
A Recipe-based Algorithm for Access Control in
Modular Automation Systems

Björn Leander‡†, Aida Čaušević† and Hans Hansson†
‡ ABB Industrial Automation, Process Control Platform, † Mälardalen University,

Västerås, Sweden
{bjorn.leander, aida.causevic, hans.hansson}@mdh.se

Abstract—In the emerging trend towards modular automation,
a need for adaptive, strict access control between interacting
components has been identified as a key challenge. In this article
we discuss the need for such a functionality, and propose a
workflow-driven method for automatic access control policies
generation within a modular automation system.

The solution is based on recipes, formulated using Sequential
Function Charts (SFC). The generated policies are expressed
using Next Generation Access Control (NGAC), an Attribute
Based Access Control (ABAC) standard developed by NIST.
We provide (1) a definition of required policies for device-to-
device interactions within a modular automation system, (2) an
algorithm for automatic generation of access policies, (3) a formal
proof of the correctness of this algorithm, and (4) an illustration
of its use.

I. INTRODUCTION

Modular Automation (MA) [1] is an emerging technology
within the process automation industry that promises to enable
profitable operations, reduced time-to-market and shortened
product life cycles [2]. Even though the technology is in its
infancy, a number of pilot projects have been already carried
out1, along with a number of control system vendor imple-
mentations specifically targeting MA2. Within the chemical,
pharmaceutical, and energy sectors there is an estimated 2030
market potential of approximately 12 billion euros for modular
process automation equipment [3].

The technology suggested to be used in MA exhibits
similar characteristics as solutions provided in the Industry
4.0 paradigm, namely interconnected service oriented devices,
utilizing different connectivity capabilities, including wireless
communication [4], [5]. The different entities within the sys-
tems are assumed to be highly heterogeneous and dynamic,
and the architecture is expected to be modular, with different
modules able to autonomously fulfill specific tasks, requiring
only high level engineering to combine and re-combine mod-
ules to execute the complete production scheme. This allows
a high level of customization and re-use of modules provided
and possibly maintained by specialized vendors.

In these dynamic and flexible systems where communi-
cation paths are not pre-defined, and production schemes

1new.abb.com/life-sciences/references/modular-automation-solution-for-
life-science-company-bayer-ag

2new.abb.com/news/detail/31671/plant-orchestration-and-pilot-application,
www.festo.com/us/en/e/automation/industries/water-technology/modular-
automation-id 4801/

are ever-changing, it becomes difficult to detect malicious
behaviour, at least between devices seen as legitimate. At the
same time, the attack surface and complexity of the system
is increasing, raising the risk of a legitimate device being
compromised.

A compromised device, controlled by a malicious actor, may
cause a significant economic damage for the factory owner,
as well physical damage on e.g., humans, machinery or the
environment. The impact may be direct, e.g., the opening of
a valve may overfill a tank or turning on heating in an empty
reactor may cause a fire. Impact could also be indirect, e.g.,
changing ratios of materials used to produce a medicine may
render it harmful. The direct causes are usually mitigated by
implementations of secondary safety measures, while indirect
causes may be more difficult to detect and mitigate.

During the last years, there has been a steady trend of
increasing amounts of cyber-attacks on industrial control sys-
tems [6]. When analyzing who is attacking and why attacks
occur against different targets, there is a number of stan-
dard categories [7], [8] used: Hobby hacker, Insider, Cyber-
criminal, Hacktivist, Terrorist and Nation state. For attacks
against industrial control systems, the two main categories
with knowledge and capacity to perform targeted attacks are
the Insider and the Nation State. However, any of the other
categories can use an Insider to gain initial foothold, e.g., by
social engineering, bribery or extortion. An Insider can hold
deep knowledge of the system, credentials, as well as physical
access to the system.

Applying strict and fine-grained access control according to
the principle of least-privilege [9] is one of the major mech-
anisms able to protect against the threat from Insider attacks,
by allowing access to operations or data only to privileged
entities. It also increases the visibility of the malicious actor,
as denied access control requests are typically monitored e.g.,
using a Security Information and Event Monitoring (SIEM)
system [10]. However, using a strict access control at the
lower layers in an automation system is quite uncommon.
Historically, industrial automation systems have been built
up using proprietary communication protocols, hard-wiring
between controllers and IO, and the notion of an air-gapped
network, i.e., no communication between the control network
and the outside world. These assumptions on the technical so-
lutions have meant that the pragmatic solution is to allow any
legitimate device on the network to perform any action. With



the advent of MA and Industry 4.0 none of these assumptions
hold anymore, and therefore the practice of including a strict
access control between devices in automation systems is of
increasing importance.

Two of the main hurdles to introducing access control
for machine-to-machine interactions in a MA system are
the difficulty to express policy rules matching the dynamic
behavior of the system, and the management effort required
to uphold the policies in a timely and efficient manner. In
relation to that, the following research questions are stated:

RQ1 How can access control policies be expressed to fulfill
the principle of least-privilege for device to device inter-
actions within a MA system?

RQ2 How can the effort related to access control policy
management be minimized in a MA scenario?

In this paper we propose an approach providing answers to
both these questions, by introducing a model-based method
for generating access control policies from formalized recipe
descriptions. We present a definition on required access control
rules for recipe orchestration, and provide a formal proof
showing that the algorithm produces rules in accordance with
that definition. Moreover, we apply the algorithm on a simple
example.

The remainder of this paper is structured as follows. Def-
initions are given in Section II, including a formal definition
of the requirements on privileges required during the recipe
orchestration. In Section III, an algorithm for access policy
generation is described followed by an illustrative example
in Section IV. Furthermore, we discuss the proposed solution
and results in Section V, compare it to relevant related work
in Section VI, before making a few concluding remarks in
Section VII.

II. PRELIMINARIES

A. A Recipe definition using an SFC

The execution of a workflow in MA is described by a
recipe with different processing steps, each containing a set of
operations that one or more modules shall perform. A common
format used to describe a recipe is through a Sequential
Function Chart (SFC), which is currently used e.g., for batch
processing in traditional process automation. Execution of a
recipe is driven by a central unit, following the concept of
orchestration of autonomous services [11]. SFC is a high-level
Programmable Logic Controllers (PLC) language, defined
within the IEC 61131 standard [12].

