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Existing proofs of correctness for dependence-based slicing methods are limited either to the slicing of

intraprocedural programs [2, 39], or the proof is only applicable to a specific slicing method [4, 41]. We

contribute a general proof of correctness for dependence-based slicing methods such as Weiser [50, 51], or

Binkley et al. [7, 8], for interprocedural, possibly nonterminating programs. The proof uses well-formed

weak and strong control closure relations, which are the interprocedural extensions of the generalised

weak/strong control closure provided by Danicic et al. [13], capturing various nonterminating insensitive and

nontermination sensitive control dependence relations that have been proposed in the literature. Thus, our

proof framework is valid for a whole range of existing control dependence relations.

We have provided a definition of semantically correct (SC) slice. We prove that SC slices agree with Weiser

slicing, that deterministic SC slices preserve termination, and that nondeterministic SC slices preserve the

nondeterministic behavior of the original programs.
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1 INTRODUCTION
Program slicing is a program transformation technique that selects the parts of a program affecting

certain computations, usually specified by a slicing criterion, of the program. Since the seminal

work of program slicing by Weiser [50], there have been many contributions on different aspects

and applications of program slicing.

Slicing was originally considered for deterministic, terminating programs. Today it is being used

for a variety of software and systems, e.g., programs with modern language constructs such as

exception handling [1, 4], nonterminating reactive systems such as web services [11, 29], distributed

real-time systems [2, 38], or software architecture models [23]. It is often desirable that the slice

maintains the nontermination property of reactive systems, or the possible nondeterminism in

models.
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There are many kinds of slicing [43]. Given a slicing criterion, i.e., a set of pairs of program

points and program variables, they aim to compute a subset of the program consisting of the

statements that can possibly affect the values of the variables in the criterion (backward slicing), or

the statements that might be affected by these values (forward slicing). Here we consider static
backward slicing.

Methods for this kind of slicing are often dependence-based. Commonly they work on the control-

flow graph (CFG) of the program. A so-called program dependency graph (PDG) [16] is formed on

top of the CFG as the union of a data dependency relation, connecting CFG nodes where values

computed by the first node might be used by the second node, and a control dependency relation
between (typically) conditional nodes, and the nodes whose execution might be decided by the

outcome of the conditional. The slice is then computed as the set of nodes reachable in the PDG,

from the nodes in the slicing criterion, in the forward or backward direction [20].

Early work on program slicing assumed that the CFG is deterministic, has a unique end node, and

that there is a path from each node to the end node. Under these assumptions, the control dependen-

cies are accurately captured by the standard control dependency relation. However, nonterminating

or non-deterministic programs can have CFG’s with multiple end nodes, no end node, or nodes

with no path to the end node. Various control dependency relations, extending the standard control

dependency relation to deal with such CFG’s, have been proposed [39]. Danicic et al. [13] presented

two generalisations of control dependence, called weak and strong control closure, which guarantee

that the resulting slices are non-termination insensitive or non-termination sensitive, respectively.
A non-termination sensitive slice always preserves any possible nontermination of the original

program, whereas a non-termination insensitive slice might fail to do this. All previously defined

control dependence relations are specialisations of these weak/strong control closure relations.

However, weak/strong control closed relations by Danicic et al. are defined for directed graphs that

can only represent CFG’s of intraprocedural programs. In this article we have extended them to

interprocedural programs, and we have provided correctness theorems and proofs of dependence-

based slicing in which the control dependence relation is captured by the weak or strong control

closure relation, respectively.

The theoretical basis for the correctness criteria of any slicing approach should be some appro-

priate program slicing semantics. Weiser’s finite trajectory semantics [50] informally states that

the slice P ′
of any program P with respect to some slicing criterion is an executable program where

P ′
is obtained from P (by deleting zero or more statements), it computes the same sequence of

values for the variables specified by the slicing criterion, and whenever P halts on an input state

then P ′
also halts on that state. Reps and Yang [41] defined the semantics according to Weiser

with two additions: (i) P ′
and P compute the same sequence of values at each program point of

P ′
(note that Weiser considered only the program point specified in slicing criteria), and (ii) a

program terminates on some states if it can be decomposed
1
into multiple slices such that all

the slices terminate on those states. However, this semantic model is incomplete for slicing non-

terminating systems (e.g., reactive systems, or software models used in model checking) as the slice

of a non-terminating program may slice out infinite loops and the semantic relationship between

the program and its slice is unspecified, i.e., the execution behavior of the slice is not defined for

those states where the original program does not terminate. Various attempts have been made to

provide the slice semantics for both the terminating and nonterminating programs such as the

non-standard semantics of Danicic et al. [14], the lazy program slicing semantics of Cartwright

and Felleisen [10], the transfinite semantics of Giacobazzi and Mastroeni [17] and Nestra [32], and

1
Reps and Yang never explained the term “decomposition of a program”. However, we infer the meaning of decomposition

by looking into their termination theorem as follows: Program P is decomposed into programs Q and R if the PDF of P can

be obtained by combining the PDGs of Q and R .
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the finite trajectory semantics of Barraclough et al. [5]. Ward and Zedan [48] illustrated that these

semantics do not agree with the original semantics of Weiser in case of nonterminating programs,

and allow a nonterminating program as a valid slice of a terminating program. They provided a

slice semantics for nonterminating programs that is nontermination insensitive in the sense that a

nonterminating loop in the original code may not be preserved in the sliced code. In this article,

we have provided a slice semantics for possibly nonterminating programs for both nontermination

insensitive and -sensitive slices (Section 3.3). Our semantics agree with that of Weiser’s when the

slice is nontermination insensitive but not nontermination sensitive (Section 3.4.1), a deterministic

nontermination insensitive slice according to our semantics preserves termination (Section 3.4.2),

and the semantics allows slicing of nondeterministic programs such that the nondeterministic

behavior of the original code is preserved in the slice (Section 3.4.3).

The semantics of slicing describes the semantic relationship between a program and its slice.

However, we need a proof of correctness that the slicing approach under consideration produces

correct slices according to our slice semantics. The theoretical foundations for the correctness of

slicing developed earlier considered finite execution traces. For instance, Binkley et al. [7] formalizes

the relationship between forms of program slicing, and their correctness arguments are based on

finite trajectories. Some slicing correctness arguments do not specify if the nontermination property

is preserved by the slicing algorithms. For instance, Reps and Yang [41] provided a termination

relation between the original program and its slices. However, it did not tell anything about

nontermination of the sliced code. Recent foundational work on the correctness of slicing [2, 38, 39]

for modern program structures are based on establishing a simulation and/or bisimulation relation

between the original and the sliced program. The proof principle for the correctness of slicing based

on such relations works for programs having infinite execution traces, and is thus able to prove the

nontermination property. However, the proof of correctness developed in these works is limited to

intraprocedural programs. Here, we provide the correctness arguments and proof techniques for

dependency-based slicing methods targeting interprocedural, possibly nonterminating programs.

In particular, we have contributed the following:

(1) We provide a definition of semi-equivalence that describes the semantic relationship between

an interprocedural, possibly nonterminating program, and its slice. Instead of using a trace-

based denotational semantics, an operational semantics defined on the CFG level is used

to define the semi-equivalence. Thus, we take into account infinite traces originating from

nonterminating programs and characterize the relationship between the original program

and its correct slice.

(2) We provide the correctness condition theorem (Theorem 6.6) specifying the correctness criteria

for dependence-based slicing methods. The theorem states that any correct slice obtained

from dependence-based slicing produces either a bisimulation, or a simulation relation with

the original program. We obtain the bisimulation relation when nontermination is preserved;

otherwise it is a simulation relation. These relations are constructed for interprocedural

programs that obey the semi-equivalence semantics. We provide a detailed proof of the

theorem in Section 7.

(3) We have defined well-formed weak and strong control closure relations, the nontrivial

interprocedural extension of the weak and strong control closure relations provided by

Danicic et al. [13] , which are nontermination insensitive and nontermination sensitive.

(4) We have discussed and proved different properties of the semi-equivalence semantics (in

Section 3.4). In particular, the semi-equivalence semantics agree with the Weiser slicing, all

semi-equivalent deterministic slices preserve the termination property and all semi-equivalent

nondeterministic slices preserve the nondeterministic behavior of the original programs.
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Fig. 1. (a) Control flow among interprocedural CFG nodes, (b) simultaneous data flow among the assignments
in a CAssign or RAssign node

2 PRELIMINARIES
2.1 Control Flow Graph and Related Concepts
All proof arguments, and analyses in this paper are based on the Control-Flow Graph (CFG) repre-

sentation of interprocedural programs. We define an interprocedural CFG as follows:

Definition 2.1 (Control Flow Graph). A Control-Flow Graph (CFG) (N ,E,Ne , start) is a directed
graph where

(1) N is the set of nodes of the following types:

• Start: the unique node start ∈ N represents the beginning of the execution,

• End: the node in the set Ne , which is at most a singleton set, represents the normal

termination of the execution,

• Skip: “no-op” instructions.
• Assign: simple assignments x = e where x is a program variable, and e is an expression

over program variables,

• Cond: boolean conditions,

• Entry, Exit: procedure entry and exit, respectively,

• Call, Ret: procedure calls, and returns from called procedures,

• CAssign, RAssign: the assignments to formal input parameters x1 = e1, . . . ,xk = ek , and
actual output parameters x ′

1
= e ′

1
, . . . ,x ′

l = e ′l in which ei and e
′
i are expressions over the

actual input and formal output parameters, respectively,

(2) E ⊆ N ×N is the relation describing the possible flow of execution in the graph. An End node

has no successors, and an Start node has no predecessors. An Exit node may have multiple

successors. A Cond node n has at most one true successor tsucc(n) and at most one false
successor fsucc(n). In all other cases, the nodes have at most one successor.

Interprocedural control flow is illustrated in Fig. 1(a). A concrete example of procedure calls

from multiple locations is illustrated in Fig. 4 on page 11, where procedure add is called from two

different locations L1 and L2. Each call to procedure add has distinguished CAssign and RAssign
nodes clearly separating contexts for different calls with assignments between formal and actual

parameters.

For the brevity and completeness of representation, we allow a single CAssign (or RAssign)
node to include multiple simultaneous assignments representing all the assignments from actual
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input parameters (resp. formal output parameters) to formal input parameters (resp. actual output

parameters) related to a procedure call. This representation should affect neither the correctness nor

the precision of any slicing algorithm. Any such node can be considered to include multiple nodes

each representing a single assignment and have simultaneous data flow as illustrated in Fig. 1(b).

System dependency graph (SDG) based slicing methods [20] can create SDGs by considering all

direct dependencies to/from each of the inner nodes of the CAssign or RAssign nodes having single

assignments. Slicingmethods based on solving data flow equations [26, 49] can use a special equation

to handle the simultaneous data flow in the CAssign or RAssign nodes [26]. This representation

thus allows slicing relevant parameters (see Def. 4.10 in Section 4.5).

If the set of End nodes Ne is empty, then the CFG has no terminating execution. Like Danicic et

al. [13], we allow Cond nodes having no true or false successors, or other types of nodes having no

successors. If the execution reaches such a node, the program is silently nonterminating. However,

if the execution reaches an End node in Ne , then it is a terminating execution. We shall sometimes

denote a CFG by the tuple (N ,E) instead of (N ,E,Ne , start). We consider C-like interprocedural

code that can be represented by a CFG according to Def. 2.1. For simplicity we only consider simple

assignments of statically known program variables. We now introduce some standard concepts

and notation.

• Given any program P and its CFG G, we assume a function code that maps G to P , i.e.,
P = code(G). We shall sometimes abuse this notation and write code(n) for the program

statement that the CFG node n ∈ N represents. If the same CFG G is used to represent an

original program P1 and its slice P2, we use distinguished mapping functions code1 and code2

such that P1 = code1(G) and P2 = code2(G).
• The label of the statement code(n) is given by the function ℓ(n) which, with one exception,

uniquely identifies the statement (e.g., ℓ(n) can be a unique numeric identifier). The exception

is that a Call node n1 and its matching Ret node n2 that originate from a single procedure

call instruction will have the same label (i.e. ℓ(n1) = ℓ(n2)).

• n : T states that the CFG node n has the type T , with T according to Definition 2.1.

• AnyCFGnoden is associatedwith two sets of program variables def (n), and ref (n), containing
the variables that are defined, and referenced, respectively, in the code(n) statement. For a

node n of type Assign, CAssign, or RAssign, def (n) and ref (n)may be nonempty. If n is a Cond
node, then ref (n) may be nonempty but def (n) has to be empty. For all other kinds of nodes

n holds that def (n) and ref (n) are empty.

• The set of successor and predecessor nodes of any node n is denoted by succ(n) and pred(n). It
is sometimes convenient to attach the edge labels {T }, {F }, or {T , F } to the edge (n,n′) from
any Cond node n when n′ = tsucc(n), n′ = fsucc(n), or n′ = tsucc(n) = fsucc(n) respectively.

• A final CFG node is either a Cond node not having both a true and a false successor, or a

non-Cond node having no successor.

2.2 CFG paths and walks
Definition 2.2 (CFG path). A finite CFG path is a sequence of nodes n1,n2, . . . ,nk denoted by

[n1..nk ] such that ni+1 ∈ succ(ni ) for all 1 ≤ i ≤ k − 1 and k ≥ 1. An infinite path n1,n2, . . . is
denoted by [n1..].

A path is non-trivial if it contains at least two nodes. A maximal path is either an infinite path

[n1..] or a finite path [n1..nk ] such that nk is a final node. The minimum distance from ni to nj over
all paths [ni ..nj ] is denoted by dist

G (ni ,nj ). Sometimes we write dist(ni ,nj ) instead of dist
G (ni ,nj )

if G is understood from the context. We write n ∈ [n1..nk ] when n is some node ni in this path.
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Paths are sequences of CFG nodes. For sequences π , π ′
in general, π .π ′

denotes their concatenation.

ϵ is the empty sequence.

A matching pair of Call and Ret nodes are those nodes that have the same label. Thus, a matching

Call and Ret nodes originate at the same call site. Similarly, a matching CAssign and RAssign nodes

have a predecessor and a successor node, respectively, that have the same label. A valid path is a

path that can be extended to a sequence of nodes that is balanced with respect to matching Call
and Ret nodes, and CAssign and RAssign nodes, by either prepending the proper Call and CAssign
nodes or appending the proper Ret and RAssign nodes. More formally, consider a CFG G with l call
sites where, for 1 ≤ i ≤ l , (ci , ri ) is the matching pair of Call and Ret nodes, and (cai , rai ) is the
matching pair of CAssign and RAssign nodes for call site i . A sequence of Call, CAssign, RAssign, and
Ret nodes is balanced when it is generated by the following context-free grammar (for 1 ≤ i ≤ l ):

S → A | cai A rai
A → ci cai A rai ri | A A | ϵ

Here S is the start symbol, A is the nonterminal symbol, and ci , ri , cai , rai are the terminal

symbols of the grammar. For example, the sequences c1 ca1 c2 ca2 ra2 r2 ra1 r1 c3 ca3 ra3 r3 and

c1 ca1 c2 ca2 ra2 r2 ra1 r1 are balanced as it can be generated from the above grammar. The sequence

c1 ca1 c2 ca2 ra1 r1 is not balanced as it is not generated by the aforementioned grammar.

A path in a CFG is similarly called balanced if its maximal subsequence of Call, CAssign, RAssign,
and Ret nodes is balanced. An unbalanced path π may contain isolated Call or CAssign nodes, for

which no matching Ret or RAssign nodes exist in π , or isolated Ret or RAssign nodes for which no

matching Call or CAssign nodes exist. Paths with isolated Call and CAssign nodes can appear during

program execution, where procedures are called but not yet exited. Similarly, during a backward

traversal of the CFG (say, during a backwards data flow analysis) a path may contain isolated Ret
or RAssign nodes.

Now consider a path π = [n1..nt ] whose maximal subsequence of isolated Call and CAssign
nodes ismk , . . . ,m1, and consider the sequence of RAssign and Ret nodesm1, . . . ,mk

where each

mi
matchesmi . Let [nt ..m

1] and [mj ..mj+1] be finite paths for all 1 ≤ j < k . Then the R-extension
of π is the sequence π .[m1, . . . ,mk ]. Similarly, if the maximal subsequence in π of isolated RAssign
and Ret nodes ismk , . . . ,m1

, the sequence of matching Call and CAssign nodes [m1, . . . ,mk ] is

such that there exist finite paths [mj ..mj+1] for all 1 ≤ j < k , and there is a finite path [mk ..n1],

then [m1, . . . ,mk ].π is the C-extension of π .

Definition 2.3 (Valid Path). A path in a CFG is valid if the path itself, its C-extension, or R-extension
is balanced.

Consider the path [n13..n6] in the CFG G in Fig. 4. It is a valid path since its C-extension
[n3,n4].[n13..n6] is balanced. An interprocedural analysis that considers only valid paths is usually

more precise since it excludes some kinds of infeasible paths.

Definition 2.4 (Element). Let G be a CFG. An element is a pair (n, l) such that n is a CFG node,

l = T or l = F if n is a Cond node, and l = ϵ otherwise.

Suppose code is any mapping function of the CFG G, Then, l = T and l = F represent true and

false evaluation of the condition code(n), respectively. We use the following definition of walk
adapted from [13] in order to form logical judgments on CFG paths.

Definition 2.5 (Walk). A walk in G is a sequence (n1, l1), . . . , (ni , li ) . . . of elements such that

(1) n1, . . . ,ni , . . . is a valid path in G, and
(2) for any two consecutive elements (ni , li ), (ni+1, li+1) for i ≥ 1, if li = T or li = F , then

ni+1 = tsucc(ni ) or ni+1 = f succ(ni ), respectively.
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If ω = (n1, l1), . . ., (ni , li ), . . . is a walk, then ω̄ = n1, . . . ,ni , . . . denotes the valid path for that

walk. Danicic et al. [13] provided the definition of walk for intraprocedural CFG. They have made

an informal semantic assumption that for any elemnet (n, l) in a walk ω such that n is a Cond

node, l always represent the result of the evaluation of the conditional expression at n. The path
ω̄ is always a feasible path for intraprocedural CFG due to this assumption. Def. 2.5 considers

interprocedural CFG and ω̄ is also a feasible interprocedural path as we consider the same informal

semantic assumption and the fact that ω̄ is also a valid path. We write n for (n, ϵ) within walks.

−→
G denotes the set of all walks in G. Let ω be a walk in G, and N ′ ⊆ N . The restriction of ω to N ′

,

denotedω ↓ N ′
, is the subsequence ofω obtained by removing all elements (n, l) ofω where n < N ′

.

Similarly, for paths π , we define π ↓ N ′
as the subsequence of π where all n ∈ π that are not in N ′

are removed. If ω is a walk inG such that ω = ω1,ω2 then ω1 is a prefix of ω, and if ω , ω1 then ω1

is a proper prefix of ω. A walk ω is maximal in G when it is not a proper prefix of any other walk.

Example 2.6. Let us consider the CFG Ga in Fig. 3 on page 10. We obtain the maximal walk

start ,n1,n2, (n3, F ),n6, end from the finite terminating path start ,n1,n2,n3,n6, end inGa . The walk

(n3,T ),n4,n5, (n3,T ),n4,n5, . . . is also maximal since the path n3,n4,n5,n3, . . . is infinite nonter-
minating path. Note that a maximal walk either ends in a final node or is infinite. The sequence

(n3,T ),n6, end is not a walk since n6 , tsucc(n3).

2.3 Program Dependence and Slicing
Dependence-based slicing requires computing the data and the control dependency relations among

CFG nodes.

Definition 2.7 (Data Dependency [39]). Node n is data dependent on nodem (writtenm
dd
→ n) in

the CFG G if there is a program variable v such that: (1) there exists a nontrivial path π in G from

m to n such that for every nodem′ ∈ π − {m,n}, v < def (m′), and (2) v ∈ def (m) ∩ ref (n).

Intuitively, m
dd
→ n specifies that the value of variable v that is assigned at node m may be

used at n without being redefined by any node in the path [m..n]. Note that Def. 2.7 is for the

intraprocedural case: if applied to programs with procedures, it will yield a very inexact data

dependency relation since it will include many infeasible CFG paths. In Section 4.2 we will provide

a more exact definition, suitable for the interprocedural setting.

For control dependency, postdominators [37] play an important role. Assume that the CFG G has

a single End node ne , and that there is a path from each node n in G to ne . Node n is then said to

postdominate nodem if and only if every path fromm to ne goes through n. n strictly postdominates
m if n postdominatesm and n , m. There are many algorithms to compute postdominators, as

well as postdominator trees which can be used to efficiently represent sets of postdominators for

different nodes. The standard, postdominator-based control dependency relation can then be defined

as follows:

Definition 2.8 (Control Dependency [16, 39]). Node n is control dependent on node m (written

m
pcd
→ n) in the CFG G if (1) there exists a nontrivial path π in G fromm to n such that every node

m′ ∈ π − {m,n} is postdominated by n, and (2)m is not strictly postdominated by n.

The relationm
pcd
→ n implies that there must be two branches ofm such that n is always executed

in one branch and may not execute in the other branch. However, in the presence of nonterminating

loops, slicing based on the

pcd
→ relation will not always yield a satisfactory result: in particular, it

will not always preserve nontermination. Consider the CFG fragment in Fig. 2, which contains

an infinite loop between nodes c and s . The condition at c determines if s ′ will be executed or the
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void do_exit(long code)

{

...

schedule();

BUG();

for (;;)

cpu_relax();

}

c

ss ′

Fig. 2. Linux kernel code containing an infinite loop (left) and CFG fragment containing an infinite loop
(right)

execution gets stuck between c and s due to the infinite loop. Nevertheless, the relation c
pcd
→ s ′

does not hold as c is strictly postdominated by s ′. Thus, c will not be sliced even if s ′ is sliced.
This situation appears frequently in practice. For instance, consider the code from the Linux

kernel in Fig. 2. Here the infinite for-loop at the end may be entered in some abnormal situations,

and yet a slicing method based on

pcd
→ might not include this code in the slice. This may cause

problems, for instance, if slicing is used in conjunction with formal verification of certain properties

of the kernel. Another typical example is the embedded programs in which an embedded program

consists of a number of tasks and each task is built by a nonterminating function. For instance,

Engblom [15] have studied the static properties of a large sample of commercial and real-time

embedded programs and identified 44 nonterminating loops in those sample code.

For this reason, a number of different control dependency relations, conservatively extending the

standard relation above, have been defined [2, 34–36, 39]. For example, Podgurski and Clarke [36]

provided definitions of strong and weak control dependence that are nontermination insensitive

and nontermination sensitive. These relations consider that the CFG has a unique end node. In

order to handle CFGs having infinite loops, no end node, or multiple end nodes, other kinds of

control dependencies are proposed such as the relation

ntscd
−→ (Def. 6 in [39]) together with

dod
−→

(Def. 12 in [39] for handling irreducible CFGs) preserving nontermination, the relation

nticd
−→ (Def.

7 in [39]) ignoring nontermination, and the weakly order dependency relation

wod
−→ (Def. 2 in [2]).

Danicic et al. [13] presented two generalisations of control dependence called weak and strong
control closure which are non-termination insensitive and non-termination sensitive. Many existing

control dependencies are specialisations of the above two kinds. For example,

wod
−→ and

ntscd
−→ are

the weak and strong form of control dependencies not preserving and preserving non-termination

respectively.

