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a b s t r a c t

Bandwidth allocation is an important and influential factor in enhancing the performance of the data
centers’ nodes. In this paper we propose bwSlicer, a framework for bandwidth slicing in cloud data
centers, that sheds light on the virtues of effective dynamic bandwidth allocation on improving the
system performance and energy efficiency. Three algorithms are investigated to deal with this issue.
In the first algorithm, called Fair Bandwidth Reallocation (FBR), two virtual machines co-hosted on
the same node conditionally exchange bandwidth slices based on their requirements. The second
algorithm, called Required Bandwidth Allocation (RBA), periodically monitors the co-hosted virtual
machines and adds/removes bandwidth slices for each of them based on their bandwidth utilization.
The third algorithm, called Divide Bandwidth Reallocation (DBR), divides the bandwidth of the virtual
machine into slices once it finishes its execution, and distributes the slices among the co-hosted
running virtual machines according to a specific policy. The proposed bandwidth slicing algorithms are
emulated in a virtualized networking environment using the Mininet network emulator. The emulation
results demonstrated a promising improvement ratio in execution time and energy consumption
reaching up to 30%. These results present a call for action for further research into bandwidth slicing
and reallocation as a viable complement to other energy-saving techniques for enhancing the energy
consumption in cloud data centers.

© 2020 Published by Elsevier B.V.

1. Introduction

Cloud computing is the most studied model in the last decade
due to its innovative characteristics and wide range of services.
Many studies focused on investigating the effect of virtualization
management on improving the performance and energy effi-
ciency of the nodes on the cloud data centers. However, most
studies solely considered task resource requirements of proces-
sor, memory, and storage without considering bandwidth re-
quirements and its effects on performance and energy consump-
tion. Performance and energy efficiency in the data centers can
be enhanced by observing how resources of such data centers are
utilized to serve the jobs that request some services.

In the cloud computing model, Virtual Machines (VMs) are
owned by different users or enterprises. This implies that the
resulting workload is of mixed types of jobs. The mixed workload
is formed by combining various types of jobs. These jobs request
and utilize the resources at the same time. Each job has its own
specific requirements. Bandwidth is one of the resources utilized
by the VM allocated to the job. Accordingly, two or more VMs
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with different bandwidth requirements can be hosted on the
same Physical Machine (PM). Unfair initial bandwidth allocation
among the VMs definitely affects the performance of the sys-
tem, as well as influences the energy efficiency. Therefore, the
bandwidth must be fairly distributed among the VMs of the same
PM.

This paper presents and discusses the concept of ‘‘Bandwidth
Slicing’’. Three algorithms are proposed under the umbrella of this
approach to tackle the bandwidth requirements on data centers’
nodes. The first algorithm, called Fair Bandwidth Reallocation
(FBR), reallocates the bandwidth between a pair of VMs based
on requirements of the jobs executed on these VMs at a specific
period of time. The core idea of FBR is to maximize the utilization
of the bandwidth of the PM. One VM (The Granter VM) provides
a specific amount of its bandwidth to another VM (The Grantee
VM) when it is idle, and then regains this amount after a pe-
riod of time. The second algorithm, called Required Bandwidth
Allocation (RBA), is proposed to dynamically allocate bandwidth
to the VMs that are hosted on the PM. RBA treats bandwidth
of VMs as a shared resource and allocates only the amount of
bandwidth required by the VM(s) at that specific time. The core
idea here is to monitor the bandwidth of the VMs periodically
and to reallocate the bandwidth among these VMs according
to their actual required bandwidth. The third algorithm, called
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Divide Bandwidth Reallocation (DBR), is proposed to divide the
amount of the bandwidth allocated to the VM that has finished its
execution among the VMs that are hosted on the same PM. DBR
divides the bandwidth of the VM that has finished its execution
(The Terminated) once it finishes the execution of the job allocated
to it among the VMs that are hosted on the same PM (The
Working VMs). DBR can divide the bandwidth amount based on
several suggested policies. The emulation results demonstrated
major improvements in execution time and energy consumption
reaching up to 30% improvement ratio. These results shed light on
the importance of directing further research towards bandwidth
slicing and reallocation as a means for reducing energy consump-
tion in the cloud data centers together with other complementary
energy saving techniques.

The main contribution of this paper lies in defining the con-
cept of ‘‘Bandwidth Slicing’’, and in designing and implementing
the bandwidth slicing framework, which comes with three algo-
rithms, aiming to reduce the total execution time and enhance
the energy efficiency. These algorithms are:

(1) FBR for reallocating bandwidth among a pair of VMs hosted
on the same PM,

(2) RBA that dynamically allocates the bandwidth to VMs
when required, and

(3) DBR that divides the bandwidth of the terminated VM
among the other VMs hosted on the same PM.

The three proposed algorithms, lead to enhance the perfor-
mance which, in turn, increases the energy efficiency.

The rest of this paper is organized as follows: Section 2 is
the motivation for this work. Section 3 presents some previous
research works that stresses on the concept that bandwidth is
a shared resource which requires better utilization. Section 4
describes the system model we follow in this work. The problem
description and the proposed algorithms are detailed in Sec-
tion 5, while the performance analysis and system simulation are
described in Section 6. Conclusions are presented in Section 7.

2. Motivation

The wide adoption of cloud computing services is predicated
by the ability to meet the diverse user’s requests with varied
requirements for latency, scalability, and availability while deliv-
ering multiplicity of use cases.

The cloud services are offered to serve a huge number of users
through a pooling of heterogeneous physical resources (CPU,
Memory, Storage, and Bandwidth) hosted in cloud data centers.
Supported by the virtualization concept, users are expected to
efficiently share/utilize the data centers resources, so that many
VMs could be consolidated onto a fewer number of PMs. Beside
its benefits, in term of utilization and energy efficiency, consoli-
dating VMs on PMs can also create technical challenges that may
affect the performance of the provisioned services. To avoid these
challenges, hypervisors must allocate enough physical resources
(CPU, Memory, Storage, and Bandwidth) to each virtual entity in
order to meet its performance goals.

A ‘‘Fixed-Size-Fits-All’’ approach for co-hosted VMs serving dif-
ferent users/clients with different requirements is not viable any-
more, so the resources should be granted and adjusted dynami-
cally. Focusing on bandwidth as a physical resource, the key to
this shift lies in how the co-hosted VMs can cooperate with each
other in developing a ‘‘Win-Win’’ bandwidth sharing strategy.

The core idea of the bandwidth slicing approach is to di-
vide the bandwidth allocated to the running VMs into slices in
such a way that all VMs are mutually benefited and satisfied.
Accordingly, all VMs consider the host PM as a cooperative op-
erating environment, rather than a competitive one. Bandwidth

slicing can be defined as the ability to orchestrate the capabilities
of the bandwidth, as a physical resource, among different VMs
co-hosted on the same host.

To clarify our approach, consider the following two scenarios:
Scenario one: A data intensive application (e.g. web applica-

tion) is co-located with a compute intensive application (e.g. sci-
entific application) on the same host. A data intensive application
requires high bandwidth capabilities in the data stage in/out
processes, whilst a compute intensive application mostly request
compute resources. Data intensive and compute intensive appli-
cations do not comprehensively use the same physical resources
of their host. A traditional bandwidth division will not be able to
cater above demands efficiently. Hence cloud providers/operators
will benefit from a more flexible sliced bandwidth design to meet
the requirements of both types of applications.

Scenario two: Different service providers/vendors may provide
the compute and/or bandwidth for different companies which
operate or manufacture connected cars. Providers/vendors are
able to allocate dedicated virtual resources to different car man-
ufacturers and operate them independently. Each car manufac-
turer may be equipped with different services such as traffic
efficiency and emergency support. Providers/vendors can create
bandwidth slices to serve all car manufacturers in a mutually
beneficial manner, such that one car manufacturer can grant a
bandwidth slice from its already dedicated bandwidth to another
car manufacturer for a specific period of time in some circum-
stances. The granting process is done under the management of
the providers/vendors.

The proposed bandwidth slicing approach, capitalizes on the
hypervisor’s abilities in reconfiguring the VMs configurations to
match the needs of the applications served by the VMs co-hosted
on the same PM. This approach can offer several benefits by
enhancing the ability of providers and operators to deploy, when
possible, only the specific amount of bandwidth needed to serve
specific use cases and users. Adopting bandwidth slicing en-
ables providers and operators to provide service differentiation,
which is most desirable because cloud providers usually serve an
unprecedented diversity of users and applications.

In the proposed bandwidth slicing approach, all parties are
mutually benefited due to the following facts:

• When a VM does not need a specific amount of bandwidth
(the slice) for a specific period, it can lend the slice to
another VM on the same host, in a competitive cost. Thus,
it can lend a bandwidth slice and get part of the amount
already paid for reserving its own total bandwidth.

• The VM which needs extra bandwidth can pay less if it gets
a bandwidth slice from another co-hosted VM rather than
buying it from the provider directly.

• The provider can get some fees for carrying out the manage-
ment processes.

Although bandwidth slicing seems a promising approach in
optimizing cloud and edge services, a lot of issues need to be
investigated to enable it, including: Bandwidth slicing criterion,
Bandwidth slicing division, and Coordinating the slices.

This work presents algorithms under the umbrella of bwSlicer
framework to investigate and enable the bandwidth slicing ap-
proach.

