
Automated Reuse Recommendation of Product
Line Assets based on Natural Language

Requirements ?

Muhammad Abbas1,2(�)[0000−0001−6418−9971], Mehrdad
Saadatmand1[0000−0002−1512−0844], Eduard Enoiu2[0000−0003−2416−4205], Daniel

Sundamark2, and Claes Lindskog3

1 RISE Research Institutes of Sweden, Väster̊as, Sweden
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Abstract. Software product lines (SPLs) are based on reuse rationale
to aid quick and quality delivery of complex products at scale. Deriving
a new product from a product line requires reuse analysis to avoid redun-
dancy and support a high degree of assets reuse. In this paper, we pro-
pose and evaluate automated support for recommending SPL assets that
can be reused to realize new customer requirements. Using the existing
customer requirements as input, the approach applies natural language
processing and clustering to generate reuse recommendations for unseen
customer requirements in new projects. The approach is evaluated both
quantitatively and qualitatively in the railway industry. Results show
that our approach can recommend reuse with 74% accuracy and 57.4%
exact match. The evaluation further indicates that the recommendations
are relevant to engineers and can support the product derivation and
feasibility analysis phase of the projects. The results encourage further
study on automated reuse analysis on other levels of abstractions.

Keywords: software product line · reuse recommender · natural lan-
guage processing · word embedding.

1 Introduction

With the increasing customization needs from customers, quality, and quick
delivery of software products are of paramount importance. Meeting this de-
mand requires an effective software engineering process. Software Product Lines
(SPL/PL) [21] are created to help achieve quick delivery of quality products by
systematically reusing features across variants. These PL features satisfy a set

? This work is funded by the ITEA3 XIVT [25], and Knowledge Foundation’s ARRAY
Projects.
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of standard requirements in a particular domain and are realized by reusable as-
sets. Variations in the assets are introduced to cope with varying customization
requirements of the same product.

A common industrial practice to the adoption of SPL is through the incre-
mental development of overloaded assets, which are reused in a clone-and-own
manner (e.g., in the railway industry [1]). While clone-and-own reuse is generally
not recommended in SPL engineering, it does have some benefits, e.g., the reuse
is very high speed with little domain engineering, needs less coordination, and
has less adoption cost. In such cases, in the derived products, some assets are
reused as-is, while for some, a copy of the asset is modified to address the par-
ticular customer requirements. This way of working results in many functional
variants of the assets. Companies following clone-and-own based reuse practices
faces problems among others, when implementing a new requirements, it might
be required to know a) if a similar requirement has already been implemented
by a PL asset or its functional variant, and b) if that is not the case, which asset
or its functional variant is the closest one that can be modified to realize the
new requirement. To achieve the aforementioned objectives, a reuse analysis is
performed.

A reuse analysis process may have the following activities (as per [13, 12],
summarized in [19]). Note here that we modified the activities to match our in-
dustrial partner’s practices in the context of a PL: (1) identify high-level system
functions that can realize the new customer requirements, (2) search existing
projects to shortlist existing owned assets (that implements the system func-
tions), (3) analyze and select from the shortlisted PL assets, and (4) adapt the
selected assets to new customer requirements. The current (requirements-level)
process for reuse analysis lacks automated support, is time-consuming, and is
heavily based on the experience of engineers. Our approach aims to support the
first three steps.

We support the reuse analysis and recommendation of PL assets early at
the requirements level. The approach proposed in this paper is motivated by
an industrial use case from the railway domain, where the same PL engineering
practices (clone-and-own based reuse via overloaded assets) are followed. In our
partner’s company, requirements are written at various levels of abstraction (i.e.,
customer level, system level, subsystem level, SPL Assets description). Compli-
ance with safety standards requires our partner to maintain the links between
customer requirements and PL asset descriptions realizing them. Unfortunately,
most of the existing reuse approaches (e.g., [6, 15, 2]) do not make use of this
information (existing cases) to recommend reuse of PL assets and their func-
tional variants. In addition, many existing approaches are limited to recovering
traces between one requirement abstraction level sharing term-based or semantic
similarity. In our case, the customer requirements share less semantic similarity
with the asset descriptions.

In this paper, we propose an approach for requirement-level case-based reuse
analysis and recommendation of (existing) PL assets. The approach is developed
and evaluated in close collaboration with Bombardier Transportation, Sweden.
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Our approach uses NLP techniques to clean the input customer requirements,
train a word embedding model on the existing requirements, and cluster them.
The trained model and clusters can then be used to generate recommendations
(five at most, in our case) for PL assets (Simulink models in our case) reuse for
new customer requirements.

