
 1

Interference Control for Integration of Vehicular Software Components

Mikael Åkerholm, Kristian Sandström, Johan Fredriksson
Mälardalen Real-Time Research Centre, http://www.mrtc.mdh.se

Mälardalen University, Västerås, Sweden
E-mail:{mikael.akerholm,kristian.sandstrom,johan.fredriksson}@mdh.se

Abstract

Vehicular manufacturers want to reduce the num-

ber of electronic components in the vehicles foremost
to reduce cost and complexity, but not to the price of
decreased functionality or quality. In this work we
outline a method to facilitate a reduction of hardware
components in vehicles, through integration of large
real-time software components to the same hardware
platform. The focus is on controlling the interference
caused by the integration, but practical issues as sys-
tem architecture and hardware independency both in
implementation and specification of components are
also considered.

1. Introduction

Component Based Development (CBD) is believed
to facilitate scalability and flexibility to integrate and
transfer functions; enhance maintainability, and sim-
plify reuse. In the vehicle industry CBD is practiced
with hardware components called Electronic Control
Units (ECUs). Typically every major vehicular func-
tion is implemented within an own ECU, and vehicle
manufactures tend to be system integrators of ECUs
developed by third parties. This implies that the elec-
tronic contents in the vehicles increase with the num-
ber of functions in the vehicles. Several reasons to stop
this trend exist. There is not much physical space for
more ECUs in the vehicles. The system is integrated
around a shared communication bus, which is a poten-
tial problem since it gather all complexity and creates
dependencies around the bus. As always, the most im-
portant argument for a decreased number of ECUs is
that there is money to save in decreasing the number of
hardware components. Firstly there is money to save
on a reduction of all electrical equipment that an ECU
requires, e.g., network interface card, cabling, mother-
board. Secondly, the price relative to performance
characteristics of micro controllers themselves yields
more performance for less money, i.e., it is cheaper to
purchase one powerful micro controller than achieving

the same performance with two or more weaker micro
controllers.

The long term objective with the work is to facili-
tate a reduced number of hardware components in the
vehicles, through integration of vehicle functions to the
same ECUs. This will decrease production cost, and
overall complexity. The production cost is deceased
through lower hardware cost, the gain increase with
the production volume. The complexity around the bus
can be decreased through the effects of a lower number
of connected ECUs. However, only software in ECUs
that is physically close enough is cost effective to inte-
grate, otherwise cost of cablings to sensors and actua-
tors can consume the gain, due to required cable
length.

The contribution with this paper, is the introduction
of large software components denoted SoftECUs, and
interference control when several SoftECUs share a
hardware platform. A SoftECU encapsulate a major
vehicle function, it can contain as much software as all
the software shipped within a traditional ECU. Given
that several SoftECUs is integrated on the same physi-
cal ECU, the focus of the work is to control the inter-
ference that come from the integration, i.e., the inter-
ference the SoftECUs can cause to each others. The
interference can take two forms, spatial, or temporal.
Furthermore, the method scales to SoftECUs that are
processor independent. The main reason for introduc-
ing processor independency is to simplify system evo-
lution, e.g., migration to another processor when the
current is too slow or no longer produced.

Vehicle systems can be classified as safety-critical,
embedded real-time systems. Recent research and de-
velopment efforts taking place in academia and indus-
try have resulted in component technologies for such
systems. Here a sample of such technologies is men-
tioned. The Rubus Component Model [5], from Arcti-
cus Systems is used in the vehicle industry. It is tai-
lored for resource constrained systems with real-time
requirements. PErvasive COmponent Systems
(PECOS) [9] developed by ABB and academic part-
ners, is aimed for small embedded systems (field de-
vices). It supports prediction of run-time properties as

 2

memory consumption and timeliness. Prediction-
enabled Component Technology (PECT) [23] is ongo-
ing research from Carnegie Mellon University; it fo-
cuses on prediction of run-time attributes on system
level from components. AutoComp [15] is ongoing
research at Mälardalen Real-Time Research Centre, the
focus is to provide a full component model at design
time, and during compile time transform it to a re-
source effective mature real-time operating system.
These technologies could all be suitable for vehicular
systems, but they use small components for developing
functions. While the approach in this work is to define
large components (SoftECUs), which can be used for
integration of several functions to the same hardware
platform, the components under integration could be
built using one of the mentioned technologies.