Let us consider an example of a simple MA setup described
within the DIMA project [2]. In order to produce a specific
product, different modules are combined and a process recipe
is being formulated as follows:

1) A reactor is filled with three different materials in a
specific ratio.

2) The reactor module mixes and heats the mixture, and
maintains a fixed temperature for a specified amount of
time.

3) The resulting mixture is distilled by a distilling module.

Step 1

Step 2

Step 3

Step 4 Step 5

Reactor filled

Heat Held for 20 minutes

Distillation complete

Filtering complete Batch packaged

End

Start No operation

Reactor.Fill(r1, r2, r3)

Reactor.Mix(speed)
Reactor.Heat(temp)

Reactor.EmptyReactor()
Distiller.Distill()

No operation

Packager.FillBottles(n)

Distiller.EmptyDistiller()
Filter.Filter()

Fig. 1: An example of a recipe expressed as an SFC

4) The distillate is further purified by a filtration module.
5) The product is packed into a container by a filling

module.

The example can be formulated as a recipe using an SFC, as
illustrated in Fig. 1. We assume that filtration and packaging
can be executed in parallel, i.e., the packaging can start as soon
as there is a sufficient amount of the final product available.

An SFC consists of steps and transitions. Each step in the
recipe describes the operations relevant to perform in that
step. Moreover, each step contains zero or more outward
directed transitions (arcs) describing the conditions for con-
tinuing to the next step(s), i.e., a transition point to one or
more subsequent steps. In the case of more than one step,
the following steps are executed in parallel as soon as the
condition annotated on the transition enabling that step is
fulfilled. To join a parallel execution, two (or more) edges
point to the same step. In such join-cases, conditions for all
edges pointing at the same step must be fulfilled for it to be
triggered. Moreover an SFC may contain loops (not included
in Fig.1).

In general, operations described for a step contain code
describing operations detailing the control logic of a step.
The standard allows nested SFCs, so that a step can be
described by another SFC. However, in MA recipe declaration,
this description will most likely be vastly simplified, as the
modules are expected to perform the low level control logic
by themselves, based on high-level instructions executed by
the orchestrator. For our description of an SFC formulating a
modular automation recipe, the important aspect is that one
step contains zero or more module-related operations.

A recipe R is a pair (id, s0), where id is a unique recipe



OA2{op1, op2}

PC

S O1

O2

SA1

OA1

OA3{op3}SA2

Fig. 2: An example of an NGAC graph

identification, and s0 is the initial step of an SFC F = (S, s0).
F.S is the set of all steps contained by the SFC F . A step
is defined as a triplet step = (id,OP, T ) where OP is a
set of operations, T is set of transitions and id is a unique
identifier for the step. Moreover, op ∈ OP is described by
a pair op = (id, target), where id is a unique operation
identification, and target identifies the target module. A
transition t ∈ T is described by a pair t = (c, steps) where c
is a Boolean condition that must hold for the transition to be
fired, and steps is a set of one or more (parallel) steps to be
activated by the transition.

For the approach of a policy generation algorithm presented
in this article, the condition of a transition is not used.
However, in future versions we envision using the conditions
to more closely make the policy rules match the workflow of
the recipe.

B. An NGAC graph definition

Access control is the practice of granting or denying a
legitimate subject privileges to a requested resource [13].
An Access Control Model is a model for formally describ-
ing access control policies. Next Generation Access Control
(NGAC) [14] is a NIST standardized access control model,
based on the paradigm of Attribute Based Access Control
(ABAC). In ABAC, attributes of the subject, resource and the
environment are used to express the policies, as opposed to
traditional models that are usually based mainly on the identity
or role of the subject [15].

In the following, we provide a simplified description of
NGAC, based on the work by Ferraiolo et al. [16], focusing
to describe only those parts of the mechanism important for
the purpose of this article. We exclude the details regarding
prohibitions, while obligations will be briefly discussed later
on in this article.

In NGAC, attribute assignments and privilege associations
are described using a graph G. Subjects s, objects o, policy-
classes pc and attributes a are modeled as vertices in the
graph. Assignments of attributes to subjects, objects or policy-
classes are modeled as directed edges ending at the assignment
target. Assignments are also allowed between attributes, so
that hierarchies of attributes can be formed. The assignment
operation should be interpreted as containment, e.g, o → a
means an object o is contained by an attribute a. Privileges
to execute operations are modeled as associations between
subject and object attributes (sa and oa, respectively) and
described as a triplet: (sa, ops, oa) and visualized in the graph

as an un-directional dashed line between the subject and object
attributes, where ops is a set of operations.

Let us consider an example depicted in Fig. 2. It describes
an NGAC-graph, where a subject S is assigned to attribute
SA1; objects O1, O2 are assigned to attribute OA2. Between
OA2 and SA1 there exists a privilege association for op-
erations {op1, op2}. Furthermore, an object O2 is assigned
to attribute OA3, and there exists a subject attribute SA2

associated with OA3 for operation {op3}. Object attributes
OA2 and OA3 are assigned to OA1. OA1 and SA1 are both
contained in policy class PC. Using the privilege association
between SA1 and OA2 the operations op1 and op2 on objects
O1 and O2 are granted to the subject S. However, an operation
op3 on O2 is not granted, since no association can be made
between the subject S and the object O2 for the given
operation. If, on the other hand, S would have been contained
in attribute SA2, then operations op1, op2, op3 would have
been allowed on O2.

For operations on an NGAC graph, we will use a number of
definitions from [14]. A short summary of these definitions and
their meaning is provided in Table I. In NGAC, the term user
denotes the same entity as we denote subject, therefore e.g., ua
represents “user attribute”, while we write “subject attribute”
to maintain a consistent nomenclature within the article.