Contributions. To this end, we make the following contributions: i) a proposed
approach for the recommendation of PL asset reuse, ii) an evaluation of different
word embedding algorithms on an industrial use case, and iii) a focus group
evaluation to report engineer’s view on the results.

Results obtained from this evaluation on two projects (derived products of
the Power Propulsion Control (PPC) system’s PL) show that our approach can
recommend reuse of PL assets given unseen customer requirements with 74%
accuracy 4 and 57.4% of exact match percentage 5. The results obtained us-
ing thematic analysis on the focus group transcript show that our approach’s
recommendations are highly relevant and useful for practitioners.

Structure. The remainder of the paper is structured as follows. Section 2
presents our proposed approach for reuse analysis and recommendation. Sec-
tion 3 evaluates the proposed approach and state-of-the-art word embedding
algorithms in the context of reuse, Section 3.1 discusses the results obtained
from the evaluation and the focus group, Section 3.2 discusses threats to valid-
ity. Section 4 presents the related work, Finally, Section 5 concludes the paper.

2 Approach

Our approach supports the reuse analysis of PL assets at the requirements-
level. The approach has three distinct phases (shown in Figure 1), namely
Pre-Process, Training and Asset Reuse Recommender. The first step of the
approach (Pre-Process) is responsible for cleaning the requirements text for the
later steps. Cleaning requirements include the removal of stop words, Part-Of-
Speech (POS) tagging, and lemmatization. Training takes in existing cleaned
customer requirements with their links to assets, realizing them. Clean require-
ments are used to train a feature extraction model (word embedding) and pro-
duce meaningful vectors for the existing customer requirements. The derived vec-
tors are clustered using unsupervised clustering. The Asset Reuse Recommender

phase takes in unseen cleaned customer requirements and recommends PL as-
sets that can be reused to realize them. This is achieved by inferring meaningful
feature vectors for the new requirements, predicting cluster for vectors of new
requirements in the existing clusters, retrieving closest neighbors’ reuse links to
the PL assets or their functional variants, and finally ranking the reused PL
assets. To demonstrate our approach, we use a running example (LOG4J2) from
the SEOSS 33 data-set [22]. The running example is a subset of issues to issues

4 A reuse recommendation is accurate if the recommended list contains the ground
truth.

5 A reuse recommendation is an exact match if the recommended list contains the
ground truth on top.
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Fig. 1: An overview of the approach for reuse analysis and recommendation

Table 1: The Running example of LOG4J2 and its corresponding issue text
ID Issue Text Target

1292 1274 added the encode(LogEvent, ByteBufferDestination) method to Layout. Appenders im-
plementing the ByteBufferDestination interface can call Layout.encode. This enables Layout
implementations to process LogEvents without creating temporary objects. This ticket is to
track the work for letting RandomAccessFileAppender (and its Rolling variant) implement the
ByteBufferDestination interface and call Layout.encode instead of Layout.toByteArray.

1274

1291 1274 added the encode(LogEvent, ByteBufferDestination) method to Layout. The default... 1274

1305 Logging in a binary format instead of in text can give large performance improvements. ... 1397

1424 In non-garbage-free mode, the logged Message objects are immutable and can be simply... 1397

1517 Add ThreadContext.setContext(Map< String, String >). Note that we ... 1516

1519 Add API ThreadContext.putAll(Map< String, String >). My immediate goal is to be able... 1516

1349 The current ThreadContext map and stack implementations allocate temporary objects.... 1516

data-set shown in Table 1. The Issue Text column can be mapped (to our data-
set) as customer requirements, and the Target column can be mapped as PL
assets. Note that the running example is just for demonstration purposes and
contains implementation details unlike requirements. In this section, we discuss
each step of our approach in more detail.