Outline: Section 2, gives a general overview of in-
tegration of SoftECUs, section 3 the overall architec-
ture of a component technology supporting SoftECUs.
Section 4 defines the SoftECUs, while section 5 deal
with the specification of temporal attributes. Section 6,
address the integration. While section 7 derives a
model of the run-time behavior, eventually sections 8
contain discussions, conclusions, open issues and fu-
ture work.

2. General Overview

A general overview of the intended usage of SoftE-
CUs is given in figure 1. Each SoftECU is developed,
verified and merchandised independently, by sub-
system suppliers. Suppliers use their own tools and
create a suitable internal architecture during develop-
ment of a SoftECU. The main difference for sub sys-
tem suppliers compared to the situation in the business
segment today, is that components are delivered as
software only (SoftECUs), instead of both software
and hardware (ECUs).

However, in order to secure that the SoftECUs will
be assigned a share of the processor that are sufficient,
when sharing the processor with other SoftECUs, we
propose an additional specification of the SoftECUs
processor share requirements. The specification is de-
noted the temporal reservation of the SoftECU. The
temporal reservation is a cornerstone in this work, and
its origin is from one of the three possibilities listed
below:
• the temporal reservation can be provided by the

developer;
• the temporal reservation can be in the form of re-

quirements expressed by the integrator;
• it can be negotiated between involved parties;

The task for the system integrator is besides build-
ing a system with correct functionality, to verify that
all inference caused by the integration is controlled,
and it is here the technical contribution of the method
is applicable. The interference caused by the integra-
tion is either spatial or temporal. For spatial interfer-
ence each SoftECU is executing within a memory pro-
tected process, with possibility for multi–threading or -
tasking within the process. The temporal interference
on the other hand is eliminated by a time sharing algo-
rithm residing in the RTE that shall be used in coop-
eration with a couple of specified integration steps.

Furthermore, the method optionally let the temporal
specification be separated from the hardware platform,
given that the speedup ratio between the development
hardware and known reference hardware platform can
be determined. Hardware independency is proven
through practical use for software without real-time
requirements; but becomes an issue when dealing with
real-time applications. The problem comes from exe-
cution time variations on different hardware, and tem-
poral analysis rely on execution time specifications.

ECU ECU

SoftECU

Supplier

SoftECU
Integrator

SoftECU SoftECU SoftECU SoftECUSoftECU

ECU

SoftECU

Supplier

Fig. 1, usage of softECUs

3. Component Technology Architecture

This section gives a rough description of the archi-
tecture of a component technology, suitable for the
vehicular domain and SoftECUs. Basic terms used
throughout the paper are also introduced and ex-
plained. The terminology and basic system architecture
is with the purpose to be appropriate for the domain
influenced from the AUTOSAR1 standardization pro-
ject, which is a standardization effort taking place in
the vehicle domain by some major actors.

A schematic overview showing relationships be-
tween different concepts is shown in figure 2. On the
top level in the figure, there are two interconnected
ECUs. The interconnection is typically a CAN2 or

1 AUTOSAR Homepage: http://www.autosar.org
2 CAN Homepage: http://www.can-cia.de/can/

 3

LIN3 bus, and there are also a number of upcoming
standards as TT-CAN4, and Flexray5. Each ECU has as
a layered architecture; the contents in each of the lay-
ers are briefly described below:
• in the hardware layer the microcontroller, hard-

ware parts for communication, I/O units, and dif-
ferent types of memory, are the main blocks;

• the hardware abstraction layer contain hardware
dependent code, and provides a hardware inde-
pendent interface for the above layers;

• basic software typically include, device drivers,
transfer layers for communication technologies,
and diagnostics software;

• Eventually, the RTE consists of interface for the
SoftECUs, provides communication channels, and
implements a processor sharing algorithm.

The focus in this paper is on controlling the inter-
ference the different SoftECUs will cause each others
when they share the same physical ECU. Looking at
the layered architecture in figure 2 again, the interface
that is addressed by this research is between the SoftE-
CUs, and the RTE. However, the interface between the
RTE and the SoftECUs contain more than interference
control. In brief the RTE must contain a full flavored
programming interface for the SoftECUs, it contains
interface to communication mechanisms, and I/O units
and it maintain a consistent view of the system time.