For operation op on object o executed by subject s, we say
that (s, op, o) is a privilege using the following definition:

PRIVILEGE(s, op, o) =
true if


∀pc ∈ PC : ASSIGN+(o, pc)∧
(∃(sa, ops, oa) ∈
ASSOCIATIONS : op ∈ ops)∧
ASSIGN+(s, sa) ∧ ASSIGN+(o, oa) ∧
ASSIGN+(s, pc) ∧ ASSIGN+(oa, pc))

false otherwise

(1)

Intuitively, this means that for for the privilege of s execut-
ing operation op on target object o to be granted for a policy-
class pc containing o, there must exist an association between
a subject attribute sa and an object attribute oa containing
operation op, where s is assigned to attribute sa and o is
assigned to attribute oa, and both s and oa are assigned to the
policy class pc.

C. Definition of privileges required by a recipe orchestrator

Using the definitions introduced in Sections II-A and II-B,
we are able to define which access control privileges are
required by a recipe orchestrator when a recipe formalized as
an SFC is executed, following the principle of least privilege.

An orchestrator subj is allowed to execute a step step ∈
F.S for an SFC F = (S, s0) where the access control policies
are described by an NGAC graph by the following definition:

PRIVSTEP(subj, step) ={
true if ∀op ∈ step.OP : PRIVILEGE(subj, op.id, op.target)

false otherwise



Name Description
PC The set of all policy-classes in the graph.
ASSOCIATIONS The set of all associations in the graph, one association being defined by a triple (sa, ops, oa).
ASSIGN+(x, y) There exists a series of assignments from x to y. Note that in the NIST standard [14], the notation

used is (x, y) ∈ ASSIGN+.
CREATEOAINPC(oa, pc) Create an object attribute with id oa and assign it to policy class pc.

A call of this function implies that ASSIGN+(oa, pc) is fulfilled.
CREATEUAINPC(ua, pc) Create an subject attribute with id ua and assign it to policy class pc.

A call of this function implies that ASSIGN+(ua, pc) is fulfilled.
CREATEOAINOA(oa1, oa2) Create an object attribute with id oa1 and assign it to object attribute oa2.

A call of this function implies that ASSIGN+(oa1, oa2) is fulfilled.
CREATEUAINUA(ua1, ua2) Create a subject attribute with id ua1 and assign it to subject attribute ua2.

A call of this function implies that ASSIGN+(ua1, ua2) is fulfilled.
CREATEASSOC(sa, ops, oa) Creates an association between subject attribute sa and object attribute oa with operations ops,

i.e. ASSOCIATIONS = ASSOCIATIONS ∪ {(sa, ops, oa)}. We assume that consecutive calls using
the same combination of sa and oa will update the set of operations for the association using a
set-union function.

TABLE I: NGAC-operations

Policy Decision
Point (PDP)

Policy
Information Point

(PIP)

Policy
Enforcement
Point(PEP)

Subject

Resource

Policy
Administration

Point (PAP)

Policy
Data

Administrator

Fig. 3: Access Control Architecture

Subsequently, for the orchestrator subj to execute a recipe
R = (id, s0), where SFC F = (S, so), PRIVSTEP(subj, step)
must be fulfilled for all steps in the SFC, i.e.,

PRIVRECIPE(subj,R) ={
true if ∀ step ∈ F.S : PRIVSTEP(subj, step)

false otherwise
(2)

D. Access Control Architecture prerequisites

Policy enforcement is an important characteristic of an
access control mechanism. Fig. 3 depicts a typical architec-
ture that describes the entities involved in an access control
enforcement architecture [16], [17], [18]. For the mechanism
to work, there can be no other way for a subject to access
a resource than through a Policy Enforcement Point (PEP).
Therefore PEP must be kept close to the resource, typically
running on the same device as the resource. After a privilege
request is initiated, a PEP must ask a Policy Decision Point
(PDP) for a decision defining whether the request shall be
granted or not. To answer the request, a PDP must be able to
query policy data through a Policy Information Point (PIP).
Policy data is administered through the Policy Administration
Point (PAP). The actual placement and implementation of
these policy interaction points will be of great importance, as

it influences how well the access control mechanism functions
and scales. In this article, we assume that an appropriate
such architecture is in place. Another prerequisite for a secure
access control is that identities of all involved entities can be
trusted.

Secure authentication of entities can be achieved using a
number of methods, including public key certificates. In this
article we will assume that authenticity of identities are proven
using some trusted mechanism.

III. GENERATING ACCESS CONTROL RULES IN NGAC
USING AN SFC RECIPE

As a recipe is activated and assigned to modules and an
orchestrator, the access control policies prescribing which
operations that a specific orchestrator is able to perform within
the system shall also be updated. Similarly, deactivation of a
recipe shall remove privileges exclusively granted through that
recipe.

In this article we are focusing on the interactions between
orchestrators and modules in an MA system. To define these
interactions, we propose to use the recipe as a basis to
formalize and automate access control rule generation. Based
on these rules, it is possible to grant only those privileges
prescribed by the processing needs. We propose to use the
recipe as a model, further used to derive detailed policy
rules expressed as ABAC policies according to the NGAC
specification.

In this section we introduce an algorithm to enable au-
tomatic generation of access control policies. The algorithm
takes a formalized SFC model as input and as result updates
an NGAC graph with access privilege information.

For each step in an SFC, zero or more operations are
allowed to be executed by the orchestrator on the target mod-
ules. Therefore it is logical to, in terms of NGAC attributes,
think of the SFC steps as subject attributes. Based on them,
privileges will be granted to the orchestrator by associations
to a respective target module specific attribute.