3. Related works

Many previous works were dedicated to the allocation of
resources to the VMs that are requested by the users’ jobs and
applications. Most of the existing works in the literature only con-
sider the availability of CPU and memory as resources allocated to
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Table 1
Related works.

Related work Network BW VM BW Design objective(s)

[1] ✓ Maximize the throughput.

[2] ✓ Minimize the communication overhead,
Minimize the execution time.

[3] ✓ Maximize the network utilization.

[4] ✓ Maximize the network utilization.

[5] ✓ Maximize the network utilization.

[6] ✓ Minimize the execution time.

[7] ✓ Minimize the communication overhead.

[8] ✓ Maximize the Throughput,
Minimize the communication overhead.

[9] ✓ Maximize the network utilization.

[10] ✓ Maximize the network utilization.

[11] ✓ Maximize the throughput,
Maximize the network utilization.

[12] ✓ Maximize the throughput,
Maximize the network utilization.

[13] ✓ Minimize the latency,
Maximize the network utilization.

[14] ✓ Minimize the number of running PMs.

[15] ✓ Minimize the execution time,
Maximize the BW utilization.

[16] ✓ Maximize the network utilization.

[17] ✓ Maximize the network utilization.

[18] ✓ Maximize the network utilization.

bwSlicer ✓ Maximize the BW utilization,
Minimize the execution time,
Minimize the energy consumption.

VMs, but only a limited number of them focused on the concept
of bandwidth limitation in enhancing the VMs performance.

Moreover, the revolution of big data adds new challenges
to the traditional cloud solutions (e.g., latency, network band-
width) [19], and identifies the need for novel approaches which
take into account the bandwidth as an essential resources to
overcome such challenges.

To date, approaches which are proposed to investigate the
bandwidth limitation and its effects from different perspectives
(see Table 1) can be categorized into the following two main
themes.

3.1. Network bandwidth

Approaches in this group focus on the network bandwidth
to enhance the system performance. The work in [1] proposes
a model that allocates bandwidth requested by a specific job
in a way that maintains the job requirements, and maximizes
the system throughput by using a linear programming formu-
lation. However, this model suits the heterogeneous computing
paradigms, and thus,it is not convenient for cloud computing.
In [2], a decentralized affinity-aware migration technique is pre-
sented. The technique reduces the network communication cost
and improves the applications’ runtime. By monitoring the net-
work affinity between pairs of VMs, the authors integrate the
dynamism and heterogeneity in the communication patterns and
network topology, aiming to place heavily data-dependent or
communicating VMs on the available physical resources as close
to each other as possible.

The authors in [3] propose a bandwidth allocation algorithm
to categorize and place VMs of the same application into same
virtual networks, considering the network link in the scheduling
process. The algorithm follows a minimum congestion model to
avoid, as much as possible, sharing the same network link by

multiple sources. It should be mentioned here that the research
works presented in [2] and [3] do not consider the limitation of
other system resources such as CPU or memory.

In [4] and [5], the authors present a multi-port bandwidth-
bounded model for scheduling the divisible jobs/workloads. The
proposed model works on a heterogeneous master/worker com-
puting platform. After dividing the jobs/workloads, the master
sends out chunks to workers over a network in a single or
multiple rounds, such that the size and the number of chunks is
changed to optimize the usage of the total available bandwidth
of the network. The authors state that scheduling jobs is NP-
complete when CPU and memory resources are considered under
the bounded multi-port model. Thus, adding network bandwidth
as a parameter into the mix of resources further increased the
complexity of the scheduling process.

Aiming to reduce the total execution time of a set of running
VMs, the work presented in [6] proposes a bandwidth-aware
algorithm, called bandwidth-aware task-scheduling (BATS), for
divisible task scheduling in the cloud. The algorithm utilizes a
nonlinear programming method to solve the bounded multi-port
model in order to allocate the proper number of jobs to each
VM. In [7], the authors present an application-aware bandwidth
guarantee framework, called AppBag, to allocate the bandwidth
to VMs using only one-step ahead information. In addition, they
propose a VM migration algorithm to adjust the bandwidth allo-
cation and corresponding VM placement, subject to the network
demands variation in future execution phases. In [8], the au-
thors propose a model, called eBA, for bandwidth allocation that
provides end-to-end bandwidth guarantee for VMs under large
numbers of short flows and massive bursty traffic in cloud data
centers. eBA leverages a distributed VM-to-VM rate control al-
gorithm based on the logistic model under the control-theoretic
framework. The authors of [9] from Microsoft present a model
to reschedule VMs bandwidths. The model, called Measurement
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Based Fair Queuing (MBFQ), consists of two levels of schedul-
ing: the first level is the Microscheduler level which operates
cheaply and paces VM transmissions, and the second level is
a Macroscheduler that periodically redistributes tokens to Mi-
croschedulers based on the measured bandwidth of VMs. In [10],
the authors design a bandwidth allocation system embedded in
the cloud computing platform. The allocation system analyzes
some statistical data collected from the running VMs and pre-
dicts the bandwidth utilization of each VM for the next period.
Then, the system allocates the VMs bandwidth based on that
prediction. The work in [11] proposes a VM-friendly architec-
ture that achieves inner-VM switching and bandwidth allocation
functions based on the network hardware. The bandwidth al-
location process for each VM is performed depending on some
statistics, significantly to avoid any performance cost on the
CPU. To avoid any waste of bandwidth resources, the authors
of [12] present a bandwidth allocation approach. The approach is
working through two layers: static bandwidth guarantees at the
tenant layer, and a dynamic rate allocation at the application layer
to realize predictable performance. It comprises of three compo-
nents: the first component is a network abstraction model that
provides a simple and flexible way for tenants to specify network
requirements, the second component is a two-phase VM place-
ment algorithm that provides optimal combinations of ordering
policies and dispatching policies to meet multiple goals, and the
third component can achieve the fairness between guaranteed
and unguaranteed tenants in utilizing the unused bandwidth
resources. In [13], the authors propose a system framework,
called Trinity, to meet three goals simultaneously: bandwidth
guarantees for throughput-intensive applications, low latency for
latency-sensitive applications, and maintaining a fully utilize net-
work bandwidth. The framework consists of two parts: one Rate
Controller (RC) to determine the traffic rates, and a number of
VM-to-VM channels. Each pair of VMs has one VM-to-VM channel
to cooperate with each other for some measurements. The con-
troller and channels collaborating together to meet the targeting
goals. The work in [14] formulates the VM placement problem
as a bin packing problem, and solves it using a modified ver-
sion of the Whale Optimization Algorithm (WOA). The placement
decision depends on the available bandwidth of the nodes.

However, the works in [6–13], and [14] did not shed emphasis
on the internal or inner bandwidth of the VMs, instead, they focus
on the network bandwidth.

3.2. Virtual machine bandwidth

Approaches in this group focus on the internal VM bandwidth
to enhance the system performance. The work in [15] proposes an
algorithm that utilizes the bandwidth of one idle VM to increase
the quote of another VM allocated to serve the so-called urgent
job. The proposed algorithm computes the necessary bandwidth
amount required to meet the deadline of a VM allocated to an
urgent job, this amount is taken from another VM hosted on the
same PM. However, the work only aims to allocate additional
bandwidth amount to a specific job, which may negatively affect
other metrics, such as the energy efficiency of the PM. A new
bandwidth allocation protocol, called Falloc, was proposed in [16].
Falloc targets providing fairness across VMs hosted on the cloud
data centers. To design Falloc, the authors model the data cen-
ter’s bandwidth allocation as a bargaining game and propose a
distributed algorithm to achieve the asymmetric Nash Bargaining
Solution (NBS). Falloc is designed to guarantee bandwidth for
the VMs based on their bandwidth requirements and to share
residual bandwidth in proportion to specific weights given to the
VMs. The authors of [16] validate Falloc in [17] with experiments
under different scenarios and show that by adapting to different

network requirements of VMs, Falloc can achieve fairness among
VMs and balance the tradeoff between bandwidth guarantee and
proportional bandwidth sharing. In our previous work in [18],
two methods are presented to fairly share bandwidth among the
VMs co-hosted on the same PM, one method exchanges slices
of bandwidth between a pair of VMs, and the other exchanges
slices of bandwidth among all VMs on the host. Our current work
extended [18] with the addition of another algorithm. Also, all
algorithms proposed to reallocate the bandwidth amount among
VMs are discussed with further details, and extensive perfor-
mance evaluations are conducted to assess the effectiveness of
the bandwidth slicing algorithms.

However, the works presented in [15,16], and [17] did not aim
to enhance the energy efficiency in the data centers, while in [18],
the work did not evaluate the proposed methods.

It is worth mentioning that some previous works discussed
and tackled comparable concepts. The concept, called Network
Slicing, defined in [20] as a network service deployment model
that consists of three layers: (1) Service Instance Layer which
represents the supported services as instances, (2) Network Slice
Instance Layer which includes a set of network functions as
logical network instances to serve the Service Instance(s), and (3)
Resource layer which includes the available resources in the net-
work. Then, the work in [21] discusses Network Slicing concept in
details and presents its challenges and future research directions.
The concept of Edge Slicing is presented in [22]. The authors pro-
pose a modified version of the predictive placement strategy for
Virtualized Network Functions (VNF) in edge computing model.

