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Abstract—Self-healing is a promising approach for designing
reliable digital systems. It refers to the ability of a system
to detect faults and automatically fixing them to avoid total
failure. With the development of digital systems, heterogeneous
systems, in which some parts of the system are executed on the
programmable logic, and some other parts run on the processing
elements (CPU), are becoming more prevalent. In this work, we
propose an adjustable self-healing method that is applicable to
heterogeneous systems with accelerated functions and enables
the designers to add the self-healing feature to the design. In
this method, by manipulating the software codes that are being
executed on the processing element, we add the ability to verify
the accelerated functions on the programmable logic and heal
the possible failures to the system. This is done not only in a
straightforward manner but also without being forced to choose
a specific reliability-overhead point. The designer will have the
option to select the optimum configuration for a desired reliability
level. Experimental results on a large design including several
accelerated functions are provided and show 42% improvement
of reliability by having 27% overhead, as an example of the
reliability-overhead point.

Index Terms—Self-healing, Acceleration, Heterogeneous sys-
tems, Reliability, Genetic algorithm

I. INTRODUCTION

Heterogeneous system design, also known as Hard-
ware/Software (HW/SW) co-design, is a design paradigm in-
troduced in the early nineties and has been studied extensively
by the system design community. Tremendous progress has
been achieved in this area of research. This has brought new
thinking to many aspects of computer system design, includ-
ing process scheduling, communication protocols, memory
management, software development, as well as the design of
application-specific processors and re-configurable architec-
tures [1], [2].

The failure in the hardware, which is one side of the
heterogeneous system, is one of the areas covered by the
researchers. They may occur in a system because of the
aging of the hardware or the impacts from the surrounding
environment (e.g., radiation, temperature, etc.) [3]–[5].

Besides the works on the failures in the hardware, self-
healing is also an addressed technique in the area of large and
complex systems [6]. Self-healing tries to keep the systems
alive and running despite the possible failures. This is vital
for many real-life systems such as hospital facilities, aircraft,
etc. Regardless of the domain these systems belong to, all
of them may face failure in any part, which may reduce or
hamper their performance [7].

Fig. 1. Generic loop of a self-healing system

To handle such failures, self-healing has been envisioned
as a solution with a promise to keeping the system available
and functioning all the time. By self-healing, the system’s
components are expected to solve or repair some of or all
possible damages without requiring external intervention.

Generally, the loop of self-healing for any system can be
divided into four main phases [7]–[10]. Figure 1 demonstrates
the generic flow of a self-healing system. Self-monitoring
monitors the system to inspect the environment to collect the
information required to detect the failure. It will send the
data gathered through current observations to the next stage.
Self-analysis analyzes the system according to the predefined
requirements and expectations. If the analysis shows that
everything is according to expectations and requirements, the
flow goes back to its initial state, self-monitoring. Otherwise,
the detected error will be reported to the next stage of the
cycle. In Self-fixing, the error is analyzed, and a method or a
strategy of repairing is determined and performed. The results
of the problem correction operations are reported to the final
phase. Self-adaption is responsible for making sure that the
recent correction will not cause a problem to the overall system
function as well as individual components. This might include
informing other components or the system controller. Once the
faulty areas are self-healed, the cycle begins all over again.
This cycle continues forever until the time the system is shut
down or the healing is not possible anymore.

For pure hardware systems, some methods for self-healing
are proposed. They include Dual Modular Redundancy (DMR)
[11], Triple Modular Redundancy (TMR) [12], Embryonic
Hardware (EmHW) [13], [14], artificial hormone system [15],
[16], Evolvable Hardware (EHW) [17] and intelligent frame-
works that are designed with healing capabilities in mind [18].