Algorithm 1 POLICYGENERATION(R, pc)

1: function GENERATESTEPPOLICIES(step,Rid)
2: if step.OP 6= {} then
3: mod := MOD ID(Rid)
4: orch := ORCH ID(Rid)
5: CREATEUAINUA(orch, step.id)
6: for all op ∈ step.OP do
7: targ := TARGET ID(op.target, Rid)
8: CREATEOAINOA(targ,mod)
9: CREATEASSOC(step.id, op.id, targ)

10: end for
11: end if
12: end function
13:
14: function VISITSTEP(step,Rid)
15: if ¬VISITED(step) then
16: VISIT(step)
17: GENERATESTEPPOLICIES(step,Rid)
18: for all t ∈ step.T do
19: for all sub step ∈ t.steps do
20: VISITSTEP(sub step,Rid)
21: end for
22: end for
23: end if
24: end function
25:
26: begin algorithm
27: orch := ORCH ID(R.id)
28: mod := MOD ID(R.id)
29: CREATEOAINPC(mod, pc)
30: CREATEUAINPC(orch, pc)
31: VISITSTEP(R.s0, R.id)
32: end algorithm

In the algorithm, we use the functions described for an
NGAC graph in Table I, together with the following functions:

• MOD ID(Rid) - returns a unique attribute id for all
modules being orchestrated by the recipe, based on the
recipe id.

• ORCH ID(Rid) - returns a unique attribute id for the
orchestrator of the recipe based on the recipe id.

• TARGET ID(target, Rid) - returns a unique attribute id
for a specific module, based on the recipe id and the
target id as used in the recipe.

Algorithm 1, POLICYGENERATION, is called using a recipe
R, and a policy class pc as arguments. The policy class pc must
be predefined, and could e.g., be used to keep together all the
policies related to control of modules. Unique attributes for
module mod and orchestrator orch are generated, based on the
recipe identification R.id. The attribute mod will be common
for all modules related to the recipe R.id, and the attribute
orch will be used for the orchestrator of the recipe R.id. As
can be seen, ASSIGN+(mod, pc) and ASSIGN+(orch, pc) are
the major result of the algorithm. Finally, function VISITSTEP
is called using the initial step of the recipe, R.s0, as input.

In VISITSTEP, the function VISITED(S) and method
VISIT(S) are used to be able to determine if policies are
already generated for the specific step. If the step has not
been previously visited, function GENERATESTEPPOLICIES
is called. For all the transitions t ∈ step.T , all sub step ∈

t.steps are used as arguments for calls to VISITSTEP, to
ensure policy generation for steps following a transition from
the input parameter step.

In GENERATESTEPPOLICIES, if there are any operations
related to the step, then (1) a subject attribute representing the
step in the SFC is created based on the unique identification
of the step, (2) orch is assigned to it, i.e., orch→ step.id, (3)
for all operations (target, op) in the step, an attribute targ is
created for the target module unique within the recipe, such
that targ → mod, and (4) an association is created between
attributes step.id and targ such that ∃(step.id, ops, targ) ∈
ASSOCIATIONS : op ∈ ops.

A. A proof of algorithm correctness

In the following we provide a proof that by induction
shows that the algorithm will create access control policies
fulfilling the relationship as defined in Section II-C, i.e., that
PRIVRECIPE(subj,R) is fulfilled. The proof is divided into
three lemmas and a proof of the main theorem based on the
lemmas.

In the proof we rely on the transitive property of the
ASSIGN+ relation, i.e.,:

ASSIGN+(a, b) ∧ ASSIGN+(b, c) =⇒ ASSIGN+(a, c) (3)

Theorem 1. Algorithm 1 will create policies fulfilling def-
inition PRIVRECIPE(subj, r) for a recipe R = (id, s0), an
orchestrator subj, and a set of target modules Tm, using
an NGAC graph containing the policy class pc, under the
following assumptions:

ASSIGN+(subj, ORCH ID(R.id)) (4)

∀t ∈ Tm : ASSIGN+(t, TARGET ID(t, R.id)) (5)

∃!pc ∈ PC : ∀t ∈ Tm : ASSIGN+(t, pc) (6)

Intuitively, the theorem states that Algorithm 1 provides
access control policies fulfilling the principle of least privilege
with regards to recipe orchestration.

The first assumption described (Eq. 4) states that the
orchestrator subj will need to be assigned to attribute
ORCH ID(R.id). The second assumption (Eq. 5) states that
the modules being used in recipe orchestration will have to be
assigned to a unique attribute for the combination of the recipe
and target id. Both of these assumptions should be fulfilled
during recipe activation, as part of the operation engineering
phase. Therefore these assumptions are necessary and valid.

The third assumption (Eq.6) states that there is exactly one
policy class for privileges related to the target modules being
orchestrated. As the purpose of a policy-class is to organize
and distinguish between distinct types of policies [14], it is
reasonable to make this assumption. This is indicated by the
first part of the privilege definition (Eq. 1): ∀pc ∈ PC :
ASSIGN+(o, pc). It follows that for a multi-policy scenario
where one object is contained by more than one policy-class,
for any privilege to be granted in relation to that object,



associations must be present in all of the containing policy-
classes.

Lemma 1 (Policy generation for a single SFC step). Function
GENERATESTEPPOLICIES (Alg. 1, Ln. 1) generates access
control policies fulfilling PRIVSTEP(subj, step) for any step in
an SFC used as parameter, given that:

ASSIGN+(subj, pc) (7)

ASSIGN+(MOD ID(Rid), pc) (8)

Proof. By induction on op ∈ step.OP .
Base case: For a SFC step step with step.OP = {}, a call to
GENERATESTEPPOLICIES will fulfill PRIVSTEP(subj, step).

In this case the proof is trivial. No policy elements will
be created. Hence, there are no operation in step.OP , and
PRIVSTEP(subj, step) is vacuously true.
Induction hypothesis: Assume that for a step step,
GENERATESTEPPOLICIES will grant privileges fulfilling
PRIVSTEP(subj, step).
Induction: Let step′ contain operations step′.OP =
step.OP ∪ {(op′, t′)}.

As step′.OP 6= {}, attribute assignments and associations
will be provided according to the following:

1) From Alg. 1, Ln. 5

CREATEUAINUA(orch, step′.id) =⇒
ASSIGN+(orch, step′.id)

=⇒ ASSIGN+(subj, step′.id) (9)

since ASSIGN+(subj, ORCH ID(R.id)) is in our initial
assumption (Eq. 4), and orch ≡ ORCH ID(R.id).