The rich set of control dependency relations is motivated by the various different uses of

slicing, which give different demands on the properties of the slice. For instance preservation of

nontermination is not always desirable, as it tends to yield significantly larger slices. This motivates

a formal treatment of slicing that is valid over a whole range of control dependency relations.

In the rest of the paper

cd
→ will stand for any control dependency relation. We shall extend the

weak and strong control closure relations of Danicic et al. for interprocedural programs capturing

nontermination insensitive and sensitive control dependencies. Slicing based upon the weak and

strong form of control dependencies make the slices nontermination insensitive and sensitive,

respectively. In what follows, we define the concepts of weak and strong projections that are used to

define nontermination insensitive and sensitive slice.
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Definition 2.9 (Weak and Strong Projections [13]). Let G = (N ,E) be a CFG. A CFG G ′ = (N ′,E ′),

where N ′ ⊆ N , is a weak projection of G if and only if every walk of G, when restricted to N ′
, is a

walk of G ′
. That is,

ω ∈
−→
G ⇒ ω ↓ N ′ ∈

−→
G ′.

G ′
is a strong projection of G if and only if all maximal walks of G, when restricted to N ′

, give

maximal walks of G ′
. That is,

ω ∈
−→
G is maximal ⇒ ω ↓ N ′ ∈

−→
G ′

and is maximal.

Example 2.10. The CFG Ga in Fig. 3 (a) has the following three kinds of maximal walks. All the

suffixes of the following walks are maximal:

start ,n1,n2, (n3,T ),n4,n5, (n3,T ), . . . (infinite maximal)

start ,n1,n2, (n3,T ),n4,n5, (n3,T ), . . . , (n3, F ),n6, end (finite maximal)

start ,n1,n2, (n3, F ),n6, end (finite maximal)

The maximal walks of Gb and Gc (grey nodes) in Fig. 3 (b,c) are the following:

Maximal walks of Gb :

start ,n1,n6, end (finite maximal)

n1,n6, end (finite maximal)

n6, end (finite maximal)

end (finite maximal)

The maximal walks of Gc are all the suffixes of the following walks:

start ,n1, (n3,T ),n4, (n3,T ), . . . (infinite maximal)

start ,n1, (n3,T ),n4, (n3,T ), . . . , (n3, F ),n6, end (finite maximal)

start ,n1, (n3, F ),n6, end (finite maximal)

Any walk of a CFG is a prefix of a maximal walk. Gb is a weak projection of Ga since any walk

of Ga when restricted to the set {start ,n1,n6, end} is also a walk of Gb . Gc is a strong projection

of Ga since any maximal walk of Ga when restricted to the set {start ,n1,n3,n4,n6, end} is also a
maximal walk ofGc . The maximal walk start ,n1,n2, (n3,T ),n4,n5, (n3,T ), . . . ofGa when restricted

to {start ,n1,n6, end} gives the walk n1 of Gb which is not maximal, and hence Gb is not a strong

projection of Ga .

See [13] for more examples of weak and strong projections. Note that the set of edges E ′
in

Def. 2.9 is not restricted. But, we require that G ′ = (N ′,E ′) is a valid CFG formed according to

Def. 2.1. Regarding the relation between weak and strong projections, a strong projection is also a

weak projection since every walk is the prefix of a maximal walk (Lemma 26 in [13]). To see an

example,Gc is also a weak projection ofGa in Fig. 3 as any walk inGa is also a walk inGc when it

is restricted to the set of nodes {start ,n1,n3,n4,n6, end}.
In order to define nontermination (in)sensitive slices, we need to formally define the slices

obtained from dependence-based slicing. A program slice is computed relative to a slicing criterion
C , which is a set of pairs (n,V ) where n is a CFG node, and V is a set of program variables of

interest at n. For notational convenience, we consider C to be a partial function where the domain

is the set of nodes and the codomain is the power set of the set of all variables. Thus, we write

C(n) = V instead of (n,V ) ∈ C . We also write nodes(C) for the set of all nodes that belong to C .
Static backward slicing (on CFG level) then selects a part of the CFG (called the slice set) that
includes all nodes in the CFG that possibly can affect the memory locations for the respective

CFG nodes in the slicing criterion. The slice set then defines the subset of the original CFG that

constitutes the slice. For dependence-based slicing we define the slice set and slice as follows:
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{T}

{F}

(b) Gb is a weak projection 
     of Ga

 	n1:
 t=0

 	n2:	
k=0

n3:	
x	>=	0

n4:
x=x+y

 	n6:	
z=t

n5:
k=k+1

end

{T}

{F}

(a) CFG Ga

 	n1:	
t=0

 n2:	
k=0

 n3:	
x	>=	0

n4:
x=x+y

 	n6:	
z=t

n5:
k=k+1

end

{T}

{F}

(c) Gc is a strong projection 
     of Ga

 	n1:	
t=0

 	n2:	
k=0

n3:	
x	>=	0

n4:
x=x+y

 	n6:	
z=t

n5:
k=k+1

end

start start start

Fig. 3. Weak and strong projections.

Definition 2.11 (Slice Set). For any CFG G = (N ,E), control dependency relation

cd
−→, and slicing

criterion C , the slice set SC (G,
cd
−→) of G with respect to C is defined by

SC (G,
cd
−→) =

⋃
n∈nodes(C)

{m : m(
cd
→ ∪

dd
→)∗n}

where→∗
denotes the transitive-reflexive closure of →.

The above definition of slice set assumes, for simplicity, that C(n) = ref (n) for all n ∈ nodes(C).

We shall write SC for SC (G,
cd
−→) when G, and

cd
−→ are clear from the context. Def. 2.11 defines the

slice set for backward slicing. A similar definition can be done for forward slicing, using the relation

(
cd
→ ∪

dd
→)∗ in the forward direction. For the CFG G in Fig. 4, the slicing criterion C = {(n12, {c})},

and a post-dominator based control depenednecy relation

cd
→ capturing interprocedural control

dependency, SC = {n0,n8, . . . ,n15,nE ,nX } is the slice set according to Def. 2.11.
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(int,int) add(x, y: int)

{

int z=y;

if(x>=0)

z=z+y;

x=x-1

return (z,x);

}
...

a = a0;b = b0;

if(Cond)

L1:(r,e)=add(p,q);

else

while(true){}

r=r+1;

L2:(c,d)=add(a,b);

print(c);

(a)

{F}

{T}

n3:	
Call	add

n6:	
Ret	add

n7: r=r+1

n12:
print(c)

nE
(Entry)

n16:
x=x-1

 	 n13: 	 
z=y

nX
(Exit)

n9: x=a
 	 	 y=b

n4:	x=p
 	 	 	y=q

 	 	n5: 	 
 r=z,e=x

n8:	
Call	add

n11:	
Ret	add

 	n14: 	 
x	>=	0

n15:
z=z+y

 	 n10: 	 
c=z,d=x

 	n1: 	 
cond

n2:
true

n0:	
a=a0
b=b0

{T}

{F}

(b)

Fig. 4. (a) Interprocedural code and (b) CFG G of (a). Node n representing statement S is denoted by n : S in
G, C = {(n12, {c})} is the slicing criterion, and SC includes all the grey nodes. L1 = ℓ(n3) and L2 = ℓ(n8) are
the calling contexts

Given the slice set SC ofG = (N ,E)with respect toC and

cd
−→, the slice ofG is a CFG sliceC (G,

cd
−→

) = (SC ,E
′) where E ′

captures the “rewiring” of control flow edges that has to be done due to

nodes being removed in the slice. Note that if

dd
→ is defined by Def. 2.7, then Def. 2.11 will yield a

very inexact overapproximation of the slice sets for interprocedural code. With the version of

dd
→
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provided in Def. 4.6, Def. 2.11 will yield much tighter slice sets for such code. Our results are valid

for this more precise definition.

We now define what a nontermination (in)sensitive slice is.

Definition 2.12 (Nontermination (In)Sensitive Slice). Let G be the CFG of program P1, and let

P2 be the slice of program P1 with respect to the slicing criterion C and the control dependency

relation

cd
−→. Program P2 is a nontermination insensitive (or sensitive) slice of program P1 if the

CFG sliceC (G,
cd
−→) of P2 is a weak projection (resp. strong projection) of the CFG G of P1.

In Section 5 we define well-formed weak/strong control-closure for interprocedural programs,

which are necessary and sufficient conditions for the slice to be aweak/strong projection respectively.

Our definitions extend the generalized weak/strong control-closure for intraprocedural programs

provided by Danicic et al. [13].

3 THE SEMANTICS OF PROGRAM SLICING
Program semantics [33] is a natural tool to reason about the specification and properties of programs.

Semantic equivalence is a notion used to understand if the result of some program transformation

applied to code P preserves certain properties of P . In what follows, we give a structural operational

semantics for interprocedural programs (Section 3.1), we develop some semantic relations such as

derivation sequence andC-derivation sequence on the semantic transitions of programs (Section 3.2),

we define two semantic relations called nontermination (in)sensitive semi-equivalence between a

program and its slice, reflecting the program slicing semantics for possibly nonterminating programs

(Section 3.3), and finally we compare our slice semantics provided by the semi-equivalence relations

with the Weiser semantics, the lazy, transfinite, non-standard, finite trajectory, and semirefinement

semantics for terminating, nonterminating, and nondeterministic programs (Section 3.4).

In what follows G = (N ,E,Ne , start) is the CFG of program P1, SC is its slice set computed

according to Definition 2.11, and code1 and code2 are two functions mapping the CFG G to code P1

and the sliced code P2, respectively.

3.1 Program Semantics
Suppose Var is the set of all program variables, Val is the set of all values that variables in Var can
take, and N is the set of all CFG nodes. A store σ is an element of the set Store = Var → Val of
partial functions that map program variables to the corresponding values. A program state is an

element of the set State = N × Store, that is: a pair (n,σ ) where n is a CFG node, and σ is a store.

Config = (State)∗ is the set of all program configurations, where a program configuration can be

seen as an abstract call stack (n0,σ0) · . . . · (nm ,σm) of program states where the top is (nm ,σm). The
operational semantics of an interprocedural program can be expressed as transitions on program

configurations. The transition relation→ ⊆ Config ×Config is summarized in Table 1. For i = 1, 2,
we write i ⊢ Γ · s → Γ′ · s ′ if the program obtained through codei transforms (input) configuration

Γ · s into (output) configuration Γ′ · s ′ where s , s ′ range over program states. For any configuration

Γ · (n,σ ), we define node(Γ · (n,σ )) = n and store(Γ · (n,σ )) = σ (i.e., the currently visited node n
and its corresponding store σ ). JeKσ denotes the evaluated value of expression e in σ , σ [x 7→ v]
denotes the store where σ [x 7→ v](x) = v , and σ [x 7→ v](y) = σ (y) for y , x , and σ [σ ′] is the store

for which σ [σ ′](x) = σ ′(x) when x ∈ dom(σ ′), and σ [σ ′](x) = σ (x) otherwise. All variables in a

store are local variables, or formal input parameters. The scoping rules of variables and how to

model global variables are discussed later in this section.

The semantic rules in Table 1 describe the changes in configurations based on the top state (n,σ )
in the input configuration Γ · (n,σ ). Intuitively, the rules are as follows:
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Table 1. Semantic rules defining transitions

codei (n) = x=e n′∈succ(n) v=JeKσ
i ⊢ Γ · (n,σ ) → Γ · (n′,σ [x 7→ v])

(Assign)

codei (n)=b tsucc(n) , ⊥ JbKσ=true
i ⊢ Γ·(n,σ ) → Γ·(tsucc(n),σ )

codei (n)=b fsucc(n) , ⊥ JbKσ=f alse
i ⊢ Γ·(n,σ ) → Γ·(f succ(n),σ )

( Tcond) (Fcond)

n : Call n′ ∈ succ(n)

i ⊢ Γ · (n,σ ) → Γ · (n,σ ) · (n′,σ )
(Call)

codei (n) = x1 = e1, . . . xk = ek n : CAssiдn n′ ∈ succ(n) vj = Jej Kσ
i ⊢ Γ · (n,σ ) → Γ · (n′, {x1 7→ v1, . . . ,xk 7→ vk })

(ParamIn)

codei (n) = x ′
1
= e ′

1
, . . . x ′l = e ′l n : RAssiдn n′ ∈ succ(n) v ′

j = Je ′j Kσ

i ⊢ Γ · (n′′,σ ′) · (n,σ ) → Γ · (n′,σ ′[{x ′j 7→ v ′
j | 1 ≤ j ≤ l}])

(ParamOut)

n : T T ∈ {Entry, Start , Skip,Ret} n′ ∈ succ(n)

i ⊢ Γ · (n,σ ) → Γ · (n′,σ )
(Skip)

n : Exit n′′ ∈ succ(n) m ∈ succ(n′′) ℓ(n′) = ℓ(m)

i ⊢ Γ · (n′,σ ′) · (n,σ ) → Γ · (n′,σ ′) · (n′′,σ )
(Exit)

n : Call code2(n) = skip n′ : Ret ℓ(n′) = ℓ(n)

2 ⊢ Γ · (n,σ ) → Γ · (n′,σ )
(Call-skip)

• Assign: If the CFG node n in the top state (n,σ ) represents an assignment x = e , then the

store σ is updated by assigning JeKσ to x .
• Tcond and Fcond: These rules are applicable when the CFG node n in the input configuration

Γ · (n,σ ) is a Cond node with a boolean expression. The resulting configuration is Γ · (n′,σ )
where n′ is the immediate successor of n for the true or false branch (i.e. n′ = tsucc(n) or
n′ = f succ(n)), respectively, depending on the evaluation of the conditional expression.

The condition tsucc(n) , ⊥ (or f succ(n) , ⊥) indicates that there exists a true (resp. false)

successor of n.
• Call: Here, n in the top state (n,σ ) represents a call statement. The input configuration is

augmented with a new top state (n′,σ ), where n′ is the immediate successor of n, preparing
for the change of context where the assignments from actual parameters to formal input

parameters are done. Node n′ will be a CAssign node representing these assignments, and

the store σ copied to the top state allows subsequent evaluation of the actual parameters: see

the ParamIn rule.

• ParamIn: The top states (n,σ ) in the input configuration correspond to CFG nodes repre-

senting simultaneous assignments to formal input parameters. The top state (n′,σ ′) in the

output configuration corresponds to the CFG node n′ which is the only successor of n, and
σ ′

is the corresponding store of n′ containing values for formal input parameters.

• ParamOut: The top state (n,σ ) in the input configuration corresponds to CFG nodes rep-

resenting simultaneous assignments to actual output parameters before a return from a

procedure call. According to the Call rule, the second top state (n′′,σ ′) corresponds to

the call of that procedure. The output configuration is obtained by discarding (n′′,σ ′), and

forming a new top state (n′,σ ′[M]) where n′ is the Ret node representing a return from the
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procedure call,M contains the mappings from the actual output parameters to their values

evaluated in the store σ , σ ′
is the store before the procedure call, and σ ′[M] is equivalent

to the store before the procedure call but updated with the new values of the actual output

parameters.

• Skip: This rule is applicable when the CFG node is a Start, Skip, Entry, or Ret node. The

output configuration Γ · (n′,σ ) is formed from the input configuration Γ · (n,σ ) such that the

stores in the top states are not changed and n′ is the successor node of n.
• Exit: Here, the CFG node n represents a procedure exit node. There can be more than one

successor node of n returning to different call sites. The second top state (n′,σ ′) in the

configuration stack indicates the current caller of this procedure. This rule ensures the return

to the correct call site by finding the reachable Ret nodem (from n), and verifying that n′

andm have the same label.

• Call-skip: This rule is only applicable for P2. The top state (n,σ ) in the input configuration

corresponds to a Call node, but code2(n) = skip instead of a procedure call. This situation

appears if the call is not sliced: then it is replaced by a skip statement in the sliced code. The

output configuration is formed from the input configuration in which (n,σ ) is replaced by

(n′,σ ), where n′ represents the return from the call. Thus, P2 avoids entering the procedure

and moves on to the next instruction.

We consider simple static scoping of variables as follows:

• All variables defined or referenced in a procedure are either local variables or formal parame-

ters of that procedure.

• Global variables are modeled by using the actual parameters of procedure calls and formal

procedure parameters explained below.

• We do not consider nested scoping of variables. So, variable names are unique in a procedure.

The scope of all local variables and formal parameters are the entire body of that procedure.

The semantic rules in Table 1 define the scope of program variables (see Call, Ret, ParamIn,

ParamOut rules). For these semantic rules, the current variables in scope are the variables that are

defined by the store in the top state. Initially, at procedure entry, these variables are the formal

input parameters as defined by the ParamIn rule. Other variables will be undefined unless explicitly

assigned during transitions, and an attempt to evaluate an expression containing such variables

will yield an undefined result. Global variables xд can be modeled by turning them into formal

input parameters and actual output parameters, for all procedures in the program, in the following

way: for each procedure call, the CAssign node holds an assignment xд = xд passing the current

value of xд to itself within the new top store, and the RAssign node at procedure exit holds a similar

assignment passing the possibly updated value of xд to the new top store of the caller. The initial

definition of local variables (different from formal input parameters) in the top store are modeled

by ordinary assignment (Assign rule) due to initializations (if any).

Without loss of generality we assume that (start , ref (start)), and (ne , ref (ne )) for an End node

ne ∈ Ne , belong to the slicing criterion C . An initial configuration is a configuration (start ,σ0),

where σ0 is its initial store. If ne ∈ Ne then (ne ,σ ) is a final terminating configuration, for any store

σ . If Γ · (n,σ ) is any configuration such that n < Ne but n is a final node from where no transition

i ⊢ Γ · (n,σ ) → Γ′ exists for i ∈ {1, 2}, then Γ · (n,σ ) is a final nonterminating configuration (i.e., the

program is silently nonterminating).

3.2 Derivation Sequences
Definition 3.1. A derivation sequence of program Pi for i ∈ {1, 2} is either
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• a finite sequence of configurations Γ0, . . . , Γk such that k ≥ 0 and i ⊢ Γj → Γj+1 for all

0 ≤ j < k ,
• or an infinite sequence of configurations Γ0, Γ1, . . . such that i ⊢ Γj → Γj+1 for j ≥ 0.

For any set of CFG nodes X we define the transition relation i ⊢ Γ0 →X Γk , capturing the steps
between the configurations in a derivation sequence that visit nodes in X , as follows:

Definition 3.2 (i ⊢ Γ0 →X Γk ). The relation i ⊢ Γ0 →X Γk holds iff there is a finite derivation

sequence Γ0, . . . , Γk such that node(Γ0) ∈ X , node(Γk ) ∈ X , and node(Γj ) < X for all 1 ≤ j ≤ k − 1.

Thus, →X captures derivation sequences starting from and ending in X without visiting X
in-between. In the following we will consider the cases where X = nodes(C), and X = SC . For
brevity we will write →C for→nodes(C).

Definition 3.3. A (finite or infinite) C-derivation sequence of program Pi for i ∈ {1, 2} is either

• a finite sequence of configurations Γ0, . . . , Γk such that k ≥ 0, node(Γ0) ∈ nodes(C), and
i ⊢ Γj →C Γj+1 for 0 ≤ j < k , or

• an infinite sequence of configurations Γ0, Γ1, . . . such that i ⊢ Γj →C Γj+1 for j ≥ 0.

Example 3.4. Consider the CFGGa in Fig. 3, the slicing criterionC containing the pairs (n, ref (n))
for n ∈ {start ,n6, end}, and the initial store σ0 = {x 7→ −1,y 7→ 0}. We obtain the derivation

sequence

(start ,σ0), (n1,σ0), (n2,σ1), (n3,σ2), (n6,σ2), (end,σ3)

from Ga where σ1 = σ0[t 7→ 0],σ2 = σ1[k 7→ 0] and σ3 = σ2[z 7→ 0]. We thus have a

transition 1 ⊢ (start ,σ0) →C (n6,σ2) and 1 ⊢ (n6,σ2) →C (end,σ3). The derivation sequence

(start ,σ0), (n6,σ2), (end,σ3) is thus a C-derivation sequence.

We use the notation Γ1..Γk (..) to represent that it is either a finite derivation sequence Γ1, . . . , Γk
or an infinite derivation sequence Γ1, Γ2, . . .. If there exists a derivation sequence Γ0, . . . , Γ from an

initial configuration Γ0 of Pi for i ∈ {1, 2}, then Γ is a valid configuration of Pi . A finiteC-derivation
sequence Γ0, . . . , Γk of Pi is maximal if Γk is a a final configuration. Also, all infinite C-derivation
sequences are maximal.

3.3 Semi-equivalence Relations
We now define two semi-equivalence relations between a program and its slice. These are relations,

defined with respect to a slicing criterion, that (i) agree with the standard program slice semantics

of Weiser, and (ii) extend to infinite execution traces handling possibly nonterminating programs.

The first relation captures correctness of nontermination insensitive slices, and the second captures

correctness of nontermination sensitive slices.

First, we define equivalence of two stores with respect to a set of variables. For any store σ , let
var (σ ) denote the set of all variables x for which σ (x) is defined.

Definition 3.5 (Equivalence of stores). Let σ1 and σ2 be stores. The store σ1 is equivalent to σ2 with
respect to a set of variables X (denoted σ1 =X σ2) iff

∀x ∈ X .x ∈ (var (σ1) ∩var (σ2)) =⇒ σ1(x) = σ2(x).

Thus, two stores are not equivalent only when there exists a variable in X that is defined in both

stores but mapped to different values. In the following, we first define the the relation ≳C and then

use it to define the semi-equivalence relations between programs P1 and P2.

Definition 3.6 (≳C ). The relation P1 ≳C P2 holds between the programs P1 and P2 iff for all

C-derivation sequences Γ0..Γk (..) of P1, there exists a C-derivation sequence Γ′
0
..Γ′k (..) of P2 such

that node(Γi ) = node(Γ
′
i ) and store(Γi ) =C(node(Γi )) store(Γ

′
i ) for all i ≥ 1.
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Definition 3.7 (Semi-equivalences). Program P2 is nontermination-insensitively semi-equivalent to
P1 with respect toC iff P1 ≳C P2 holds. Program P2 is nontermination-sensitively semi-equivalent to
P1 with respect to C (denoted P1 ≃C P2) iff P1 ≳C P2 and P2 ≳C P1.

Thus, the slice P2 is nontermination-insensitively semi-equivalent to the program P1 if it holds that

for any execution trace of P1 there exists an execution trace of P2 that visits the nodes in nodes(C)
in the same sequence, and whenever such a node n ∈ nodes(C) is visited the top stores of the corre-

sponding configurations agree on the values of the variables in C(n). Thus, this semi-equivalence

agrees with the standard semantics of Weiser and Binkley. For the nontermination-sensitive semi-

equivalence, the symmetric case must hold. Then, both P1 and P2 are either terminating or nonter-

minating, they visit the nodes in nodes(C) in the same sequence, and compute the same values for

the variables in C(n) for all n ∈ nodes(C).

3.4 Relative comparison of the slicing semantics
Numerous attempts have been made by different authors to define the semantics of slicing for ter-

minating, nonterminating, and nondeterministic programs. Ward and Zedan in [48] have identified

a number of problems that are latent in the definition of those proposed slice semantics. In this

section, we shall illustrate that the semantics provided by the semi-equivalence in Def. 3.7 does not

suffer from those problems.