DMR and TMR are two types of redundancy techniques. In
the DMR technique, two identical instances run in parallel
for the same function, and their outputs are connected to
a comparator that sends a mismatch indicator whenever a
fault occurs. The drawback of this method is that there are
two active components and a voter part for fault detection,
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which obviously brings a significant area overhead. TMR is a
relatively similar approach with three identical modules, and
all of them are active simultaneously and execute in parallel to
provide fault masking through majority voting of their outputs
to mask a signal fault. In case any arbitrary function module
becomes faulty, the whole system will continue working
correctly as the TMR system, as a result of the majority
voting mechanism, discards the output of the faulty module
and directs the output of the correctly working module to
the output of the whole system. Clearly, the drawback of
this method, too, is the high redundancy costs. EmHW is
a hardware system of self-healing based on the replication
of small building blocks with identical architectures, and
it has been inspired by the multi-cellular organisms’ cell
division and differentiation mechanisms. Similar to multi-
cellular organisms in nature, the structure of circuits based on
EmHW is a two-dimensional array of electronic cells (e-cell)
with a hardware reconfiguration platform. When a cell fails,
the responsible module triggers self-healing, and the faulty
cell will be replaced by the spare cell. However, the drawback
of such techniques is their demand for significant additional
hardware that leads to extra area and power overhead. EHW
is another bio-inspired self-healing system. EHW is a re-
configurable hardware system that evolves by the control of
some Evolutionary Algorithms (EAs) to solve a real-time task.
EHW can be used in a self-adaptive platform that adapts to
its working environment without external human intervention.
The evolutionary algorithm is implemented to provide a self-
evaluation of solution candidates and choose the best candidate
by tracking the cost function. With such a realization, it is
able to recover and survive against degradation and faults. It
also enhances the performance continuously during the whole
lifetime of the operation.

There are also some self-healing approaches in the software
domain. They cannot be used as a self-healing method for the
accelerated modules. Nevertheless, they can be applied to the
software part of the heterogeneous systems. SHADOWS (Self-
healing Approach to Designing Complex Software Systems)
[19] proposes an automatic detection and repair of possible
problematic behavior in its early design and development
stages. PANACEA framework [20] is another approach based
on the SHADOWS objects that provides a design methodology
as well as ready-to-use healing elements aimed at enhancing
software systems with self-healing capabilities both at design
time and at run time.

Although the approaches proposed for the hardware are in-
novative and relatively effective, they suffer from shortcomings
such as high area-overhead and high cost. Moreover, regarding
the reliability level of each of these proposed methods, if the
designer selects one of them, they should accept the proposed
reliability-overhead point, even if the acquired reliability is
more than their requirements. Thus, to fill in this gap and
overcome the current shortcomings, this work proposes a
method to add the self-healing feature to a heterogeneous
system with an adjustable reliability-latency point and minimal
area overhead. Furthermore, since the self-healing method is

implemented through manipulation of the code that is run-
ning on the existing processing element of the heterogeneous
system, the area overhead on the FPGA fabric is zero.

The input to our method is a heterogeneous system that both
software and hardware versions of its accelerated functions are
available. Indeed, we exploit the fact that an accelerated func-
tion might be generated from a software code in a high-level
language through a high-level synthesizer (HLS). Availability
of both versions enables us to use the software version to
verify the correct functioning of the hardware version and to
use it as a substitution for the hardware version. However, the
difference between the latencies of these two versions might
devastate the efficiency of the whole system, and thus, we
have proposed an adjustable and optimized solution to make
it practical in real applications.

Our contributions in this paper can be summarized as
follows:

• A self-healing method is proposed that is applicable to
the heterogeneous systems with accelerated functions to
prevent the failures of the system.

• An adjustable self-healing feature is provided that gives
the ability to the designers to set the desired reliability
point based on the latency requirements.

• The proposed method is applicable to heterogeneous sys-
tems regardless of their complexity without any hardware
overhead.

• A set of Pareto-optimal configurations with regard to the
latency overhead and desired reliability level is formed.

The rest of the paper is organized as follows. Section II
introduces preliminaries related to this work. Section III
presents the methodology. Section IV describes the experi-
mental results. Section V discusses the observations during the
implementation and experiment phases, and finally, Section VI
concludes the paper.