A. Pre-Process The pre-processing step of our approach is responsible for
cleaning the text of requirements. The approach makes no assumption on the
structure of the requirements. However, we do assume that the input require-
ments are written in English. The input to this step is processed following the
steps below:
1.1 Stop words removal. Removal of language-specific stop words is important
since most of the NLP models expect clean input. We use the spaCy6 library
for tokenizing the requirements and removing the English stop words from the
text of the requirements. We also remove some of the domain-specific stop-words
(e.g., system).
1.2 POS Tagging. Utilizing the full features of our pre-process pipeline, we also
tag each of the tokens with their POS tags to guide lemmatization.
1.3 Lemmatization. We use the pre-trained English model from spaCy for the

6 spaCy: Industrial-Strength NLP, https://spacy.io/
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Table 2: Pre-processed text of issue 1292
Text: 1274 add encode(logevent bytebufferdestination method layout appen-
der implement bytebufferdestination interface layout.encode enable layout im-
plementation process logevent create temporary object ticket track work let
randomaccessfileappender roll variant implement bytebufferdestination inter-
face layout.encode instead layout.tobytearray

Vector: < 0.66987733,−0.12908074, 0.01017888, 0.01252554 >

lemmatization of the requirements text. This step is necessary in order to avoid
different interpretations of the same word in other forms. First row of Table 2
shows the text of issue 1292 after pre-processing.

B. Training The training step expects clean requirements, and their reuse links
to the PL assets realizing them.

Fig. 2: Selected dimensions Vs. ex-
plained variance

Each of the cleaned requirement is a
training sample for the word embed-
ding model. After training the word
embedding model, the step produces
vectors for the training set and a
model that can be used to infer vec-
tors for unseen requirements. The vec-
tors obtained from the training set
are given as an input to the unsuper-
vised clustering algorithm. The un-
supervised clustering algorithm (K-
Means) is fitted to the input vectors,
and the vectors are iteratively clus-
tered to n number of clusters (calcu-
lated using the elbow method). The
clustering step produces clusters and
a model for later use. The running example (other than issue 1517) is used for
the training phase.

2.1 Word Embedding is a set of feature extraction and learning approaches
used to extract numeric vectors from raw text. This is done by mapping the
words and phrases of the requirements into vectors of real numbers. This allows
the application of complex mathematical operations (such as Euclidean distance
calculation) on the vectors representing the requirements. The effectiveness of
the resultant pipeline is heavily dependent on the choice of the word embedding
method. Thus we also presented an evaluation of different pipelines on an indus-
trial data-set. Three different word embedding methods (and their variants) are
supported by our approach and can be selected by the end-users. We presented
each word embedding method supported by our approach below:
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Table 3: Clusters for the running example
Cluster Members

1 1349 (linked to 1516), 1424 (linked to 1397), 1519
(linked to 1516)

2 1291 (linked to 1274), 1292 (linked to 1274), 1305
(linked to 1397)

Term Document matrix-based word embedding. Our approach’s default word
embedding is based on the term co-occurrence matrix called Term Frequency
Inverse Document Frequency (TFIDF). TFIDF vectors mostly contain redun-
dant features, contributing to the high dimensionality of the vectors. We apply a
dimensionality reduction technique called Principal Component Analysis (PCA)
to remove the redundant and co-related features from the vectors. The resultant
vectors are considered as a final output for clustering. The vectors generated for
the running example are of 1051 dimensions. After applying PCA (as shown in
Figure 2), 1047 features can be dropped since those features do not contribute to
the explained variance. Resultant vector for the issue 1292 is shown in Table 2.

Neural Network-based word embedding. Our approach also supports vectors
from the state-of-the-art Doc2Vec algorithm [14]. The Doc2Vec is designed for
learning paragraph vectors and can be later used for inferring vectors for unseen
paragraphs. Another neural network-based word embedding algorithm supported
by our approach is the FastText [3]. FastText is another neural network-based
approach for learning word vectors, utilizing character-level information. This
makes FastText an ideal choice for domain-specific NLP tasks (such as word
embedding for requirements). Note that vectors obtained from neural network-
based word embedding usually do not require dimensionality reduction.

2.2 Clustering existing (vectors of) customer requirements aid the case-based
recommendation process for the PL asset’s reuse. This is done by predicting
clusters for new customer requirements in the existing clusters, and the nearest
neighbors’ top reused PL assets are recommended for reuse. We use the K-Mean
algorithm to cluster the vectors of existing customer requirements iteratively.
While clustering the existing requirements, we also keep track of the links to
the reused PL assets. This step produces clusters containing the vectors of ex-
isting requirements. The produced clusters are stored for later use. The running
example is clustered into two clusters, shown in Table 3.