2) For the additional operation (op′, t′) (Alg. 1, Ln. 8):

CREATEOAINOA(targ,mod) =⇒
ASSIGN+(targ,mod) =⇒ ASSIGN+(targ, pc) (10)

due to ASSIGN+(MOD ID(Rid), pc) in the assumptions
of this lemma, and mod ≡ MOD ID(Rid). Furthermore,
targ ≡ TARGET ID(t′, Rid) according to the initial
assumptions (Eq. 5), and therefore ASSIGN+(t′, targ)
is fulfilled.

3) From Alg. 1, Ln. 9:

CREATEASSOC(step′.id, op′, targ) ≡
∃(step′.id, ops, targ)
∈ ASSOCIATIONS : op′ ∈ ops (11)

It then follows by stated assumptions (Eq. 6, 7):

∃(step′.id, ops, targ) ∈ ASSOCIATIONS : op′ ∈ ops

∧ ASSIGN+(subj, step′.id) ∧ ASSIGN+(t′, targ)

∧ ASSIGN+(subj, pc) ∧ ASSIGN+(targ, pc) (12)

As we assume that there exists exactly one pc
for operations related to target modules (Eq. 6),

PRIVILEGE(subj, op′, t′) is true according to
Eq. 1. Since PRIVSTEP(subj, step) is satisfied
according to the inductive assumption and
step′.OP = step.OP ∪ {(op′, t′)}, we have shown that
also PRIVSTEP(subj, step

′) is true.

Base case + induction shows that for any SFC step
step where GENERATESTEPPOLICIES(step, ...) is called,
PRIVSTEP(subj, step) will be fulfilled, under given assump-
tions.

Lemma 2 (Policy generation for Visited steps). A step
p visited by procedure VISITSTEP(p, ...), will imply that
PRIVSTEP(subj, p) is fulfilled.

Proof. VISIT(p) will set the VISITED(p). Furthermore, from
Alg. 1, Ln. 17

GENERATESTEPPOLICIES(p,Rid) =⇒
PRIVSTEP(subj, p) (13)

according to Lemma 1.

Lemma 3 (Policy generation for an SFC). For a recipe
R = (Rid, s0) where SFC F = (S, s0), a call to
function VISITSTEP(s0, ...) will generate policies such that
PRIVRECIPE(subj,R) is fulfilled.

Proof. By induction on step ∈ F.S
Base case: For a recipe R = (Rid, s0) where SFC F = (S, s0)
with F.S = {s0}, a call to VISITSTEP(s0, ...) will gen-
erate policies such that PRIVRECIPE(subj,R) is fulfilled. By
Lemma 2 it follows that PRIVSTEP(subj, s0) is fulfilled. Given
that F.S = {s0} Eq. 2 is also fulfilled, which proves the base
case.
Induction hypothesis: Assume that for a Recipe R =
(Rid, s0) where SFC F = (S, s0) and contains step stepi ∈ S,
procedure VISITSTEP using s0 as parameter will produce
policies fulfilling the definition in Eq. 2.
Induction: Let recipe R′ = (Rid, s0) where SFC F ′ being
F extended with one additional step stepi+1 6= s0 such that
F ′.S = F.S ∪ {stepi+1} ∧ ∃trans ∈ stepi.T : stepi+1 ∈
trans.steps.

For stepi, VISITSTEP(sub step,G,Rid) implies that VIS-
ITSTEP will be called for stepi+1, since ∃ trans ∈ stepi.T :
stepi+1 ∈ trans.steps. According to Lemma 2, this implies
that PRIVSTEP(subj, stepi+1) is true. For F , we have that
∀step ∈ F.S : PRIVSTEP(subj, step). As F ′.S = F.S ∪
{stepi+1}, the following holds:

PRIVSTEP(subj, stepi+1) ∧ ∀step ∈ F.S :

PRIVSTEP(subj, step) =⇒
∀step ∈ F ′.S : PRIVSTEP(subj, step) (14)

which is according to Eq. 2 is equivalent to
PRIVRECIPE(subj,R

′).
Base case + induction proves that for any recipe R =

(Rid, s0) where SFC F = (S, s0), a call to function VIS-



ITSTEP will fulfill the definition in Eq. 2, if the assumptions
in Lemma 1 holds.

Recalling Theorem 1, we will now show that for any recipe
R = (Rid, s0), Algorithm 1 will generate policy elements
fulfilling PRIVRECIPE(subj,R)

Proof of Theorem 1.

CREATEOAINPC(mod, pc) =⇒
ASSIGN+(MOD ID(Rid), pc) (15)

and, from the initial assumption (Eq.4),

CREATEUAINPC(orch, pc) =⇒ ASSIGN+(orch, pc),

ASSIGN+(subj, ORCH ID(R.id)) ∧ ASSIGN+(orch, pc)

=⇒ ASSIGN+(subj, pc) (16)

Thereby, both stated assumptions in Lemma 1 are fulfilled.
Furthermore, VISITSTEP(R.s0, R.id). is called. Together, this
imply that Eq. 2 is fulfilled according to Lemma 3.

Consequently, we have proved that the initial theorem is
correct. The proposed algorithm will generate access control
policies fulfilling the definition in Eq. 2, required for an
orchestrator subj to execute a recipe R = (Rid, s0), i.e.,
POLICYGENERATION(R, pc) =⇒ PRIVRECIPE(subj,R).

IV. PROPOSED ALGORITHM EXEMPLIFIED

Let us consider using the proposed algorithm on the exam-
ple of the recipe described by the SFC in Fig. 1. For readability
reasons, in this example we use a string representations for
attribute and entity IDs. In reality these will most likely be
numeric IDs. As an input to the algorithm we use the SFC
and a policy class, which is assumed to already be existing
in the NGAC-graph. We annotate them as “Module Control
Policies” as ID for the policy class.

In the main part of the algorithm, firstly two unique at-
tributes will be generated, one for the orchestrator (“Recipe ID
Orchestrator”) and one for the modules (“Recipe ID Module”),
see lines 26-30 in ALGORITHM 1. After that the function
VISITSTEP is called using the step Start of the recipe as input,
along with the id of the recipe.

