of au-
tonomous vehicles (AV) proposed by Sekizawa et al. [18] considers the distur-
bance that causes the AV to swerve from the planned path. Their solution uses
the probabilistic model checker PRISM to conduct the verification against PCTL
properties. Al-Nuaimi et al. [2] also employs PRISM in their design of a stochas-
tically verifiable decision making framework for AV. The authors demonstrate
the applicability of their framework in a scenario of parking bay containing one
AV, a pedestrian, and another vehicle. Ayala et al. [3] present a solution to find
control strategies for mobile robotic systems moving in environments containing
entities that are not completely observable. Compared with these studies, our ap-
proach systematically estimates the disturbance caused by unpredictable moving
obstacles, and enables re-planning for the autonomous agents. UPPAAL STRAT-

EGO is designed to synthesize strategies for stochastic priced timed games [7],



16 Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist

and it also implements the Q-learning algorithm as one of its algorithms for syn-
thesis. The main difference between MCRL and UPPAAL STRATEGO is that the
former supports a larger numbers of agents, and we refer the interested readers
to previous work [10] for a detailed comparison between the methods.

7 Conclusion and Future Work

We present a method for automatic synthesis of mission plans for multi-agent
systems. The method is based on MCRL, which combines model checking with
reinforcement learning, and extends MCRL with the ability of handling uncer-
tainties in the environment by employing Stochastic Timed Automata and Sta-
tistical Model Checking. We demonstrate the applicability of the method in an
industrial use case: an autonomous quarry, provided by VOLVO CE. The demon-
stration shows that the method is capable of synthesising mission plans for MAS

that satisfy various requirements, and further analyse the bottleneck of the mis-
sion plans. When encountering disturbance of unpredictable moving obstacles,
e.g., pedestrians, the method is able to estimate the delays of traveling time of
the agents, and conduct a re-planning when it is necessary. Future work includes
integrating the new MCRL with our tool called TAMAA [9], so that a complete
solution of mission-plan synthesis for MAS together with a user-friendly GUI
is accomplished. Automating the transformation of requirements into temporal
logic queries is another possible direction.

Acknowledgement The research leading to the presented results has been
undertaken within the research profile DPAC - Dependable Platform for Au-
tonomous Systems and Control project, funded by the Swedish Knowledge Foun-
dation, grant number: 20150022.

References

1. Abdeddaı, Y., Asarin, E., Maler, O., et al.: Scheduling with timed automata. The-
oretical Computer Science 354(2) (2006), Elsevier

2. Al-Nuaimi, M., Qu, H., Veres, S.M.: A stochastically verifiable decision making
framework for autonomous ground vehicles. In: 2018 IEEE International Confer-
ence on Intelligence and Safety for Robotics (ISR). pp. 26–33. IEEE (2018)

3. Ayala, A.M., Andersson, S.B., Belta, C.: Temporal logic control in dynamic envi-
ronments with probabilistic satisfaction guarantees. In: 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. pp. 3108–3113. IEEE (2011)

4. Chandler, P., Pachter, M.: Research issues in autonomous control of tactical uavs.
In: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.
98CH36207). IEEE (1998)

5. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: Any-angle path planning on
grids. Journal of Artificial Intelligence Research 39, 533–579 (2010)

6. David, A., Du, D., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sed-
wards, S.: Statistical model checking for stochastic hybrid systems. arXiv preprint
arXiv:1208.3856 (2012)



Probabilistic Mission Planning and Analysis for Multi-agent Systems 17

7. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
stratego. In: TACAS. Springer (2015)

8. Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: International Workshop on Agent Theories, Architectures,
and Languages. pp. 21–35. Springer (1996)

9. Gu, R., Enoiu, E.P., Seceleanu, C.: Tamaa: Uppaal-based mission planning for
autonomous agents. In: 35th ACM/SIGAPP Symposium On Applied Computing
SAC2020. ACM (2019)

10. Gu, R., Enoiu, E.P., Seceleanu, C., Lundqvist, K.: Verifiable and scalable mission-
plan synthesis for multiple autonomous agents. In: 25th International Conference
on Formal Methods for Industrial Critical Systems. Springer (2020)

11. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Towards a two-layer frame-
work for verifying autonomous vehicles. In: NASA Formal Methods Symposium.
pp. 186–203. Springer (2019)

12. Henzinger, T.A.: The theory of hybrid automata. In: Verification of digital and
hybrid systems, pp. 265–292. Springer (2000)

13. Kochenderfer, M.J.: Decision making under uncertainty: theory and application.
MIT press (2015)

14. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997), Springer

15. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Tech.
rep., Computer Science Dept., Iowa State University (10 1998)

16. Nikou, A., Tumova, J., Dimarogonas, D.V.: Probabilistic plan synthesis for coupled
multi-agent systems. IFAC-PapersOnLine 50(1), 10766–10771 (2017), Elsevier

17. Sadraddini, S., Belta, C.: Formal synthesis of control strategies for positive mono-
tone systems. IEEE Transactions on Automatic Control 64(2), 480–495 (2018),
IEEE

18. Sekizawa, T., Otsuki, F., Ito, K., Okano, K.: Behavior verification of autonomous
robot vehicle in consideration of errors and disturbances. In: 2015 IEEE 39th An-
nual Computer Software and Applications Conference. vol. 3, pp. 550–555. IEEE
(2015)

19. Trinh, L.A., Ekström, M., Cürüklü, B.: Toward shared working space of human and
robotic agents through dipole flow field for dependable path planning. Frontiers in
neurorobotics 12 (2018), Frontiers Media SA

20. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for pomdps with
safe-reachability objectives. In: International Conference on Autonomous Agents
and Multi Agent Systems. IFAAMS, ACM (2018)

21. Watkins, C.J.C.H.: Learning from delayed rewards (1989), King’s College, Cam-
bridge