However, they did not focus on the internal or inner band-
width of the VMs.

4. Bandwidth slicing framework

This section sheds light on the importance of slicing the band-
width and reallocating it in virtualized computing environments
aiming to enhance the performance and energy efficiency, and
describes the algorithms proposed in bwSlicer framework to
achieve this aim.

4.1. The aim of virtual machine bandwidth slicing

Estimating an exact amount of bandwidth required to execute
users’ jobs is not constantly guaranteed in cloud/fog computing
environments. In general, imprecise bandwidth estimation affects
the system performance and, on the long run, results in energy
waste.

Imprecise bandwidth estimation leads to two cases:

(1) Over bandwidth provisioning: this case results in low band-
width utilization. This may influence the performance of
the other VMs hosted in the same PM which, in turn,
wastes energy.

(2) Under bandwidth provisioning: this case results in reduc-
ing the throughput of the system by expanding the total
execution time of the jobs, which also wastes energy.

For both of the above cases, it is highly recommended to utilize
the bandwidth as a resource optimally.

It is worth mentioning that the network interface card (NIC)
in the PM uses nearly as much power in the idle state as when
it is active. This is fundamentally due to the requirements of
maintaining the network state for the purpose of ensuring avail-
ability and responsiveness [23]. Thus, it is reasonable to enhance
the bandwidth usage in order to maximize the NIC utilization
by reducing idle state time periods. In this case, the energy
consumed by the NIC is exploited optimally.

Optimal (or near optimal) bandwidth utilization can be
achieved by proposing algorithms to improve the ways of allo-
cating bandwidth to VMs dynamically.
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Fig. 1. The data center model.

4.2. System model

The model, which relies on the model presented in [24], is
represented by:

(1) A data center in the Cloud Computing Layer, or
(2) A micro data center in the Fog Computing Layer or in the

CloudLet.

As described in Fig. 1, each data center (or micro data center)
consists of n heterogeneous PMs. Each PMi has the following
resources: a multi-core CPU, an amount of memory, and internal
network bandwidth. PMs do not have a direct-attached storage,
whereas storage is provided by a Network Attached Storage (NAS)
or Storage Area Network (SAN) to enable any future live VM mi-
gration procedures. The concept of virtualization creates a virtual
version from these resources to be used by different VMs hosted
on the same PM.

The data center (or micro data center) has an essential unit
called Local scheduler, Local managers (one local manager resides
on each PM), and a Global manager (e.g., OpenStack or VMware
vCenter) which maintains the overall system’s resource utiliza-
tion of a set of PMs through interaction with their local managers.
The Local scheduler is responsible for allocating the demanded
VMs to the jobs submitted by cloud users, and then, scheduling
the VMs among the PMs in the data center. In serving the submit-
ted jobs, the Local scheduler ’s role stops in the scheduling process,
and at this point, the bandwidth reallocation role begins, which
is the responsibility of the Local managers and Global manager.
The Local managers and Global manager cooperate with each other
in order to utilize each PM’s full bandwidth capacity. The Local
manager specifies the bandwidth utilization of: (1) the PM, as
well as (2) all its hosted VMs. Based on the bandwidth utilization,
the granter and grantee VMs are nominated. At this point, the
VMM selects the VM that can grant its bandwidth (or part of
it) for a certain period of time. The Local manager informs the
Global manager about the Granter VM and the period of time for
this grant. Then, the Global manager informs the Local manager
about the amount of the granted bandwidth. The VMM selects
another VM co-hosted on the same PM and decides that it can
receive a specific amount of bandwidth for a certain period of
time. More details about the roles of the Local managers and
the Global manager are discussed in Procedures I, II, and III in
Section 5.

Notably, the number of nodes hosted on the micro data centers
is relatively small compared to the number of nodes hosted on
the data centers in the cloud. Also, the resource limitation in
the micro data centers is recognizable compared with cloud data

centers. Thus, adopting bandwidth slicing framework enhances
the performance of the micro data centers’ nodes.

Formally, the system represented by data center/micro data
center D consists of two main sets: PMs and VMs.

The set of PMs has p elements, PM = {PM1, PM2, . . . , PMp},
each PM has the following resources:

PM i = (PMCPU
i , PMSpeed

i , PMCPI
i , PMStorage

i , PMMemory
i , PMBW

i )

where:

• PMCPU
i : the number of cores in PMi.

• PMSpeed
i : the speed of the cores in MHertz (Million cycles per

second).
• PMCPI

i : the average number of cycles per instruction of the
PMi cores.

• PMMemory
i : the memory capacity of PMi in Mbytes.

• PMStorage
i : the storage capacity of PMi in Mbytes.

• PMBW
i : the bandwidth capacity of PMi in Mbytes per second.

The set of VMs consists of v elements, VM =

{VM1, VM2, . . . , VMv}, each VM is configured as:

VM i = (VMvCPU
i , VMSpeed

i , VMCPI
i , VMStorage

i , VMMemory
i , VMBW

i )

where:

• VMvCPU
i : the number of cores in VMi.

• VMSpeed
i : the speed of the VMi cores in MHertz (Million cycles

per second).
• VMCPI

i : the average number of cycles per instruction of the
VMi cores.

• VMMemory
i : the memory size dedicated to VMi in Mbytes.

• VMStorage
i : the storage dedicated to VMi in Mbytes.

• VMBW
i : the bandwidth dedicated to VMi in Mbytes per sec-

ond.

VMBW
i is dedicated to VMi, such that:

VM i is placed on PM j, and VMBW
i ≤ PMBW

j
However, this work is more concerned with bandwidth as a re-

source in the PMs. The virtualized shared bandwidth is described
as follows: Each PM in the data center has a specific bandwidth
capacity. If the PM hosts n VMs, then, the PM bandwidth capacity
is shared by n VMs. The amount of combined VMs bandwidth
capacities is less than or equal to the total bandwidth capacity
of the PM. This description is represented formally in Eq. (1) and
illustrated in Fig. 2.

PMBW
= VMBW

1 + VMBW
2 + · · · + VMBW

n + R (1)
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Fig. 2. The shared bandwidth for n VMs in one PM.

where:

• PMBW : the total PM bandwidth capacity
• VMBW

i : the bandwidth dedicated to VM i hosted on the PM
• R: the residual bandwidth after sharing the total bandwidth

capacity of the PM among VMs.

The resources of VMs are requested to serve cloud users. These
requests are represented as a set of independent j jobs, J =

{j1, j2, . . . , jj}. Each job has specification parameters represented
as:

ji = {Li,DLi, InputSizei,OutputSizei}

where

• Li is the length of jobi in MI (Million instructions)
• DLi is the deadline of jobi in seconds
• InputSizei is the size of the input files of jobi in Mbytes
• OutputSizei is the size of the output files of jobi in Mbytes

4.3. Optimization objective

The problem can be considered as an optimization function
which involves minimizing makspan of the VMs co-hosted on
the same PM, for all PMs on the data center. The optimization
function can be expressed as follows:

Min
p∑

j=1

v∑
i=1

T vmi
pmj (2)

such that:

T vmi
pmj =

(
InputSizei
VMBW

i

)
+

(
Li

VMSpeed
i

× VMCPI
i

)
+

(
OutputSizei

VMBW
i

)
(3)

where:

• T vmi
pmj : the total execution time when executing VM i on PM j.

• Li: the length of jobi measured in Million Instructions
• InputSizei and OutputSizei: the sizes of stage-in and stage-out

data of jobi respectively, measured in Mbyte. The stage-in
and stage-out data sizes are fixed for each job (static values),
and they can vary from one job to another (dynamic values).

• VMCPI
i : the average number of cycles needed to execute an

instruction using VM i.

Subject to the following constraints:

∀i ∈ {1, 2, . . . , v} :

p∑
j=1

xi,j , x ∈ {0, 1} (4)

∀i ∈ {1, 2, . . . , v} : ExT vmi,pmj ≤ DLi (5)

∀j ∈ {1, 2, . . . , p} :

v∑
i=1

VMBW
i × xi,j ≤ PMBW

j (6)

Constraint (4) ensures that each VM is hosted on only one PM.
The decision variable x is equal to ‘1’ if the VM is assigned to the
node, otherwise it is ‘0’. Constraint (5) makes sure that the actual
total execution time of all VMs does not exceed the specified
deadline. Constraint (6) is a capacity constraint to ensure that,
for all PMs hosted on the data center, the total amount of VMs’
bandwidths is less than or equal to the physical PMs’s bandwidth.

5. Bandwidth slicing algorithms

To tackle the problems of performance degradation and energy
waste in the data centers’ nodes, this work proceeds in two ways:

(1) Speeding up the execution time of the jobs submitted to
cloud data centers: the PMs running time is reduced, and
therefore, energy consumption is decreased on the long
run.

(2) Overlapping bandwidth of the VMs: Overlapping means
that the bandwidth of the VMs can overlap and cooper-
ate with each other in order to maximize the bandwidth
utilization, and thus enhance the energy efficiency as well.

This work proposes a bandwidth slicing framework which
comes with three directions, each has its own algorithm aiming
to reduce the total execution time and enhance the energy ef-
ficiency. The three proposed algorithms, which are described in
details in the next sections, lead to enhancing the performance
which in turn increases energy efficiency.