In function VISITSTEP the step Start is marked as visited
(lines 15-16 in ALGORITHM 1) and then the GENERATESTEP-
POLICIES function is called, using the step as input parameter.
As the starting step contains no operations, nothing happens in
this first call to GENERATESTEPPOLICIES (condition on line
2 in ALGORITHM 1 is false). On line 20 “Step 1” is used as
an input to a recursive call to VISITSTEP, which leads to a
call to GENERATESTEPPOLICIES using “Step 1” as an input.

Since there is an operation related to Step 1, a subject
attribute related to the step is created (“Recipe ID Step 1”)
on line 5 such that “Recipe ID Orchestrator”→“Recipe ID
Step 1”, followed by lines 7-8 where an object attribute is
created for the module (in this case “Recipe ID Reactor”),
such that “Recipe ID Reactor”→“Recipe ID Module”. On line
9, an association between the attribute “Recipe ID Step 1”

and “Recipe ID Reactor” is created, containing the operation
“Fill”. In this way all the steps of the SFC are iterated, thus
creating the NGAC sub-graph related to this specific recipe.

The illustration in Fig. 4 depicts the NGAC sub-graph
related to this policy, after recipe activation. The gray area in
the graph represents the results of executing our algorithm.
The module and orchestrator assignments to the respective
attributes are part of a recipe activation, and the policy class is
assumed to be existing prior to the execution of the algorithm.
We omit the details regarding the assignment of modules
and orchestrator to the respective attribute in the proposed
algorithm. The physicals modules that are a part of the
manufacturing scheme must be selected by the operational
engineer upon recipe activation. We assume that there will
be a simple way to match the physical module ID with the
representative ID used in the recipe.

As can be seen, each of the steps from the original SFC are
represented by subject attributes in the NGAC-graph, and all
the individual modules utilized in the SFC are given as object
attributes. The privileges are described as associations between
the step-, and module-attributes, e.g., for Step 3, there is
one association to the Reactor-attribute, granting an operation
“EmptyReactor”, and one association to the Distiller-attribute,
granting an operation “Distill”.

V. DISCUSSION

The suggested approach of restricting access control policies
based on the recipe description would effectively prevent
any entity to perform actions on modules outside of active
recipes, mitigating the effects of a compromised or faulty
device with regards to execution of operations. Depending
on the implementation of the authorization enforcement layer,
it could also improve the resilience against a Denial of
Service (DoS) attack against a module or the orchestrator, as
processing of unauthorized requests could be minimized, i.e.,
processing of malicious requests can be skipped if it can easily
be determined that they are unauthorized. Furthermore, failed
authorization is usually captured by audit logging and can be
visualized in a SIEM system, increasing the visibility of the
attacker. The approach would also provide an access control
model supporting the concept of module reuse, which is one
of the main objectives of MA. By automatically generating
the access control policies from already existing engineering
data, the management effort related to sustaining the rules in
accordance with the least privilege principle is minimized.

A difference between NGAC and other ABAC implemen-
tations, e.g., eXtensible Access Control Markup Language
(XACML) [17], lies in the fact that an attribute does not
represent a named property that can hold different typed
values. This results in creation of several “synthetic” attributes,
i.e., attributes that are not naturally associated with a subject
or object. For example, as a result of the policy generation
algorithm, the need for unique attributes for each combination
of recipe and module yields a large number of attributes that
can only be used in the context of execution of a specific
recipe. A more natural concept would be to have a general



Recipe ID
Step 1

Recipe
ID Step 2

Recipe
ID Step 3

Recipe
ID Step 4

Recipe ID
Reactor

Recipe ID
Distiller

Recipe ID
Filter

{Fill}

{Mix, Heat}

{EmptyReactor}

{EmptyDistiller}

Module Control
Policies

{Distill}

{Filter}

Recipe
ID Step 5

{FillBottles}

Orchestrator

Module 2
Distiller

Module 3
Filter

Module 4
Packaging

Recipe ID
Module

Legend

Attribute

Subject

Object

Assignment

{ops}
priv. assoc

Policy Class

Module 1
Reactor

Recipe ID
Packager

Recipe ID
Orchestrator

Fig. 4: Example of NGAC policy and attribute setup for the recipe described in Fig. 1.

attribute for all modules representing the recipe that the
module currently is assigned to. An evaluation of the execution
cost for such a growing number of attributes in NGAC should
be performed, if considering using this approach in a scaled
up scenario with real time requirements.

There are aspects of SFC recipes that cannot be captured by
the suggested method for policy generation, e.g., related to the
difficulty to express transitions between steps. Another aspect
is the actual logic within one step of the SFC. There may be IF-
conditions or loops that surrounds the module operations with
additional logic, something not captured by the access control
logic. A third aspect are parameters used for operations. A
parameter set using a malicious value in an otherwise valid
function call could have a harmful effect on the system.

Our suggested approach uses only positive grant policies,
since they provide a natural way of describing the execution of
an SFC. We do, however, not claim that this is always the best
way of describing all kinds of recipe orchestration policies.
There could be scenarios where combinations of grants and
prohibitions provide a better solution, e.g., if a specific system
state should prohibit an execution. For scenarios where policy
evaluation leads to conflicting results, NGAC will always use
the most restrictive outcome.

Despite these shortcomings, we see our approach as a po-
tential mitigation against compromised devices in automation
systems. Fine-grained access controls between devices is a
useful additional layer of security which is not present at the
moment, neither in traditional systems for process automation,
nor in the current frameworks describing MA architectures.

A. On recipe activation

As mentioned, the module and orchestrator attribute assign-
ments are omitted from the algorithm. In the following we
provide some rationale behind that decision. First, as there
may be considerable delay between the moment of completed
integration engineering, in which recipe formulation is one
part, and the start of production, there is a need for the graph
to be created without granting any privileges. If an orchestrator

attribute is assigned already at this point, the principle of least
privilege would not be followed. Second, the generated graph
can be used as a template. When e.g., increasing the production
by adding additional production lines, there will be no need
to generate new access control policies, instead the policies
generated for the recipe can be reused as a template. Third,
this approach allows for integration engineering using MTPs
without the presence of the physical modules in the system,
i.e., recipe formulation could be completed before a module
procurement.