C. Asset Reuse Recommender In this final step, the new customer require-
ments are cleaned following the same pre-process pipeline. The cleaned customer
requirements are given as an input to the word embedding model obtained from
the training phase. The model infers (computes) a vector for each customer
requirements using the learned policy. The computed vectors for all new re-
quirements are given as an input to the K-Means model to predict clusters for
the new requirements’ vectors in the existing clusters. For each new requirement,
the existing closest customer requirement from the predicted cluster is selected,
and their reused PL assets are retrieved. The retrieved PL assets (five at most)
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Table 4: Generated Reuse recommendations

(a) For the running example

Input: 1517

Reuse Sim. Score Based on

1516 0.84 1519
1397 0.06 1424

(b) For one industrial requirement

Input: CUS-REQ-450

Reuse Sim. Score Based on

PL-1249 0.988 CUS-REQ-449
PL-1252 0.939 CUS-REQ-451
PL-906 0.901 CUS-REQ-426
PL-1069 0.879 CUS-REQ-409
PL-1333 0.622 CUS-REQ-377

are then ranked based on the similarity between their source vectors (existing
requirements) and the new vector (new requirement). Note that the approach
recommends multiple PL assets because one requirement can be satisfied by one
or many PL assets. For the running example, issue 1517 (predicted cluster, in
this case, is 1) is given as an input to the Asset Reuse Recommender, and the
output is shown in Table 4a. The Reuse column shows the recommended PL as-
sets based on similarity (Sim. Score) with the existing customer requirements
shown in Based on column. The actual (ground truth) reused PL asset is shown
in italic in Table 4a. Table 4b shows a real run of the approach on an industrial
case.

3 Evaluation

This section presents the evaluation of our approach on a data-set from the
railway industry in detail. From a high-level view, we started the evaluation by
considering the following four research questions.

RQ1. Which word embedding algorithm produces the most accurate results in
the context of PL asset reuse recommendation? We investigate the accuracy of
different word embedding algorithms for PL asset reuse recommendation on a
real industrial data set.

RQ2. Are pre-trained word embedding models suitable in the context of PL
asset reuse recommendation? Since neural network-based word embedding mod-
els require large amounts of data for training (which might not be available), we
investigate if pre-trained models can be used for reuse recommendations.

RQ3. What is the execution time of different pipelines for reuse recommen-
dations? We aim at identifying the most efficient pipeline in terms of the time
it takes to produce recommendations.

RQ4. What are the potential benefits, drawbacks, and improvements in our
approach in an industrial setting? This research question captures the engineers’
qualitative view on the results of the approach.

Implementation. All the pipelines (shown and discussed in sub-section 3) are
implemented in Python 3. The pipelines are configured to process spreadsheets
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Table 5: Summary of the pre-processing
Reqs. Before After

- Words AVG. Words Words AVG. Words

188 4527 24.079 2421 12.877

containing requirements and their reuse links exported from the requirements
management tool. For neural network-based word embedding algorithms, we
used the Gensim implementation [23], and for TFIDF word embedding and clus-
tering, we used sci-kit learn implementation [20].

Data Collection and Preparation. We used two recently deployed industrial
projects (derived products of the PPC product line at the company). The SPL
is actively developed in the safety-critical domain by a large-scale company fo-
cusing on the development and manufacturing of railway vehicles. A manual
reuse analysis was already performed on the customer requirements of these two
projects, and therefore the data set contains the ground-truth.

We selected a relevant subset of requirements out of the requirements avail-
able in the two documents. We removed the non-requirements (explanation text
and headings) inside both documents. The rest of the requirements were further
filtered out by excluding 78 requirements having reuse links to a PL asset that
is not reused by any other requirement in the data-set. A final set of 188 re-
quirements was reached. The application of the above criteria was necessary to
ensure that the training phase uses suitable data. The PL reuse frequency in the
date-set is spanning between 2 and 12. The text of the 188 selected requirements
was passed through our pre-process pipeline (outlined already in Figure 1). Ta-
ble 5 reports the total number of words and an average number of words per
requirement both before and after pre-processing.

Besides, we conducted a two hours face-to-face focus group session. A fo-
cus group instrument was developed containing three topical questions based
on RQ4. We recruited a convenience sample of individuals affiliated with our
industrial partner’s organization. The participants in the focus group were five
employees, all with more than ten years of experience. The participants work
closely with requirements, bids, and product line engineering during their work
hours. Note here that three of the participants were involved in the product
derivation and requirements engineering activities in the selected projects. The
interview was transcribed and then analyzed using Braun and Clarke’s guidelines
for thematic analysis [5]. Themes are high-level abstractions of the transcribed
data. In our case, these themes were predefined and extracted from RQ4 (i.e.,
benefits, drawbacks, and improvements). We did a data-driven analysis for the
actual thematic analysis without trying to make it fit into an existing theoret-
ical framework. The transcription was coded independently by two authors to
encourage diversity of codes, sub-themes, and themes.
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Evaluation Metrics for the Pipelines. We used the standard metric accuracy
(A) and exact match percentage (E) for the evaluation of our pipelines. We
randomly selected 25% of our data for validation. A recommendation is correct
if the recommendations generated by the pipeline contains the ground truth.
In our case, accuracy is calculated as the ratio between the total number of
correct recommendations and total instances in the test set. In addition, we use
a stricter evaluation metric (i.e., exact match percentage). This is calculated
using the ratio between the number of exactly correct recommendations (where
the ground truth is ranked on the top of the list of recommendations) and the
total number of instances in the test set.