5.1. Jobs execution

Job execution is mainly divided into data processes (data
stage-in and data stage-out) and compute processes (actual ex-
ecution) [25]. The FBR, RBA, and DBR algorithms exploit the
sequence of the job execution process to improve the utilization
of the bandwidth of the cloud and fog nodes. The stage-in process
depends on the VM storage and bandwidth. In modern data
centers, storage is provided as a NAS or a SAN that is accessible
by all VMs in order to enable live VM migration. Therefore, the
stage-in process for any job is speeded up when increasing the
amount of bandwidth of the VM allocated to that job. Refer to
Fig. 3.

In cloud and fog paradigms, VMs are owned by independent
individuals or enterprises with various requirements. This im-
plies that the resulting workload consists of mixed types of jobs.
The mixed workload is formed by combining various types of
applications, such as compute intensive applications and web
applications. These applications request and intensively utilize
different resources at an exact period of time (specific time slice).
A VM allocated to a compute intensive job (usually its bandwidth
can be idle for a certain period of time since the compute inten-
sive job utilizes compute resources rather than storage and/or
bandwidth resources) can be combined with another VM allo-
cated to a data intensive job (VM allocated to data intensive
job usually requires more bandwidth during data stage-in and/or
stage-out process, as the data intensive job utilizes storage and/or
bandwidth resources rather than compute resources) on the same
PM.
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Fig. 3. The job execution sequence.

5.2. The FBR algorithm

As explained in the previous section, when co-hosting a com-
pute intensive application and a web application on the same
host, different resources at an exact period of time are requested
to serve those applications. In this case, the VM of idle bandwidth
(Granter VM) can grant its idle bandwidth amount (or part of it) to
another VM (Grantee VM) for a certain period of time, this amount
is called a bandwidth slice. This will decrease the duration of time
needed for executing the job served by the Grantee VM, as the
time needed to finish the data stage-in for any job is reduced. This
enhances performance of the cloud PM hosting the Granter and
Grantee VMs. Consequently, energy efficiency of the data center
(or micro data center) is enhanced.

In order to prevent the idle state of all the VMs’ bandwidth,
FBR proposes a solution to utilize the PM’s full bandwidth capac-
ity. Bandwidth utilization for any VM (VMBWutil

i ) can be calculated
as presented in Eq. (7):

VMBWutil
i =

(
usedVMBW

i

VMBW
i

)
× 100 (7)

When the VMBW
Granter amount that is dedicated to a specific

VM, termed as the VMGranter , is idle while executing the job (in
other words, the bandwidth utilization is low), releasing some
amount of VMBW

Granter from VMGranter (bandwidth slice) for a certain
period of time can be very efficient. The released amount from
VMBW

Granter is added to another amount of bandwidth, VMBW
Grantee,

that is dedicated to another VM, called VMGrantee, to speed up the
data stage-in process of VMGrantee. This process takes place when
the Grantee VM, supplied with additional bandwidth, finishes the
job execution in less time without affecting the execution of the
Granter VM.

5.2.1. FBR description
This algorithm works with a pair of VMs (Granter VM allocated

to job jx and Grantee VM allocated to job jy) as demonstrated in
Fig. 4.

The granting is performed using the following procedures:
Procedure I (a): The main events at the Granter VM side are:

(1) The Granter VM is allocated to Job jx.

Fig. 4. The process of BW granting in the FBR Algorithm.

(2) The Granter VM is placed on PM, say PMpm.
(3) The Granter VM starts the stage-in process for the data of

jx (stage-in of InputSizex).
(4) At the end of stage-in process, the bandwidth of the granter

is idle (at time t1).
(5) The VMM decides that this VM can grant its bandwidth

(or part of it) for a certain period of time, which is ap-
proximately the time remaining to finish job execution.
The Local manager informs the Global manager about the
Granter VM and the period of time for this grant.

(6) The Granter releases its bandwidth and starts executing jx.
(7) The Granter finishes the execution of jx and gets back its

bandwidth (at time t2).
(8) The Granter starts the stage-out process for data of jx

(stage-out OutputSizex).

Procedure I (b): On the other side, the main events at the Grantee
VM are:

(1) The Grantee VM is allocated to Job jy.
(2) The Grantee VM is placed on PMpm.
(3) The Grantee VM starts the stage-in process for the data of

jy (stage-in of InputSizey).
(4) The Grantee waits to the end of the data stage-in process

to start execution.
(5) The Global manager informs the Local manager about the

granted bandwidth. VMM decides that this VM can receive
a specific amount of bandwidth for a certain period of time.

(6) The Grantee receives the added bandwidth from the
granter for a specific period of time.

(7) The Grantee returns the bandwidth to the Granter.
(8) The Grantee either suspends its execution process until

more data is staged-in, or starts the job execution pro-
cess followed by the stage-out process for the data of jy
(stage-out OutputSizey).

To speed up the execution, the main events at the Grantee VM
can be applied at data stage-out phase of jy (stage-out



774 A. Al-Dulaimy, W. Itani, J. Taheri et al. / Future Generation Computer Systems 112 (2020) 767–784

Algorithm 1: The FBR Algorithm.
Input: Set LIST vm of VMs running and co-hosting on the same host
Output: Executed VMs

1 Begin
2 While LIST vm ̸= null
3 Check VMBW

i of all VM i ∈ LIST vm;
4 If ( VMy ∈ LIST vm running in StageIn/StageOut phase) and ( VMBWutil

y is highly utilized )
5 VMy is a Grantee VM;
6 Select VMx ∈ LIST vm running in its execution phase as a Granter VM according to a specific policy;
7 Calculate a bandwidth slice bwSLICE such that: bwSLICE ≤ VMBW

x ;
8 VMBW

x = VMBW
x − bwSLICE;

9 VMBW
y = VMBW

y + bwSLICE;
10 Repeat
11 Continue serving VMx and VMy with the current configuration
12 Until VMx ends its execution phase;
13 VMBW

y = VMBW
y − bwSLICE;

14 VMBW
x = VMBW

x + bwSLICE;
15 End

OutputSizey) as same as data stage-in phase (stage-in of
InputSizey). The time duration that the Granter VM can grant a
specific amount of its bandwidth is represented in Eq. (8):

TimeGranting = t2 − t1 (8)

which is the time required to execute the job served by the
Granter VM and calculated in Eq. (9):

TimeGranting =

(
Li

VMSpeed
Granter

)
× VMCPI

Granter (9)

The value of TimeGranting should be long enough compared to
the time needed to reconfigure the bandwidth of the Granter and
Grantee VMs to render the bandwidth slicing process merited. In
addition, DLx and DLy should be met.

At a particular time, for instance t0, every VM i has a dedicated
bandwidth, say VMBW

i . To gain the maximum utilization of the
bandwidth as a resource, the VMM monitors all the VMs which
are co-hosted on the same PM. Once the VMM records a maxi-
mum bandwidth utilization for one of the VMs, then this VM is
selected to be the Grantee VM which is in need for more band-
width to complete its execution efficiently. The main reason of
selecting the VM of maximum bandwidth utilization as a Grantee
VM is due to the fact that when the VM which serves a specific
job is experiencing the 100% bandwidth utilization, the data stage
in/out phases of that job will be bounded by the bandwidth
capacity of the VM; therefore, the VM will not be provided with
the required performance level. Another VM hosted on the same
PM must be selected as the Granter VM. The Granter VM grants a
specific amount from its dedicated bandwidth to the Grantee VM.
Algorithm 1 describes the generic structure of FBR algorithm.

In case more than one VM can be considered as a Granter VM,
FBR algorithm suggested some policies to select the Granter VM,
as explained in the next section.

5.2.2. FBR policies
FBR specifies the following policies to select the Granter VM:

Random Selection (RS), Minimum bandwidth Utilization (MinU),
Shortest Stage in/out (SS), and Longest Stage in/out (LS).

The RS policy: In RS policy, the VMM randomly selects one VM
from the VMs running in their compute process to be the Granter
VM. The RS policy is the easiest policy to be implemented.

The MinU policy: Here the VMM specifies the Working VMs,
estimates their bandwidth utilization periodically, and selects
the VM with the minimum bandwidth utilization during the last
period to be the Granter VM. MinU policy needs to calculate the

bandwidth utilization of each Working VM before selecting the
Granter VM. However, selecting the VM with the maximum (or
high) bandwidth utilization to be the Granter VM is not feasible,
as it mainly utilizes most of the bandwidth allocated to it, and
cannot grant its bandwidth amount to another VM.

The SS policy: In this policy, the VMM specifies the Working
VMs, estimates the time needed to complete the data stage in/out
process, and selects the VM with the shortest data staging time
to be the Granter VM. SS policy needs to calculate the data staging
time of each working VM before selecting the Granter VM.

The LS policy: In this policy, the VMM specifies the Working
VMs, estimates the time needed to complete the data stage in/out
process, and selects the VM with the longest data staging time
to be the Granter VM. The LS policy needs to calculate the data
staging time of each working VM before selecting the Granter VM.