3.4.1 Weiser slicing. The Weiser slicing [50] as illustrated by Ward and Zedan consists of two

parts:

(1) A syntactic part: the slice P2 must be formed from the program P1 by deleting statements, or

equivalently by replacing statements by skip statements.

(2) A semantic part: the slice P2 must preserve the values of the variables of interest at the points

of interest.

The authors explainedWeiser’s intention: “any code which does not involve the variables of interest

can be deleted, regardless of whether or not that code terminates” [48]. The semantic part is further

characterized by the semi-refinement relation that allows any program as a valid slice when the

original program does not terminate. Thus, Weiser slicing allows us to delete irrelevant code,

nonterminating code, and code that appears after a nonterminating loop.

Let us consider a program P1 and its nontermination insensitively semi-equivalent slice P2 (i.e.

P1 ≳C P2). We dissect the conditions for the relation P1 ≳C P2 as follows:

(1) for all C-derivation sequences Γ0..Γk (..) of P1, there exists a C-derivation sequence Γ′
0
..Γ′k (..)

of P2, and

(2) for the C-derivation sequences in condition (1) above, it holds that node(Γi ) = node(Γ′i )
and store(Γi ) =C(node(Γi )) store(Γ

′
i ) for all i ≥ 1.

From conditions (1) and (2) we conclude that:

• if the original program P1 visits the statement code1(n) where n ∈ nodes(C), then there exists

an execution of P2 that visits code2(n),
• if P1 visits code1(n) for any n ∈ nodes(C) and its execution is finite, then P2 visits code2(n) the
same number of times, and

• both of them compute the same values for the variables in C(n).

However, if the execution of P1 is nonterminating then P2 visits code2(n) at least as often as P1.

Program P2 may have infinite loops removed that do not affect the slicing criterion, and any slicing

point after an infinite loop will be visited by P2 more often than P1. Conditions (1) and (2) also

imply that
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• if P1 visits code1(n) infinitely many times for any n ∈ nodes(C), then P2 also visits code2(n)
the same number of times, and

• both compute the same values for the variables in C(n).

If the original program P1 is such that any statement code1(n) is inside an infinite loop, and

n ∈ nodes(C), then code2(n) must be in an infinite loop in P2. We can conclude from the above that

a slice that is nontermination insensitively semi-equivalent to the original program preserves the

values of all the variables of interest specified in the slicing criterion. Since the relation P1 ≳C P2

also holds for a nontermination sensitively semi-equivalent slice P2 of program P1, a nontermination

sensitively semi-equivalent slice also preserves the values of all the variables of interest at the

points of interest. So, the semantic condition of Weiser slicing is met by the semi-equivalence

relations when the slice is nontermination (in)sensitive. Any statement of P1 that does not affect

the values of the variables in the slicing criterion, and does not affect the nontermination behavior,

can be deleted in P2 (or equivalently replaced by a skip statement or true/false conditions, see
Section 4.5 for the formal discussion).

Now, let us consider a nontermination insensitively but not nontermination sensitively semi-

equivalent slice P2 of P1. Thus, P1 ≳C P2 holds, but P2 ≳C P1 does not hold and the slice is not

nontermination sensitive. In this case, the semi-equivalence relation allows deleting nonterminating

code that does not include any statement as part of the specification in the slicing criterion, and

any unreachable code even if it is part of the specification of the slicing criterion! Let us explain

with examples.

In program Q1 (Fig. 5), the statement X = 1 at L2 affects the value of the variable X at the end of

the program. Thus, neither Weiser slicing nor semi-equivalence allows it to be deleted. In program

Q2, Weiser slicing allows deleting the nonterminating loop at label L3, and the statement X = 1 at

L4 after the loop as well, as this statement is unreachable and thus cannot affect the value of the

variable X in the slicing criterion. If the execution of Q2 reaches L3, then there is no C-derivation
sequence from the then branch of the if statement due to the infinite loop. So, there is no obligation

to include the infinite loop into a slice which is not nontermination sensitively semi-equivalent to

the original program. Moreover, the unreachable statement X = 1 at L4 neither affects the value

of any variable in the slicing criterion nor does it contribute to making a transition to form a

C-derivation sequence byQ2. So, a nontermination insensitively but not nontermination sensitively

semi-equivalent slice allows deleting unreachable statements.

In summary, the original program P1 may include the following kinds of statements: (i) nontermi-

nating loops that are reachable and contain slicing point(s), (ii) nonterminating loops that contain

no slicing point, and (iii) statements that are unreachable. It is always incorrect (i.e. P1 ≳C P2 and

P1 ≃C P2 do not hold) to delete nonterminating loops of case (i), always correct to delete statements

of case (iii) from P2, and loops of case (ii) can be deleted unless P2 is nontermination sensitively

semi-equivalent to P1.

The syntactic part of the semi-equivalence relation is less strict than that of Weiser slicing. There

is no strict requirement that the slice has to be formed from the original program by deleting

statements or replacing irrelevant statements by skip statements. However, the semi-equivalence

relations assume the same CFG G for both the original program P1 and its slice P2 such that

P1 = code1(G) and P2 = code2(G). Programs P1 and P2 thus have the same CFG structure, but a

CFG node n may represent different code, i.e. we may have that code1(n) , code2(n). In order to

understand its implication, consider the code in Fig. 6. Suppose we are interested in the value of

the variable Z at L5. The value of Z at L5 is always 2. So, according to Def. 3.7, Q4 is a correct slice

of Q3. This slice is not formed syntactically from Q3 according to the rules for Weiser slicing.
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read(X)
if X then

L1: skip;
L2 : X = 1;

else X = 2;

write(X)

Program Q1

read(X)
if X then
L3: while true do skip od;
L4 : X = 1;

else X = 2;

write(X);

Program Q2

Fig. 5. The slicing criterion consists of the variable X in the statement write(X ). Programs Q1 and Q2 are
used to illustrate Weiser slicing in [48].

X = 1;

if X > 0 then
Y = 2;

else
Y = 4;

Z =Y;
L5: write(Z);

Program Q3

skip;
if false then
skip;

else
skip;

Z =2;
L6: write(Z);

Program Q4

Fig. 6. The slicing criterion consists of the variable Z at the program point L5. According to the semi-
equivalence relation, Q4 is a valid slice of Q3.

3.4.2 Termination property of the slice. There exist lazy, transfinite, non-standard, and finite

trajectory semantics that allow a nonterminating program as a valid slice of a terminating program.

As Ward and Zedan uncovered in [48], the lazy program slicing semantics of Cartwright and

Felleisen [10], the transfinite semantics of Giacobazzi and Mastroeni [17] and Nestra [32], the

non-standard semantics of Danicic et al. [14], and the finite trajectory semantics of Barraclough

et al. [5] all suffer from this problem. The problem is illustrated by the programs Q5 and Q6 in

Fig. 7. Program Q6 is formed from Q5 by deleting the statement labeled L1. The while loop in Q5

always terminates, but the loop in Q6 does not when the initial value of Y is greater than 0. All

these semantics allow Q6 to be a valid slice of Q5 as it is allowed to remove part of the irrelevant

code regardless of whether the termination property is maintained or not. See the relevant papers

for the details.

while Y > 0 do
Y = Y + 1;

L1: Y = Y − 2

od;
X = 1

L2: write(X);

Program Q5

while Y > 0 do
Y = Y + 1

od;
X = 1

L2: write(X);

Program Q6

Fig. 7. The slicing criterion consists of the variable X at the program point L2. Q6 is a valid slice of Q5 under
the lazy, transfinite, non-standard, and finite trajectory semantics [48].
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However, there always exists a C-derivation sequence in Q5 that visits the statement labeled L2,

but there may not have a C-derivation sequence that can visit that statement in Q6. All derivation

sequences in Q6 are diverging when Y > 0. Thus, Q6 is not a valid slice of Q5 according to the

semi-equivalence semantics.

This paper mainly deals with deterministic programs. A program is deterministic if there exist at

most one transition from any given configuration. The semi-equivalence relations do not allow

any nonterminating code as a valid slice of a terminating code if the slice is deterministic. We

prove the following theorem regarding the termination property of a nontermination (in)sensitively

semi-equivalent slice:

Theorem 3.8. For all programs P1, and any deterministic semi-equivalent slice P2 of P1 such that
P1 ≳C P2, holds that if P1 is a terminating program, then all executions of P2 are terminating.

Proof. Without loss of generality we assume that the Start node, as well as the End node,

belong to nodes(C). Note that the End node must exist, since P1 is terminating. Consider any initial

configuration Γ′
0
= (start ,σ ′) of P2. Then there exists an initial configuration Γ0 = (start ,σ ) of

P1 such that σ =var (σ ′) σ
′
: we simply pick a σ such that σ (x) = σ ′(x) for all x ∈ var (σ ′). Now,

since P1 is terminating, all maximal C-derivation sequences of P1 are finite. Suppose Γ0, . . . , Γk is

a maximal C-derivation sequence of P1 where node(Γk ) ∈ Ne . Since P1 ≳C P2, there exists a C-
derivation sequence Γ′

0
, . . . , Γ′k of P2 where node(Γ

′
k ) = node(Γk ) ∈ Ne . This C-derivation sequence

is a projection of a derivation sequence D of P2 starting in Γ′
0
. Since D visits Ne , it is terminating. As

we consider deterministic slices only, where there is at most one transition from any configuration,

D is the unique derivation sequence starting in Γ′
0
. Thus, there can only be terminating derivation

sequences for P2. □

Theorem 3.8 holds for both nontermination insensitive and nontermination sensitive slices as

P1 ≳C P2 is the correctness criteria for both kinds of slices according to the definition of semi-

equivalences. The condition that P2 is deterministic is important for the proof: the theorem does

not extend to nondeterministic slices in general. Slicing of nondeterministic programs is further

discussed in Section 3.4.3.

if A[i] > 0 then
X = X + Y ;

else
P = 4;

L: Z = X ;

Program Q7

if (∗) then
X = X + Y ;

else
P = 4;

L: Z = X ;

Program Q8

if (∗) then
X = X + Y ;

else
skip;

L: Z = X ;

Program Q9

 n0: 
(*)

n1:  
X = X+Y 

  n2:  
P = 4 

  n3:  
Z = X 

{T,F}{T,F}

CFG of Q8

Fig. 8. Program Q8 is an abstraction of Q7 in which the condition A[i] > 0 in Q7 is abstracted to the
nondeterministic choice condition (∗).
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3.4.3 Slicing nondeterministic programs. Most practical programs have deterministic execution

semantics. However, the concept of nondeterminism is important in computer science in the

context of nondeterministic Turing machines, concurrency, or program abstraction. For example,

nondeterministic code may appear during the early stage of program analysis where certain

parts of the code are abstracted away during the generation of intermediate code representation.

Consider the program Q7 in Fig. 8 where the condition includes an array access. In static program

analysis, it is usually difficult to reason about array accesses, and conditions containing array

accesses are often represented by nondeterministic choices. Program Q8 is thus formed from Q7 by

replacing the condition A[i] > 0 by the nondeterministic choice condition (∗). Node n0 represents

this nondeterministic choice in the CFG of Q8. Both branches of n0 have the edge label {T , F }
meaning that execution might continue nondeterministically to node n1 or n2 from n0. Consider

the slicing criterion C = {(n3, {X })} and the initial store {X 7→ x0,Y 7→ y0}. As the execution is

nondeterministic, the value of X at n3 can be either x0 + y0 due to executing the then branch, or

the value x0 due to the else branch.
The definition of slicing provided by Binkley andGallagher [9] does not consider nondeterministic

programs. Their definition requires that both the original program and its slice compute exactly

the same value for the variable specified in the slicing point whenever the execution reaches there.

Thus, program Q8 is not a slice of itself according to this definition as different executions of Q8

might provide different results for X at n3. Slicing based on reduction and refinement [46] does
not consider nondeterministic programs either. Reduction is a syntactic relation: program Q ′

is

a reduction of Q if Q ′
can be constructed from Q by substituting some of its statements by skip

statements. Refinement is a semantic relation that uses the semantic function f such that if a

program starts its execution from an initial state s , f (s) consists of the set of all the possible final
states of the program. IfQ andQ ′

have the semantic functions f and f ′, thenQ ′
is a refinement ofQ

if f ′(s) ⊆ f (s) for all initial states s . So, according to this definition, Z = X ; is a valid slice of program

Q8 in Fig. 8 as (i) replacing the if-then-else block by the skip statement is a valid reduction which

can be deleted afterwards, and (ii) Z = X ; is a valid refinement of Q8 since the final value of X is x0

and {x0} ⊆ {x0 +y0,x0}. However, this slice does not preserve the nondeterministic behavior of the

original program. This problem was later fixed by using semirefinement [45] that basically requires

the equality f (s) = f ′(s) for all the initial states s when both Q and Q ′
are terminating. Ward and

Zedan later extended semirefinement in [48] to handle the slicing of potentially nondeterministic

nonterminating programs where the slicing point can be in the middle of the code.

The behavior of a nondeterministic program in some state can be represented by a computation
tree [18] as follows:

• The nodes are labeled with states, the root is labeled with the start state, and the leaves are

labeled with final states (i.e. states in which the program terminates) or failure states (special

states representing failures).

• A branching point in the tree indicates a nondeterministic choice point. Each branch of a

nondeterministic choice represents different possibilities of computation when the execution

starts from the initial state.

• The tree may contain infinite paths indicating potential nonterminating computation of the

program.

The computation at any program instruction I can be obtained from the labeled states associated

with I at different branches of the computation tree. All those states at different branches represent

different possible outcomes of executing I when the execution starts from the initial state. Thus,

we get a set of possible values of program variables for executing any program instruction I .
The set is finite if all paths of the computation tree are finite. A nontermination (in)sensitively
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semi-equivalent slice perfectly preserves the nondeterministic behavior of the original program.

Consider the CFG G of a nondeterministic program P1 = code1(G), its slice P2 = code2(G), and the

CFG node n ∈ nodes(C) such that there exists a nondeterministic choice condition inG that decides

if n will be executed at all, or not. Suppose the execution of P1 and P2 starts from an equivalent

initial state, i.e., for all initial stores σ0 of P1 and σ ′
0
of P2, σ0 =var (σ ′) σ

′
holds. The following

definition describes what we mean by preserving the nondeterministic behavior of P1 by the slice

P2:

Definition 3.9 (Nondeterministic behavior). For any n ∈ nodes(C), and any x ∈ C(n), letVi (n,x) de-
note the set of possible values for x computed by Pi at n, for i = 1, 2. P2 preserves the nondeterministic
behavior of P1 at n iff it holds, for all x ∈ C(n), that V1(n,x) ⊆ V2(n,x).

Note that we requireV1(n,x) ⊆ V2(n,x) in the above definition since a nontermination insensitive

slice, which does not preserve nontermination, may execute n more often than the original program,

and thus a nontermination insensitively semi-equivalent slice may compute a value v ∈ V2(n,x)
which is not present in V1(n,x).

Theorem 3.10. A slice P2 preserves the nondeterministic behavior of a nondeterministic program
P1 at all nodes n ∈ nodes(C) if P1 ≳C P2 holds.

Proof. Suppose P1 and P2 start execution from the initial configurations Γ0 and Γ′
0
such that

σ0 = store(Γ0), σ
′
0
= store(Γ′

0
), and σ0 =var (σ ′

0
) σ

′
0
holds. Because of nondeterministic choice(s),

starting from the initial configuration Γ0, P1 may either have (A) multiple finite or infinite C-
derivation sequences visiting a node n ∈ nodes(C), or (B) no C-derivation sequence exists due to

having infinite loop(s) such that node n is unreachable.

Case (A): Suppose Γi
0
, Γi

1
, . . . , Γiki are the finite truncated C-derivation sequences of P1 for all

0 ≤ i ≤ MAX and ki ≥ 1 such that Γi
0
= Γ0 and n = node(Γiki ). MAX = ∞ if n can be visited

infinitely many times during the operational transition, otherwise,MAX is a finite number. The

derivation sequence is truncated at a point where node n is visited. For any x ∈ C(n), ifV1 is the set

of possible values of x at n when P1 executes from an initial configuration Γ0, then, for any v ∈ V1,

there exists i ≥ 0 and a configuration Γiki such that v = store(Γiki )(x). According to Def. 3.7, for all

C-derivation sequences Γi
0
, Γi

1
, . . . , Γik of P1, there exists a C-derivation sequence Γ′

0
, Γ′

1
, . . . , Γ′k of

P2 such that node(Γij ) = node(Γ
′
j ) and store(Γ

i
j ) =C(node(Γ′j )) store(Γ

′
j ) for all 0 ≤ j ≤ k . So, we have

that v = store(Γ′k )(x). Thus, if V2 is the set of possible values of x at n when P2 executes from an

initial configuration Γ′
0
, for any value v ∈ V1 of x , we have that v ∈ V2 for all x ∈ C(n) and for all

n ∈ nodes(C).
Case (B): As no C-derivation sequence exists visiting node n, for any x ∈ C(n), its set of possible

values V1 = ∅, and V1 ⊆ V2 trivially holds. P2 thus preserves the nondeterministic behavior of P1 at

all nodes n ∈ nodes(C) for all x ∈ C(n). □

Since the relation P1 ≳C P2 also holds for nontermination sensitively semi-equivalent slices,

these slices also preserve the nondeterministic behavior of the original program.

Theorem 3.8 states that a deterministic semi-equivalent slice preserves the termination behavior

of the original program. If the original program terminates, then a semi-equivalent deterministic

slice also terminates. However, Theorem 3.8 cannot be extended to nondeterministic semi-equivalent

slices. Let us explain the reason with an example. Consider the program Q10 in Fig. 9 such that the

slicing criterion consists of the variables X and Z at program point L1. Program Q10 is terminating

as the nondeterministic if-else statement is terminating. The while loop in program Q11 is not

terminating when Y > 0. But, Q11 is a valid nontermination insensitively semi-equivalent slice

of Q10. This is because for every finite C-derivation sequence Γstar t , ΓL1
, Γend obtained from the
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if (∗) then
Y = Y + 1;

else
while (Y > 0) do
Y = Y + 1;
Y = Y − 2

od;
L1: X = X + Z;

Program Q10

if (∗) then
skip;

else
while (Y > 0) do
Y = Y + 1; od;

L2: X = X + Z;

Program Q11

Fig. 9. The slicing criterion consists of the variables X and Z at program point L1. Q11 is a semi-equivalent
nontermination insensitive slice of Q10.

CFG of Q10, there exists a finite C-derivation sequence Γ′star t , Γ
′
L2

, Γ′end obtained from the CFG of

Q11 such that store(ΓL1
) = store(Γ′L2

) and store(Γi ) = store(Γ
′
i ) for i ∈ {start , end}. Even though the

else-branch of Q11 is not terminating when Y > 0, the existence of the terminating if-branch at

the nondeterministic choice is enough to prove the existence of the finite C-derivation sequence

Γ′star t , Γ
′
L2

, Γ′end . If we modify the program Q11 in which the nonterminating loop is replaced by the

skip statement, then the modified Q11 is also a valid nontermination insensitively semi-equivalent

slice because such a nonterminating loop affects neither the slicing criterion nor the C-derivation

sequence.

if (∗) then
Y = Y + 1;

else
while (Y > 0) do
Y = Y + 1;
Y = Y − 2;
Z = Z − 1 od;

L3: X = X + Z;

Program Q12

if (∗) then
skip;

else
while (Y > 0) do
Y = Y + 1;
Z = Z − 1 od;

L4: X = X + Z;

Program Q13

Fig. 10. The slicing criterion consists of the variablesX andZ at program point L3.Q13 is not a semi-equivalent
nontermination insensitive slice of Q12.

However programQ13, which may not be terminating, is not a valid nontermination insensitively

semi-equivalent slice of the terminating program Q12. If the initial store of Q12 is {x 7→ x0,Y 7→

1,Z 7→ z0}, then we may get theC-derivation sequence Γstar t , ΓL3
, Γend ofQ12 such that store(ΓL3

) =

{x 7→ x0,Y 7→ 0,Z 7→ z0 − 1}. But no equivalent C-derivation sequence is possible for Q13 due

to the nonterminating loop in the else-branch of the nondeterministic if-else statement. The

existence of the terminating if-branch in Q13 is enough to form the finite C-derivation sequence

Γ′star t , Γ
′
L4

, Γ′end , but not enough to ensure that store(ΓL3
)(Z ) = store(Γ′L4

)(Z ).
Figs. 9 and 10 illustrate the boundary between allowing and not allowing nontermination in a

nontermination (in)sensitively semi-equivalent nondeterministic slice P2 of a terminating program

P1. In these examples, a nonterminating loop Lp is allowed in P2 if there exists a nondeterministic

choice such that one of the branches is terminating, the loop Lp appears in one of the other

nondeterministic branches, and the computation in Lp does not affect the slicing criterion.
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4 INTERPROCEDURAL DEPENDENCE-BASED SLICING
In this section we discuss the dependence-based slicing for interprocedural programs. Interproce-

dural slicing should take into account the context information in order to be precise. In Section 4.1,

we define valid contexts, derivation of contexts, and contextually valid paths. Derivation of contexts is

used to obtain the valid context of a node from the valid context of another node when there exists a

path between them. Contextually valid paths are feasible paths that can be followed in an execution

of an interprocedural program. Interprocedural data dependency is discussed in Section 4.2, and

then interprocedural slicing is discussed using the concepts of relevant variables (Section 4.3), and

observable behavior (Section 4.4). These are the properties of CFG nodes with respect to the slice

set, which will be used later to prove the correctness of dependence-based slicing. We define the

construction of the sliced code code2 from code1 and SC according to [2] in Section 4.5.

4.1 Calling Contexts
Since we work in an interprocedural setting, we need the concept of calling contexts. Let Lab denote

the set of labels of all the procedure calls of the given program. Then, ∆ = Lab∗ is the set of calling
contexts of procedures. Let ϵ ∈ ∆ denote the empty context and let δ ◦ d denote the concatenation

of the context δ with the label d ∈ Lab.
Procedure calls can be recursive, and nested to any depth. The calling context describes exactly

how a particular procedure is reached. For example, consider these two scenarios: (1) procedure P
calls procedure Q from node nP in P and then Q calls procedure R from node nQ in Q , and (2) P
calls R from another node n′P . The calling context of R is then ℓ(nP ) ◦ ℓ(nQ ) in the first case, and

ℓ(n′p ) in the latter case.

In general, ∆ will also contain contexts that cannot be reached during any traversal of the CFG.

A valid context describes a nesting of procedure calls that is reachable according to the structure of

the CFG:

Definition 4.1 (Valid context).
(1) ϵ is a valid context for the Start node start .
(2) For any Call nodem and its successor CAssign node n, or any Ret nodem and its predecessor

RAssign node n, δ ′ ◦ ℓ(m) is a valid context of n iff δ ′ ∈ ∆ is a valid context ofm.

(3) For any RAssign node n and its predecessor Exit nodem, δ ◦ d is a valid context of n iff δ ◦ d
is a valid context ofm and n has a successor n′ such that d = ℓ(n′).

(4) For any node n that is not a CAssign, Ret, or RAssign node, and any predecessor n′ to n, if δ
is a valid context of n′ then so it is for n.

It is sometimes desirable to know the relative context δ ′
of a node n′ reachable from another

node n visited at a specific context δ . For example, consider the code and its CFGG in Fig. 4. Node

n13 can be visited in two possible contexts: L1 and L2. If n13 is reached from n3, which has context

ϵ , then n13 is in the L1 context, and if it is reached from, say, n7 then it must be in the L2 context.