Run – Time Environment

Hardware

Hardware Abstraction Layer

Basic Software

SoftECU 1

ECU
SoftECU 2

ECU
SoftECU n…

Run – Time Environment

Hardware

Hardware Abstraction Layer

Basic Software

Fig. 2, a schematic picture showing the relation-

ship between different concepts

4. The SoftECU

A SoftECU is described by definition 1, in the re-
maining part of this section the definition is motivated,
explained and enlarged.

Definition 1 A SoftECU is a software unit that con-
tains a major part of a vehicular function. It can be in
pre-compiled intermediate format (black-box), or in

3 LIN Homepage: http://www.lin-subbus.de
4 TT-CAN Homepage: http://www.can-cia-de/can/ttcan
5 Flexray Homepage: http://www.flexray-group.com

source code format (white-box). It comply with the
rules of the underlying run-time environment, and can
execute on a node alone, or sharing the node with
other SoftECUs.

A SoftECU encapsulates a major part of a vehicular
function; it is a unit of exchange between suppliers of
vehicular functions and vehicular manufacturers.
When building distributed vehicular functions that is
physically distributed over the vehicle, it is necessary
to deliver the function as several SoftECUs.

The SoftECUs can be black-box, meaning that the
source code of the SoftECUs do not have to be directly
visible for a system integrator. The integrators knowl-
edge of a SoftECU can be limited to the associated
specification of the SoftECU. However the compo-
nents can also be delivered as source code, in some
cases vehicle manufacturers need full access to the
source code, e.g., for verification of safety critical
functions.

The SoftECUs are not allowed to have hidden de-
pendencies; the only dependencies that are allowed are
exchanging data on the shared bus (virtual bus within
node boundaries) utilizing interfaces provided by the
RTE. It is compatible with the form of interaction that
is used in the business segment today.

The SoftECUs must comply with the rules defined
by the RTE, which can be compared to a component
framework, middleware, or operating system. How-
ever, the descriptions of the RTE in this work only
address problems that come from the integration itself,
i.e., processor sharing problems.

A SoftECU can execute on a processor alone or
sharing it with other SoftECUs, under controlled inter-
ference. The interference SoftECUs can cause each
others is either temporal or spatial. Controlling tempo-
ral interference is a matter of maintaining real-time
constraints of all SoftECUs, thus they have their real-
time constraints specified. Control of spatial interfer-
ence is achieved with memory protection.

Further requirements on the specification of SoftE-
CUs must be added for achieving other qualities than
interference control. As for the ECUs used today, a
functional description, specification of interconnection
to specific hardware components, amount and rate of
data transferred on the bus.

5. Specifying the Processor Share Re-
quirements

Each SoftECU has to specify the share of the proc-
essor that it requires, the share is specified with an
arbitrary number of reservations, each reservation as a
tuple in the reservation vector R. To specify how much

 4

processing time a SoftECU requires, and when it re-
quires that time, a specification that consists of two
parameters is suggested:
• R={<SD,T,D,J>1…<SD,T,D,J>n} is the reservation

vector, where each of the tuples represents a res-
ervation of a pre-emptive and re-entrant service
time SD, that is reserved at a rate T, which is the
period time of the reservation. Furthermore, each
reservation can be reserved with the optional tem-
poral constraints, deadline D and jitter J. Jitter is a
constraint of the periodicity of the activation point
expressed as a maximum allowed deviation from
the nominal period time, while deadline is the lat-
est point in time relative to each activation when
the reserved service time must have been granted.
The different parameters of a reservation are visu-
alized in figure 3. We note that the following con-
ditions must be true for the reservation to be valid
(SD <= D <= T) and (J <= T).

• The other part of the specification is the parameter
PD. The parameter is optional but required if proc-
essor independency are desired. It represents the
speedup of the development platform related to a
reference platform, i.e., the speedup of the plat-
form where R is valid. Determining the speedup in
the general case between two hardware platforms
is non-trivial, this work does not provide any solu-
tion rather a discussion in a succeeding section,
but given that it is possible we show how the tem-
poral reservation in R can be handled to become
processor independent. Notice that the method
does not require PD, which is the reason why it is
separated from the reservation vector.

T

t

T

D D

SD

T ± J

SD

Fig. 3, visualisation of the different attributes in

a reservation, specifying a service time S that is re-
served at a rate T, with a jitter requirement J, and
deadline D. Developers specify SoftECUs processor

share requirements with an arbitrary number of
reservations in the requirements vector R.