II. PRELIMINARIES

As the focus of this work is on heterogeneous systems and
accelerated functions, in this section, the necessary prelimi-
naries on these topics are provided.

In the past, when designers were to start the implementation
of a specific system, given that the system was implementable
both as a software running on the processor or as a hardware
running on an ASIC or FPGA chip, they had to make the
decision based on the performance of the whole design on each
of these platforms. However, nowadays, with the advent of the
heterogeneous integrated circuits (ICs), the flow has changed.
Recently, Intel provides SoC FPGAs such as Agilex and Statix
10, and Xilinx provides various families of Zynq products.
Both products integrate multiple processing elements together
with the FPGA fabric. As said, in the past, the designers had
to choose either the FPGA or the processor to run a particular
program while these heterogeneous chips allow the designer
to split the design into two parts and exploit the advantages
of both platforms. For each segment of the design, e.g, each
function, the designer assesses its performance on hardware
and software, and after considering the costs, finally decides



on the preferred location to put the design and run it. This
scenario is also known as function acceleration.

Hardware (HW) acceleration can make a computation sev-
eral times faster than running the application on processors,
due to their ability of massive parallel execution. That is,
HW accelerating aims at decreasing the latency and increasing
the throughput in computational tasks. It is noteworthy that
this efficiency is usually achieved in computation-intensive
functions. For memory- or data-intensive tasks, this might
not be the case as the access to the memory is considered
as the bottleneck and prevents the programmable logic from
exploiting the possible parallelism.

The accelerator might be designed as a hardware module
from scratch. However, as most of the time, the design is
already available in a high-level language, the designer may
opt to automatically transform the existing design to the
hardware. This process is called High-Level Synthesis (HLS)
and usually takes much less time than designing the accelerator
from scratch and consequently has become prevalent. Most
of the HLS tools, including Intel HLS Compiler and Xilinx
Vivado HLS, receive the C/C++ as the input. In this paper, we
have focused on the C/C++ syntax. However, the method is
applicable to other languages too.

Functions are considered as one of the most distinguishable
segments of a design. As a result, most of the tools for
designing accelerators on SoC FPGAs, such as Xilinx SDSoC
tool, which we use to collect the experimental results in
this paper, consider the functions as the smallest program
segments to be accelerated. This is not basically considered as
a limitation because if the designer wants to accelerate a piece
of code that is not a function, can encapsulate that segment
into a function.

In heterogeneous systems that exploit the acceleration of
the functions, the program starts running on the processor, and
when it reaches a function call to an accelerated function, the
software execution flow halts, and the execution continues on
the hardware. After the execution is over on the hardware, the
result is passed to the software through some communication
facilities like registers or the Direct Memory Access (DMA).
Then, the program continues running on the processor. In this
work, we assume the design, as shown in Fig. 2. The upper part
of the image shows the original design, which may run on the
processor. The lower part, instead, is the accelerated version of
a hypothetical design in which some functions are accelerated.
The parts of the code specified as Seg., are the code segments
not designated to be accelerated, and the parts specified as
Func. are the function calls to the accelerated functions. The
assumption is that the accelerated function runs faster than its
corresponding software version, and in this paper, we do not go
through the acceleration efficiency and necessity, and the focus
is on adding the self-healing feature to existing accelerations.

III. PROPOSED METHOD

In this paper, we present a method to help the designers
easily integrate the self-healing feature into a heterogeneous
system. The solution is generic and applicable to all HW

Fig. 2. Acceleration of the functions

accelerators where both hardware and software versions of
accelerated functions are available; the existence of both
versions is normally the case when the accelerators are made
by the HLS process. Unlike most of the reliability methods,
our solution has no area overhead on the FPGA fabric, but
rather would degrade the performance. The main latency
overhead is in the case of a failure, which is the cost of
keeping the system alive. The latency overhead during the
normal operation for evaluation is decided and determined by
the designer. The reliability performance is adjustable, even
at run time. Based on the desired reliability, the self-healing
parameters are adjusted in a way that the minimum latency
overhead is incurred. Additionally, if a design consists of more
than one accelerated function, a Pareto-frontier, including all
the required parameters, is provided to simplify the decision
making by the designer.