Procedure. To answer our first three research questions, we executed our ap-
proach with different word embedding algorithms and included both term doc-
ument matrix-based and neural network-based word embedding algorithms. We
also include a random recommender as a pipeline. Two neural network-based
pre-trained models (trained on Wikipedia documents) are also included in our
evaluation to answer RQ2. Each pipeline (other than random) is given the same
randomly selected 75% of the 188 requirements as the training set and the rest
of the 25% of the data is used to validate the pipeline. Figure 3 shows the ex-
ecution process of the resultant pipelines. Due to randomness involved in the
algorithms, each pipeline is executed 15 times.

All the pipelines were executed on an Apple MacBook Pro, 2018 with Intel
Quad-Core i7 Processor (2.7 gigahertz) and 16 gigabytes of primary memory.
We further discuss the execution setup for each pipeline in the remainder of this
section.

The Random pipeline was configured to randomly generate (for each require-
ment in the test set) five unique reuse recommendations from the list of 50 PL
assets.

The TFIDF pipeline was configured to the maximum (0.5) and minimum (6)
term frequencies. We considered the n-gram ranging from 1 to 8. The TFIDF
pipeline is configured to build the matrix on the training set. The produced vec-
tors (of 2750 dimensions) from the training-set are reduced with PCA configured
to automatically select the top features (i.e., 95% or more of the explained vari-
ance of the data is captured by the selected dimensions). The reduced vectors of
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Table 6: Summary of pipelines validation
Stats. Random TFIDF D2VT D2VW300 FTT FTW300

%→ A E A E A E A E A E A E

AVG. 11.73 2.24 74 57.4 10.71 2.24 65.2 41.45 56.53 43.30 59.38 44.35

SSD 5.01 2.93 3.87 4.26 4.59 1.67 3.72 3.42 4.80 4.75 6.25 5.25

VARS 25.17 8.60 14.99 18.21 21.10 2.81 13.86 11.71 23.07 22.57 39.12 27.57

Table 7: Average time taken for pipelines (RQ3)
Stats. PP Ran. TFIDF D2VT D2VW300 FTT FTW300 C RG

- - - T I T I L(s) I T I L(s) I - -

AVG. 12.94 0.08 5.55 0.62 18.5 0.04 4.04 3.55 67.04 0.70 261.9 1.46 1.55 17.6

SSD 0.44 ≈0 0.33 0.06 5.36 ≈0 0.49 0.98 2.63 0.02 2.60 0.33 1.09 1.12

VARS ≈0 ≈0 0.11 ≈0 28.75 ≈0 0.24 0.97 6.92 ≈0 6.76 0.10 1.20 1.25

TT - - 38.26ms 50.63ms 4.07s 99.8ms 261.9s - -

86 dimensions from the PCA are stored and clustered using K-Means preserving
the reuse links to PL assets. We used the Elbow method to compute the number
of clusters using the vectors obtained from the PCA. Five clusters are used in
all pipelines. Figure 4 shows the K-Means clusters of the data-set (with clus-
ter’s centers in light black color), showing only two dimensions of the training
vectors obtained from one run. For each requirement in the test-set, the vectors
from the TFIDF are generated and are reduced by PCA. The reduced vectors
are plotted in the existing clusters produced by K-Means (during training), and
at-most five recommendations for reuse are generated by looking into the reuse
links of closest neighbors.

For Doc2VecTraining (D2VT) and Doc2VecWiki300 (D2VW300), a model is
trained with a vector size of 300. The model is configured to consider a minimum
term frequency of two. A pre-trained Doc2Vec model from the Gensim data7 is
also considered for this evaluation. The model has a vocabulary size of 35556952,
and a vector size of 300. The cleaned customer requirements are vectorized using
both of these configurations.