5.1. The Reservation Vector
The service time required from activities that can

execute with the same rate in the SoftECU are grouped
and assigned a reservation in the reservation vector.
However the activities that are grouped must be pre-
emptive and re-entrant within the boundaries created

by the reservation, since the distribution of the reserva-
tion shall be under total control by the RTE. The
method allows several such allocations, and can de-
scribe complex real-time behavior. Below we discuss
how to specify the processor share reservation for pe-
riodic, sporadic and single loop activities. However,
the basis for the specification is to transform all types
of reservations to periodic reservations. A basic condi-
tion is that the SoftECUs and the RTE are synchro-
nized and have exactly the same timekeeping, which is
not a big deal if services provided by the RTE are util-
ized.

Some activities may already be of periodic nature,
e.g., commonly used real-time tasks. These are the
most straight forward type of activities to allocate a
reservation for. The service time requirements for all
tasks with the same period time are summed and ex-
pressed as one allocation. When the characteristics of
the application allow, tasks with period times that are
multiples of each others can be assigned a reservation
with the lowest rate. Let the Fixed Priority Tasks (FPS)
tasks in table 1 correspond to all tasks implemented in
a SoftECU, two examples of suitable reservations for
that SoftECU are R1 = {<4,5,-,->} and R2 = {<3,5,-,->,
<3,15,-,->}. The resulting run-time behavior for the
reservation R1 is illustrated in figure 4, while the run-
time behavior for the reservation R2 is illustrated in
figure 5.

 T P C
A 5 H 1
B 5 M 2
C 15 L 3

Table 1, a set of FPS tasks within a SoftECU, the
tasks have period time (T), priority (P) High (H),
Medium (M), or Low (L), and execution time (C).

5 10 15 20 25 30
t

A
B
C
R1

Fig. 4, execution trace of tasks A, B, and C,

served with the reservation R1

In figure 4, the SoftECU has service time reserved
for its tasks with a single periodic reservation, result-
ing in spare capacity for other SoftECUs of one time
unit every fifth. In the figure at time 0, the reservation
of 4 time units made in R1 is served. Internally in the
SoftECU resulting in that the high priority task A exe-
cutes 1 time unit, followed by the medium priority task
B that executes 2 time units. Eventually within the first
instance of the allocated service time task C starts to

 5

execute for 1 time unit, but is cut off since the reserved
4 time units has elapsed. The same pattern is repeated
for all instances of the reserved service time. Notice
that task C, will get its 3 time units of execution with a
periodicity of 15 time units as required, but sliced in
three different parts.

In figure 5, the SoftECU has service time reserved
with two different period times. In the figure at time 0,
the reservation of 3 time units every 5th is served. In-
ternally in the SoftECU resulting in that the high prior-
ity task A executes 1 time unit, followed by the me-
dium priority task B that executes 2 time units. The
reservation of 3 time units every 15th is also served
from time 0, and that capacity is used for execution of
task C for two time units. At time 5, task A and B be-
comes ready for execution again and the service time
allocated as 3 every 5th is served, A and B use that
time, before the low priority task C can execute its
remaining 1 time unit. Finally at time 10, service time
for three time units are reserved, and used by A and B.
The described pattern is repeated every 15th time units.

5 10 15 20 25 30
t

A
B
C
R2

Fig. 5, execution trace of tasks A, B, and C,

served with the reservation R2

Sporadic activities are another base class of activity
that often can be identified; they can arrive at the sys-
tem at an arbitrary point in time with a known maxi-
mum arrival rate. Reserving capacity for a sporadic
process is done by allocating the capacity for the case
with the maximum arrival rate. This is done by setting
the period time for the reservation to the maximum
arrival rate, when the analysis in conjunction with the
integration is performed, i.e., during analysis sporadic
activities are treated as periodic activities. While dur-
ing run-time the RTE has instead of serving the reser-
vation periodically, serve it when a certain event occur
but not more often than the reserved capacity.

Another expected type of internal implementation is
those implemented as a single cyclic program, called
single (or main) loop program. Capacity for these must
also be done by a periodic reservation. The period time
shall be set to correspond to the cycle time. The length
of the reservation shall be the execution time for one
cycle in the loop.