In the rest of this section, two main parts of the methodology
are described. Firstly, Subsection III-A introduces how self-
healing features should be added to the design. This includes
the implementation of four standard self-healing phases, the
required modifications on the design’s source, and the descrip-
tion on what parameters and variables are needed. The values
for these parameters directly affect the reliability level and the
overall latency of the system. Secondly, Subsection III-B pro-
poses a multi-objective genetic-algorithm-based optimization
method to find all the Pareto-optimal reliability-latency points.

A. Self-healing framework

The proposed method needs a heterogeneous system as an
input, as explained in Section II, and it is assumed that for the
accelerated functions, both software and hardware versions are
available. This assumption can help the designers to evaluate
the correct execution on the hardware by also running the
software instance.

Before describing the proposed methodology in detail, some
frequently used abbreviations are presented here to make the
naming brief and ease the process of reading:

• ACCF: the accelerated function. By calling this function,
the execution on the processor halts, and this function
executes on the FPGA.

• SWF: the software version of the function. This function
runs on the processing element of the heterogeneous
system.

• HLF: the self-healing function, which calls ACCF and
SWF. The core functionality of the self-healing is imple-
mented in this function.



Fig. 3. The proposed self-healing framework

• AE: is a global variable indicating whether the acceler-
ated version is enabled or not. The HLF is responsible
for toggling this variable. Its initial value is true, which
means the hardware version (ACCF) is not faulty and is
working correctly.

• VP: is the Validation Probability of a function. It deter-
mines how frequently the SWF is called to assess the
correct execution of the ACCF. The higher the VP is, the
higher the reliability is, the higher the average execution
time of the whole system is, and the lower performance
the system has.

• RND: is a randomly generated value between zero and
one. This, along with the VP, determines the random
execution of the SWF. If RND is less than VP, the SWF
is executed.

Figure 3 shows an overview of the proposed self-healing
framework. The input of the framework is each of the accel-
erated functions in the heterogeneous system.

For each function, a global variable is defined as AE. This
variable determines whether the accelerated version of the
function is active (not faulty) or not. Initially, this variable
is equal to true, which means the accelerated function is
enabled and working as expected. In the beginning, ACCF
is executed, and the result is stored as ACCF result. Then,
the self-monitoring phase begins.

As demonstrated in Figure 3, in the self-monitoring phase,
a random number (RND) is generated. RND would get a
value between zero and one. If this value is less than VP,
SWF is executed. This will result in a random validation with
a probability of VP. If RND is greater than VP, the self-
monitoring phase is ended, and the result of the ACCF, which
is ACCF result is returned as the final result. In contrast, if
RND is less than VP, the SFW is executed too. In this case,
the self-analysis phase will follow.

The values of the VP (the probability of running the function
also on the processor) for each of the accelerated function have
a major impact on both the reliability of the system and its
overall latency. The higher this probability is, the longer the
average execution time will be. In turn, when the validation
through running the software takes place more often, the
design becomes more reliable (redundant execution). For a
design with only one function, this problem is a simple one-
variable problem and can easily be solved by the designer.
However, for a more complex design that each function has
various execution time and vulnerability level, finding an
appropriate probability for each function will become more
complicated. We will propose an optimization method to find
the Pareto-optimum points in section III-B.

In the self-analysis phase, the results of the ACCF and SWF
are compared. If they are equal, it means that the ACCF is
working properly, and the result of the ACCF, or the result
of SWF as well, will be returned as the final result. Note
that in this work, we only consider the possibility of fault in
the accelerated function. We will discuss this assumption in
the discussion section. If the results of the two executions are
unequal, then the self-fixing phase will be necessary.