Knowing the relative context is also useful in determining the valid path during a walk of the CFG.

For example, if nX in G is being visited in the L1 context, then the next visited node should be n5,

not n10.

The function d([n..n′],δ ) infers the context of n′ relative to the context δ of n by walking through

the path [n..n′]:
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Definition 4.2 (Derivation of Context (d)). For any nonempty path π and context δ , d(π ,δ ) is
defined by::

d([n],δ ) = δ
d([n1,n2],δ ) = δ ◦ ℓ(n1) if n1 : Call
d([n1,n2],δ ) = δ1 if n2 : Ret and δ = δ1 ◦ ℓ(n2)

d([n1,n2],δ ) = δ otherwise

d([n1..nk ],δ ) = d([n2..nk ], d([n1,n2],δ )) if k > 2

Example 4.3. Consider the CFG G in Fig. 4. We obtain

d([n3..n13], ϵ) = d([n4..n13], d([n3,n4], ϵ))
= d([n4..n13],L1) (since d([n3,n4], ϵ) = L1 (Def. 4.2))

= d([nE ..n13], d([n4,nE ],L1))
...

= L1

Note that d uniquely determines the context for a configuration Γ, given that the initial configu-

ration is assigned the empty context: regardless of how the execution reaches Γ, the contexts for
the different possible paths will be the same. We omit the details. Thus, we will sometimes refer to

“the context δ of the configuration Γ”.
A contextually valid path is a valid path that also is consistent with respect to the possible valid

contexts that can arise during a traversal of the path:

Definition 4.4 (Contextually valid path). Let n1 be a CFG node and let δ be a valid context of n1.

A valid path [n1..nk ] is contextually valid from n1 in δ if δi = d([n1..ni ],δ ) is a valid context of node
ni for all 2 ≤ i ≤ k .

Consider Fig. 4. L2 is not a valid context of node n4 and n5, and L1 is not a valid context of node

n9 and n10. The derivation function d in Def. 4.2 does not always provide valid contexts even if

we consider valid paths. For example, the path π = [n16..n6] is valid as its C-extension [n3,n4].π
is balanced. Nevertheless, L2 = d([n16..n6],L2) is not a valid context of n6 as the successor of nX
should be n10 instead of n5 in the L2 context. This is due to the fact that even though π is a valid

path, it is a contextually invalid path in this context. However, the path π is contextually valid from

n16 in the L1 context.

Sometimes we shall write (n,δ ) to denote a CFG node in context δ . Also, we shall represent a finite
contextually valid path π = [n1..nk ] from node n1 in context δ1 by the sequence of (node,context)-

pairs π̂ = J(n1,δ1)..(nk ,δk )K, where δi = d([n1..ni ],δ1) for 2 ≤ i ≤ k , and we write (ni ,δi ) ∈ π̂ . We

will sometimes refer to π̂ as a contextually valid path, when the meaning is clear from the context,

although strictly speaking it is not a CFG path. We say that a contextually valid path π̂ is maximal
if π is a maximal path.

4.2 Interprocedural Data Dependency
We say that a procedure P declares a variable if there exists a node n containing an assignment to

that variable, and one of the following holds: (i) n is an Assign node that belongs to the CFG of P ,
(ii) n is a CAssign node, and its successor is the Entry node of P , or (iii) n is a RAssign node, and its

successor (the Ret node) belongs to the CFG of P . Since our scoping rules do not prohibit using

the same name for variables in different procedures, it is sometimes important to know if a CFG

node is in the scope of a variable in some given context. In the following we define the scope of a

variable, in some context, as a set of (node,context) pairs:

Definition 4.5 (Scope of variables). Let v be a program variable declared in a procedure P in some

valid context δ . Then, all (n,δ ′) specified below are in the scope of (v,δ ):
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(1) n belongs to the CFG of procedure P , and δ ′ = δ ,
(2) either n is a CAssign node which is a predecessor of the Entry node of the CFG of P , and

δ ′ = δ , or n is a RAssign node and δ ′ = δ ◦ ℓ(n′)where n′ ∈ succ(n) is a Ret node that belongs
to the CFG of P , and

(3) either n is a RAssign node which is a successor of the Exit node of the CFG of P , and δ ′ = δ ,
or n is a CAssign node and δ ′ = δ ◦ ℓ(n′) where n′ ∈ pred(n) is a Call node that belongs to
the CFG of P .

All (n,δ ′) pairs that fulfil (1) and (2) above are in the definition scope of (v,δ ), and those fulfilling

(1) and (3) are in the reference scope of (v,δ ).

Note that we have to differ between definition and reference scope. This is since for CAssign

nodes the assigned variables are visible in the callee, and the referenced variables in the caller, and

vice versa for RAssign nodes.

We now have the concepts needed to redefine Def. 2.7 to cover also the interprocedural case:

Definition 4.6 (Interprocedural Data Dependency). Node n2 is data dependent on node n1 (written

n1

dd
→ n2) in the CFG G if there exists a non-trivial, contextually valid path π̂ = [(n1,δ1)..(n2,δ2)]

for some (n1,δ1) and (n2,δ2) such that (1) there is a program variablev ∈ def (n1) ∩ ref (n2) declared

in some valid context δ , and (2) for every (m,δ ′) ∈ π̂ − {(n1,δ1), (n2,δ2)}, it holds that v < def (m)

when (m,δ ′) is in the definition scope of (v,δ ).

With this definition of

dd
→, Def. 2.11 of slice sets becomes extended to the interprocedural case.

The sole difference to Def. 2.7 is that only contextually valid paths and scope of variables are

considered: this yields a considerably more precise definition of data dependency. For example,

let us replace the code print(c) by print(x) at node n12 in Fig. 4 which is a valid change since we

allow different procedures to use same variable names. We obtain n16

dd
→ n12 according to Def. 2.7.

However, this relation is not valid according to Def. 4.6 since the variable x ∈ def (n16) ∩ ref (n12)

are declared in different contexts violating condition (1) in Def. 4.6. Thus, even though (n12, ϵ) is in
the reference scope of (x , ϵ), no valid context δ of n16 exists such that (n16,δ ) is in the definition

scope of (x , ϵ).

4.3 Relevant Variables in an Interprocedural Context
The concept of relevant variables (RVs) is used by different theories and techniques of slicing. It

is a fundamental idea for understanding how the values of variables in different program points

may affect the values of variables specified in the slicing criterion. Informally speaking, a relevant

variable is a variable whose value in some node and context may affect the value of some variable

in the slicing criterion.

Weiser [49] provided a recursive definition of relevant variables in an intraprocedural setting. We

now define them in an interprocedural setting. Without loss of generality, precision, and correctness,

we assume that ref (n) , ∅ for any CFG node n. This can be ensured by assuming a dummy variable

xp for each procedure p that is not defined or referenced anywhere in p and that only has scope in

procedure p. We set ref (n) = {xp } for any node n not referencing any variable (e.g. Entry or Exit

node, Call or Ret node, Cond node with condition true/false, or assignment statement like x = 10

etc.). Assume that Var includes xp , its default value is vp ∈ Val, and we modify the ParamIn rule in

Section 3.1 to include the mapping xp 7→ vp as follows:

codei (n) = x1 = e1, . . . xk = ek n : CAssiдn n′ ∈ succ(n) p = proc(n′) vj = JejKσ
i ⊢ Γ · (n,σ ) → Γ · (n′, {x1 7→ v1, . . . ,xk 7→ vk ,xp 7→ vp })

(ParamIn)
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where, n′ belongs to the procedure proc(n′). Since xp is not defined anywhere in the program code,

it creates no additional dependencies and it does not affect the slicing criterion. However, this

assumption simplifies our definition of RVs because we can always assume that the RV set of any

node n in context δ is non-empty (or empty) if n in δ may affect (resp. does not affect) the slicing

criterion. We provide the following definition of RVs:

Definition 4.7 (Relevant Variables). The set of relevant variables rvG (n,δ ) at node n of CFGG in

context δ consists of the variables v for which some of the following holds:

(1) v ∈ C(n) and n ∈ nodes(C).
(2) there exists a contextually valid path J(n1 = n,δ1 = δ )..(nk ,δk )K with nk ∈ SC such that

• (n,δ ) and (nk ,δk ) are in the reference scope of a program variablev ∈ rvG (nk ,δk ) declared
in some valid context δ ′

, and

• for all 1 ≤ i ≤ k − 1 it holds that v < def (ni ) whenever (ni ,δi ) is in the definition scope of

(v,δ ′).

(3) v ∈ ref (n) and n ∈ SC where v may influence the value of another RV in one of the following

ways:

(a) def (n) ∩ rvG (m,δm) , ∅ for somem ∈ succ(n) and δm = d([n,m],δ ).

(b) the relation n
cd
−→m holds such thatm ∈ SC , δm = d([n..m],δ ) and rvG (m,δm) , ∅.

Def. 4.7 inductively identifies the RVs by visiting the CFG nodes in the backward direction from

the nodes in the slicing criterion. The first sets of RVs for nodes in the slicing criterion are identified

from case (1), the CFG is traversed in the backward direction, RVs identified in case (1) are included

in the RV sets of visited nodes due to case (2), and new RVs are generated in cases (3a) and (3b). A

similar inductive definition for RVs can be provided that visits the CFG in the forward direction.

Def. 4.7 is a nontrivial extension of the definition of relevant variables for intraprocedural pro-

grams. The definition of relevant variables [2, 50] for intraprocedural programs can be summarized

as follows. Variable v is a RV at a CFG node n (denoted v ∈ rv(n)) if one of the following holds:

A1. v ∈ C(n) and n ∈ nodes(C),
A2. there exists nk ∈ SC and a path [n1..nk ] with n1 = n such that v ∈ rv(nk ), but v < def (ni ) for

all 1 ≤ i ≤ k − 1,

A3. v ∈ ref (n) and def (n) ∩ rv(m) , ∅ for somem ∈ succ(n),

A4. v ∈ ref (n) and n
cd
−→m for somem ∈ SC .

To see the differences in the definitions of interprocedural and intraprocedural RVs, let us compare

the above conditions with the conditions in Def. 4.7. Conditions (A1) and (A3) are equivalent to the

conditions (1) and (3a) in Def. 4.7. Condition (2) in Def. 4.7 is the refinement of condition (A2) by

introducing contexts and scopes to make it suitable for interprocedural programs. It first requires

that the path [n1..nk ]must be contextually valid. The conditionv < def (ni ) in (A2) is only enforced

in condition (2) if ni is in the definition scope of (v,δ ′) where v is declared in δ ′
. This is because

node ni may still define another variable with the same name if ni and nk belong to different

procedures or ni may belong to the CFG of a recursive procedure. However, the particular instance

of the RV v at nk cannot be defined at ni if ni is outside the definition scope of (v,δ ′). Condition

(2) additionally requires that both (n,δ ) and (nk ,δk ) are in the reference scope of (v,δ ′).

In order to illustrate these additional requirements, consider the set of RVs listed in Fig. 11 for

the CFG in Fig. 4. Details of how we obtain the RVs are explained shortly in example 4.8 below. The

set of RVs at n8 in the ϵ context is {a,b}. These variables are declared also in the ϵ context. Now,
according to the intraprocedural definition of RVs, a and b are also RVs at node n5 in L1 context

since there exists a path [n5..n8] with a,b < def (ni ) for i = 5, 6, 7 even though (n5,L1) is not in the

reference scope of (v, ϵ) for v ∈ {a,b}. This would be problematic if, for instance, the procedure

add would contain local variables a,b. However, Def. 4.7 correctly infers that rv(n5,L1) = ∅.
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Indirect relevant variables are identified due to condition (A4) for intraprocedural RVs, or case (3b)

in Def. 4.7 for interprocedural RVs
2
. So, case (3b) is similar to (A4) with the additional requirement

that rvG (m,δm) , ∅. In the following, we illustrate the necessity of this additional constraint in

the interprocedural case.

Necessity of rvG(m,δm) , ∅ for δm = d([n..m],δ ): In an interprocedural setting, a procedure P
may have multiple contexts due to different calls to it. There may exist calling contexts δm and δ ′

m
such that a CFG nodem ∈ SC in P affects the slicing criterion in δm , but not in δ ′

m . For example, n15

in Fig. 4(b) affects the slicing criterion in the L2 context, but not in the L1 context. rv
G (m,δm) , ∅

if ref (m) , ∅ andm affects the slicing criterion in δm due to one of the following reasons:

• the slicing criterion is affected by the value of a variable in def (m), and so rvG (m,δm) includes
the variables in ref (m),

• the slicing criterion is affected bym in δm due to control dependency, and so rvG (m,δm)
includes the variables in ref (m).

Since ref (m) is never empty, due to the introduction of dummy variables, it is guaranteed that

rvG (m,δm) , ∅whenm affects the slicing criterion in δm . If we drop the condition rvG (nm ,δm) , ∅

from case (3b) in Def. 4.7, the slicing procedure will infer RVs that do not affect the slicing criterion.

For example, rvG (n15,L1) = ∅, n15 does not affect the slicing criterion in L1 context, but will infer

that x ∈ ref (n14) is a RV at n14 in L1. The far-reaching effect will be that it will infer p to be a RV at

n4 and slice n4. Ultimately, we shall loose precision by having a larger slice set SC than necessary.

Thus, the condition rvG (nm ,δm) , ∅ in case (3b) restricts the contexts for considering ref (n) as
indirect RVs. If this condition holds thenm affects the slicing criterion in δm , n indirectly affects the

slicing criterion in δ due to the relation n
cd
−→m, and the variables in ref (n) become RVs at n in δ .

Example 4.8. We illustrate the different cases in Def. 4.7 with the RVs listed in Fig. 11 for the

code and its CFG in Fig. 4.

• RVs due to (1). Variable c is a RV at node n12 in the ϵ context due to case (1).

• RVs due to (2). Since c is a RV in rvG (n12, ϵ), J(n11, ϵ), (n12, ϵ)K is a contextually valid path,

both (n11, ϵ) and (n12, ϵ) are in the reference scope of (c, ϵ), and n11 is not defining c , c is also
a RV in rvG (n11, ϵ) due to case (2). Variables a,b are RVs at node n9 in the L2 context (due

to case (3a) illustrated below). Case (2) shows that these variables are RVs at all nodes in

the path [n6..n8] (in the ϵ context), but not relevant at nodes n4,n5,n13, . . . ,n16 (in the L1

context) since these nodes are not in the reference scope of (v,L1) for v ∈ {a,b}. However,
since (n1, ϵ) and (n3, ϵ) are in the reference scope (v, ϵ) for v ∈ {a,b}, a,b become relevant

again at n1 and n3 (in the ϵ context).

• RVs due to (3a). Since c is a RV at n11 in the ϵ context and it is defined at n10, the condition

def (n10) ∩ rvG (n11, ϵ) , ∅ in (3a) of Def. 4.7 holds. So, z ∈ ref (n10) becomes a RV at n10 in

the L2 context. Similarly, we obtain the RVs y, z at node n15 and a,b at n9 in L2 context, and

a0,b0 at n0 in ϵ context.

• RVs due to (3b). The condition x ≥ 0 at node n14 indirectly affects the computation at node

n15. Thus, y, z remain relevant at n14 because of case (2), and x is also a RV at n14 due to

case (3b) in the L2 context. Note that the condition rvG (n15,L2) , ∅ (an instantiation of

rvG (nk ,δk ) , ∅ in (3b)) is important for x to become a RV. x is not a RV at n14 in the L1

context as rvG (n15,L1) = ∅.

2
There exist formal definitions of RVs (for example, in [2]) which do not include indirect relevant variables. Their effects are

rather captured implicitly by data and control dependencies.
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Node n Context δ
RVs

obs(n,δ )
rv(n,δ ) Case

n12 ϵ {c} (1) {n12}

n11 ϵ {c} (2) {n11}

n10 L2 {z} (3a) {n10}

nX ,n16 L2 {z} (2) {nX }
n15 L2 {y, z} (3a) {n15}

n14 L2 {y, z (2) {n14}

x} (3b)
n13 L2 {x ,y} (2, 3a) {n13}

nE L2 {x ,y} (2) {nE }
n9 L2 {a,b} (3a) {n9}

n1,n3,n6,n7,n8 ϵ {a,b} (2) {n8}

n0 ϵ {a0,b0} (3a) {n0}

n2 ϵ ∅ () ∅

n4,n5,n13, . . . ,n16,nE ,nX L1 ∅ () {n8}

Fig. 11. RVs and the observable set obs(n,δ ) for all CFG nodes n and contexts δ for the CFG G in Fig. 4

4.4 Observable behavior
In sequences of configurations there are two kinds of visits to CFG nodes: if n ∈ SC is visited,

affecting the slicing criterion, then it is called an SC -observable move, and otherwise it is a silent
move. SC -observable moves observe values of variables at statements belonging to the sliced

program. If an original program and its slice have the same SC -observable moves, observing the

same values, then they will have the same C-observable moves and will observe the same values

at nodes in nodes(C). The next observable behavior defined below will be used to define the sliced

program and to prove the correctness of dependence-based slicing.

Definition 4.9 (Next Observable Behavior). Let n be a node in CFG G at context δ , and let SC be a

slice set. The set of observable nodes obsGSC (n,δ ) contains all nodesm ∈ SC such that there exists a

contextually valid path J(n1,δ1)..(nk ,δk )K with (n1,δ1) = (n,δ ), nk =m, rvG (nk ,δk ) , ∅, and the

following properties hold for each ni for 1 ≤ i ≤ k − 1:

(1) if δi = δk , then ni < SC and rvG (ni ,δi ) = rv
G (nk ,δk ), and

(2) if δi , δk , then rvG (ni ,δi ) = ∅.

We write obs(n,δ ) and rv(n,δ ) for obsGSC (n,δ ) and rv
G (n,δ ), respectively, if G and SC are under-

stood from the context. Intuitively, obs(n,δ ) contains all reachable nodes nk ∈ SC from n such that

nk affects the slicing criterion in the δk context. In order to ensure that node nk affects the slicing

criterion in δk , as illustrated by the cases of interprocedural RVs in Section 4.3, we require that

rv(nk ,δk ) , ∅. Moreover, we also require that no other node ni in the path [n..nk−1] affects the

slicing criterion in the δi context. This requires that either (i) ni does not belong to the sliced code,

and the set of RVs at node nk is the same as at ni when nk and ni are in the same context, or (ii) the

set of RVs at node ni is empty when nk and ni are in different contexts
3
.

The sets of observable nodes obs(n,δ ) for all CFG nodes n in the CFG G in Fig. 4 and their

relevant contexts δ are listed in Fig. 11. In the following, we illustrate the necessity of condition (2)

in Def. 4.9 (i.e. rv(ni ,δi ) = ∅ when δi , δk ) in order form to be included into the set of observable

nodes. We obtain obs(n1, ϵ) = {n8} since n8 ∈ SC , rv(n8, ϵ) , ∅ and the following conditions hold:

3
In the proofs of Lemmas 7.3 and 7.4 in Section 7.1, we show that rvG (ni , δi ) = rvG (nk , δk ) if δi = δk , and rvG (ni , δi ) =
∅ if δi , δk .
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• rv(n8, ϵ) = rv(n, ϵ) for all n ∈ {n1,n3,n6,n7} satisfying condition (1) of Def. 4.9, and

• rv(n,L1) = ∅ for all n ∈ {n4,n5,nE ,nX ,n13, . . . ,n16} satisfying condition (2) of Def. 4.9.

However, the observable set obs(n1, ϵ) does not includen13 even thoughn13 ∈ SC . As rv(n13,L1) = ∅,

n13 does not affect the slicing criterion in L1, there does not exist any observable variable at n13,

and n13 itself is not observable in the L1 context. Similarly, no node in {nE ,nX ,n13, . . . ,n15} is

observable in L1 even though these nodes belong to SC : this is since these nodes are included into

SC as they affect (do not affect) the slicing criterion in L2 (L1) context, which leads to the condition

rv(n,L1) = ∅. In order to illustrate further the set of observable nodes at different contexts, we

have obs(n13,L1) = {n8} according to Def. 4.9, but obs(n13,L2) = {n13} trivially holds.

4.5 Sliced Code
Let the slice set SC be defined according to Def. 2.11. For any CAssign/RAssign node n, let Tn be a

function that takes an assignment x = e as input and returns either x = e or an empty sequence ϵ
as follows:

Tn(x = e) =

{
x = e if x ∈ rv(m,δ ) for any valid context δ ofm ∈ succ(n),

ϵ otherwise

The following definition of the mapping function code2 (adapted from [2]) provides the sliced code:

Definition 4.10 (Mapping Function code2). The function code2(n) is obtained from the function

code1(n) and the slice set SC as follows:

(1) if n ∈ SC and n is not a CAssign/RAssign node, then code2(n) = code1(n);
(2) If n ∈ SC , n is a CAssign/RAssign node, and code1(n) = (x1 = e1, . . . ,xk = ek ), then

code2(n) = Tn(x1 = e1), . . . ,Tn(xk = ek );

(3) if n < SC and n is not a Cond node, then code2(n) = skip;
(4) If n < SC , n is a Cond node, and

(a) ∃δ ,m.m ∈ obs(n,δ ) ∧ dist(tsucc(n),m) < dist(n,m), then code2(n) = true;
(b) otherwise, code2(n) = false.

The first and the third cases ensure that the slice does not modify the original code if n ∈ SC and n
is not a CAssign, RAssign or Cond node. The second case may partially slice the relevant parameters

when n ∈ SC is a CAssign or RAssign node. If n contains an assignment x = e such that x is a RV

in rv(m,δ ) for any successor nodem ∈ succ(n) of n and its valid context δ , then the sliced code

contains this assignment since another node in SC then is data dependent on node n. Otherwise,
the assignment is replaced by an empty sequence ϵ that basically removes this assignment. In the

last case the conditional node n is not included in the slice set SC . If the true branch is closer to

the observable nodem, then code2(n) is set to true; if not, or the observable set obs(n,δ ) is empty

for all relevant contexts δ , code2(n) is set to false. We may nondeterministically set code2(n) to be

true or false if |obs(n,δ )| > 1. The sliced code P2 obtained through code2 thus has the same CFG

structure as the original code P1, but with nodes outside the slice “blanked out” by assigning them

program statements that do not alter the stores.

Note that Def. 4.10 provides a unique slice P2 of the original code P1 after computing the

slice set SC . The slice set SC is computed according to Def. 2.11 where the transitive-reflexive

closure relation can be obtained by traversing the system dependence graph representation of the

program. Alternatively, we obtain the slice set by traversing the CFG of the program backward (for

backward slicing) from the nodes in nodes(C) and computing RVs according to Def. 4.7. For any

node n ∈ nodes(C), C(n) is the set of RVs at n for all valid contexts of n (Case (1) in Def. 4.7), and

n is included in SC . RVs are propagated from any n ∈ SC to its ancestor nodesm such that there

exists a path [m..n] according to Case (2) in Def. 4.7 during the backward traversal of the CFG.
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Whenever Case (3a) or (3b) in Def. 4.7 are applied to generate new RVs during visiting a CFG node

m, nodem is included in SC . For example, consider the CFG G in Fig. 4, C = {(n12, {c})}, and the

set of RVs listed in Fig. 11. The slice set SC includes all nodes n listed in Fig. 11 for which Cases

(1), (3a), or (3b) are applicable. Thus, SC includes the nodes n0,n9,n10,n12,n13,n14,n15 according to

Fig. 11. Note that nodes n8,n11,nE , and nX should also be included in SC due to well-formedness of

SC as explained in the next section.