An alternative approach would be to not generate any part
of the access control graph at all until the recipe is activated.
This approach could be beneficial as the matching to modules
and subject could be done with a minimal extension of the
algorithm, and the total NGAC access control graphs would
not be burdened with “unused” parts related to recipes not
actively in use. However, there might be potential issues
related to who has the privileges to perform the administrative
operations on access control policies. An attribute assignment
and provisioning is usually done locally, while policy admin-
istration is done centrally, in the same way as recipe activation
and supervision is done by an operation engineer, while recipe
formulation is done by an integration engineer.

B. On recipe de-activation / decommissioning

When a recipe should no longer be used in the MA system,
the question arises about the best way to dispose it, such
that the privileges granted under the recipe are no longer
active, but the actions performed during the recipe life-time
still can be explainable on review. One approach could be to
remove all the attributes and associations related to the recipe
from the NGAC graph. Another approach would be to keep
the entire generated part of the graph, and only remove the
attribute associations from the orchestrator and modules. The
best choice depends on the expected life-cycle of a recipe.



C. On temporal policies and obligations

In the presented NGAC policy generation algorithm, the task
transitions as described by the SFC are not at all considered.
This is a violation against the principle of least privilege,
since the orchestrator will be allowed to perform any of
the operations prescribed by the SFC at any point in time,
regardless of the current working step in the recipe. The use
of obligations may be a way around this shortcoming.

Obligations in NGAC are described by a tuple (ep, r),
informally expressed as “when ep do r”, where ep is an
event pattern and r is a response, containing one or more
administrative operations. One example of an obligation in
this context could be:
when Orchestrator succesfully has performed Fill on Reactor
do remove assignment of Orchestrator to Step 1, assign
Orchestrator to Step 2.
However, the obligations in NGAC are limited to describing
policy-related events, i.e., there is no way of telling that the
Orchestrator actually performed the Fill-operation on Reactor,
only that the Orchestrator requested and has been granted (or
denied) the right to perform the operation. Therefore, based on
the current knowledge, the workflow characteristics of modular
automation cannot be modeled using obligations in NGAC.

An alternative way of driving the workflow model would
be to have an external entity assigning and de-assigning
the recipe step attributes to the orchestrator following the
SFC state model. Such a scheme would fulfill the least-
privilege principle, but would defeat the purpose of having an
orchestrator being responsible for driving the state model for
the recipe. This kind of solution is however common in e.g.,
safety controllers, where a secondary safety module receive
the same input as the primary controller, performs the same
logic and compares the resulting output, forcing the controller
to a safe state on deviating results.

VI. RELATED WORK

Workflows as a basis for access control is discussed in
several publications related to business process modeling
and Process-Aware Information Systems (PAIS). A review of
security related to PAIS is provided by Leitner et al. [19].
Knorr [20] discusses the use of workflows modeled as Petri-
nets in an access control enforcement engine. Domingos et
al. [21] suggest an access control model for adaptive work-
flows, based on RBAC. These works relate to our approach
in the use of formalized workflow models as a basis for
authorization, while the difference lies in the application
domain, where the PAIS typically is implemented as a part
of a business process system, e.g., for document handling
or similar, whereas our approach aims at industrial control
systems.

Task-based authorization control (TBAC), by Thomas et
al. [22], is Access Control model aiming at achieving similar
objectives as the approach presented in this paper, i.e., limit
access control to a just-in-time and need-to-do basis, follow-
ing task descriptions. Also in this field, the target applica-
tions are, e.g., for transaction management- and information

management-systems. Furthermore, this field of research has
not materialized in any generally accepted standards, and there
are no well established reference implementations available.

Ruland et al. [23] describe an access control system for
smart energy grids and similar IACS. The system works in
two stages, the first one is based on a limited set of policies
expressed in XACML, the second stage uses knowledge about
behavior of the system to prevent actions outside defined
boundaries, to maintain safety properties of the system. This
approach is similar to the one we suggest, as the expected
behavior of the system is used as basis to formulate the
secondary stage policies. However, the supported use cases are
rather static, and there is no effort toward automation of policy
formulation. Nevertheless, the idea of separating the privilege
inference in several stages could be interesting, especially for
real-time sensitive applications.

In the field of Model-Driven Security (MDS), originating
from Model Driven Architecture, there is a body of research
related to the design of secure systems, with regards to
modeling, analysis as well as model transformation. Basin et
al. [24], summarizes a lot of that work. The focus of MDS
is mainly on the design phase for including security specific
models when realizing a system architecture, by e.g., defining
modeling languages for access control rules [25]. Most of
MDS research is, with regards to access control, focused on
the RBAC-model, there are however some examples utilizing
attribute based access control; including Alam et al. [26]
that describe a MDS approach for SOA, with XACML as
policy expression language, and Lang et al. [18] that present
a proximity-based access control model originating from the
ABAC model, where the low-level policies are generated
based on high-level policies described in natural language. An
important argument from [18] is that: for ABAC in general,
MDS is a requirement, as the low-level policy descriptions are
so complex they cannot be managed without some amount
of automation. To the best of our knowledge, there are no
examples of MDS applied to policy automation in systems
having properties similar to the ones of MA. In particular, we
are not aware of any work covering a system where the policies
needs to change dynamically, as required by the orchestration
of modules in a MA system.

VII. CONCLUSIONS

In this work, a method for automated access policy gen-
eration in the context of MA is presented. The policies
are generated using recipes expressed in SFCs, which is an
industry standard for PLC programming in the 1131 family.
The resulting policies are described in the format of an
NGAC sub-graph. With this work we have shown that efficient
policy generation is possible in an MA system without any
additional work being performed by engineering personnel.
Using this algorithm in an industrial system would increase
the system overall security by decreasing the maneuverability
and increasing the visibility of a compromised device.

Recalling the initially stated research questions: RQ1 is
related to how to express policies. As an answer we have



provided a definition applicable to policies expressed using
the NGAC model. RQ2 relates to minimizing the management
effort related to access policy formulation in an MA system.
The presented algorithm is one answer to that, describing how
to use an available workflow model to automate the policy
generation without the need for additional engineering efforts.