In the self-fixing phase, the acceleration is disabled by
setting AE to false, and the result of the software version
is returned. This will affect the future executions which are
handled in the self-adaption phase.

In the self-adaption phase, having the value of false for AE
indicates that the acceleration is disabled. In this case, only
the software version is executed. Note that the execution of
the SWF is most probably longer than the ACCF. This higher
latency is the cost of keeping the system alive and correct
instead of letting it malfunction.

Algorithm 1 shows how this flowchart should be imple-
mented in the source C/C++ code. The HLF is responsible
for managing the whole self-healing flow. The only remaining
thing which should be done by the designer is to look for all
the function calls to the ACCF in the design and replace it
with the calls to HLF.

B. Finding the Pareto-optimal validation probabilities

In the previous section, we discussed the framework of the
proposed self-healing mechanism. Most of the implementa-
tions are either already available from the design phase or
implemented according to the proposed algorithm and self-
healing function. Nonetheless, the value of the VP (Validation
Probability), hence the frequency of validation, is still un-
known and should be determined by the designer. As explained
earlier, this value directly affects the performance of the
whole design, which is a design tradeoff between reliability
and performance. Based on the relation between the VP and
overall latency of the design, the designer should decide
on this parameter. For a design with only one accelerated
function, this is fairly simple. Figure 4 depicts the effects of
the various VP values on the overall latency of the CHStone
AES benchmark [21]. The two horizontal lines on the graph
show the latencies of the accelerated function (ACCF) running



Algorithm 1: Healing Function (HLF) implementation

AE = true;
function SWF(arguments){

Some processing on the input arguments;
return result ;

}
function ACCF(arguments){

Some processing on the input arguments;
return result ;

}
function HLF(arguments){

if AE then
hw result = ACCF(arguments);
if RND < V P then

sw result = SWF(arguments);
if hw result 6= sw result then

AE = false;
return sw result

else
return hw result

end
end
return hw result

else
sw result = SWF(arguments);
return sw result

end
}

on the FPGA and its software version (SWF) running on
the processor: 34,872 and 57,120 clock cycles respectively.
The experimental setup to obtain these values is explained
in Section IV. The graph shows that if VP is equal to 0.1,
which means that 10 percent of the times the validation of the
ACCF occurs, the overall latency of the AES function will
increase by 16 percent, from 34,872 to 40,584. This latency
overhead is the cost of the overall reliability of the system
and keeping it working faultlessly though at a higher latency.
This is up to the designer to find the appropriate VP based
on the design requirements. The overall latency overhead is
calculated based on Relation 1. In this relation, L(Fx) is the
latency of the function Fx.

(1−VP)× L(ACCF ) +VP ×
(
L(ACCF ) + L(SWF )

)
L(ACCF )

(1)

As explained, the relation between VP and the overall
latency for a single-function design is a linear single-variable
function. Hence, finding the desired reliability level is simple
for the designer. However, for a multi-function design, it will
be more complex. In order to simplify finding an appropriate
VP for each function, we have developed a genetic-algorithm-
based algorithm to find the Pareto-optimal points. To begin
with, we define some symbols, some of which are determined
by the designer and some others by the proposed algorithm.

Fig. 4. VP effects on latency in a single-accelerated-function design

• LACCi: is the Latency of the ith Accelerated function.
They can be either the number of clock cycles or the
wall-clock time. The former is recommended as it makes
it independent of the chip’s clock frequency.

• LSWi: is the Latency of the SoftWare version of the ith

function. The type of this latency should match LACC’s.
• VLi: is a comparative parameter indicating how a func-

tion contributes to the total vulnerability of the whole
design. By setting VLi greater than VLj , the designer
will inform the proposed algorithm that the ith function
is either more vulnerable to failure or is more important
to be working correctly. Generally speaking, the higher
value for a VL will result in a higher frequency of vali-
dation (VP) and a larger latency resulted from a specific
function. If the designer considers all the functions of
equal importance and vulnerability, they can assign equal
values to all VLs.