5.3. The RBA algorithm

In this algorithm, bandwidth is dynamically allocated to the
VMs hosted on the same PM during the execution time. It only al-
locates the amount of bandwidth required for the VM at a specific
time. In FBR, the idea is to benefit from the unused bandwidth
of the Granter VM by granting it to the Grantee VM. Whereas in
RBA, the bandwidth of all VMs is periodically monitored while
unutilized amounts of bandwidth are released. In this case, the
value of R in Eq. (1) can be increased to be used by any VM
within the same PM. RBA proposes a solution to utilize the PM’s
full bandwidth capacity by avoiding the idle state of all the VMs’
bandwidth. Bandwidth utilization for any VM (VMBWutil

i ) can be
calculated using Eq. (2).

5.3.1. The RBA description
This algorithm works on all VMs. In other words, by using the

RBA algorithm, all VMs can be considered as Granters to give a
specific bandwidth slice, or Grantees to get a specific bandwidth
slice, according to their usage at a particular time.

At a certain time instance, say t0, every VM i has a dedicated
bandwidth, VMBW

i . To gain the maximum utilization of the band-
width as a resource, the VMM monitors the way VMs use this
resource at a certain period time t0 to t1 and analyzes whether to
adjust their bandwidth or not.

The time slot in the operations of the RBA algorithm (i.e., the
time between ti and ti + 1) is a dynamic value, and it is up to
the VMM to decide this value. The decision must be made to be
in line with the goal of minimizing the total execution times of
the running VMs. As explained earlier, VMM is part of the Local
manager which exists on every PM.

Two cases result from monitoring the bandwidth dedicated to
the VMs:
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Algorithm 2: The RBA Algorithm.
Input: Set LIST vm of VMs running and co-hosting on the same host
Output: Executed VMs

1 Begin
2 While LIST vm ̸= null
3 Repeat
4 Check VMBW

i of all VM i ∈ LIST vm;
5 If VMBWutil

x of VMx ∈ LIST vm is lowly utilized
6 VMx is a Granter VM;
7 Calculate a bandwidth slice bwSLICE+ such that: bwSLICE+

≤ VMBW
x ;

8 VMBW
x = VMBW

x − bwSLICE+;
9 R = R + bwSLICE+;

10 If VMBWutil
y of VMy ∈ LIST vm is highly utilized

11 VMy is a Grantee VM;
12 Calculate a bandwidth slice bwSLICE− such that: bwSLICE−

≤ R;
13 R = R − bwSLICE−;
14 VMBW

y = VMBW
y + bwSLICE−;

15 Until all VM i ∈ LIST vm are executed;
16 End

Fig. 5. The operations of the RBA algorithm.

• When the bandwidth VMBW
i that is dedicated to VM i is more

than the required bandwidth by VM i for slice β+, then:

VMBW
i = VMBW

i − β+ (10)

R = R + β+ (11)

• When the bandwidth VMBW
j that is dedicated to VM j is less

than that required by VM j for slice β−, then:

R = R − β− (12)

VMBW
j = VMBW

j + β− (13)

In both cases:
∀ VM i ∈ VM and hosted on PM j:

VMBW
i ≤ PMBW

j and R ≤ PMBW
j

The VMM continues monitoring and updating the bandwidth
allocated to the VMs at the second period of time t1 to t2, then at
period t2 to t3 and so on until all jobs are executed and VMs are
released, as illustrated in Fig. 5.

The granting process in RBA is performed using the following
procedures:

Procedure II (a): The main events during the bandwidth granting
process after m VMs = {VM1, VM2, . . . , VMm} are allocated to m
Jobs = {j1, j2, . . . , jm}, and the VMs are placed on the PM, say
PMpm:

(1) All VMs start serving their jobs (StageIn → Execution →

StageOut) at t0.
(2) The VMM monitors the way VMs use the bandwidth

amount dedicated to them periodically.
(3) According to the bandwidth utilization, the VMM specifies

the VMs which can grant a specific part of their BW (say
x VMs, such that: x ≤ m ) for a certain period of time
(ti to ti+1). The Local managers of the Granter VMs inform
the Global manager about the Granter VMs and each grant
duration.

(4) Granter VMs release a specific part of their bandwidth for
the period (ti to ti+1), or even for additional time period(s)
based on their bandwidth utilization.

(5) R = R +
∑x

j=1 β+

j , such that: β+

j ̸= β+

j+1.

Procedure II (b): On the other side, the main events during the
bandwidth receiving process:

(1) All VMs start serving their jobs (StageIn → Execution →

StageOut).
(2) The VMM monitors the way VMs use the BW amount

dedicated to them periodically.
(3) According to the bandwidth utilization, the VMM specifies

the VMs which need a specific part to be added to their
bandwidth (say y VMs, such that: y ≤ m ) for a certain
period of time (ti to ti+1).

(4) Grantee VMs receive a specific bandwidth amount for the
period (ti to ti+1), or even for additional period(s) based on
their bandwidth utilization.

(5) R = R −
∑x

j=1 β−

j , such that: β−

j ̸= β−

j+1.

Any reduction in jobs’ execution time leads to enhancing the
overall PM performance. This also leads to reduction in the en-
ergy consumption in the cloud data center (or in the fog micro
data center). Algorithm 2 describes the generic structure of RBA
algorithm.

If there is a contention for a specific bandwidth slice between
two (or more) VMs, RBA algorithm suggested some policies to
select the Grantee VM, as explained in the next section.
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5.3.2. RBA Policies
The following policies are proposed to select the Grantee VM

and grant the BW to it in the RBA algorithm: Equally Divi-
sion (ED), Maximum bandwidth Utilization (MaxU), and Priority
Granting (PG).

The ED policy: In the ED policy, the VMM specifies the com-
petitors VMs, and divides the amount of the bandwidth available
in R equally among them. The ED policy is the easiest policy to
be implemented.

The MaxU policy: The VMM specifies the competitors VMs,
estimates their bandwidth utilization, and selects the VM with
the maximum bandwidth utilization during the last period to be
the Grantee VM.

The PG policy: In this policy, VMM grants the amount of band-
width available in R to the VM with top priority. Within the same
PM, each VM is given a priority, PG policy gives the bandwidth
amount requested from R to the VM of the highest priority.
Priority can be determined by one of the following mechanisms:
(1) based on the job type served by the VM (the types of the jobs
are discussed with more details in our works presented in [26]
and [27]), or (2) based on the bandwidth utilization (or even any
other resource utilization) of the VM. However, if two VMs (or
more) are with the same priority, the bandwidth can be granted
to any VM randomly, or divided among the VMs based on any of
the other proposed policies.

5.4. The DBR algorithm

This algorithm divides the bandwidth amount of the VM that
finish its execution (The Terminated VM) once it finishes the exe-
cution of the job allocated to it among the VMs (The Working VMs)
that are hosted on the same PM. In DBR, the VMs are periodically
monitored by the VMM, any VM that finishes its execution time
is considered as the Terminated VM and its bandwidth, termed
as the bandwidth slice, is released. In this case, the value of R
in Eq. (1) can be increased by the released amount to be divided
and used by the other VMs (The Working VMs) within the same
PM.

5.4.1. The DBR description
As illustrated in Fig. 6, the DBR algorithm works on all VMs.

In other words, by using the DBR algorithm, all VMs can be
‘‘The Terminated VM ’’ or ‘‘The Working VMs’’ based to their total
execution time when they are co-hosted together on the same
PM.

At a particular time, for instance t0, every VM i has a dedicated
bandwidth, say VMBW

i . To gain the maximum utilization of the
bandwidth as a resource, the VMM monitors all VMs which are
hosted together on the same PM, once one of the VMs finishes its
execution, DBR considers it as ‘‘The Terminated VM ’’ and divides
its bandwidth amount into slices among the other VMs ‘‘The
Working VMs’’ based on a specific policy.

The granting process in DBR is performed using the following
procedures:
Procedure III (a): The main events during the bandwidth granting
process after m VMs = VM1, VM2, . . . , VMm are allocated to m
Jobs = j1, j2, . . . , jm, and the VMs are placed on the PM, say PMpm:

(1) All VMs start serving their jobs (stageIn → Execution →

StageOut) at t0.
(2) The VMM monitors all working VMs to specify which job

is finish its life time.
(3) When jx finished its life time, the VM allocated to serve it,

say VMx, is marked as terminated.

Fig. 6. The operations of the DBR algorithm.

(4) The VMM modifies the configuration of the terminated VM
by granting its bandwidth to the other VMs hosted on
the same PM. The Local manager of the terminated VM
informs the Global manager about the details of the granted
bandwidth.

Procedure III (b): On the other side, the main events during the
bandwidth receiving process:

(1) All VMs start serving their jobs (StageIn → Execution →

StageOut) at t0.
(2) The VMM monitors all working VMs to specify which jobs

are still working.
(3) The VMs are marked as Working VMs except the termi-

nated VMx.
(4) The VMM modifies the configuration of the Working VMs

by receiving an extra bandwidth amount to their original
bandwidth configuration. The Local manager of the working
VMs informs the Global manager about the details of the
received bandwidth.

Algorithm 3 describes the generic structure of DBR algorithm.
Some policies are proposed to grant bandwidth in the DBR

algorithm, as explained in the next section.

5.4.2. DBR Policies
The following policies are proposed to grant BW in the DBR

algorithm: Equally Division (ED), Shortest Working VM (SW),
Longest Working VM (LW), and Priority Granting (PG).