During the computation of SC , the CFG nodes of a procedure may be traversed multiple times

from multiple call sites, and the CFG nodes of that procedure are included in SC whenever Cases (1),

(3a), or (3b) in Def. 4.7 are applicable. The number of times to traverse a procedure depends on the

slicing criterion and the call sites. For example, consider the CFG G in Fig. 4, C = {(n12, {c})}, and
the set of RVs listed in Fig. 11. As rv(n5,L1) = ∅, no statement in the add procedure will affect n5 in

the L1 context. This illustrates the empty RVs at the CFG nodes of the add procedure in L1 context

as shown in Fig. 11. Thus, it will be more efficient to traverse the CFG node n4 instead of nX from

n5 as visiting nX will not provide any new dependencies. However, if we change the statement of

n12 in Fig. 4 to print(c,e), and change the slicing criterion accordingly to C = {(n12, {c, e})}, then
we obtain rv(n5,L1) = {x} according to Def. 4.7. Traversing the CFG nodes of the add procedure

for the second time will additionally include nodes n16 and n4 in SC due to Case (3a) in Def. 4.7.

For the CFGG ,C = {(n12, {c})}, and the set SC in Fig. 4, we obtain code2(G) according to Def. 4.10
as follows:

• code2(n) = skip for any n ∈ {n3,n4,n5,n6,n7,n16},

• code2(n1) = true and code2(n2) = false,

• code2(n10) = (c = z, ϵ), and
• code2(n) = code1(n) for all other nodes.

5 WELL-FORMEDWEAKLY AND STRONGLY CONTROL-CLOSED SLICE SETS
Danicic et al. [13] provided two generalisations of nontermination insensitive and nontermination

sensitive control dependence, called weak and strong control closure, for directed graphs that can

represent intraprocedural programs. In this section we extend these generalisations to interprocedu-

ral programs, and we call them well-formed weak/strong control-closure. We show that well-formed

weak/strong control-closure is a necessary and sufficient condition for the interprocedural slice to

be a weak/strong projection, and hence non-termination insensitive/sensitive. In particular, well-

formed weak and strong control-closure are properties of the CFG nodes in the interprocedural

context such that the well-formed weak/strong control-closed set N ′
of any set N ′′ ⊆ N ′

of CFG

nodes captures all relevant control dependencies of the nodes in N ′
. Thus, if the slice set SC is

well-formed weak/strong control-closed, the interprocedural slice is a weak/strong projection of

the original program, and hence the slice is a nontermination insensitive/sensitive slice of the

original program according to Def. 2.12.

In what follows, let G = (N ,E) be a CFG, let N
′ ⊆ N , and let ∆ be the set of all calling contexts

in G. Let N
′
∆ be a set of pairs (n,δ ) where n ∈ N

′
, and δ ∈ ∆ is a valid context of n.

Definition 5.1 (N′
∆-Path). A N

′
∆-path from node n1 in a valid context δ1 ∈ ∆ in a CFGG is a finite

contextually valid path J(n1,δ1)..(nk ,δk )K in G such that k > 1, (nk ,δk ) ∈ N
′
∆, and 1 < i < k =⇒

(ni ,δi ) < N
′
∆.

Note that (n1,δ1) may possibly be in N
′
∆ in the above definition. We now define well-formed

weakly and strongly control-closed sets. We need some auxiliary definitions to define these sets.

Definition 5.2 (N′
∆-Weakly Committing Vertices). A node n in context δ in a CFG G is N

′
∆-weakly

committing if all N
′
∆-paths from (n,δ ) have the same end point. In other words, all finite contextually

valid N
′
∆-paths from (n,δ ) meet at a common node nk in δk such that (nk ,δk ) ∈ N

′
∆.
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Example 5.3. Let us consider Fig. 4. Let N1 = {n9,n10,NE ,NX ,n13,n14,n15}, and let N2 =

{n0,n8,n11,n12}. Assume that N
′
∆ contains the pairs (n,δ ) where δ = L2 for n ∈ N1, and δ = ϵ for

n ∈ N2.

• The contextually valid path π̂ = J(n13,L1)..(n8, ϵ)K is a N
′
∆-path since all (n,δ ) ∈ π̂ except

(n8, ϵ) are not in N
′
∆.

• Since J(n13,L2)..(n8, ϵ)K is not a contextually valid path, it is not a N
′
∆-path.

• Since (n14,L2) ∈ N
′
∆, J(n13,L2), (n14,L2), (n15,L2)K is not a N

′
∆-path.

• Node n13 in context L1 is a N
′
∆-weakly committing vertex since all N

′
∆-paths from node n13

in L1 context meet at node n8 in ϵ context.

Definition 5.4 (Weakly Control-Closed Sets). The set N
′
∆ is weakly control-closed in a CFGG if and

only if all CFG nodes n in all valid contexts δ such that (n,δ ) < N
′
∆ are N

′
∆-weakly committing inG

when there exists a contextually valid path J(n′,δ ′)..(n,δ )K such that (n′,δ ′) ∈ N
′
∆.

Example 5.5. The N
′
∆ set in Example 5.3 is weakly control-closed since any node n in all valid

contexts δ such that (n,δ ) < N
′
∆, but reachable by a contextually valid path from any (n′,δ ′) ∈ N

′
∆,

is N
′
∆-weakly committing in δ . For example, n1 in ϵ is N

′
∆-weakly committing since there exists

a contextually valid path J(n0, ϵ)..(n1, ϵ)K and there exists a single N
′
∆-path J(n1, ϵ)..(n8, ϵ)K. Note

that n2 in ϵ is also N
′
∆-weakly committing since a contextually valid path J(n0, ϵ)..(n2, ϵ)K exists

and no N
′
∆-path from n2 in ϵ exists. However, if we exclude the element (n14,L2) from N

′
∆, then it is

not weakly control-closed since node n14 in L2 context is not N
′
∆-weakly committing. We have the

contextually valid path J(n13,L2), (n14,L2)K, but there exist two N
′
∆-paths J(n14,L2), (n15,L2)K and

J(n14,L2)..(NX ,L2)K that do not have the same end point.

In the following, we define strongly control-closed sets by using the auxiliary definitions of

N
′
∆-strongly committing vertices and N

′
∆-avoiding vertices. Informally, a node n in a valid context δ is

N
′
∆-strongly committing vertex if all N

′
∆ paths from (n,δ )meet at a common node nk in δk such that

(nk ,δk ) ∈ N
′
∆ (i.e. (n,δ ) is N

′
∆-weakly committing) and all maximal (contextually valid) paths from

n go through an element in N
′
∆. In such a case, node n in δ has a unique observable behavior due to

the unique meeting point, and all nonterminating paths contain an observable behavior and thus

preserve nontermination. Node n in a valid context δ is N
′
∆-avoiding if all maximal (contextually

valid) paths do not contain an element in N
′
∆ and hence n in δ has no observable behavior.

Definition 5.6 (N′
∆-Strongly Committing Vertices). A node n in context δ in a CFGG is N

′
∆-strongly

committing if and only if it is N
′
∆-weakly committing inG and all contextually valid maximal paths

from (n,δ ) contain an element (n′,δ ′) such that (n′,δ ′) ∈ N
′
∆.

Definition 5.7 (N′
∆-Avoiding Vertices). A node n in context δ in a CFG G is N

′
∆-avoiding if and

only if no N
′
∆-path exists from n in δ .

Definition 5.8 (Strongly Control-Closed Sets). The set N
′
∆ is strongly control-closed in a CFG G if

and only if for all (n,δ ) < N
′
∆, for which there exists a contextually valid path [(n′,δ ′)..(n,δ )] from

some (n′,δ ′) ∈ N
′
∆, node n in context δ is either N

′
∆-strongly committing or N

′
∆-avoiding.

Example 5.9. Consider the N
′
∆ set in Example 5.3. Node n2 in ϵ context is N

′
∆-avoiding. Node n1

in ϵ context is N
′
∆-weakly committing because J(n1, ϵ)..(n8, ϵ)K is the only N

′
∆-path. Node n1 in ϵ

context is neitherN
′
∆-strongly committing norN

′
∆-avoiding since the maximal path J(n1, ϵ)..(n12, ϵ)K

contains an element from N
′
∆ and the maximal contextually valid path π̂ = (n1, ϵ), (n2, ϵ), . . .

does not contain an element from N
′
∆. N

′
∆ is thus not a strongly control-closed set. However,

N
′
∆ ∪ {(n1, ϵ), (n2, ϵ)} is a strongly control closed set.

Weakly and strongly control-closed sets may exclude certain kinds of nodes such as Call, Ret,

Entry and Exit nodes as these nodes do not carry any data or control dependence. Thus, if we
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compute the slice of a program by capturing the data dependence and using weak/strong control

closure to capture the control dependence, then the CFG of the sliced code may not be a proper CFG.

In order to show that the interprocedural slice is a weak/strong projection and thus it produces a

semi-equivalence relation with the original program, it is important that the CFG of the slice is

valid according to Def. 2.1. Thus, in the following, we define well-formed sets such that well-formed

weakly and strongly control-closed sets are valid CFGs. Consider the CFG node n that either belongs

to a procedure P inG or n is a CAssign (or RAssign) node such that the Entry (resp. Exit) node of P
is the successor (resp. predecessor) of n. We write entry(n) and exit(n) for the Entry and Exit CFG

nodes of P in G.

Definition 5.10 (Well-formed Sets). A well-formed set N
′
∆ includes the following, for all (n,δ ) ∈ N

′
∆:

(1) (entry(n),δ ), (exit(n),δ ) ∈ N
′
∆, and (ii) if δ = δ ′ ◦ ℓ(m) where δ ′ ∈ ∆, then (m,δ ′) ∈ N

′
∆.

For example, the N
′
∆ set in Example 5.3 is a well-formed weakly control-closed set since N

′
∆

includes the elements (NE ,L2), (NX ,L2), (n8, ϵ) and (n11, ϵ). However, Def. 5.4 and Def. 5.8 do not

consider these elements to be included into N
′
∆.

Definition 5.11 (∆-Augmented Slice Set SC∆ ). Let SC be a slice set of a CFG G, and let rv(n,δ ) be
the set of RVs at node n in context δ ∈ ∆ in G. The ∆-augmented slice set SC∆ of SC is

SC∆ = {(n,δ ) : n ∈ SC ,δ ∈ ∆, rv(n,δ ) , ∅}.

Definition 5.12 (Weakly and Strongly Control-Closed Slice Sets). Let SC be a slice set of a CFG G,
and let SC∆ be the ∆-augmented slice set of SC . The slice set SC is a weakly or strongly control-closed
slice set if SC∆ is a weakly or strongly control-closed set in G, respectively.

Consider the N
′
∆ set in Example 5.3, the slice set SC in Fig. 4, and the RVs in Fig. 11. SC is a weakly

control-closed slice set since SC∆ = N
′
∆ and SC∆ is a weakly control-closed set.

6 CORRECTNESS OF DEPENDENCE-BASED SLICING
We shall provide the main theorem in this section stating that if P2 is the slice of P1 obtained

from dependence based slicing algorithms such as Weiser [51], or Ottenstein and Ottenstein [34]

computing the slice set SC according to definition 2.11, then P1 is nontermination (in)sensitively

semi-equivalent to P2, i.e., P1 ≳C P2 or P1 ≃C P2 holds. But, it is impractical to check the relation

≳C or ≃C between two given programs. We thus adapt some concepts from [3, 39] in order to

prove the semi-equivalence relations between P1 and P2. In particular, we shall define a relation

seq
∼

and show that

seq
∼ is either a weak bisimulation or a weak simulation relation between the original

program and its slice, according to Def. 6.2 given in this section, depending on the preservation of

nontermination by the slicing algorithm. If

seq
∼ is a weak simulation then P1 ≳C P2, and if

seq
∼ is a

weak bisimulation relation then P1 ≃C P2.

We define labeled transitions i ⊢ Γ·(n,σ )
l
→ Γ′·(n′,σ ′), where the label l is either an observable

node n representing an observable move, or the symbol τ representing a silent move.

Definition 6.1 (Labeled Transition). For all configurations Γ1 = Γ ·(n,σ ) and Γ2 such that i ⊢ Γ1 → Γ2

holds, i ∈ {1, 2}, where δ is the context of Γ1, we define

• i ⊢ Γ1

n
→ Γ2 if n ∈ SC and rv(n,δ ) , ∅

• i ⊢ Γ1

τ
→ Γ2 otherwise.

We write:

• i ⊢ Γ1

τ
⇒ Γ2 for the reflexive transitive closure of i ⊢ Γ1

τ
→ Γ2

• i ⊢ Γ0

n
⇒ Γ2 if there exists a configuration Γ1 such that i ⊢ Γ0

τ
⇒ Γ1 and i ⊢ Γ1

n
→ Γ2
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The observable transition

n
→ requires that n ∈ SC and rv(n,δ ) is non-empty in order to ensure

that n affects the slicing criterion in δ . In case of a silent transition

τ
→ we require either n < SC , or

rv(n,δ ) = ∅ regardless of whether n ∈ SC or not, which ensures that n does not affect the slicing

criterion in δ , and so it is a silent transition. Thus, for an observable transition, the values of all

variables in the RV set at n are observable whereas, for a silent transition, either n is not part of the

sliced code, or the RV set at n is empty and no variable values can be observed.

Definition 6.2 (Weak Simulation and Bisimulation). Consider the following properties for relations
Φ:

(i) if Γ1ΦΓ2 and 1 ⊢ Γ1

n
⇒ Γ′

1
, then there exists Γ′

2
such that Γ′

1
ΦΓ′

2
and 2 ⊢ Γ2

n
⇒ Γ′

2
.

(ii) if Γ1ΦΓ2 and 2 ⊢ Γ2

n
⇒ Γ′

2
, then there exists Γ′

1
such that Γ′

1
ΦΓ′

2
and 1 ⊢ Γ1

n
⇒ Γ′

1
.

Φ is a weak simulation if (i) holds, and a weak bisimulation if both (i) and (ii) holds.

If there is a weak bisimulation between the configurations of the original program and those

of its slice, then if the original program can make some observable action (i.e., visit a node in SC ),
then the sliced program can do it as well and vice versa. On the other hand, if weak simulation

between the configurations of the original program and its slice holds and if the original program

can perform some observable action, then the sliced program can do so, but not necessarily the

other way around as the original code may contain, for instance, infinite loops that have been

skipped in the sliced code.

However, the mere existence of a weak (bi)simulation does not imply much: for instance, the

empty
4
relation is a weak bisimulation. Our challenge is thus to find a relation that is either a weak

bisimulation or simulation, according to Def. 6.2, and observes the same values of relevant variables
at every C-observable node. In order to define the relation

seq
∼ that is a weak (bi)simulation and

observes the same values of observable variables at every C-observable node, we need to ensure

that a program and its slice observe the same values of observable variables at every SC -observable
node. This requires defining equivalence of all stores between two configurations with respect to

RVs in a pair-wise fashion as follows:

Definition 6.3 (Equivalent Stores upto RVs). Let Γ(1,k ) and Γ(2,l ) be two configurations such that

Γ(1,k ) = (n1,σ1) · . . . · (nk ,σk ) and Γ(2,l ) = (m1,σ
1) · . . . · (ml ,σ

l ).

The stores of Γ(2,l ) are equivalent to that of Γ(1,k ) upto relevant variables (denoted stores(Γ(1,k)) =RV
stores(Γ(2,l ))) if l ≤ k and the following holds:

(1) the configurations Γ(1,i) and Γ(2,i) are in the same context δi such that σi =rv(mi ,δi ) σ
i
for all

1 ≤ i ≤ l , and
(2) rv(ni ,δi ) = ∅ where δi is the context of configuration Γ(1,i) for all l + 1 ≤ i ≤ k .

Example 6.4. Consider the CFGG in Fig. 4 and the set of RVs listed in Fig. 11. Let us consider the

configurations

Γ1 = (n3,σ1) · (nE ,σ2), Γ2 = (n3,σ1), and Γ3 = (n8,σ3) · (nE ,σ2)

such that the stores σ1, σ2, and σ3 are as follows:

σ1 = {a 7→ 8,b 7→ 5,p 7→ 7,q 7→ 9}

σ2 = {x 7→ 7,y 7→ 9}

σ3 = {a 7→ 8,b 7→ 5,p 7→ 7,q 7→ 9, r 7→ 19}.

• stores(Γ1) =RV stores(Γ2) holds since the RVs a,b at n3 have same values in the botom states

of Γ1 and Γ2, and rv(nE ,L1) = ∅.

4
Note that empty relation is trivially a weak (bi)simulation relation since no Γ1, Γ2 exists such that Γ1ΦΓ2 holds.

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.



0:34 Abu Naser Masud and Björn Lisper

• stores(Γ2) =RV stores(Γ1) does not hold since Γ1 has more states than Γ2.

• stores(Γ3) =RV stores(Γ2) does not hold since rv(nE ,L2) , ∅.

• stores(Γ1) =RV stores(Γ3) does not hold since the contexts of node nE in both configurations

are different.

We now define the relation

seq
∼ between the configurations of an original program and its slice

as follows:

Definition 6.5 (
seq
∼ ). Let Γ1 and Γ2 be valid configurations of programs P1 and P2 at nodes n1 and

n2 in contexts δ1 and δ2 respectively. The relation Γ1

seq
∼ Γ2 holds if

(1) obs(n1,δ1) = obs(n2,δ2),

(2) stores(Γ1) =RV stores(Γ2), and

(3) m ∈ obs(n1,δ1) =⇒ d([n1..m],δ1) = d([n2..m],δ2).

Theorem 6.6 below states that

seq
∼ is either a weak simulation or a weak bisimulation, depending

on the slice set SC computed in Def. 2.11 to be well-formed weakly or strongly control-closed set. If

SC is a well-formed strongly control-closed set, then the slice is nontermination sensitive and

seq
∼ is

a weak bisimulation, otherwise it is a weak simulation.

Theorem 6.6 (Correctness Condition). Assume that SC is closed under
dd
−→ and

cd
−→. Then

seq
∼

is a weak simulation if SC is a well-formed weakly control-closed set, and a weak bisimulation if SC is
a well-formed strongly control-closed set.

Theorem 6.7 stated below ensures that when

seq
∼ is a weak (bi)simulation, then the slice P2 is

correct with respect to the original program P1 if it is obtained from some dependence-based slicing

method such as the ones defined in Def. 2.11 and Def. 4.10.

Theorem 6.7 (Correctness). If
seq
∼ is a weak simulation or bisimulation, then P1 ≳C P2 or

P1 ≃C P2, respectively.

The proofs of Theorems 6.6 and 6.7 are given in Section 7. Thus, P2 is a correct slice of program

P1 with respect to C (i.e. P1 ≃C P2) if

seq
∼ is a weak bisimulation as the semantic conditions (i.e. con-

ditions in Def. 3.6) for this relation are satisfied by the possibly nonterminating programs. However,

if P1 is possibly nonterminating, and P2 is terminating as the slicing algorithm is nontermination

insensitive, then

seq
∼ is a weak simulation, and the relation P1 ≳C P2 holds which ensures that P1 is

nontermination insensitively semi-equivalent to P2.

Fig. 12 illustrates the intuitive idea of weak (bi)simulation between the configurations of an

original program P1 and its slice P2. CFG nodes are labelled by possible program configurations. In

the CFG of the original program P1, the CFG nodes n3, . . . ,n5 have two program configurations for

two call sites. On the other hand, these nodes in the CFG of the slice P2 have only one program

configuration related to the second call site. This is due to the fact that code2(n) = skip since n1 < SC
and we shall have the transition 2 ⊢ Γ′

1
→ Γ′

7
according to Call-skip semantic rule in Table 1. Thus,

there is no flow of execution from ni to nj for (i, j) ∈ {(1, 2), (2, 3), (5, 6), (6, 7)}. Table 2 lists all the
weak (bi)simulation relations for the configurations in programs P1 and P2.

It is worthwhile to mention that the (bi)simulation relation

seq
∼ is a sufficient condition for P2 to

be the correct slice of P1, but not a necessary condition. Valid slices can be obtained from original

programs for which

seq
∼ is not a (bi)simulation relation. For example, P2 may contain a sequence

of statements not affecting the slicing criterion for which the execution path of P2 is different

than P1 so that the (bi)simulation relation does not hold. However, dependence-based slicing such

as Def. 2.11 and 4.10 produces slices from original code for which

seq
∼ is a weak (bi)simulation

according to the correctness condition theorem and the slice is correct according to the correctness
theorem.
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int add(x, y: int) [n2,n3,n9 ]

{

return x+y; [n4 ]

} [n5,n6,n10 ]

...

a = a0;b = b0; [n0]

r=add(p,q); [n1,n2,n6,n7 ]

c=add(a,b); [n8,n9,n10,n11 ]

print(c); [n12 ]

n0

n1 n2

n3

n4

n5

n6n7

n8 n9

n10n11

n12

CFG of P1

Γ0

Γ1 Γ2

Γ3,L1

Γ4,L1

Γ3,L8

Γ4,L8

Γ5,L1

Γ5,L8

Γ6Γ7

Γ8 Γ9

Γ10

Γ11

Γ12

n0

n1n2

n3

n4

n5

n6 n7

n8

n11

n12

n9

n10

CFG of P2

×

×

×

×

Γ′
0

Γ′
1

Γ′
3,L8

Γ′
4,L8

Γ′
5,L8

Γ′
7

Γ′
8

Γ′
9

Γ′
10

Γ′
11

Γ′
12

Fig. 12. A simplified version of the code in Fig. 4(a) (left), its CFG (middle), and the CFG of its slice (right)
where the slicing criterion is C = {(n12, {c})}. The labels inside [...] beside a program statement denote the
CFG nodes representing that statement. The CFGs are labelled by program configurations: Γi denotes the
configuration at node ni and Γi,δ denotes the configuration Γi for node ni in context δ . The contexts are
L1 and L8 where Li = ℓ(ni ) for i = 1, 8. Some (bi)simulation relations are represented by the dashed lines
between the configurations of the original program P1 and the sliced program P2. Solid circles represent CFG
nodes that belong to the slice set.

Γ
seq
∼ Γ′ Γ ∈ {Γ0, Γ1, Γ2, Γ3,L1

, Γ4,L1
, Γ5,L1

, Γ6, Γ7}

Γ′ ∈ {Γ′
0
, Γ′

1
, Γ′

7
}

Γi
seq
∼ Γ′i i ∈ {8, . . . , 12}

Γi,L8

seq
∼ Γ′i,L8

i ∈ {3, 4, 5}

Table 2. The (bi)simulation relation between the configurations of P1 and P2 in Fig. 12

7 PROOFS OF THE CORRECTNESS CONDITION AND THE CORRECTNESS
THEOREMS

In what follows, we provide additional lemmas in proving the correctness condition and the

correctness theorems (i.e., Theorem 6.6 and 6.7). All lemmas assume that SC is a well-formed
weakly or strongly control closed slice set. Some are applicable only when SC is a well-formed

strongly control closed slice set: we will then mention this explicitly. In some lemmas we state

that the original program P1 (with code map code1) has the configuration Γ1, and the sliced code P2
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(with code map code2) has the configuration Γ2. The calling contexts δi are then derived from the

configurations Γi for i = 1, 2.