• VPi: as explained earlier, is the validation probability
of the ith function. The values of VP are the outputs of
our proposed optimization algorithm. Based on the other
parameters provided by the designer, for each member
of a set of possible desired overall latencies, a set of
VPs are provided for the designer, which are the pareto-
optimal points of Overall Vulnerability Degrees versus
total execution time.

• OVD: this is the expected Overall Vulnerability Degree
of the whole system. This is a function of the VPs and
VLs as shown in relation 2. If all the VPs are equal to
zero, the OVD will be equal to one which corresponds
to the higher vulnerability degree. On the other side of
the spectrum, if all the VPs are equal to one, which
means the SWF is always executed (which is not usually
a desired point) gives the minimum vulnerability of zero.
As explained in the previous item, for each of the possible
values for overall vulnerability degree, the optimum set
of VPs are suggested, and accordingly the overall latency
is calculated.

OVD =

∑
(1−VP i)×VLi∑

VLi
(2)



Based on the above parameters, two objectives are consid-
ered. The first objective is to minimize the overall vulnerability
level and the second objective is to minimize the total execu-
tion time, which is elaborated in relation 3. The execution time
for each function is the probability of running the ACCF times
the latency of the ACCF, plus the probability of running both
ACCF and SWF times the total of their latencies.∑

(1−VP i)× LACC i +VP i × (LACC i + LSW i) (3)

C. Multi-objective genetic algorithm

Since the search space for all possible configuration was
very large, we were motivated to use the Genetic Algorithm
(GA) to find the Pareto-optimal VPs.

In order to solve the optimization problem, we implemented
a multi-objective genetic algorithm (MOGA) [22] in C++.
Despite the single-objective GA, which is based on the fitness
functions and their optimum values, MOGA utilizes the notion
of dominance and tries to form a population in which the
individuals have the minimum number of dominating points
in the solution space. Other concepts, such as mutation, cross-
over, and elitism are analogous in both methods.

In genetic algorithm, the inputs are grouped together as
the chromosomes. In our case, each chromosome consists of
all the VPs. The fitness functions are calculated according to
relation 2 and 3. The input to the MOGA are three constant
vectors LACC, LSW, and VL. In this specific implementation,
we did not consider any specific constraints for the solutions
except that the values of the VPs must stay in the valid range
of probabilities, which is a decimal number between zero
and one. The algorithm begins with an initial population of
individuals created randomly. In the elitism phase, we selected
ten percent of the individuals from the previous generation
that had the minimum number of dominating individuals. After
sorting the individuals in a population in an increasing order of
the number of dominating solutions, an offspring is the result
of mating two parents from the first half of the population. The
mutation rate in the mating phase was considered as twenty
percent.

IV. EXPERIMENTAL RESULTS

In order to estimate the efficiency of the proposed method,
we applied it to a five-function instance. The used parameters
are listed in Table I. The first column presents the id of five
function calls in the experiment. As described, LACC is the
latency of the accelerated function. 482, 280, 107, 374 and 166
clock cycles are reported for the latency of each accelerated
function call, respectively. LSW column describes the latency
of the software version of the functions. 2096, 962, 346,
1230, and 695 clock cycles are reported for the latency of
the software functions, respectively. To set the values for the
VLs, we assumed that the functions with a longer execution
time are more important and more vulnerable. However, this
assumption might not always be a correct one. We have used
these parameter values, instead of setting all the VLs to an
equal value, to show the capability of the proposed method to

consider the differences in the vulnerability and the importance
of the functions; the designer is expected to set the values of
the VLs according to the assessed vulnerability and importance
of each function.