The ED policy: In the ED policy, the VMM calculates the num-
ber of Working VMs and divides the amount of the bandwidth
available in R equally among the Working VMs. It is similar to
the ED policy described RBA algorithm, but here it aims to divide
the bandwidth of the Terminated VM among the Working VMs,
while in RBA it aims to find a way to share a bandwidth slice
among a competitive VMs at a specific time. The ED policy is the
easiest policy to be implemented.
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Algorithm 3: The DBR Algorithm.
Input: Set LIST vm of VMs running and co-hosting on the same host
Output: Executed VMs

1 Begin
2 While LIST vm ̸= null
3 Repeat
4 Monitor all Working VMs ∈ LIST vm;
5 If VMx ∈ LIST vm is terminated
6 VMx is a Granter VM;
7 bwSLICE = VMBW

x ;
8 Distribute bwSLICE among Working VMs according to a specific policy;
9 Until all VM i ∈ LIST vm are executed;

10 End

The SW policy: In this policy, the VMM specifies the Working
VMs, estimates their execution times, selects the VM that needs
the shortest remaining time to finish its execution among them,
and gives the amount of bandwidth in R to the selected VM. The
SW policy needs to calculate how much time each Working VM
will take to finish it execution.

The LW policy: the VMM specifies the Working VMs, estimates
their execution times, selects the VM that needs the longest
remaining time to finish its execution among them, and grants
the amount of bandwidth available in R to the selected VM. As in
the SW policy, the LW policy needs to calculate how much time
each Working VM will take to finish it execution.

The PG policy: In this policy, one of the Working VMs is given
a top priority and the VMM grants the amount of bandwidth
available in R to the top priority VM. Within the same PM, each
VM is given a priority, PG policy gives the bandwidth amount
of the Terminated VM to VM of the highest priority first and
so on. The PG policy here is very similar to PG policy presented
previously in RBA. Also, as in RBA, priority can be determined by a
specific mechanism, such as depending the job type served by the
VM, or on the bandwidth utilization (or even any other resource
utilization) of the VM. However, if two VMs (or more) are with the
same priority, the bandwidth can be granted to any VM randomly,
or divided among the VMs based on any of the other proposed
policies.

6. Performance evaluation

In this section, a performance evaluation of the proposed
bandwidth slicing approach, with all its three directions, is pre-
sented. We conducted both hypothesis scenarios and simula-
tion with real workload traces driven by the Google clusters. In
both the hypothesis scenarios and simulation parts, the following
models and equations are used to measure the time reduction,
energy saving, and the improvement ratio when applying the
algorithms of the bandwidth slicing approach.

6.1. Performance metrics

The performance metrics used in this work to evaluate the
performance of the bandwidth slicing approach are: execution
time, energy consumption, and the improvement ratio.

6.1.1. Execution time
Relying on Eq. (3), we calculate the total execution time for

each job before and after applying the proposed algorithms.
Moreover, Eqs. (8) and (9), discussed before in this paper, are

used to calculate the granting time.

6.1.2. Energy consumption
There is a relation between the total execution time and

the consumed energy, as stated in the model presented in [28].
This model illustrates the impact of CPU utilization on total
power consumed by a PM. The power consumed by any PM
grows almost linearly with the CPU utilization, from the value
of power consumption in the idle state up to the power con-
sumed when the server is fully utilized. This relation is illustrated
in Eq. (14) [28].

P(u) = Pidle + (Pbusy − Pidle) × u (14)

The total energy consumption of the PM for a period of time
[t0, t1] is illustrated in Eq. (15) [28], which shows that time
influences the total amount of consumed energy:

E =

∫ t1

t0

P(u(t)).dt (15)

However, the reduction in energy consumption per iteration
in Joules (Es) is calculated based on Eq. (16):

Es =

(
PMSpeed

i

PMCPI
i

)
× δ × EPI (16)

where:

• δ: the saving in execution time in seconds resulting from the
application of the bandwidth slicing algorithms,

• EPI: stands for Energy Per Instruction, is the average energy
consumed by the CPU to execute an instruction.

To approximate the EPI, we followed the energy model pre-
sented by Intel in [29]. Since the experiments in [29] were applied
on a kind of outdated processors, this model is further leveraged
in [30] on the relatively modern high-speed Intel Xeon Phi pro-
cessor. Basing the EPI approximations on the Xeon Phi sprouts
from the fact that it is the first production x86-based processor
with multi-core and multi-threading support targeting supercom-
puters and high-end servers and workstations. Moreover, Xeon
Phi belongs to the high-performance computing processor family
designed by Intel for massive parallelism and vectorization sup-
port together with high-end energy efficiency. All this makes it a
highly feasible choice for operation in cloud computing environ-
ments. Since the EPI mainly depends on the type of instructions
executed by the processor and the location of the instruction
operands, we utilized the model in [30] to get an approximate
average of the EPI using scalar and vector instruction subtypes
with a variety of operand locations and data movement combina-
tions among the registers, L1 and L2 caches, and memory (with
and without prefetching). The average energy consumption per
instruction was found to be 59.6 nJ.
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Table 2
A set of three jobs with their requirements.
jobi InputSizei (MB) OutputSizei (MB) Li (MI) DLi (Sec)

job1 100 100 20000 220
job2 10000 200 500 1025
job3 100 400 30000 350

Table 3
Samples of VMs configurations.

VMi VMBW
i (MBPS) VMSpeed

i (MHz) VMCPI
i (Cycle/instruction)

VM1 10 1500 15
VM2 10 1500 15
VM3 10 1500 15

6.1.3. Improvement ratio
Eqs. (17) and (18) calculate the Improvement Ratio (IR) in

performance and energy efficiency respectively:

IR =

(
Timeold − Timenew

Timeold

)
× 100 (17)

IR =

(
Energyold − Energynew

Energyold

)
× 100 (18)

6.2. Hypothesis scenarios

This section presents some hypothesis examples to evaluate
the performance of the proposed algorithms. The examples only
consider the savings in execution time for motivational proof-
of-concept purposes. A thorough simulation of the algorithms
in a virtualized network environment considering the perfor-
mance as well as the energy consumption aspects is presented
in Section 6.3. Let us assume that there is a set of three jobs,
J = job1, job2, job3. Each job has four related parameters (the
size of stage-in data in Mbytes, the size of stage-out data in
Mbytes, the job length in Million instructions, and the deadline
to be met when serving the job), as described in Table 2. And
there is a set VM of three VMs, VM = {VM1, VM2, VM3}, having
the configurations described in Table 3. The VMs (VM1, VM2,
and VM3) are allocated to serve the jobs (job1, job2, and job3)
respectively. Note that VMBW

i is in Mbytes per second (MBPS),
VMSpeed

i is in Million instruction per second (MIPS), and VMCPI
i is

in Cycles per Instruction.
The effects of applying FBR, RBA, and DBR algorithms in re-

ducing the total execution time for a set of jobs (and conse-
quently enhancing the energy efficiency) are described in the next
subsections.

6.2.1. Applying FBR
In the normal execution (without reallocating bandwidth dy-

namically), the total execution time (makespan), based on Eq. (3),
for two jobs Job1 and Job2 (as FBR works with a pair of VMs) is
1025 s, as explained below:

T vm1
pmj

=

(
100
10

)
+

(
20000
15

× 15
)

+

(
100
10

)
= 220 s

T vm2
pmj

=

(
10000
10

)
+

(
500
1500

× 15
)

+

(
200
10

)
= 1025 s

If FBR is applied during the execution of VM1 (The Granter)
and VM2 (The Grantee) which are allocated to Job1 and Job2
respectively, then the total execution time (makespan) for them
will be reduced to 925 s. The process is described as follows:

T vm1Granter
pmj =

(
100
10

)
+

(
20000
15

× 15
)

+

(
100
10

)

= 220 s

T vm2Grantee
pmj =

((
10000
10

× 0.8
)

+

(
10000
20

× 0.2
))

+

(
500
1500

× 15
)

+

(
200
10

)
= 925 s

When finishing its data stage-in, VM1 (The Granter) starts
the execution phase and grants its bandwidth amount to VM2
(The Grantee). So, the data stage-in phase for VM2 works in two
different bandwidth amounts.

The granting time is 20 s (i.e. it is about 20% from the data
stage-in phase time of VM2). The bandwidth amount of VM2 is 10
MBPS (which is the original bandwidth dedicated to VM2) for 80%
of the stage-in phase time, and 20 MBPS (which is the granted
amount of bandwidth added to the original bandwidth amount
dedicated to VM2) for 20% of the stage-in phase time. Thus, the
PM which hosts VM1 and VM2 can be switched off (or it can start
serving other VMs) after 925 s instead of after 1025 s by applying
FBR. See Fig. 7(a).