For FastTextTraining (FTT) and FastTextWiki300 (FTW300), a model is
trained with a vector size of 100. This model is configured to consider a minimum
term frequency of one. We also considered a pre-trained model with a vector of
size 300. The pre-trained model is trained on one million words from Wikipedia
on the sub-words level. The obtained requirements vectors are clustered, and
recommendations for reuse are generated.

3.1 Results and Discussion

To answer the stated research questions, we executed each pipeline 15 times
using the same training and test set (selected randomly in each run). We also
performed a focus group session with engineers. This section presents the answers
to all of our research questions with essential bits in Italic.

7 https://github.com/RaRe-Technologies/gensim-data
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RQ1: Accuracy Results. Table 6 shows the average accuracy and exact match
results (from 15 runs) for each pipeline (shown in Figure 3). The best accuracy
and exact match ratio percentage are shown in bold text in Table 6. To sum-
marize each run of each pipeline, we presented some of the descriptive statistics
in the Stats. column. A sample standard deviation (SSD), and sample vari-
ance (VARS) is presented to give insights on the runs. Automated reuse analysis
using term document matrix-based pipeline (TFIDF) outperformed all other ap-
proaches in terms of accuracy (74%) and exact match percentage (57.4%).

The second best word embedding algorithm (in terms of accuracy) in our con-
text is the pre-trained Doc2Vec model (D2VW300). However, the exact match
percentage score for the FastText pre-trained model is higher than the D2VW300
pipeline. It is also important to note that the Random pipeline outperformed the
D2VT pipeline. This is because the neural network-based approaches require a
huge data-set for learning. In cases where the data-set is small, self trained mod-
els for word embedding should be avoided. However, the FastText’s self-trained
(FTT) pipeline performed significantly better than the D2VT pipeline. This
is because the FTT model utilizes sub-word information for learning, and this
makes it more accurate than other self-trained pipelines.

RQ2: Pre-Trained Models’ Results. Table 6 includes results from two pre-
trained models (D2VW300 & FTW300). Our results suggest that the use of pre-
trained models might be good in cases where the data-set is small. The sec-
ond best pipeline for reuse recommendation is the pre-trained Doc2Vec pipeline
(D2VW300). Pre-trained models in automated reuse analysis produced more ac-
curate results than self-trained models. This is because of less data provided to
the self-trained models. In many cases, transfer learning might be an ideal choice
and is one of our future focuses.

RQ3: Execution Time Results. Table 7 shows the time taken by each pipeline.
Stats. column shows average time (AVG.), Sample standard deviation of time
(SSD), and sample variance of time (VARS). Pre-processing time (PP), each
pipeline execution time, clustering time (C), and recommendation generation
time (RG) are also shown in the table. All the values (except model loading) are
the time taken values per requirement and are in milliseconds (ms). The time for
model loading (L) is the time taken (in seconds) to load the pre-trained model.
The time for the Random (Ran.) pipeline is the average time taken (ms) per
recommendation. The total time (TT row) represents the total average time per
requirement for the pipeline execution (PP + Pipeline + C + RG). TFIDF is
the most efficient pipeline (in terms of execution time per requirement) for PL
asset reuse analysis.

Note that the Random pipeline takes even less time than the TFIDF pipeline,
but produces inaccurate results. Our results also suggest that the FastText based
pipelines might take significantly more time than other pipelines. However, this
does not limit the application of FastText based pipelines in practice (since the
model is loaded once per run).

RQ4: Focus Group Results. To answer this research question, we performed
a thematic analysis of the data obtained from the focus group. In the first 15
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minutes, our approach with the TFIDF pipeline was presented and executed on
the data-set. After the pipeline generated the recommendations for the test-set),
the participants reviewed six cases (i.e., one exact match, one with ground truth
ranked down in the list, and four incorrect cases). After the participants reviewed
the recommendations and their similarity scores, the participants were asked to
discuss how accurate these recommendations are and what are the potential
benefits, drawbacks, and improvements in the use of our approach. The rest of
this section presents the findings related to three themes (also in Table 8).

Table 8: Identified sub-themes for the main themes.
Theme Sub-Theme

1. Benefits 1.1 Aid in the automation of PL reuse analysis.
1.2 Relevant and useful recommendations.
1.3 Quicker reuse analysis.

2. Drawbacks 2.1 Lack of proper documentation.
2.2 Effective selection of the training set.
2.3 Tool integration in development processes.