7.1 Lemmas on relevant variables

Lemma 7.1. Let J(n1,δ1)..(nk ,δk )K be any contextually valid path in the CFG G such that
(1) nk ∈ SC and rv(nk ,δk ) , ∅, and
(2) for all 1 ≤ i ≤ k − 1, ni < SC or rv(ni ,δi ) = ∅.

Then, for all v ∈ rv(nk ,δk ) declared in any valid context δ and for all 1 ≤ i ≤ k − 1, if (ni ,δi ) is in
the definition scope of (v,δ ), then v < def (ni ).

Proof. We prove the lemma by induction on i in the sequence k − 1, . . . , 1 that v < def (ni ) if
(ni ,δi ) is in the definition scope of (v,δ ). Let i = k − 1 (base case), and let (ni ,δi ) is in the definition

scope of (v,δ ). If v ∈ def (ni ), we must have ni ∈ SC , and rv(ni ,δi ) includes the elements of

ref (ni ) , ∅ according to Case (3a) in the definition of relevant variables (Def. 4.7). This contradicts

the assumption of the lemma, and thus v < def (nk−1). Assume that v < def (ni ) if (ni ,δi ) is in the

definition scope of (v,δ ) for all l ≤ i ≤ k − 1 such that l > 1 (IH). Consider node nl−1 such that

(nl−1,δl−1) is in the definition scope of (v,δ ). This particular instance of variable v may be defined

or referenced at all CFG nodes of a procedure declaring this variable and any CAssign/RAssign

node adjacent to the CFG nodes of that procedure. The relative positions of node nk and nl−1 such

that v may be defined at nl−1, and both (nk ,δk ) and (nl ,δl ) are in the reference scope of (v,δ ), are
shown in Fig. 13.

In the last two scenarios, nk−1 is either an Entry or an Exit node. Since nk ∈ SC and rv(nk ,δk ) , ∅,

(nk ,δk ) is an element of the ∆-augmented slice set SC∆ . Since SC is a well-formed set, (nk−1,δk−1)

must be an element of SC∆ according to the definition of the well-formed sets (see Def. 5.10 and

Def. 5.11). This implies that nk−1 ∈ SC and rv(nk−1,δk−1) , ∅, which contradicts the assumption of

the lemma. Thus the last two scenarios are not possible.

In the first two scenarios, v is a RV in rv(nl ,δl ) due to Case (2) in the definition of relevant

variables since this particular v is not defined by any node in the path [nl ..nk−1] according to

inductive hypothesis and δl = δk . If the particular v is defined at nl−1, we obtain nl−1 ∈ SC and

rv(nl−1,δl−1) , ∅ where the RV set rv(nl−1,δl−1) includes the elements of ref (nl−1) according to

Case (3a) in the definition of relevant variables. This contradicts the assumption of the lemma, and

thus any RV v in rv(nk ,δk ) is not defined at nl−1. □

Lemma 7.2. Let π̂1 = J(n1,δ1)..(nk ,δk )K be any contextually valid path such that nk ∈ SC and
rv(nk ,δk ) , ∅, and let π̂2 be any SC∆ -path. If the path π̂2 meets with the path π̂1 at some (n,δ ) ∈ π̂i
for i = 1, 2 such that (n,δ ) < SC∆ and the paths are node-disjoint afterward, then SC is not weakly or
strongly control-closed slice set.

Proof. Let π̂2 = J(m1,δ 1)..(ml ,δ l )K for any l > 1. Since (n,δ ) is an element in the path π̂2, and

π̂2 is an SC∆ -path, J(n,δ )..(ml ,δ l )K is also an SC∆ -path. Since nk ∈ SC and rv(nk ,δk ) , ∅ according

to the assumption of the lemma, (nk ,δk ) is an element in SC∆ . Let there exists an index 1 ≤ j ≤ k − 1

such that (n,δ ) = (nj ,δ j ).
Since the paths π̂1 and π̂2 are node disjoint after meeting at (n,δ ) (see the left graph in Fig. 14),

there must exist an SC∆ -path J(nj ,δ j )..(nt ,δt )K from (nj ,δ j ) towards (nk ,δk ) for any j + 1 ≤

t ≤ k . This is always possible since either we choose (nt ,δt ) = (nk ,δk ) if no other element

in J(nj ,δ j )..(nk ,δk )K is in SC∆ except (nk ,δk ) or we choose the first reachable element (nt ,δt ) ∈ SC∆

from (nj ,δ j ) towards (nk ,δk ). Then, SC is not weakly or strongly control-closed slice set since node

n in context δ is not weakly committing due to have two SC∆ -paths. □
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Fig. 13. Relative positions of CFG nodes nl−1
and nk in contexts δl−1

and δk when these nodes are in the
scope of (v,δ ). Nodes inside the solid box belong to the same procedure.
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n
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n1

n
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π2
π1	 π1	

ml

π2

Fig. 14. Paths π1 and π2 are node-disjoint (left) and coincident (right) after meeting at n

Lemma 7.3. Let J(n1,δ1)..(nk ,δk )K be any contextually valid path in the CFG G such that
(1) nk ∈ SC and rv(nk ,δk ) , ∅, and
(2) ni < SC or rv(ni ,δi ) = ∅ for all 1 ≤ i ≤ k − 1.

If δi = δk for any 1 ≤ i ≤ k − 1, then rv(nk ,δk ) = rv(ni ,δi ).

Proof. Assume that δi = δk for any 1 ≤ i ≤ k − 1, and let π̂1 = J(n1,δ1)..(nk ,δk )K.
rv(nk ,δk ) ⊆ rv(ni ,δi ) ⇒ Letv be any RV in rv(nk ,δk ) declared in any valid context δ . According

to Def. 4.5, (ni ,δi ) is in the definition and reference scope of (v,δ ). Moreover, according to Lemma 7.1,

this particular v is not defined by any node nj for all 1 ≤ j ≤ k − 1 if nj is in the definition scope

of (v,δ ). Then, v is a RV in rv(ni ,δi ) according to Case (2) in the definition of relevant variables

(Def. 4.7). Thus, rv(nk ,δk ) ⊆ rv(ni ,δi ).
rv(ni ,δi ) ⊆ rv(nk ,δk ) ⇒ Let v be a RV in rv(ni ,δi ) declared in any valid context δ . If v is not

an element in rv(nk ,δk ), then there exists another contextually valid path π̂2 = J(ni = m0,δi =
δ 0), (m1,δ 1)..(ml ,δ l )K in the CFG G such that (ml ,δ l ) , (nk ,δk ), and according to Case (2) in the

definition of relevant variables,

ml ∈ SC and v ∈ rv(ml ,δ l ).

Moreover, v < def (mj ) for all nodesmj ∈ [ni ..m
l−1] if (mj ,δ j ) is in the definition scope of (v,δ ).

Consider the ∆-augmented slice set SC∆ (in Def. 5.11). Path π̂1 is a SC∆ -path since either nj < SC or

rv(nj ,δ j ) = ∅ and hence (nj ,δ j ) < SC∆ for all 1 ≤ j ≤ k − 1, but (nk ,δk ) ∈ SC∆ . If the path π̂2 meets
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with the path π̂1 at some (n,δ ′) ∈ π̂1 and are node disjoint afterward (see paths in Fig. 14), then

SC is not weakly or strongly control-closed slice set according to Lemma 7.2, and this contradicts

with our general assumption that SC is a weakly or strongly control-closed slice set. If the path π̂2

meets with π̂1 and they coincide afterward (Fig. 14), then (nk ,δk ) ∈ π̂2. Note that path π̂1 cannot

include (ml ,δ l ) since π̂1 does not contain any element from SC∆ except (nk ,δk ). However, if v is a

RV in rv(ni ,δi ), then v is also a RV in rv(nk ,δk ) according to Case (2) in the definition of relevant

variables since δi = δk and this particular v is not defined by any nodemj
in the path [ni ..m

l−1] if

(mj ,δ j ) is in the definition scope of (v,δ ).
Thus, we must have v ∈ rv(nk ,δk ) which proves that rv(ni ,δi ) ⊆ rv(nk ,δk ), and consequently

rv(nk ,δk ) = rv(ni ,δi ). □

Lemma 7.4. Let J(n1,δ1)..(nk ,δk )K be any contextually valid path in the CFG G such that
(1) nk ∈ SC and rv(nk ,δk ) , ∅, and
(2) ni < SC or rv(ni ,δi ) = ∅ for all 1 ≤ i ≤ k − 1.

If δi , δk for any 1 ≤ i ≤ k − 1, then rv(ni ,δi ) = ∅.

Proof. Let π̂1 = J(n1,δ1)..(nk ,δk )K. Consider the ∆-augmented slice set SC∆ in Def. 5.11. Path π̂1

is an SC∆ -path since either ni < SC or rv(niδi ) = ∅ and hence (ni ,δi ) < SC∆ for all 1 ≤ i ≤ k − 1.

Moreover, SC∆ includes the element (nk ,δk ) due to the assumption that nk ∈ SC and rv(nk ,δk ) , ∅.

Consider any i ∈ {1, . . . ,k − 1} such that δi , δk .
If rv(ni ,δi ) , ∅, we must have ni < SC due to the second assumption of the lemma. Then, any

RV in rv(ni ,δi ) is due to Case (2) in the definition of relevant variables. If any RV v ∈ rv(nk ,δk )
declared in any valid context δ is also a RV in rv(ni ,δi ) due to this case, and since δi , δk and

(ni ,δi ) is in the reference scope of (v,δ ), nk must be a CAssign node according to Case (3) in Def. 4.5.

If node nk ∈ SC is a CAssign node, then nk−1 is a Call node and (nk−1,δk−1) is an element in the

∆-augmented slice set SC∆ according to the definition of the well-formed sets (see Def. 5.10 and

Def. 5.11), since SC is a well-formed set. Thus we obtain nk−1 ∈ SC and rv(nk−1,δk−1) , ∅ which

contradicts the assumption of the lemma. Thus, no RV in rv(nk ,δk ) is an element in rv(ni ,δi ).
If rv(ni ,δi ) is a nonempty set, there exists π̂2 = J(ni =m0,δi = δ 0), (m1,δ 1)..(ml ,δ l )K in the CFG

G such that (ml ,δ l ) , (nk ,δk ), and according to Case (2) in the definition of relevant variables,

ml ∈ SC and rv(ml ,δ l ) , ∅.

Moreover, for any RVv ∈ rv(ml ,δ l ) declared in any valid context δ ,v < def (mj ) for all j ∈ {0, . . . , l}
if (mj ,δ j ) is in the definition scope of (v,δ ).
If the path π̂2 meets with the path π̂1 at some (n,δ ) ∈ π̂1 and are node disjoint afterward

(Fig. 14), then SC is not weakly or strongly control-closed slice set according to Lemma 7.2, and this

contradicts with our general assumption that SC is a weakly or strongly control-closed slice set.

If the path π̂2 meets with π̂1 at (n,δ ) and they coincide afterward (Fig. 14), then (nk ,δk ) ∈ π̂2.

Note that path π̂1 cannot include (m
l ,δ l ) since π̂1 does not contain any element from SC∆ except

(nk ,δk ). According to Case (2) in the definition of relevant variables, both (ml ,δ l ) and (ni ,δi ) are
in the reference scope of (v,δ ). Then, according to Def. 4.5, we obtain either δ l = δi or δ

l , δi , and
ml

is a CAssign node in the latter case such that δ l−1 = δi .
So, path π̂2 includes an element (nk ,δk ) such that δk , δi but either δi = δ l or δi = δ l−1

. Due

to this change of contexts of nodes in the path [ni ..m
l ], there must exist a Call node in [ni ..nk−1]

and a Ret node in [nk ..m
l ]. So, the path J(ni ,δi )..(nk ,δk )K must include an element (nc ,δc ) such

that nc is a Call node and δk = δc ◦ ℓ(nc ). If there are multiple Call nodes in the path [ni ..nk ], let
nc be the closest Call node to nk . Then, we must have (nc ,δc ) ∈ SC∆ from (nk ,δk ) ∈ SC∆ due to

well-formedness of SC according to the second case in the definition of well-formed sets (Def. 5.10),

which states that if any (nk ,δk ) is an element in SC∆ , then any (nc ,δc ) such that δk = δc ◦ ℓ(nc )
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// Initialize X ,Y ,Z
P = 0;

if (Y >= 0) then

X = Z + 1;

Y = Y - 1;

P = P + 1;

write(X);

(a) Code P1

 n1: 
Y >= 0 

n2:  
X = Z + 1 

  n0:  
P = 0 

  n3:  
Y = Y-1 

{T}

  n4:  
P = P+1 

  n5:  
write(X) 

{F}

 n1: 
true 

n2:  
X = Z + 1 

  n0:  
skip 

  n3:  
skip 

{T}

  n4:  
skip 

  n5:  
write(X) 

{F}

(b) CFG of P1 (c) CFG of P2

Fig. 15. Slicing criterion C = {(n5, {X })} and the slice set SC = {n5,n2}. P2 is the slice of P1 and its CFG is
shown in (c).

must be in SC∆ . Consequently, nc ∈ SC and rv(nc ,δc ) , ∅ which contradicts the assumption of the

lemma that either nc < SC or rv(nc ,δc ) = ∅.

Since any possibility of the path π̂2 leads to a contradiction, no such path π̂2 exists to contribute

a RV in rv(ni ,δi ), and consequently rv(ni ,δi ) = ∅. □

7.2 Lemma on the singleton property of an observable set
We prove the singleton property of the set of observable nodes obs(n,δ ): |obs(n,δ )| ≤ 1 for any

CFG node n and context δ . The singleton property of any observable set is a necessary condition

for the correctness of any dependence-based slicing method.

Consider the code P1 and its CFG in Fig. 15 where the slicing criterion contains the variable X at

node n5. Let the slice be computed according to an incorrect control dependency relation that does

not capture the control dependency n1

cd
→ n2. Then the slice set will contain the nodes n2 and n5.

Fig. 15(c) contains the CFG of the sliced code P2 according to Def. 4.10. We have obs(n0,δ ) = {n2,n5}

for any context δ due to the existence of two separate paths J(n0,δ )..(n2,δ )K and J(n0,δ )..(n5,δ )K.
But, the CFG of the sliced code P2 is not a valid slice of the CFG of P1 as X can have values x0 or

z0 + 1 at n5 in the original code, but it can only have the value z0 + 1 at n5 in P2 for any initial values

x0 of X and z0 of Z . Here, the problem with the slice P2 is that even though the statement “X=Z+1”

is sliced, the condition Y >= 0 on which the statement should be control dependent is not sliced.

The problem becomes even more serious if we replace the if statement by a while statement in

P1. P1 is then always terminating, but P2 will be nonterminating (if code2(n1) = true) or the loop
will never be entered (if code2(n1) = false) and the statement “X = Z + 1” will never be executed.

Thus, if the singleton property is not satisfied by the observable set, the semi-equivalence relation

between P1 and P2 cannot be proved. In the following, we prove that the observable set is always

at most a singleton if the slice set SC is a well-formed weakly or strongly control-closed slice set.
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Lemma 7.5 (Singleton). If SC is a well-formed weakly or strongly control-closed slice set in the
CFG G, then obs(n,δ ) is at most a singleton for any CFG node n and its valid context δ .

Proof. Let SC∆ be the∆-augmented slice set according toDef. 5.11. If (n,δ ) ∈ SC∆ , thenobs(n,δ ) =
{n} trivially holds. So, assume that (n,δ ) < SC∆ . If SC is a well-formed weakly or strongly control-

closed slice set, then SC∆ is a weakly or strongly control closed set. If SC∆ is a weakly control-closed

set, node n in δ is SC∆ -weakly committing. If SC∆ is a strongly control-closed set, then node n in δ
is SC∆ -weakly committing since a SC∆ -strongly committing vertex is also SC∆ -weakly committing

and a SC∆ -avoiding vertex is vacuously SC∆ -weakly committing (see Def. 5.4 and Def. 5.8). So, if

there exist SC∆ -paths

π̂i = J(n,δ )..(nk ,δk )K for all i ≥ 1,

all paths meet at nk in δk such that (nk ,δk ) ∈ SC∆ , which implies nk ∈ SC and rv(nk ,δk ) , ∅

(Def. 5.11). Moreover, for any (n′,δ ′) ∈ π̂i such that (n′,δ ′) , (nk ,δk ), we have (n
′,δ ′) < SC∆ which

implies either rv(n′,δ ′) = ∅ or n′ < SC (Def. 5.11). Furthermore, we obtain rv(n′,δ ′) = rv(nk ,δk ) if
δ ′ = δk according to Lemma 7.3 and rv(n′,δ ′) = ∅ if δ ′ , δk according to Lemma 7.4. So, conditions

(1) and (2) in Def. 4.9 are satisfied for all nodes in the path [n..nk−1] proving that obs(n,δ ) = {nk }.
If there exists no SC∆ -path from n in δ , then obs(n,δ ) = ∅ since no (nk ,δk ) ∈ SC∆ exists such that

rv(nk ,δk ) , ∅. □

7.3 Lemmas related to observable relations
Lemma 7.6. Let Γ and Γ′ be configurations of CFG nodes n and n′ in contexts δ and δ ′, and let

obs(n′,δ ′) = {m} for anym ∈ SC . If there exists a silent transition i ⊢ Γ
τ
→ Γ′ for any i ∈ {1, 2}, then

obs(n,δ ) = {m}.

Proof. Since obs(n′,δ ′) = {m}, there exists a contextually valid path J(n1,δ1)..(nk ,δk )K such that
(n1,δ1) = (n′,δ ′), nk =m ∈ SC , and rv(nk ,δk ) , ∅ according to the definition of next observable

behavior (Def. 4.9). Moreover, conditions (1) and (2) in Def. 4.9 are satisfied for CFG node ni for all
1 ≤ i ≤ k − 1:

(1) if δi = δk , then ni < SC and rv(ni ,δi ) = rv(nk ,δk ), and
(2) if δi , δk , then rv(ni ,δi ) = ∅.

We also have n′ ∈ succ(n) due to the silent transition

τ
→ in the assumption of the lemma. So,

J(n,δ )..(nk ,δk )K is a contextually valid path. In proving obs(n,δ ) = {m}, it is thus enough to show

that conditions (1) and (2) in Def. 4.9 for node n are satisfied.

According to the definition of labeled transition (Def. 6.1), the silent transition i ⊢ Γ
τ
→ Γ′ in the

assumption of the lemma yields

n < SC ∨ rv(n,δ ) = ∅. (1)

If δ = δk , then we obtain rv(n,δ ) = rv(nk ,δk ) according to Lemma 7.3. Since rv(nk ,δk ) is nonempty,

rv(n,δ ) , ∅, and we obtain n < SC due to condition (1) above. If δ , δk , then we obtain rv(n,δ ) = ∅

according to Lemma 7.4. Thus, conditions (1) and (2) in Def. 4.9 are satisfied, and consequently

obs(n,δ ) = {m}. □

Lemma 7.7. Let n1 and n2 be CFG nodes, and let δ be a valid context of n1 and n2. If obs(n1,δ ) =
obs(n2,δ ), and obs(ni ,δ ) , ∅ for i = 1, 2, then rv(n1,δ ) = rv(n2,δ ).

Proof. According to Lemma 7.5,obs(ni ,δ ) is atmost a singleton for i = 1, 2. Moreover,obs(n1,δ ) =
obs(n2,δ ) , ∅ according to the assumption of the lemma. Thus, there exists a CFG nodem ∈ SC
such that obs(ni ,δ ) = {m} for i = 1, 2. Let δm = d([ni ..m],δ ) be the context of node m for any

i ∈ {1, 2}. According to the definition of next observable behavior (Def 4.9), the observable relation
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obs(ni ,δ ) = {m} for i = 1, 2 yields

rv(ni ,δ ) = rv(m,δm) if δ = δm and rv(ni ,δ ) = ∅ if δ , δm

Thus, rv(n1,δ ) = rv(n2,δ ) always holds. □

Lemma 7.8. Let G be the CFG of the slice P2 with the mapping function code2, and let n1 be a CFG
node in a valid context δ1. If obs(n1,δ1) = {nk } for any nk ∈ SC and δk = d([n1..nk ],δ1), then δ1 = δk .

Proof. Since obs(n1,δ1) = {nk }, there exists a contextually valid path π̂ = J(n1,δ1)..(nk ,δk )K
according to the definition of next observable behavior, where δk = d([n1..nk ],δ1). If k = 1, then

the lemma trivially holds. Thus, assume that k > 1. If δ1 , δk , there must be a Call or Ret node in

the path [n1..nk ] to change the contexts. Assume that there exists an element (ni ,δi ) in π̂ such that

ni is a Call or Ret node. If there are multiple elements containing Call/Ret nodes, we assume that

(ni ,δi ) is the closest element to (nk ,δk ). The change of context occurs in one of the following ways:

(1) Node ni is a Call node for any 1 ≤ i < k . Then, node ni+1 is a CAssign node in context

δi+1 = δi ◦ ℓ(ni ) = δk .
(2) Node ni is a Ret node for any 1 < i ≤ k . Then, node ni−1 is a RAssign node in context

δi−1 = δi ◦ ℓ(ni ), and δi = δk .

In the first case, (ni ,δi ) must be an element in the ∆-augmented slice set SC∆ according to the

definition of the well-formed sets (see Def. 5.10) since SC is a well-formed set. Thus we obtain

rv(ni ,δi ) , ∅ which contradicts condition (2) in the definition of next observable behavior. In the

second case, δi = δk implies that ni < SC according to the first condition of the definition of next

observable behavior. Then, we obtain code2(ni ) =skip in P2 by Case 3 in Def. 4.10, and the Ret node

is semantically transformed to a Skip node in the CFG of P2. This gives us the contradiction that

the path π̂ is not a contextually valid path due to node ni . So, we conclude that no Call/Ret node ni
exists in π̂ when k > 1 (i.e. n1 , nk ), and consequently δ1 = δk . □

7.4 Proving the weak simulation and bisimulation relations
Lemma 7.9 and 7.10 below state that if the relation

seq
∼ holds between two configurations Γ1 and Γ2

of P1 and P2 (i.e. Γ1

seq
∼ Γ2), and there is a silent transition from Γi to Γ of program Pi for i = 1, 2,

then the relation Γ1

seq
∼ Γ or Γ

seq
∼ Γ2 hold. In other words, since the observable behavior does not

change in silent transitions, the relation

seq
∼ also holds between the relevant configurations with

the same observable behavior.

Lemma 7.9. Let Γ1 and Γ2 be valid configurations of P1 and P2 such that Γ1

seq
∼ Γ2. If there exists a

transition 1 ⊢ Γ1

τ
→ Γ where Γ = Γ · (n,σ ) is any configuration of P1 in context δ , and obs(n,δ ) , ∅,

then Γ
seq
∼ Γ2 holds.

Proof. Let Γ1 = Γ1 ·(n1,σ1), let Γ2 = Γ2 ·(n2,σ2), and let δ1 and δ2 be the contexts of configurations

Γ1 and Γ2, respectively. In the following, we prove conditions (1), (2), and (3) in the definition of

seq
∼

(Def. 6.5) for the relation Γ
seq
∼ Γ2.