And, based on Eq. (16), the amount of the saved energy by
applying FBR algorithm (Fig. 7(b)) can be estimated as follows:

Es =

(
1500
15

)
× 100 × 59.6 = 596 J

And the improvement ratio of time saving (which is equal to
the improvement ratio of energy saving) is:

IR =

(
1025 − 925

1025

)
× 100 = 9.756%

6.2.2. Applying RBA
In the normal execution (without reallocating bandwidth dy-

namically), the total execution time (makespan) for Job1, Job2 and
Job3 is:

T vm1
pmj

=

(
100
10

)
+

(
20000
15

× 15
)

+

(
100
10

)
= 220 s

T vm2
pmj

=

(
10000
10

)
+

(
500
1500

× 15
)

+

(
200
10

)
= 1025 s

T vm3
pmj =

(
100
10

)
+

(
30000
1500

× 15
)

+

(
400
10

)
= 350 s

If RBA is applied during the execution of the VM1
(The Granter), VM2 (The Grantee) and VM3 (The Granter) which
are allocated to Job1, Job2 and Job3 respectively, then the total
execution time (makespan) for them will be reduced to 841.667 s.
Remarkably, there are two granter VMs and one grantee VM in
this example. The process is described as follows:

T vm1Granter
pmj =

(
100
10

)
+

(
20000
15

× 15
)

+

(
100
10

)
= 220 s

T vm2Grantee
pmj =

((
10000
10

× 0.7
)

+

(
10000
30

× 0.2
)

+

(
10000
20

× 0.1
))

+

(
500
1500

× 15
)

+

(
200
10

)
= 841.667 s

T vm3Granter
pmj =

(
100
10

)
+

(
30000
1500

× 15
)

+

(
400
10

)
= 350 s

When finishing their data stage-in, VM1 and VM3
(The Granters) start their execution phase and grant their band-
width amounts to VM2 (The Grantee). So, the data stage-in phase
for VM2 works in different bandwidth amounts.
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Fig. 7. Results of applying the FBR algorithm.

From VM1, the granting time is 200 s (i.e. it is about 20% of the
data stage-in phase time of VM2). And from VM3, the granting
time is 300 s (i.e. it is about 30% of the data stage-in phase time
of VM2). In this example, VM1 grants its bandwidth amounts in
mutual time with VM3. So, the bandwidth amount of VM2 is 10
MBPS (which is the original bandwidth dedicated to VM2) for 70%
of the stage-in phase time, 30 MBPS (which is the granted amount
of bandwidth added to the original bandwidth amount dedicated
to VM2 from both VM1 and VM3) for 20% of the stage-in phase
time, and 20 MBPS (which is the granted amount of bandwidth
added to the original bandwidth amount dedicated to VM2 from
VM3) for 10% of the stage-in phase time.

Thus, the PM which hosts VM1, VM2 and VM3 can be switched
off after 841.667 s instead of after 1025 s by applying RBA. See
Fig. 8(a).

And, based on Eq. (16), the amount of the saved energy by
applying FBR algorithm (Fig. 8(b)) can be estimated as follows:

Es =

(
1500
15

)
× 183.333 × 59.6 = 1092.664 J

And the improvement ratio is:

IR =

(
1025 − 841.667

1025

)
× 100 = 17.886%

6.2.3. Applying DBR
In the normal execution (without reallocating bandwidth dy-

namically), the total execution time (makespan) for Job1, Job2 and
Job3 is:

T vm1
pmj

=

(
100
10

)
+

(
20000
15

× 15
)

+

(
100
10

)
= 220 s

T vm2
pmj

=

(
10000
10

)
+

(
500
1500

× 15
)

+

(
200
10

)
= 1025 s

T vm3
pmj =

(
100
10

)
+

(
30000
1500

× 15
)

+

(
400
10

)
= 350 s

If DBR is applied during the execution of the VM1, VM2 and
VM3 which are allocated to Job1, Job2 and Job3 respectively, then
the total execution time (makespan) for them will be reduced to
711.667 s. Remarkably, in this scenario, VM2 acts as a Grantee
VM for a period of time, and as a granter VM in another period.
The process is described as follows:

T vm1Granter
pmj =

(
100
10

)
+

(
20000
15

× 15
)

+

(
100
10

)
= 220 s

T vm2Grantee
pmj =

((
10000
10

× 0.22
)

+

(
10000
15

× 0.66
)

+

(
10000
30

× 0.12
))

+

(
500
1500

× 15
)

+

(
200
10

)
= 711.667 s

T
vm3Granter/Grantee
pmj =

(
100
10

)
+

(
30000
1500

× 15
)

+

(
400
15

)
= 336.667 s

The first terminated VM is VM1 at second 220. So, it grants its
bandwidth amount to VM2 and VM3 based on a specific policy.
If we employ the ED policy in granting the bandwidth of the
terminated VM, the bandwidth amount of VM1 is divided equally
between VM2 and VM3. Thus, the data stage-in and stage-out
phases for VM2 and VM3 work in different bandwidth amounts.

At second 220, VM1 divides its bandwidth amount, which is
10 MBPS, between VM2 and VM3 equally, 5 MBPS goes to each
of VMBW

2 and VMBW
3 .

VM2 serves Job2 with 10 MBPS till second 220 (about 22% from
the data stage-in phase time of VM2). Then, it serves Job2 with 15
MBPS after second 220.

Also, VM3 serves Job3 with 10 MBPS till second 220 (i.e. till the
start of the data stage-out phase time of VM3). Then, it serves Job3
during the data stage-out phase time of VM3 with 15 MBPS as it
starts after second 220. So, VM3 serves Job3 with 10 MBPS in the
data stage-out phase, and with 15 MBPS in all its data stage-out
phase. With this bandwidth amount in the data stage-out phase,
VM3 terminates its work at second 336.667, then VM3 becomes
a bandwidth granter VM, and it grants its bandwidth to the other
working VMs (only VM2 is still working at second 336.667).

So, VM2 serves Job2 with 15 MBPS from second 220 till second
336.667 (about 12% of the data stage-in phase time of VM2). Then,
it serves Job2 with 30 MBPS after second 336.667 till the end of
its life time (about 66% of the data stage-in phase, and 100% from
the data stage-out phase time of VM2).

So, by applying DBR, the PM which hosts VM1, VM2 and VM3
can be switched off at second 711.667 in this scenario, instead of
second 1025. See Fig. 9(a).

And, based on Eq. (16), the amount of the saved energy by
applying FBR algorithm (Fig. 9(b)) can be estimated as follows:

Es =

(
1500
15

)
× 313.333 × 59.6 = 1867.465 J

And the improvement ratio is:

IR =

(
1025 − 711.667

1025

)
× 100 = 30.569%

6.3. Emulation

In this section, we present simulation results to evaluate and
analyze the performance of the bandwidth slicing algorithms.
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Fig. 8. Results of applying the RBA algorithm.

Fig. 9. Results of applying the DBR algorithm.

Table 4
Characteristics of the used physical machine.
PM Characteristics

PM name MacBook Pro
CPU family Intel Core i7
Core speed 2.5 GHz
Memory 16 GB of DDR3 RAM

6.3.1. Experimental testbed
In order to demonstrate the feasibility of applying the pro-

posed bandwidth slicing approach on real VMs, a proof-of-
concept implementation is realized on top of the Mininet network
emulator. Mininet [31] employs a process-based virtualization
scheme to create a realistic network emulation environment con-
sisting of virtual hosts (with real Linux kernels), switches/routers,
Software-Defined Network controllers, and connectivity links.
Mininet is deployed on a VMware Fusion [32] virtual machine
running Ubuntu Linux 14.4. The physical machine employed to
run Mininet is a MacBook Pro Mid 2015 laptop running OSX10.14
and supported with 2.5 GHz Intel Core i7 processors and 16 GB
of DDR3 RAM. Table 4 summarizes the characteristics of the used
PM.

For each bandwidth slicing algorithm, we created a set of
Mininet hosts representing the set of VMs = (VM1, VM2, . . . ,
VMv), with v=10. Each VM is configured with 2 GB RAM, 2493.729
MHz CPU, 16 GB hard drive, and 10 MBPS network bandwidth.
This results in a physical machine bandwidth of ≥ 100 MBPS.
The VMM logic is executed in the SDN controller address space.
The proposed bandwidth slicing algorithms are implemented in
Python 3 and the communication between the VMM and the VMs
is realized using standard TCP sockets. Table 5 summarizes the
configurations of the used VMs.

The jobs dataset used is based on the Google Cluster-Usage
Traces [33]. The main job attributes employed from the Google

Table 5
Configurations of the used virtual machines.
VM Configurations

VM core speed 2493.729 MHz CPU
Memory 2 GB RAM
Storage 16 GB
Bandwidth 10 MBPS

dataset are: (1) the mean CPU usage rate (attribute number 6
in the task resource usage table) together with the CPU speed
to get the job length Li, (2) the Cycles per Instruction (CPI) to
calculate the energy savings per iteration (attribute number 16
in the task resource usage table), and (3) the maximum disk IO
time (attribute number 15 in the task resource usage table) to
get the job input size and output size (InputSizei and OutputSizei
respectively). It is worth mentioning here that as we have two
phases in the bandwidth slicing algorithms represented in the
job data stage-in and data stage-out, we will divide the value of
attribute 15 randomly between these two phases. We used a trace
file consisting of 3.1 million job records randomly selected from
the Google Cluster-Usage Traces dataset to feed the bandwidth
slicing algorithms running on the Mininet VMs.

6.3.2. Evaluating FBR
In the FBR algorithm implementation, the granter VM is se-

lected by the VMM based on the RS policy (refer to Section 5.1).
Without loss of generality, the RS policy choice is adopted to sim-
plify the simulation procedure. The jobs running on the Granter
and Grantee VMs respectively are selected randomly from the
Google Cluster-Usage Traces dataset for each iteration of the
simulation experiments.