TABLE I
THE INPUT PARAMETERS OF THE OPTIMIZATION ALGORITHM

Function Id LACC LSW VL
1 482 2096 0.2
2 280 962 0.3
3 107 346 0.9
4 374 1230 0.2
5 166 695 0.6

Figure 5 shows the result of running the two-objective
optimization for 40 epochs. The population of each generation
was 250 individuals. Each of the dots in this figure corresponds
to a 5-tuple of VPs. For instance, the dot on the top left corner
of the graph is when all the VPs are set to zero, which means
that no validation occurs, and only the accelerated functions
are executed. As shown, the total execution time at this point
is the sum of the values in the LACC column in Table I. On
the other end of the spectrum, the point on the bottom right
corner of the graph is when the LSW is always executed along
with the ACCF, which is the result of having the value of 1.0
for all the VPs. The curve in the graph is the pareto frontier
of the points, which means that by picking a desired OVD,
what the minimum possible total execution time will be. The
rest of the points are Pareto dominated by this orange curve.

Table II shows the corresponding values of the VPs for some
of the points on the Pareto-frontier curve. The values in the
VPi columns are the validation probabilities found through
the optimization algorithm. The Exec. Time column presents
the total Execution Time and the Vuln. Degree represents the
overall Vulnerability Level, which are the two objective of the
optimization algorithm and they are calculated using relations
2 and 3. As can be seen, the minimum execution time and
the maximum vulnerability correspond to setting all the VPs
to 0, which is the case that the healing is disabled for all the
functions of the design. The other end of the spectrum is when

Fig. 5. The Pareto frontier of the various VP settings and their effect on the
OVD and the total execution time



TABLE II
CORRESPONDING VPS FOR SOME OF THE POINTS ON THE PARETO

FRONTIER OF FIGURE 5

Exec. Time Vuln. Degree VP1 VP2 VP3 VP4 VP5

1409 1 0 0 0 0 0
1795 0.5845 0 0 0.98 0.01 0.05
2236 0.4340 0.01 0.07 1 0.02 0.53
2396 0.3536 0 0.06 1 0 0.84
2707 0.2863 0.01 0.24 1 0.01 0.99
3428 0.1840 0.01 0.99 1 0.01 0.99
4053 0.1427 0.04 0.98 1 0.48 0.98
4597 0.0977 0.01 0.99 1 0.96 0.99
6109 0.0431 0.87 0.99 1 0.73 0.98
6738 0 1 1 1 1 1

all the VPs are set to 1, which means that the validation takes
place on every single execution of the function. In this case, the
OVD is the minimum, and the execution time is the maximum,
which is about five times slower than the original design’s
latency. As explained before, the designers are expected to
select one set of the VPs that corresponds to their desired
reliability.

V. DISCUSSION

We performed several studies to choose the best approach
for the proposed methodology. All the pros and cons of these
alternative approaches were investigated, and after a careful
analysis of different aspects, the proposed methodology was
defined, implemented, and experimented. In the following, a
brief explanation about these alternative approaches and the
reasons which led us to present the proposed methodology
are reported. Note that from the optimization point of view,
all these approaches are the same, and the only change will
be in the objective function calculation in relation 3. However,
regarding the detection and healing flow, some fundamental
changes are required.

In this work, we proposed running the software version of
the accelerated function in addition to the hardware to compare
the results and detect possible failures. They run in a sequential
manner. Some alternate approaches can be considered that run
both versions in parallel. Such parallelism can be implemented
in several ways that we list here.

• Running the accelerated version and the software version
in parallel: running both versions in parallel will certainly
improve the performance by decreasing the overall la-
tency. However, this parallelism cannot be implemented
via the standard heterogeneous system design tools such
as Xilinx SDSoC. In these tools, when a function is
selected for the acceleration, the tool will take care of the
necessary communications and handshaking between the
processing system (PS) and the programmable logic (PL).
They implement the procedure of the program control
taking-over in a way that the main body of the program
halts until the results of the accelerated function are
ready and sent back to the PS. In order to implement
such parallelism between software and hardware, the
connections and the program control take-over procedure
should be implemented manually.