(1) obs(n,δ ) = obs(n2,δ2). There exists a CFG node m ∈ SC such that obs(n,δ ) = {m} since

the nonempty observable set obs(n,δ ) is at most a singleton according to the singleton lemma

(Lemma 7.5). Then, we obtain obs(n1,δ1) = {m} according to Lemma 7.6 due to the silent transition

τ
→ in the assumption of the lemma. The relation Γ1

seq
∼ Γ2 yields obs(n1,δ1) = obs(n2,δ2) according

to the definition of

seq
∼ . This concludes that obs(n,δ ) = obs(n2,δ2).
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n1

n

n1 : CAssiдn

n : Entry

n1 : Exit

n : RAssiдn

n1 : RAssiдn

n : Ret

n1 : Call

n : CAssiдn

Fig. 16. All possible scenarios where node n is a successor of node n1. Both n1 and n belong to the same
procedure in the first scenario

(2) stores(Γ) =RV stores(Γ2). According to condition (2) in the definition of

seq
∼ , the relation

Γ1

seq
∼ Γ2 yields stores(Γ1) =RV stores(Γ2). The silent transition 1 ⊢ Γ1

τ
→ Γ yields

n1 < SC ∨ rv(n1,δ1) = ∅ (2)

according to the definition of labeled transition (Def. 6.1). This silent transition only affects the top

store σ of the configuration Γ. As the relation stores(Γ1) =RV stores(Γ2) holds, the stores that are

beneath the top state of Γ are equivalent to the stores of Γ2 according to the definition of equivalent

stores upto RVs (Def. 6.3). Thus, in order to prove stores(Γ) =RV stores(Γ2), it is enough to prove

the following conditions:

(C1) if Γ and Γ2 are in different contexts (i.e. δ , δ2), then rv(n,δ ) = ∅, and

(C2) if Γ and Γ2 are in the same context (i.e. δ = δ2), then σ =rv(n2,δ2) σ2.

We already have proved that obs(n,δ ) = obs(n2,δ2). Let obs(n,δ ) = obs(n2,δ2) = {m} for any

m ∈ SC since obs(n,δ ) , ∅ (assumption of the lemma), and let δm be the context of node m.

According to Lemma 7.8, δ2 = δm .
If δ , δ2 and since δ2 = δm , we obtain rv(n,δ ) = ∅ from the relation obs(n,δ ) = {m} according

to condition (2) in the definition of next observable behavior (Def. 4.9). This proves condition (C1).

Now, in order to prove condition (C2), assume that δ = δ2. The relation obs(n,δ ) = obs(n2,δ2)

yields

rv(n,δ ) = rv(n2,δ2) (Lemma 7.7).

Since δ2 = δm and obs(n2,δ2) = {m}, we obtain

rv(n2,δ2) = rv(m,δm)

from the first condition in the definition of next observable behavior. The observable relation

obs(n2,δ2) = {m} requires that rv(m,δm) , ∅, and thus rv(n2,δ2) is nonempty. Node n is a

successor of n1 due to the silent transition

τ
→ in the assumption of the lemma that requires the

transition→. Since rv(n,δ ) = rv(n2,δ2), we conclude that any RV x in rv(n2,δ2)must not be defined
at n1 as otherwise we obtain n1 ∈ SC and rv(n1,δ1) , ∅ according to Case (3a) in the definition

of relevant variables (Def. 4.7) which contradicts condition (2) above. We must have one of the

scenarios in Fig. 16 for the relative positions of n1 and n.
In the first three scenarios, the contexts of nodes n1 and n are same (i.e. δ = δ1). We obtain

σ1 =rv(n2,δ2) σ2 from the relation stores(Γ1) =RV stores(Γ2) according to the definition of equivalent

stores upto RV (Def. 6.3). Thus, we infer σ =rv(n2,δ2) σ2 from the relation σ1 =rv(n2,δ2) σ2 and the

fact that any RV x in rv(n2,δ2) is not defined at n1.

In the fourth scenario, configuration Γ1 = Γ1 ·(n1,σ1) of noden1 implies that Γ1 is the configuration

of a Call node (see the Paramout and the Call rule in Table 1), and n is the matching Ret node of

node(Γ1). Thus, Γ1 and Γ must be in the same context δ = δ2, and we obtain store(Γ1) =rv(n2,δ2) σ2

from the relation stores(Γ1) =RV stores(Γ2). The store store(Γ1) may differ only from the store σ by

the values of actual output parameters x that may be assigned at n1. However, variable x is not

a RV in rv(n2,δ2) as any RV in this set is not defined at n1. Thus, we infer σ =rv(n2,δ2) σ2 from

store(Γ1) =rv(n2,δ2) σ2.
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In the fifth scenario, n is the first node in context δ = δ2 where δ2 = δ1 ◦ ℓ(n1). Thus, no

configuration that is either Γ1 or a prefix of Γ1 can be in context δ2. However, the equality relation

stores(Γ1) =RV stores(Γ2) requires that Γ1 or a prefix of Γ1 must be in the same context as Γ2 (i.e. δ2).

So, this scenario is impossible.

Thus, if δ = δ2, then σ =rv(n2,δ2) σ2 in all possible scenarios. This proves condition (C2), and thus

we conclude that stores(Γ) =RV stores(Γ2).

(3) m ∈ obs(n,δ ) =⇒ d([n..m],δ ) = d([n2..m],δ2). Since obs(n,δ ) , ∅, there exists a node

m ∈ SC such thatm ∈ obs(n,δ ). According to condition (3) in the definition of

seq
∼ , the relation

Γ1

seq
∼ Γ2 yields

d([n1..m],δ1) = d([n2..m],δ2).

Since n ∈ succ(n1), we have δ = d([n1..n],δ1). Then, we derive the following equalities:

d([n2..m],δ2) = d([n1..m],δ1)

= d([n..m], d([n1..n],δ1))

= d([n..m],δ ).

□

Lemma 7.10. Let Γ1 and Γ2 be valid configurations of P1 and P2 such that Γ1

seq
∼ Γ2. If there exists a

transition 2 ⊢ Γ2

τ
→ Γ where Γ = Γ · (n,σ ) is any configuration of P2 in context δ , and obs(n,δ ) , ∅,

then Γ1

seq
∼ Γ holds.

Proof. This proof is dual to that of Lemma 7.9. □

The following lemma says that if n1, in context δ1, has an observable node nk , n1, then all

transitions of the sliced code from n1 to nk are silent transitions.

Lemma 7.11. Let Γ1 be a valid configuration at CFG node n1 of program P2 with the mapping
function code2, and let δ1 be the context of Γ1. If obs(n1,δ1) = {nk } for any nk ∈ SC and n1 , nk , then
there exists a configuration Γk at nk such that 2 ⊢ Γ1

τ
⇒ Γk .

Proof. There exists a contextually valid path J(n1,δ1)..(nk ,δk )K due to the relation obs(n1,δ1) =

{nk } according to the definition of next observable behavior (Def. 4.9). Let Γi be the configuration
of node ni in context δi for all 1 ≤ i ≤ k . According to Lemma 7.8, δ1 = δk . Then, the relation
obs(n1,δ1) = {nk } yields n1 < SC (first condition in Def. 4.9). In the following, we prove for any

i < k and δi = δk that there exists an index i < j ≤ k such that 2 ⊢ Γi
τ
→ Γj and δ j = δk . Since

obs(n1,δ1) = {nk } and δi = δk , we obtain ni < SC (first condition in Def. 4.9). One of the following

holds for node ni .
• Node ni is a Cond node: If the minimum distance dist(tsucc(ni ),nk ) is smaller than the

minimum distance dist(ni ,nk ), then we get code2(ni ) = true according to the definition of

the mapping function code2 (Def. 4.10) and obtain nj = tsucc(ni ). We obtain code2(n) = false
otherwise and set nj = f succ(ni ). Node nj is in the path [n1..nk ], δ j = δk in both cases, and

we obtain the transition 2 ⊢ Γi → Γj according to the semantic rules in Table 1. Since ni < SC ,

we obtain the silent transition 2 ⊢ Γi
τ
→ Γj (Def. 6.1).

• Node ni is a Call node: Since ni < SC , we obtain code2(ni ) = skip according to the definition

of the mapping function code2. Let n
′
be the matching Ret node in context δi such that

ℓ(ni ) = ℓ(n
′). We obtain nj = n′ and δ j = δi , and there exists a transition 2 ⊢ Γi → Γj

according to the Call-Skip rule in Table 1. Since ni < SC , we obtain 2 ⊢ Γi
τ
→ Γj (Def. 6.1). In

the following, we show that nj ∈ [n1..nk−1].
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Since obs(n1,δ1) = {nk }, either nl < SC or rv(nl ,δl ) = ∅ for all 1 ≤ l ≤ k − 1 according

to conditions (1) and (2) in the definition of next observable behavior, and thus (nl ,δl )
is not an element in the ∆-augmented slice set SC∆ according to Def. 5.11. However, the

relation obs(n1,δ1) = {nk } yields nk ∈ SC and rv(nk ,δk ) , ∅, and thus (nk ,δk ) ∈ SC∆ .

(ni ,δi ) < SC∆ implies (nj ,δ j ) < SC∆ due to well-formedness (Defs. 5.10). Since (nk ,δk ) ∈ SC∆ ,

but (nj ,δ j ) < SC∆ where nodes ni , nj , and nk are in the same contexts and nj is the immediate

subsequent node of ni in the CFG of the same procedure, nj must be in the path [n1..nk−1].

• Node ni is not a Call or Cond node: Node ni cannot be a RAssign node as otherwise we will

not have any nk ∈ SC such that δi = δk . For any other kinds of nodes ni < SC , code2(ni ) is
a skip instruction according to the definition of the mapping function code2. Then, we get

nj ∈ succ(ni ), δ j = δi , and the transition 2 ⊢ Γi → Γj according to the skip rule in Table 1.

This implies 2 ⊢ Γi
τ
→ Γj according to the definition of the labeled transition (Def. 6.1).

So, we obtain a subsequence t1, . . . , tl of the sequence of indices 1, . . . ,k where t1 = 1, tl = k ,

and t1 ≤ . . . ≤ tl such that 2 ⊢ Γtj
τ
→ Γtj+1

for all 1 ≤ j < l , and consequently, we conclude that

2 ⊢ Γ1

τ
⇒ Γk . □

Example 7.12. Let us consider the CFGG and the slice set SC in Fig. 4, the set of observable nodes

obs(n,δ ) in Fig. 11, and the mapping function code2 such that code2(n) =skip for anyn ∈ {n3,n6,n7}.

Let Γ1 = (n3,σ1) be any valid configuration at node n3. We have obs(n3, ϵ) = {n8} where ϵ is the

context of configuration Γ1 and n8 , n3. According to Lemma 7.11, there exists a configuration Γk

at node n8 in context ϵ such that 2 ⊢ Γ1

τ
⇒ Γk .

Program P2 (i.e. code2(G)) has the following sequences of transitions: (i) 2 ⊢ Γ1 → (n6,σ1)

according to the Call-Skip rule, and (ii) 2 ⊢ (n6,σ1) → (n7,σ1) and 2 ⊢ (n7,σ1) → (n8,σ1)

according to the Skip rule in Table 1. Since n3,n6,n7 < SC , all these transitions are silent transitions,

and thus 2 ⊢ (n3,σ1)
τ
⇒ (n8,σ1).

i=1; z=0;
while(z ≥ 0)

z=z;
y=i+1;

i=1; skip;
while(false)
skip;

y=i+1;

Fig. 17. Program P1 (left) and its slice P2 (right). P1 is not terminating, but P2 always terminates

Note that we cannot ensure 1 ⊢ Γ1

τ
⇒ Γk in Lemma 7.11. In order to illustrate this fact, consider

the program P1 and its nontermination insensitive slice P2 in Fig. 17. The slicing criterion consists

of the variable i at the last instruction. If node n represents the condition of the while loop, and

nodem is the last statement, then there is no transition from n tom in P1 as the loop condition will

be always evaluated to true. However, there is a transition from n tom in the sliced code as the

condition there is false. If SC is a well-formed strongly control closed set, then we can prove the

following lemma since the slice will be non-termination sensitive.

Lemma 7.13. Let SC be a well-formed strongly control-closed slice set, let Γ1 be a valid configuration at
node n1 of program P1 with the mapping function code1, and let δ1 be the context of Γ1. If obs(n1,δ1) =

{nk } for any nk ∈ SC such that n1 , nk , then there exists a configuration Γk such that 1 ⊢ Γ1

τ
⇒ Γk .

Proof. Since obs(n1,δ1) = {nk }, there exists a contextually valid path π̂ = J(n1,δ1)..(nk ,δk )K.
For all 1 ≤ i ≤ k − 1, we obtain either ni < SC or rv(ni ,δi ) = ∅ according to the first and second
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conditions in the definition of the next observable behavior (Def. 4.9), and thus, (ni ,δi ) is not an
element in the ∆-augmented slice set SC∆ according to Def. 5.11. However, the observable relation

obs(n1,δ1) = {nk } yields nk ∈ SC and rv(nk ,δk ) , ∅, and thus (nk ,δk ) ∈ SC∆ .

Let Γi be the configuration of node ni in context δi for all 1 ≤ i ≤ k . In the following, we prove

that 1 ⊢ Γi
τ
→ Γi+1 for any i < k and that any infinite execution from n1 must go through nk in δk .

Consider node ni for any 1 ≤ i ≤ k − 1.

If node ni is a Cond node, then we have either ni+1 = tsucc(ni ) or ni+1 = f succ(ni ). If node ni is
not a Cond node, then ni+1 ∈ succ(ni ). In any case, we have a transition 1 ⊢ Γi → Γi+1 according

to the semantic rules in Table 1. Since either ni < SC or rv(ni ,δi ) = ∅, it is the silent transition

1 ⊢ Γi
τ
→ Γi+1 (Def. 6.1).

The element (ni ,δi ) is not SC∆ -avoiding because there exists a contextually valid path from ni
in context δi to nk in δk such that (nk ,δk ) ∈ SC∆ (Def. 5.7). Since SC is a strongly control-closed

slice set, all contextually valid maximal paths from (ni ,δi ) contain an element from SC∆ . Moreover,

the element (ni ,δi ) is also SC∆ -weakly committing since SC is a strongly control-closed slice set

implying that all SC∆ -paths meet at (nk ,δk ) (see Defs. 5.6, 5.4, 5.8). So, no infinite execution is

possible without going through nk in δk .

Thus, we conclude that 1 ⊢ Γ1

τ
⇒ Γk . □

Lemma 7.14 below states that if P1 and P2 visit a node n in Γ1 and Γ2 configurations in context

δ such that the relation

seq
∼ holds between these configurations (i.e. Γ1

seq
∼ Γ2), and both P1 and P2

make an observable move in one step to visit a node in Γ3 and Γ4 configurations, then the stores of

Γ3 and Γ4 are equivalent upto RVs according to Def. 6.3.

Lemma 7.14. Let Γ1 and Γ2 be valid configurations at node n in context δ of programs P1 and P2,
respectively, such that Γ1

seq
∼ Γ2 holds. If there exist transitions 1 ⊢ Γ1

n
→ Γ3 and 2 ⊢ Γ2

n
→ Γ4, then

stores(Γ3) =RV stores(Γ4).

Proof. Let Γi = Γi · (n,σi ) for i = 1, 2. The relation Γ1

seq
∼ Γ2 yields

stores(Γ1) =RV stores(Γ2) (condition (2) in Def. 6.5).

Since Γ1 and Γ2 are in the same context, the relation stores(Γ1) =RV stores(Γ2) implies that the stores

underneath the top states of Γ1 and Γ2 are equivalent upto RVs according to Def. 6.3. The transitions

1 ⊢ Γ1

n
→ Γ3 and 2 ⊢ Γ2

n
→ Γ4 produce configurations Γ3 and Γ4 such that the stores underneath

the top states of Γ3 and Γ4 are from Γ1 and Γ2, and hence they are equivalent upto RVs. Thus, in

order to conclude stores(Γ3) =RV stores(Γ4), it is sufficient to prove that store(Γ3) and store(Γ4) are

equivalent with respect to the set of RVs at node node(Γ4) in the context of Γ4.

The transition 1 ⊢ Γ1

n
→ Γ3 or 2 ⊢ Γ2

n
→ Γ4 implies that

n ∈ SC and rv(n,δ ) , ∅ (Def. 6.1).

Moreover, ref (n) ⊆ rv(n,δ ) according to Case (1) or Case (3) in the definition of relevant variables

since n ∈ SC . So, σ1(x) = σ2(x) for all x ∈ ref (n). Thus, P1 and P2 take the same path from n even if

n is a Cond node as both evaluate their conditional expressions to the same value. Thus, both Γ3

and Γ4 are the configurations for the same node and context in programs P1 and P2. Let Γi be the
configuration at nodem in context δm for i = 3, 4. In the following, we prove that

store(Γ3) =rv(m,δm ) store(Γ4).

If δ = δm , then store(Γ3) =rv(m,δm ) store(Γ4) due to one of the following cases:

• Node n contains an assignment x = e and x ∈ rv(m,δm): Then, we have JeKσ1 = JeKσ2, and

hence store(Γ3)(x) = store(Γ4)(x).
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• For any x ∈ rv(m,δm) and x < def (n): We must have x ∈ rv(n,δ ) according to Case (2)

in the definition of relevant variables, and then we obtain store(Γ3)(x) = store(Γ4)(x) from
σ1(x) = σ2(x).

If δ , δm , then n is either a Call or a RAssign node. Moreover,m ∈ succ(n). Then, we have one of
the following possibilities.

• Node n is a Call node and nodem is a CAssign node: According to the Call rule in Table 1,

store(Γ3) = σ1 and store(Γ4) = σ2.

For any RV x in rv(m,δm) such that x ∈ ref (n), x is also a RV in rv(n,δ ) according to Case

(2) in the definition of relevant variable. Then, we obtain

store(Γ3)(x) = store(Γ4)(x) from σ1(x) = σ2(x).

For any other RV x in rv(m,δm) such that x < ref (m) (e.g. x can be a dummy variable),

either store(Γ3)(x) = store(Γ4)(x) due to the ParamIn rule (e.g. both store(Γ3) and store(Γ4)

contains same values for dummy variables) or store(Γ3) ={x } store(Γ4) vacuously holds. Thus,

store(Γ3) =rv(m,δm ) store(Γ4).

• Node n is a RAssign node and nodem is a Ret node: Since Γ1 = Γ1 · (n,σ1), Γ2 = Γ2 · (n,σ2),

and Γ1 and Γ2 are in the same context, Γ1 and Γ2 are also in the same context. According to

the Call rule in Table 1, Γ1 and Γ2 are configurations for a Call node. Letm
′ = node(Γ1) be

the Call node in context δ ′
. According to the ParamOut rule in Table 1,m is the matching

Ret node ofm′
such thatm′m is a balanced sequence of Call and Ret nodes. Then, according

to the definition of equivalent stores upto RVs, stores(Γ1) =RV stores(Γ2) implies

store(Γ1) =rv(m′,δ ′) store(Γ2) and σ1 =rv(n,δ ) σ2.

For any RV x in rv(m,δm), either there exists an assignment x = e at n or x is also a

RV at rv(m′,δ ′) according to Case (2) in the definition of RV. In the former case, we have

JeKσ1 = JeKσ2 since σ1 and σ2 contain same values for any x ∈ ref (n) ⊆ rv(n,δ ), and
consequently store(Γ3)(x) = store(Γ4)(x). According to the Paramout rule in Table 1, store(Γ3)

and store(Γ4) contain same values as store(Γ1) and store(Γ2), respectively, for all variables

that are not updated at n. Thus, in the latter case, we obtain store(Γ3)(x) = store(Γ4)(x) from
the relation store(Γ1) =rv(m′,δ ′) store(Γ1).

Thus, store(Γ3) =rv(m,δm ) store(Γ4) always holds, and consequently, stores(Γ3) =RV stores(Γ4). □

Lemma 7.15 below states that if the relation

seq
∼ holds between two configurations Γ1 and Γ2 of P1

and P2 (i.e. Γ1

seq
∼ Γ2), and the original program P1 can make an observable move from Γ1 in one step,

then the sliced program P2 can make an observable move in one or more steps, and the relation

seq
∼ also holds between the changed configurations. However, the reverse only holds when SC is a

well-formed strongly control closed set (Lemma 7.16).

Lemma 7.15. Let Γ1 and Γ2 be valid configurations of programs P1 and P2 such that Γ1

seq
∼ Γ2. If

there exists a transition 1 ⊢ Γ1

n1

→ Γ3 in P1, then there exists a transition 2 ⊢ Γ2

n1

⇒ Γ4 in P2 such that
Γ3

seq
∼ Γ4.

Proof. Let Γi = Γi · (ni ,σi ) be the configuration of node ni in context δi for 1 ≤ i ≤ 4, and let

Γ = Γ · (n1,σ ) be another configuration at node n1 in context δ of program P2. First, we prove that

the labeled transition 2 ⊢ Γ2

n1

⇒ Γ4 in P2 exists.

The transition 1 ⊢ Γ1

n1

→ Γ3 yields

n1 ∈ SC and rv(n1,δ1) , ∅ (Def. 6.1),
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and the relation Γ1

seq
∼ Γ2 yields

obs(n1,δ1) = obs(n2,δ2) (Def. 6.5).

Thus, obs(ni ,δi ) = {n1} for i = 1, 2 according to the definition of the next observable behavior

(Def. 4.9). Moreover, Γ1

seq
∼ Γ2 yields

δ1 = d([n2..n1],δ2) (condition (3) in Def. 6.5).

If n2 = n1, then Γ1

seq
∼ Γ holds such that Γ = Γ2 and δ2 = δ1 = δ . If n2 , n1, we show that Γ1

seq
∼ Γ

also holds.

Assume that n2 , n1. Then, according to Lemma 7.11, we obtain the silent transition 2 ⊢ Γ2

τ
⇒ Γ

from obs(n2,δ2) = {n1}. So, there exists a sequence of configurations Γ
1 = Γ2, . . . , Γ

k = Γ such that

for all 1 ≤ i ≤ k − 1 the silent transition 2 ⊢ Γi
τ
→ Γi+1

holds. Let δ i be the context of configuration
Γi for all 1 ≤ i ≤ k such that

δ 1 = δ2 and δ
k = δ = d([n2..n1],δ2).

This gives us δ = δ1.

Since obs(n1,δ1) = {n1}, we infer from the silent transition 2 ⊢ Γi
τ
→ Γi+1

using Lemma 7.6

iteratively for all i in the sequencek−1, . . . , 1 thatobs(node(Γi ),δ i ) = {n1}. Sinceobs(node(Γ
i ),δ i ) ,

∅ and Γ1

seq
∼ Γ2, we infer from the silent transition 2 ⊢ Γi

τ
→ Γi+1

using Lemma 7.10 iteratively for

all i in the sequence 1, . . . ,k − 1 that Γ1

seq
∼ Γi+1

. Thus we infer the relation Γ1

seq
∼ Γ.

The relation Γ1

seq
∼ Γ yields

stores(Γ1) =RV stores(Γ).

As both Γ1 and Γ are in the same context δ = δ1, the top stores of both configurations are equivalent

upto RVs, i.e.,

σ1 =rv(n1,δ1) σ (according to Def. 6.5).