3. Improvements 3.1 Threshold tuning for similarity values.
3.2 Careful consideration of cases for training.

Theme 1. Participants found that our approach is beneficial for automating
the process of reuse analysis. Currently, this analysis is manual, and the use of a
tool that recommends reuse can be very useful for quicker analysis. Several par-
ticipants stated the pipeline could provide relevant and useful recommendations
early on in the development process and can avoid redundancy of assets.

Theme 2. Several challenges has been identified during the focus group. Ac-
cording to the participants, the lack of proper documentation for how this ap-
proach works and the underlying algorithms used for recommendations can hin-
der the adoption of such a tool. Another challenge mentioned by the participants
was the effective selection of the training set of requirements. When asked how
the practitioners would integrate the reuse analysis method into their process
setting, we got varying answers depending on the team setting. However, all
practitioners saw the full potential of automated reuse analysis if integrated into
their existing tool-chains.

Theme 3. After reviewing the six cases, the participants discussed the ac-
curacy results. For two cases, the recommendations were considered correct,
relevant, and useful. In four other cases, the recommendations given by our ap-
proach were considered wrong. Note here that for these cases, the similarity
values were consistently low. Participants suggested that the pipeline should not
recommend reuse in cases where the recommendations are based on a similarity
value below a certain threshold. For one of these cases, our approach accurately
recommended the PL asset, but participants stated that it was the wish of the
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customer to include a relevant alternative PL asset. In addition, participants
recommended that the pipeline should not include such cases for training.

3.2 Validity Threats

In this section, we present the validity threats following guidelines proposed by
Runeson and Höst [24].

The requirements-level similarity might not be the best predictor of ac-
tual software reuse. To mitigate the internal validity threat, we verified that
requirements-level similarity could be used to recommend PL asset reuse. This
initial verification was performed by the use of topic modeling, where we verified
that requirements sharing common topics are indeed realized by common PL
assets. We also reviewed the current process of reuse analysis at our industrial
partner’s company and found that requirements-level similarity plays a signifi-
cant role in reuse analysis.

Our results are based on data from one company using a data-set of 188 re-
quirements created by industrial engineers. To mitigate potential external valid-
ity threats, we based our evaluation on requirements from two different projects,
originated from different sources. Even if the number of requirements can be con-
sidered quite small, we argue that having access to real industrial requirements
created by engineers working in the safety-critical domain can be representa-
tive. More studies are needed to generalize these results to other systems and
domains. In addition, our work is based on the assumption that traceability
links are maintained between assets and requirements. This assumption limits
the applicability of our approach.

Finally, we address the threats to the reliability of our results by providing
enough details on the setup of each pipeline. Our results are also based on 15
runs of each pipeline to address the randomness involved in the process.

4 Related Work

The related work in this area can be classified into three different lines of re-
search. This section summarizes each class of related work.

Feature Extraction. Over the years, a huge amount of research has been fo-
cused on feature model extraction and feature recommendation for SPL [16].
Most of these approaches look for commonalities and variability to suggest fea-
tures and extract feature diagrams. Public documents are being used for mining
common domain terminologies and their variability(e.g., [9]). These approaches
focus on aggregating natural language requirements to extract a high-level sys-
tem feature model. Latent semantic analysis (LSA) is used to calculate the sim-
ilarity between requirements pairs [27]. This approach clusters the requirements
based on similarity and extracts feature trees. The Semantic and Ontological
Variability Analysis (SOVA) [11] uses semantic role labeling to calculate behav-
ioral similarity and generate feature model. In addition, bottom-up technologies
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for reuse (BUT4Reuse [17]) are used for reverse engineering variability from
various artifacts.

Requirements Reuse. Another class of approaches [10] are focused on deriving
and structuring a generic set of requirements that can be reused for PL and con-
figured for derived products. For example, Zen-ReqConfig [15] uses models to aid
in the structuring of requirements, reuse, and configuration at the requirements
level. Arias et al. [2] proposed a framework for managing requirements that uses
a defined taxonomy to aid the reuse of requirements in an SPL. Pacheco et al.
proposed an approach for functional requirements reuse focused on small com-
panies with no PL architecture [19]. In addition, Moon et al. [18] proposed a
systematic method for deriving generic domain requirements as core reusable
assets by analyzing the existing legacy requirements.