As future work we envision creation of an experimental
setup allowing simulation of an MA system, including both
integration and operational engineering, which will contain a
full access control enforcement architecture using NGAC as
policy engine. This would be one way to further confirm the
results in this article, with regards to scalability. We also plan
to further investigate mechanisms to support more fine-grained
workflow-related characteristics of MA.

Using XACML instead of NGAC to express policy rules is
another natural continuation of this work, trying to evaluate if
policy generation is feasible in that framework. As XACML
allows for valued and typed attributes, the policy generation
may in that context not need the same amount of synthetic
attributes.

Moreover, automated access-policy generation is also of
interest in wider domains than MA, e.g., in smart manu-
facturing and other dynamic and flexible systems requiring
fine grained access control policies. Extending our results into
these domains are possible directions for further research.

ACKNOWLEDGEMENTS

This work is supported by the industrial postgraduate school
Automation Region Research Academy (ARRAY, funded by
the Knowledge Foundation) and ABB. The authors would like
to acknowledge Tomas Lindström for his valuable feedback.

REFERENCES

[1] ZVEI—German Electrical and Electronic Manufacturers’ Association,
“Module-based production in the process industry—effects on automa-
tion in the ”industrie 4.0” environment,” White Paper, Frankfurt, 2015.

[2] J. Ladiges, A. Fay, T. Holm, U. Hempen, L. Urbas, M. Obst, and T. Al-
bers, “Integration of modular process units into process control systems,”
IEEE Transactions on Industry Applications, vol. 54, pp. 1870–1880,
March 2018.

[3] ZVEI—German Electrical and Electronic Manufacturers’ Association,
“Process INDUSTRIE 4.0: the age of modular production,” White Paper,
Frankfurt, 2019.

[4] K.-d. Thoben, S. Wiesner, and T. Wuest, ““Industrie 4.0” and Smart
Manufacturing – A Review of Research Issues and Application Ex-
amples,” International Journal of Automation Technology, no. January,
2017.

[5] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V.
Vasilakos, “Software-Defined Industrial Internet of Things in the Context
of Industry 4.0,” IEEE Sensors Journal, vol. 16, no. 20, pp. 7373–7380,
2016.

[6] J. Slowik, “Evolution of ICS Attacks and the Prospects for Future
Disruptive Events,” tech. rep., 2017.

[7] M. Rocchetto and N. O. Tippenhauer, “On attacker models and profiles
for cyber-physical systems,” Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 9879 LNCS, pp. 427–449, 2016.

[8] E. D. Knapp and J. T. Langill, Industrial Network Security: Securing
critical infrastructure networks for smart grid, SCADA, and other
Industrial Control Systems. Syngress, 2014.

[9] J. Saltzer and M. Schroeder, “The Protection of Information in Com-
puter Systems,” in proceedings of the IEEE, vol. 63, pp. 1278–1308,
September 1975.

[10] “IEC 62443 security for industrial automation and control systems,”
standard, Internation Electrotechnical Commission, Geneva, CH, 2009-
2018.

[11] C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, pp. 46–52, Oct 2003.

[12] “IEC 61131-3:2013 Programmable Controllers - Part 3: Programming
Languages,” standard, IEC, 2013.

[13] R. S. Sandhu and P. Samarati, “Access control: Principles and Practice,”
IEEE Communications Magazine, vol. 32, no. September, pp. 40–48,
1994.

[14] D. Ferraiolo, S. Gavrila, and W. Janse, “Policy Machine: Features,
Architecture and Specification,” white paper, NIST, October 2015.

[15] E. Yuan and J. Tong, “Attributed Based Access Control (ABAC) for
web services,” in Proceedings - 2005 IEEE International Conference on
Web Services, ICWS 2005, vol. 2005, pp. 561–569, 2005.

[16] D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible Access
Control Markup Language (XACML) and Next Generation Access
Control (NGAC),” pp. 13–24, 2016.

[17] “eXtensible Access Control Markup Language (XACML) version 3.0
plus errata 01,” standard, OASIS, 2017.

[18] U. Lang and R. Schreiner, “Proximity-based access control (pbac) using
model-driven security,” in ISSE 2015 (H. Reimer, N. Pohlmann, and
W. Schneider, eds.), (Wiesbaden), pp. 157–170, Springer Fachmedien
Wiesbaden, 2015.

[19] M. Leitner and S. Rinderle-Ma, “A systematic review on security in
process-aware information systems – constitution, challenges, and future
directions,” Information and Software Technology, vol. 56, no. 3, pp. 273
– 293, 2014.

[20] K. Knorr, “Dynamic access control through petri net workflows,” in
Proceedings 16th Annual Computer Security Applications Conference
(ACSAC’00), pp. 159–167, IEEE, 2000.

[21] D. Domingos, A. Rito-Silva, and P. Veiga, “Authorization and access
control in adaptive workflows,” in European Symposium on Research in
Computer Security, pp. 23–38, Springer, 2003.

[22] R. K. Thomas and R. S. Sandhu, “Task-based authorization controls
(tbac): A family of models for active and enterprise-oriented autho-
rization management,” in Database Security XI, pp. 166–181, Springer,
1998.

[23] C. Ruland and J. Sassmannshausen, “Access Control in Safety Critical
Environments,” in Proceedings - 12th International Conference on
Reliability, Maintainability, and Safety, ICRMS 2018, pp. 223–229,
IEEE, 2018.

[24] D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security,”
in Proceedings of the 16th ACM Symposium on Access Control Models
and Technologies, SACMAT ’11, (New York, NY, USA), p. 1–10,
Association for Computing Machinery, 2011.

[25] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-based
modeling Language for model-driven security,” in International confer-
ence on model engineering, concepts and tools, 2002.

[26] M. Alam, R. Breu, and M. Hafner, “Model-driven security engineering
for trust management in SECTET,” Journal of Software, vol. 2, no. 1,
pp. 47–59, 2007.