As n1 ∈ SC and rv(n1,δ1) , ∅, Case (1) or (3) in the definition of relevant variables (Def. 4.7)

are applicable from which we obtain ref (n1) ⊆ rv(n1,δ1). Thus P1 and P2 meet at n1 in the same

context δ1 = δ and agree with the values of all variables in ref (n1). So, P1 and P2 take the same

path from n1 even if n1 is a Cond node as both evaluate their conditional expressions to the same

values. So, if there exists a transition 1 ⊢ Γ1

n1

→ Γ3 in P1, there exists a configuration Γ4 = Γ4 · (n3,σ4)

such that n4 = n3 and we obtain the transition 2 ⊢ Γ → Γ4 in P2. Since n1 ∈ SC and rv(n1,δ1) , ∅,

2 ⊢ Γ
n1

→ Γ4, and consequently, we get the transition 2 ⊢ Γ2

n1

⇒ Γ4 in P2.

As both P1 and P2 take the same path from n1 in context δ1 = δ to node n3, we must have δ3 = δ4

and the relation obs(n3,δ3) = obs(n3,δ4) trivially holds. Also, d([n3..n],δ3) = d([n3..n],δ4) trivially

holds for any n ∈ obs(n3,δ3). Moreover, since Γ1

seq
∼ Γ holds, and the contexts of Γ1 and Γ are same,

we obtain stores(Γ3) =RV stores(Γ4) according to Lemma 7.14. Thus, the relation Γ3

seq
∼ Γ4 holds

since all three conditions in the definitions of

seq
∼ for this relation are satisfied. □

Lemma 7.16. Let Γ1 and Γ2 be valid configurations of programs P1 and P2 such that Γ1

seq
∼ Γ2, and

let SC be a well-formed strongly control-closed set. If there exists a transition 2 ⊢ Γ2

n2

→ Γ4 in P2, then
there exists a labeled transition 1 ⊢ Γ1

n2

⇒ Γ3 in P1 such that Γ3

seq
∼ Γ4 holds.

Proof. Let Γi = Γi · (ni ,σi ) be the configuration of node ni in context δi for 1 ≤ i ≤ 4, and let

Γ = Γ · (n2,σ ) be another configuration at node n2 in context δ of program P1. First, we prove that

the labeled transition 1 ⊢ Γ1

n2

⇒ Γ3 in P1 exists.

The transition 2 ⊢ Γ2

n2

→ Γ4 yields

n2 ∈ SC and rv(n2,δ2) , ∅ (Def. 6.1).
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and the relation Γ1

seq
∼ Γ2 yields

obs(n1,δ1) = obs(n2,δ2) (Def. 6.5).

Thus, obs(ni ,δi ) = {n2} for i = 1, 2 according to the definition of the next observable behavior

(Def. 4.9). Moreover, Γ1

seq
∼ Γ2 yields

δ2 = d([n1..n2],δ1) (condition (3) in Def. 6.5).

If n1 = n2, then Γ
seq
∼ Γ2 holds such that Γ = Γ1 and δ1 = δ2 = δ . If n1 , n2, we show that Γ

seq
∼ Γ2

also holds.

Assume that n1 , n2. Then, according to Lemma 7.13, we obtain the silent transition 1 ⊢ Γ1

τ
⇒ Γ

from obs(n1,δ2) = {n2}. So, there exists a sequence of configurations Γ
1 = Γ1, . . . , Γ

k = Γ such that

for all 1 ≤ i ≤ k − 1 the silent transition 1 ⊢ Γi
τ
→ Γi+1

holds. Let δ i be the context of configuration
Γi for all 1 ≤ i ≤ k such that

δ 1 = δ1 and δ
k = δ = d([n1..n2],δ1).

This gives us δ = δ2.

Since obs(n2,δ2) = {n2}, we infer from the silent transition 1 ⊢ Γi
τ
→ Γi+1

using Lemma 7.6

iteratively for all i in the sequencek−1, . . . , 1 thatobs(node(Γi ),δ i ) = {n2}. Sinceobs(node(Γ
i ),δ i ) ,

∅ and Γ1

seq
∼ Γ2, we infer from the silent transition 1 ⊢ Γi

τ
→ Γi+1

using Lemma 7.9 iteratively for all

i in the sequence 1, . . . ,k − 1 that Γi+1
seq
∼ Γ2. Thus we infer the relation Γ

seq
∼ Γ2.

The relation Γ
seq
∼ Γ2 yields

stores(Γ) =RV stores(Γ2).

As both Γ and Γ2 are in the same context δ = δ2, the top stores of both configurations are equivalent

upto relevant variables, i.e.,

σ =rv(n2,δ2) σ2 (according to Def. 6.5).

As n2 ∈ SC and rv(n2,δ2) , ∅, Case (1) or (3) in the definition of relevant variables (Def. 4.7) are

applicable from which we obtain ref (n2) ⊆ rv(n2,δ2). Thus, P1 and P2 meet at n2 in the same

context δ2 = δ and agree with the values of all variables in ref (n2). So, P1 and P2 take the same path

from n2 even if n2 is a Cond node as both evaluate their conditional expressions to the same values.

So, if there exists a labeled transition 2 ⊢ Γ2

n2

→ Γ4 in P2, there exists a configuration Γ3 = Γ3 · (n4,σ3)

such that n4 = n3 and we obtain the transition 1 ⊢ Γ → Γ3 in P1. Since n2 ∈ SC and rv(n2,δ2) , ∅,

1 ⊢ Γ
n2

→ Γ3 holds, and consequently, we conclude that 1 ⊢ Γ1

n2

⇒ Γ3.

As both programs P1 and P2 take the same path from node n2 in context δ2 = δ to node n4, we

must have δ3 = δ4 and the relation obs(n4,δ3) = obs(n4,δ4) trivially holds. Also, d([n4..n],δ3) =

d([n4..n],δ4) trivially holds for any n ∈ obs(n4,δ4). Moreover, since Γ
seq
∼ Γ2 holds, and the contexts

of Γ and Γ2 are same, we obtain stores(Γ3) =RV stores(Γ4) according to Lemma 7.14. Thus, the

relation Γ3

seq
∼ Γ4 holds since all three conditions in Def. 6.5 for this relation are satisfied. □

Proof of Theorem 6.6. Let Γ1 and Γ2 be valid configurations of programs P1 and P2.

(1) Assume that Γ1

seq
∼ Γ2 holds and there exists a labeled transition 1 ⊢ Γ1

n
⇒ Γ′

1
. So, there

exist a sequence of configurations Γ1, . . . , Γk such that k ≥ 1, Γ1 = Γ1, the silent transition

1 ⊢ Γi
τ
→ Γi+1

holds for all i = 1, . . . ,k − 1, and the labeled transition 1 ⊢ Γk
n
→ Γ′

1
holds.

Let Γi be the configuration of nodeni in context δi for all 1 ≤ i ≤ k . From the labeled transition

1 ⊢ Γk
n
→ Γ′

1
, we obtain n = nk ∈ SC and rv(n,δk ) , ∅. Thus, we have obs(n,δk ) = {n}

according to the definition of the next observable behavior (Def. 4.9). We apply Lemma 7.6

iteratively and infer from the above silent transitions for all i in the sequence k − 1, . . . , 1

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0. Publication date: 2020.



Semantic Correctness of Dependence-Based Slicing 0:49

that obs(ni ,δi ) = {n}. Since obs(ni ,δi ) is nonempty and Γ1

seq
∼ Γ2 holds, we iteratively apply

Lemma 7.9 and infer from the above silent transitions for all i in the sequence 1, . . . ,k − 1

that Γi+1
seq
∼ Γ2 holds. Thus, the relation Γk

seq
∼ Γ2 holds. Then, from the labeled transition

1 ⊢ Γk
n
→ Γ′

1
, we infer that there exists Γ′

2
such that Γ′

1

seq
∼ Γ′

2
and 2 ⊢ Γ2

n
⇒ Γ′

2
holds according

to Lemma 7.15.

(2) The proof in (1) is one direction of the bisimulation as it also holds when SC is a well-formed

strongly control closed set. For the other direction, let us assume the relation Γ1

seq
∼ Γ2 and

the labeled transition 2 ⊢ Γ2

n
⇒ Γ′

2
.

Then, there exist a sequence of configurations Γ1, . . . , Γk such that k ≥ 1, Γ1 = Γ2, the

silent transition 2 ⊢ Γi
τ
→ Γi+1

holds for all i = 1, . . . ,k − 1, and the labeled transition

2 ⊢ Γk
n
→ Γ′

2
holds. Let Γi be the configuration of node ni in context δi for all 1 ≤ i ≤ k .

From the labeled transition 2 ⊢ Γk
n
→ Γ′

1
, we obtain n = nk ∈ SC and rv(n,δk ) , ∅. Thus, we

have obs(n,δk ) = {n} according to the definition of the next observable behavior. We apply

Lemma 7.6 iteratively and infer from the above silent transitions for all i in the sequence

k − 1, . . . , 1 that obs(ni ,δi ) = {n}. Since obs(ni ,δi ) is nonempty and Γ1

seq
∼ Γ2 holds, we

iteratively apply Lemma 7.10 and infer from the above silent transitions for all i in the

sequence 1, . . . ,k − 1 that Γ1

seq
∼ Γi+1

holds. Thus, the relation Γ1

seq
∼ Γk holds. Then, from

the labeled transition 2 ⊢ Γk
n
→ Γ′

2
, we infer that there exists Γ′

1
such that Γ′

1

seq
∼ Γ′

2
and

1 ⊢ Γ1

n
⇒ Γ′

1
holds according to Lemma 7.16.

□

Proof of Theorem 6.7. Let us assume that Γ0 and Γ′
0
are the initial configurations of P1 and

P2. We can safely assume that rv(node(Γ′
0
), ϵ) = vars(store(Γ′

0
)); otherwise any variables that

are in vars(store(Γ′
0
)) \ rv(node(Γ′

0
), ϵ) can simply be discarded from store(Γ′

0
) since the defi-

nition of variables that are not relevant does not affect the slicing criterion. We assume that

store(Γ0) =rv(node(Γ′
0
),ϵ ) store(Γ

′
0
). This is always possible since we can obtain Γ′

0
from Γ0 by dis-

carding some variable assignments from the store of Γ0 for variables that are not part of the

slice. Moreover, obs(node(Γ0), ϵ) = obs(node(Γ′
0
), ϵ) as node(Γ0) = node(Γ′

0
) (the start node) and

d([node(Γ0)..m], ϵ) = d([node(Γ0)..m], ϵ) trivially holds for anym ∈ obs(node(Γ0), ϵ). Thus, Γ0

seq
∼ Γ′

0

holds (Def. 6.5). According to Theorem 6.6,

seq
∼ is either a weak simulation or a weak bisimulation

relation.

When seq
∼ is a weak simulation relation: For all transitions 1 ⊢ Γ0

n
⇒ Γ1 of P1, there exists a

transition 2 ⊢ Γ′
0

n
⇒ Γ′

1
of P2 such that Γ1

seq
∼ Γ′

1
holds. 1 ⊢ Γ0

n
⇒ Γ1 implies there exists Γ1 such that

1 ⊢ Γ0

τ
⇒ Γ1 and 1 ⊢ Γ1

n
→ Γ1 (Def. 6.1) .

Similarly, 2 ⊢ Γ′
0

n
⇒ Γ′

1
implies there exists Γ1

′
such that

2 ⊢ Γ′
0

τ
⇒ Γ1

′
and 2 ⊢ Γ1

′ n
→ Γ′

1
.

According to the definition of labeled transition, for the contexts δ and δ ′
of configurations Γ1 and

Γ1
′
,

• 1 ⊢ Γ1
n
→ Γ1 implies n ∈ SC , and rv(n,δ ) , ∅, and

• 2 ⊢ Γ1
′ n
→ Γ′

1
implies n ∈ SC , and rv(n,δ

′) , ∅.

In both cases, node(Γ1) = node(Γ1
′) = n, and the transitions are SC -observable moves. According

to the definition of next observable behavior, we obtain obs(n,δ ) = {n}. Let 1 ⊢ Γ0

τ
⇒ Γ1 be the
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sequence of silent transitions

1 ⊢ Γ(1,0)
τ
→ Γ(1,1), . . . , 1 ⊢ Γ(1,l−1)

τ
→ Γ(1,l )

such that Γ(1,0) = Γ0 and Γ(1,l ) = Γ1. Let Γ(1, j) be the configuration at node mj in context δ j =
d([node(Γ0)..mj ], ϵ) for all 0 ≤ j ≤ l .

By applying Lemma 7.6 on the sequence of silent transitions 1 ⊢ Γ(1, j)
τ
→ Γ(1, j+1) for all j in the

sequence l − 1, . . . , 0, we infer
obs(mj ,δ

j ) = {n}

from obs(n,δ ) = {n}. Since Γ0

seq
∼ Γ′

0
holds and obs(mj ,δ j ) , ∅ for all mj and δ j as above, by

repeatedly applying Lemma 7.9 on the sequence of above silent transitions for all j in the sequence

0, . . . , l − 1, we infer that the relation Γ1
seq
∼ Γ′

0
holds.

Similarly, let 2 ⊢ Γ′
0

τ
⇒ Γ1

′
be the sequence of silent transitions

2 ⊢ Γ(2,0)
τ
→ Γ(2,1), . . . , 2 ⊢ Γ(2,t−1)

τ
→ Γ(2,t )

such that Γ(2,0) = Γ′
0
and Γ(2,t ) = Γ1

′
. Since node(Γ1

′) = n, obs(n,δ ) = {n}, and Γ1
seq
∼ Γ′

0
holds, by

applying Lemma 7.10 on this sequence of transitions, we infer the relation Γ1
seq
∼ Γ1

′
. Then, it yields

stores(Γ1) =RV stores(Γ1
′) and δ = d([node(Γ0)..n], ϵ) = d([node(Γ

′
0
)..n], ϵ).

Thus, the contexts δ and δ ′
of configurations Γ1 and Γ1

′
are same, and we conclude store(Γ1) =rv(n,δ )

store(Γ1
′) from the definition of equivalent stores upto RVs (Def. 6.3). As above, Γ1

seq
∼ Γ1

′
leads to

the existence of configurations Γ2 and Γ′
2
at node n1 in context δ1 such that n1 ∈ SC , n1 = node(Γ2) =

node(Γ′
2
), and store(Γ2) =rv(n1,δ1) store(Γ

′
2
), and this process continues.

Thus, we get a (finite or infinite) sequence of configurations Γ0, Γ1, Γ2, . . . of P1 and Γ′
0
, Γ′

1
, Γ′

2
, . . .

of P2 that visit the nodes in SC in a pairwise fashion, and have the same values for RVs. As

nodes(C) ⊆ SC , if P1 makes aC-observable move ( i.e. visits a node inC), the sliced program P2 will

make the same C-observable move. The set of relevant variables includes the variables of interest

stated in the slicing criterion (according to Def. 4.7). Thus, P1 and P2 visit C-observable nodes in
a pairwise fashion finitely or infinitely many times observing the same values for the variables

stated in C . Thus, P1 ≳C P2 holds.

When seq
∼ is a weak bisimulation relation: the above result also holds here. Moreover, for

all transitions 2 ⊢ Γ′
0

n
⇒ Γ′

1
of P2, there exists a transition 1 ⊢ Γ0

n
⇒ Γ1 of P1 such that Γ1

seq
∼ Γ′

1

holds, and this process continues. By following the symmetric reasoning as above, if P2 makes a

C-observable move finitely or infinitely many times, program P1 will make the same C-observable
move and values of relevant variables agree. Thus, P2 ≳C P1, and consequently, P1 ≃C P2. □

8 RELATEDWORK
8.1 Semantics of slicing
The earliest work on the semantics of slicing by Weiser [50, 51] was based on finite trajectories,

where each trajectory is a finite sequence of (statement label, state) pairs. Weiser then defines

when a program is a static backward slice of an original program. Binkley et al. [7, 8] developed a

formal framework for comparing different forms of slicing using the program projection theory.

They used two relations over programs: a syntactic pre-order relation that defines the syntactic

property that the particular form of slicing seeks to optimise, and an equivalence relation that

captures the semantic property that the slice wants to preserve. These relations are used to formally

compare different forms of slicing. For example, static backward equivalence is used to preserve

the semantic relationship of backward static slicing originally defined by Weiser. However, the
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slice semantics is provided only for terminating programs as the trajectories are finite. In case of

slicing nonterminating programs, Ward and Zedan [48] illustrate that Weiser slicing allows us to

delete nonterminating code and code which appears after a nonterminating loop. This semantics

is not reflected by the static backward equivalence and thus only partially defines Weiser slicing.

Ward and Zedan [48] presented an operational and an equivalent denotational semantics for slicing

nonterminating and nondeterministic programs that capture Weiser slicing. They did not consider

nontermination sensitive slicing in their semantics. The semantics provided by Reps and Yang

includes a slicing theorem and a termination theorem [41]; the slicing theorem is another illustration

of Weiser’s semantics but demonstrated over the program dependence graph. Several non-standard

semantics of program slicing are described in [10, 17, 32], and the shortcomings of these approaches

were shown by Barraclough et al. [5]. The non-standard semantics in [10, 17] suffers from lack

of substitutivity in which a segment of a program cannot be substituted by another, semantically

equivalent part. The transfinite semantics approach [17, 32] has problems when the program flow

after an infinite loop depends on values computed in the loop, and these non-standard semantics

do not correspond to normal execution of programs on a von Neumann machine. Barraclough

et al. [5] extended the semantics of Weiser for nonterminating programs but based on finite

trajectories. However, as Ward and Zedan [48] uncovered, all these non-standard semantics [10, 17,

32] including the extended semantics of Barraclough et al. [5] have the serious problem of accepting

a nonterminating program as a valid slice of a terminating program. In contrast, we provide an

operational style semantics for programs, and we capture the semantic relation between a program

and its slice through a semi-equivalence relation that considers infinite execution traces of possibly

nonterminating programs. Moreover, as Theorem 3.10 demonstrates, a nontermination insensitive

slice (and hence a nontermination sensitive slice which is also nontermination insensitive) preserves

the nondeterministic behavior of the original program.

8.2 Correctness of slicing
Reps and Yang provided the first formal proof of correctness, showing that slices extracted from

the program dependence graph have the desired semantic properties [41]. The proof is based on

walking backward over the edges of the PDG, which is generated from programs with structured

control flow. This work was extended by Ball and Horwitz who proved slicing correctness for

arbitrary control flow [4]. The kind of slice considered in these proofs is general in the sense that

the statements in the slice may have a different relative order than in the original program.

Our correctness proof of dependence-based slicing is based on a (bi)simulation that walks over

the edges of the CFG, and we require that the relative order of statements in the sliced and in the

original code should be the same. While the previous approach of correctness proofs considered

slices extracted from PDG, the (bi)simulation approach is applicable to a more general framework.

In [2, 39], the correctness arguments are built by capturing various notions of control dependen-

cies for intraprocedural programs, and demonstrate a simulation or bisimulation relation between

the original and the sliced programs. In [19], a bisimulation-based correctness property is provided

for multi-threaded programs.

Our results hold for interprocedural, possibly nonterminating programs, and our proofs con-

sidered that control dependence relation is captured by the well-formed weak or strong control

closure relation. These relations are the generalisations of all previously defined control dependence

relations found in the literature, and hence our proof framework is valid for a whole range of

existing control dependence relations.
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8.3 Dependence-based slicing
Since the pioneering work of slicing by Weiser [50, 51] most static slicing techniques are based

on computing the PDG, which contains all data and control dependencies. In [6, 20–22, 34, 40],

program dependencies are represented in a graph and the problem of computing the slice set is

viewed as a graph reachability problem. In [28, 50], all the dependencies and slices are computed

by solving flow equations on CFGs. All these techniques are different with regard to precision,

complexity, applicability, and scalability. Very little work has been done on static backward slicing

computing partial dependencies. In [26], a static demand-driven slicing technique is provided

for interprocedural code. Khanfar et al. [24, 25] presented an on-demand interprocedural slicing

algorithm that is very efficient for structured programs, and uses a program representation that is

tailored to such programs.

There are other approaches to program slicing that do not track the dependencies explicitly and

produce smaller slices than dependency tracking algorithms. For example, the semantic slicing

approach presented in [30, 45, 47] is based on the theory of program transformation, and the

abstract slicing approach in [31, 42] is based on the theory of abstract interpretation [12].

8.4 Interprocedural control dependency
Sinha et al. [44] defined interprocedural control dependency at the level of interprocedural inlined
flow graph (IIFG) which is possibly an infinite CFG (for recursive programs) with a unique end node

that results when all procedure calls are inlined at the call sites. Postdominator-based intraprocedural

control dependency relation computed at the IIFG graph provides the interprocedural control

dependence. The size of the resulting IIFG may limit obtaining an efficient and precise practical

method to compute interprocedural dependency. However, the authors provided a less precise

but efficient statement-based approach summarizing all calling contexts for a statement by using

augmented control dependency graph (ACDG) for each procedure, connecting all ACDGs to construct
an interprocedural control dependence graph (ICDG), and finally, traversing the ICDG to compute

interprocedural control dependences. Loyall and Mathisen [27] combined intraprocedural CFGs

by connecting all call nodes to the procedure entry and exit nodes to form the interprocedural

CFG and used postdominator-based control dependence relation to define interprocedural control

dependence. In this article, we have provided the well-formed weak and strong control closure

relation for interprocedural program which are non-termination insensitive and non-termination

sensitive. These relations are the extensions of the generalised form of control dependence by

Danicic et al. [13] provided for intraprocedural programs.

9 CONCLUSION AND FUTUREWORK
We have developed a framework for proving the correctness of static backward slicing of inter-

procedural programs. Our framework is based on control-flow graphs, where program slices are

defined through reachability in what is basically a program dependence graph formed by the

data and control dependency relations. We define an operational semantics for interprocedural

CFG’s in terms of transitions between configurations representing the current state of the program.

Based on this semantics, we define semi-equivalences which are relations between the original

program and its slice provided that the slice has the desired properties. A slice is thus correct if a

semi-equivalence relation holds between the original program and the slice.

The semi-equivalence relations actually come in two different varieties. The first one requires

that the slice should always be able to “mimic” the original program as regards the “observable”

behaviours, i.e., the order of visiting CFG nodes in the slicing criterion should be the same, as

well as the values of the variables in the slicing criterion during each visit. The second in addition
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demands that the original program should be able to mimic the slice. In the latter case we say that

the slice is nontermination-sensitive.

We show that if a certain simulation (or bisimulation) relation holds between certain configu-

rations of the original program and its slice, then they are semi-equivalent. The relation is based

on the data and control dependency relations. The control dependency relation is captured by the

well-formed weak and strong control closure relations that are nontermination insensitive and

-sensitive, respectively. Danicic et al. [13] proved that all control dependence relations defined in

previous works are special cases of control dependence captured by the weak and strong control

closure. We define the well-formed weak and strong control closure, which are the interprocedural

extensions of the generalised weak/strong control closure. We show that if the control depen-

dency relation is nontermination-insensitive then the relation is a weak simulation, and if it is

nontermination-sensitive then the relation is a weak bisimulation.

Ourwork is inspired byAmtoft et al. [2, 39] who used a similar techniquewithweak (bi)simulation

for proving the correctness of slicing for intraprocedural programs. Our contributions are the

extension to interprocedural programs using the the well-formed weak and strong control closure

relations, which capture all previously defined control dependency relations, rather than proving

the correctness for some fixed control dependence relation. The latter is interesting since a number

of control dependency relations have been defined in the literature.

Future work includes investigating how to apply the framework to prove the correctness of con-

crete slicing algorithms. In particular demand-driven algorithms, where some of the dependencies

are not explicitly computed [25, 26], provide an interesting challenge.
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