TABLE III
COMPARISON BETWEEN ALTERNATIVE IMPLEMENTATIONS

Method PL/PS Comm. Speedup Late detec.
Proposed method Handled by the design tool Baseline No

Parallel exe. blocking Custom. implementation Minor No
Parallel exe. non-blocking Custom. implementation Major Yes

• Blocking or non-blocking approaches: given that the
parallelism is implemented, two approaches can also be
considered for the self-analysis phase. The execution
of the rest of the program, which is after the current
accelerated function, can either halt or continue; the rest
of the program can be both the normal parts of the
program or the next accelerated function. If the execution
halts, the extra efficiency obtainable by parallelism would
be limited, and if the execution continues, the late failure
detection might occur. Late failure detection means that
the rest of the program uses the results of a faulty
accelerated function, and after executing some statements
or the next accelerated function, the fault is realized,
which might be too late for a reaction.

In Table III, the comparison of these alternatives is provided
in brief.

We also had several observations during the experiment
phase of the proposed methodology in the real-life problems,
which are addressed as follows:

• By running the method on various sets of functions, we
realized that the use of this method might be limited
when the performance of the accelerated function is
much higher than the software version. For instance,
to exaggerate the issue, consider a function that its
accelerated version is a thousand times faster than the
software version. In this case, even if the VP is set to 0.1
percent, the overall performance is degraded to almost
half. This fact should be considered by the designers,
and they should pay this cost only if the reliability of the
target function is worth it.

• One of the challenges of using the proposed method is the
possibility of failing the software. First of all, there are
several research results on self-healing software such as
[23]–[25], and some others that were introduced in sec-
tion I that can be used along with our proposed method.
Besides, we have also considered an extension of this
method to make it more reliable. The idea is that we can
choose a fraction of the function’s input combinations,
run them offline, and keep them in the memory. During
the heterogeneous self-healing, we can also compare the
results with this set of pre-computed results as an extra
source of evaluation. This is a challenging problem with
regard to finding the most fault-covering pre-evaluated
inputs while considering the memory overheads incurred.
We may address this idea in our future works.

• As this self-healing feature increases the latency of the
system, its application to the real-time systems is limited.
There are a few scenarios that a real-time system can use
this method. One of them is the situations that the real-
time system, for some reason, has no task to do, and it



can use our method in this free time just to verify the
accelerated functions. However, even in this case, it is
apparent that if a failure is detected, the software cannot
replace the accelerated function, due to the excessive
latency of the software counterpart.

• In this paper, we did not cover the possibility of soft
errors, which disappear after some time. Nevertheless,
this feature can be simply added to the proposed method.
As stated earlier, AE indicates if a specific accelerator is
disabled due to an error detection. In order to consider
the possibility of a soft error, this variable should be
reset once in a while. The designers should note that
the frequency of this AE resetting will affect the overall
system performance.

• The healing flow is managed and implemented in the
software part of the proposed method. Consequently,
this enabled the designer to adjust the reliability level
even at run time. The designer can even completely
disable this feature at run time if needed. We have not
covered this dynamic adjustment method as it needs
the designer’s knowledge on how this dynamism should
behave. However, it can be implemented as a separate
add-on module to our method that generates appropriate
VPs dynamically.

VI. CONCLUSIONS

In this paper, we started by introducing a self-healing
method for the heterogeneous systems. Subsequently, we pro-
vided the implementation guide of the method, and presented
an optimization method to adjust the required parameters such
as reliability performance.

Based on the desired reliability, the self-healing parameters
are adjusted in a way that the minimum latency overhead
is incurred. Furthermore, the method proposes an adjustable
reliability based on the desired performance, even at run time.
Additionally, if a design consists of more than one accelerated
function, a Pareto-frontier of all the possible configurations is
provided to simplify the decision making by the designer.

In the experimental results, we examined the method on a
fairly large system and illustrated the results. We showed how
much the reliability of the system is upgraded by using this
method. Unlike most of the reliability methods, our solution
has no area overhead on the FPGA fabric. The main latency
overhead is in the case of a failure, which is the cost of keeping
the system alive.
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