We executed the experimental setup for a period of 48 h
where in each iteration the following features are calculated:
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(1) the saving in execution time due to the application of the
FBR algorithm, (2) the reduction in energy consumption resulting
from the saving in execution time. This is equal to the amount of
energy expended by the CPU if it were to execute the respective
jobs during the saving in execution time period, and (3) the
improvement ratio IR on a random pair of jobs Job1 and Job2
respectively executed on the Granter and Grantee VMs. At the end
of the simulation period, the average saving in execution time,
the average saving in energy consumption, and the average IR are
computed by the VMM over all the iterations in the experimental
setup.

Fig. 10(a) demonstrates (1) the average execution time per
simulation iteration without applying the FBR algorithm, (2) the
average execution time per iteration when FBR is applied, and (3)
the average saving in execution time per iteration due to the FBR
bandwidth slicing approach. FBR achieves an average of 19.53 s
saving in execution time per iteration. Fig. 10(b) presents (1)
the average energy consumption per simulation iteration without
applying the FBR approach, (2) the average energy consumption
per iteration when applying FBR, and (3) the average savings
in energy consumption due to the application of the FBR algo-
rithm. FBR reaches an average of 124.65 Joules energy savings per
simulation iteration.

6.3.3. Evaluating RBA
In the RBA algorithm implementation, the two granter VMs

are chosen randomly from the VM working set. The three jobs
(2 jobs running on the two granter VMs and 1 on the Grantee
VM) are chosen randomly from the Google Cluster-Usage Traces
dataset for each iteration of the simulation. Analogous to the
FBR implementation, we executed the experimental setup for
an empirical period of 48 h where in each iteration the VMM
calculates: (1) the saving in execution time due to the application
of the RBA algorithm, (2) the reduction in energy consumption
resulting from the saving in execution time. This is equal to the
amount of energy expended by the CPU if it were to execute the
respective jobs during the saving in execution time period, and
(3) the improvement ratio IR on the 3 randomly selected jobs (
Job1 and Job2 running on the two granter VMs while Job3 running
on the Grantee VM). At the end of the simulation period, the
average saving in execution time, the average saving in energy
consumption, and the average IR are computed by the VMM over
all the iterations in the experimental setup. The energy savings
are calculated based on the model in Eq. (12).

Fig. 11(a) shows (1) the average execution time per simulation
iteration without applying the RBA algorithm, (2) the average
execution time per iteration when RBA is applied, and (3) the
average saving in execution time per iteration due to the RBA
bandwidth slicing approach. RBA achieves an average of 45.72 s
saving in execution time per iteration. Analogously, Fig. 11(b)
presents (1) the average energy consumption per simulation iter-
ation without applying the RBA approach, (2) the average energy
consumption per iteration when applying RBA, and (3) the aver-
age savings in energy consumption due to the application of the
RBA algorithm. RBA achieves an average of 301.25 Joules energy
savings per simulation iteration.

6.3.4. Evaluating DBR
In the DBR algorithms implementation, a similar experimental

setup to that of the RBA algorithm is applied. In each simulation
iteration, three jobs are selected randomly from the Google Trace
and executed on three VMs (VM1, VM2andVM3). As described in
Section 5.3, in this scenario, VM2 acts as a grantee VM for a period
of time, and as a granter VM in another period. In each iteration
during the 48-hour simulation period, the VMM calculates the
saving in execution time, the reduction in energy consumption,

and the improvement ratio IR. Finally, at the end of the simulation
period, the VMM computes the average execution time savings,
the average energy reduction, and the average IR. The energy
savings are calculated based on the model in Eq. (12). Again,
without loss of generality and to simplify the experimental setup
and analysis, the ED policy (refer to Section 5.3) is followed in the
DBR implementation.

Fig. 12(a) presents (1) the average execution time per sim-
ulation iteration without applying the DBR algorithm, (2) the
average execution time per iteration when DBR is enabled, and
(3) the average saving in execution time per iteration due to
the DBR bandwidth slicing approach. DBR achieves an average of
57.87 s saving in execution time per iteration. Similarly, Fig. 12(b)
presents (1) the average energy consumption per simulation iter-
ation without applying the DBR approach, (2) the average energy
consumption per iteration when applying DBR, and (3) the aver-
age savings in energy consumption due to the application of the
DBR algorithm. DBR reaches an average of 405.35 Joules energy
savings per simulation iteration.

6.3.5. Improvement ratio measurements
The number of simulation iterations respectively executed

in the FBR, RBA, and DBR implementations during the 48-hour
simulation period was 132,484 iterations, 118,074 iterations, and
120,967 iterations respectively. The differences in the numbers of
iteration for each algorithm because jobs are selected randomly,
and each job has a specific length to be executed.

The average IR for reducing execution time and energy con-
sumption is 8.72% in the FBR simulation, 22.65% in the RBA sim-
ulation, and 30.62% in the DBR simulation. This is demonstrated
in Fig. 13.

The positive proof-of-concept testbed implementation results,
though in a simulation environment, demonstrates the signifi-
cance of applying bandwidth slicing and reallocation techniques
and methodologies for improving the performance and energy ef-
ficiency in the data centers. Moreover, these results present a call
for action for more research into bandwidth slicing and realloca-
tion as a viable complement to other energy-saving techniques
for enhancing data center energy consumption.

6.4. Discussion

By investigating how the proposed algorithms work, and ob-
serving the VMs’ total execution time before and after applying
the algorithms, the following notes can be concluded:

FBR is easier to be implemented than RBA and DBR. This is
because monitoring the events of two VMs and changing the
amount of their BW is easier than monitoring the events of all
VMs on the host. Many events to be implemented periodically
when applying RBA and DBR.

In RBA and DBR, all VMs can grant a part of their BW to
a specific VM, while in FBR, only one VM can do the granting
process. As a result, the RBA and DBR algorithms can results
in a better improvement ratio in reducing the makespan of the
involved VMs than the FBR algorithm. This is because every VM in
the RBA and DBR algorithms can release their bandwidth amount
(or part of it) to another VM on the same PM, while in FBR, only
one VM can release its bandwidth (or part of it) to another VM
which needs more bandwidth at a specific period of time to finish
its execution faster.

Applying the proposed algorithms has no negative effect on
the makespan of the involved VMs, and consequently on the PMs
hosted those VMs, instead, it enhances the improvement ratio of
the makespan with a specific percentage, or, at the worst case,
do not affect the VMs execution. In other words, when applying
the proposed BW reallocation algorithms, it either reduces the
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Fig. 10. Emulation results of applying the FBR algorithm.

Fig. 11. Emulation results of applying the RBA algorithm.

Fig. 12. Emulation results of applying the DBR algorithm.

makespan if there is a plenty of bandwidth dedicated to one
VM (or more), or the VMs execution continues with their pre-
allocated bandwidth. If the VMs execution continues without
any bandwidth reallocation, then the improvement ratio is zero,
otherwise it will be more than zero with a specific enhancement
value. The enhancement values vary due to the following: differ-
ent VMs and PMs configurations, and different workloads served
by the VMs as each workload has different requirements.

In the micro data centers environments, where most of the
applications are real-time and need fast response, bandwidth
slicing framework is very significant as it speeds up the execution
of the VMs which serve the applications in the micro data center,
in addition to the contribution in energy savings.

7. Conclusion

This work presents a bandwidth slicing approach that regards
bandwidth as a shared resource whose effective management can

Fig. 13. Improvement Ratio (IR) achieved by applying the FBR, RBA, and DBR
algorithms.

enhance the performance and energy efficiency of cloud nodes.
Bandwidth slicing can be defined as the ability to orchestrate
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the capacities of the bandwidth, as a physical resource, among
different VMs co-hosted on the same host. The proposed band-
width slicing approach, capitalizes on the hypervisor’s abilities
in reconfiguring the VMs configurations to match the needs of
the applications served by the VMs co-hosted on the same PM.
This approach can offer several benefits by enhancing the ability
of providers and operators to deploy, when possible, only the
specific amount of bandwidth needed to serve specific use cases
and users. Adopting bandwidth slicing enables providers and op-
erators to provide service differentiation, which is most desirable
because cloud providers usually serve an unprecedented diversity
of users and applications. Three algorithms are proposed to meet
the goals of the bandwidth slicing approach: The FBR algorithm
enforces a fair reallocation for the bandwidth amounts among
VMs based on the requirements of the jobs executed on these
VMs, The RBA algorithm allocates only the required amount of
bandwidth to the VMs at a specific time, and the DBR algorithm
divides the bandwidth of the terminated VM among the other
VMs hosted on the same PM. The FBR, RBA, and DBR algorithms
provided promising results for enhancing the overall PMs perfor-
mance, leading to significant reduction in the consumed energy
in the cloud data centers, and in the micro data centers as well.

The simulation results demonstrated major improvements in
execution time and energy consumption reaching up to 30%
improvement ratio. These simulation results shed light on the im-
portance of directing further research towards bandwidth slicing
and reallocation as a means for improving the performance of the
data centers’ nodes. Also, the results present a call for action for
more and more research into bandwidth slicing and reallocation
as a viable complement to other energy-saving techniques for
enhancing data center energy consumption.

As a future extension, we are working on integrating the pro-
posed algorithms with some of the external network algorithms
from the literature in a real cloud environment. Moreover, on
the same front, we are researching the different prominent cloud
platforms to come up with a set of blueprints to integrate the
BW slicing algorithms proposed in this paper to their data center
architecture.
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