Traceability. Another set of approaches are focused on traceability link recov-
ery [4]. These approaches recommend possible traceability links between different
artifacts (e.g., requirements, source code). Yu et al. proposed an approach to re-
cover traceability links between features and domain requirements [28]. The ap-
proach extracts and merge application feature models and establish their trace-
ability links. Wang et al. proposed a co-reference-aware approach to traceability
link recovery and also proposed an algorithm for automated tracing of depend-
ability requirements [26]. IR-based approaches for traceability link recovery are
well-known solutions to trace recovery (e.g., [7]. These approaches mostly uses
term-document matrix-based similarity for tracing requirements.

The approaches classified in Feature Extraction & Requirements Reuse cat-
egories are focused on extracting feature models and domain requirements. On
the other hand, the approaches included in the Traceability category are closely
related to our approach since these are focusing on establishing the links be-
tween requirements and other artifacts. Compared to our work, the traceability
approaches are not directly recommending the reuse of PL assets in a PL context
but can be tailored for reuse recommendation. In addition, existing approaches
also do not make use of existing cases for reuse reasoning. To the best of our
knowledge, we are the first to support the reuse analysis of PL assets in a context
of a clone-and-own reuse process.

5 Conclusion

In this paper, we proposed an automated approach for requirements-level reuse
analysis of product line assets. The approach uses existing customer requirements
to recommend possible PL assets that can be reused to implement new require-
ments. We evaluated our approach in the railway industry. The results show that
the proposed approach was able to recommend reuse of PL assets with 74% av-
erage accuracy and 57.4% exact match ratio. We also presented an evaluation of
five different pipelines with varying word embedding algorithms, which demon-
strated that the document matrix-based word embedding algorithm performed
significantly better than other pipelines. We also found that the self-training of
the neural network-based word embedding algorithm should be avoided if the
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data-set is small. In such cases, transfer learning should be performed with ex-
isting pre-trained models. Our results also show that the Doc2Vec pre-trained
model performed better than the FastText’s pre-trained model. In terms of the
practicality of the pipelines, we found that the maximum end-to-end execution
time of the approach is around 262 seconds. The validation of the results in our
focus group session with five engineers also confirmed the applicability of such
pipelines in practice. In particular, results shows that the approach automates
the reuse analysis with highly relevant reuse recommendations.

Our future work includes an empirical evaluation of requirements-level reuse
recommenders. We aim to investigate the teams performing reuse analysis with
and without a reuse recommender. Investigating Bidirectional Encoder Repre-
sentations from Transformers (BERT [8]) model for requirement-level reuse is
also one of our future focus.
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4. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empirical Software
Engineering 19(6), 1565–1616 (2014)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative research
in psychology 3(2), 77–101 (2006)

6. Dag, J.N.o., Gervasi, V., Brinkkemper, S., Regnell, B.: A linguistic-engineering
approach to large-scale requirements management. IEEE Softw. 22(1), 32–39 (Jan
2005)

7. De Lucia, A., Oliveto, R., Tortora, G.: Adams re-trace: Traceability link recovery
via latent semantic indexing. In: International Conference on Software Engineering.
p. 839–842. ICSE ’08, ACM, New York, NY, USA (2008)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

9. Ferrari, A., Spagnolo, G.O., Orletta, F.D.: Mining Commonalities and Variabili-
ties from Natural Language Documents. In: International Software Product Line
Conference. pp. 116–120. ACM, Tokyo, Japan (2013)

10. Irshad, M., Petersen, K., Poulding, S.: A systematic literature review of software re-
quirements reuse approaches. Information and Software Technology 93(September
2017), 223–245 (2018)

11. Itzik, N., Reinhartz-Berger, I., Wand, Y.: Variability Analysis of Requirements:
Considering Behavioral Differences and Reflecting Stakeholders’ Perspectives.
IEEE Transactions on Software Engineering 42, 687–706 (2016)



16 M. Abbas et al.

12. Krueger, C.W.: Software reuse. ACM Computer Surveys 24(2), 131–183 (1992)
13. Lam, W., McDermid, T., Vickers, A.: Ten steps towards systematic requirements

reuse. In: International Symposium on Requirements Engineering. pp. 6–15 (1997)
14. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.

CoRR abs/1405.4053 (2014), http://arxiv.org/abs/1405.4053
15. Li, Y., Yue, T., Ali, S., Zhang, L.: Enabling automated requirements reuse and

configuration. Software and Systems Modeling 18(3), 2177–2211 (2019)
16. Li, Y., Schulze, S., Saake, G.: Reverse engineering variability from natural language

documents: A systematic literature review. In: Proceedings of Software Product
Line Consference. vol. 1, pp. 133–142. Sevilla, Spain (2017)
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