Jitter and deadline constraints can be specified for
the reservations, they are typically deduced from con-
trol applications for performance reasons, and much of

the applications in vehicles are related to control ac-
tivities, e.g., various engine, wheel-spin, and brake-
lock control. Typically computer based control appli-
cations suffer of unpredictable or to long input to out-
put latencies (sampling-actuation delays) and varying
periodicity in the samples (sampling jitter). Input out-
put latency is restricted through the deadline, and con-
straints on the periodicity through setting maximum
allowed jitter. A tool that can be used for simulating
these parameters impact on control performance, and
find the suitable jitter and deadline constraints for the
reservations is JitterBug [8].

5.2. The Speedup
As an option, the temporal reservation for the

SoftECUs can be processor independent. It relies on
that the speedup ratio between different processors can
be determined. That is a non-trivial problem; it is not
even clear how processor performance shall be ex-
pressed, even less how to determine it [13]. In [18] it is
argued that the only consistent measure, when report-
ing performance of a processor in a single number, is
the total execution time. Current state of practice is to
determine it through some form of benchmark pro-
gram, e.g., Whetstone the first major synthetic bench-
mark [6], or Rhealstone a Real-Time benchmark [7]. In
this case it might be possible to determine the speedup
through execution or analysis of the SoftECU in ques-
tion, since it is not a comparison of the processors that
are desired rather the speedup for the particular code in
the SoftECU. However the actual method to find the
speedup is not in focus of this work, but given that it is
possible, it is used to achieve processor independent
reservation specifications of the SoftECUs.

6. Integration

Integration in a SoftECU based system involves all
the engineering work done by the system integrator, it
involves all from specifying the functional require-
ments for the system, its SoftECUs and to verification.
In this work, the focus is limited to joining SoftECUs
that are verified in isolation to the same platform.
Firstly run-time mechanisms addressing the integration
problem residing in the RTE are described, followed
by the main activities in the integration process; even-
tually a model describing the effects of the integration
on 0the run-time behavior inside SoftECUs is pre-
sented.

6.1. The Run-Time Environment
The focus is on the parts of the RTE that address

the problems that come from the integration of several

 6

SoftECUs to the same hardware platform, each
SoftECU is assumed to be verified by suppliers possi-
bly on hardware platforms different from the integra-
tion platform.

Each SoftECU is a single process in the integration
platform; the process is scheduled for execution as
specified through the processor share requirements.
The method to control spatial inference is memory
protection, each SoftECU is allocated to an own mem-
ory protected process. As the SoftECUs executes in
separated processes with separate address spaces, they
cannot directly interfere with each others data. How-
ever all shared resources, such as any common plat-
form code or data must also be protected, otherwise
spatial interference could occur indirectly through that
shared resource. Memory protection is practically pos-
sible and is common in many systems; it might require
hardware support for performance reasons. Such
hardware support is implemented in many modern
processors [13].

The main run-time mechanism in the integration
platform from a temporal view is a processor sharing
algorithm, which guarantees that all processes will get
the reserved share. It should be possible to use a re-
source sharing algorithm based on General Processor
Sharing (GPS) [11][12], which originally was intended
for flow control in gateway nodes. For instance the
Stride scheduling algorithm [22], the Earliest Eligible
Virtual Deadline First algorithm (EEVDF) [21], and
the Earliest completion-time GPS algorithm (EGPS)
[19]. However, we propose Fixed Priority Scheduling
(FPS) with the simple extension that processes always
gets the service time they request and no more. The
motivation for FPS before other more advanced sched-
uling algorithms or processor sharing algorithms, is
that the behavior has been widely analyzed
[1][2][14][17], it is mature and proven by wide use in
commercial products. The application of FPS with
static service time as in this case, makes the jitter
analysis techniques even simpler.

The RTE should also offer communication and I/O
mechanisms, as briefly described in section 3. Suitable
extensions in an integration platform for the vehicular
industry might be built in monitoring support, for effi-
cient fault localization in workshops. Furthermore,
additional mechanisms catering for safety like redun-
dancy and safety kernels.

6.2. Integration Activities
Before integration, or migration to another plat-

form, some engineering activities shall be done. The
purpose is to find out if it is possible to integrate the
desired SoftECUs on the desired platform, i.e., will the

SoftECUs get the share of the processor that is speci-
fied through their allocations.

The trick is not only that SoftECUs get a time share
equal to the required service time, the time must also
be given within certain boundaries. Consider moving
SoftECUs to slower platforms, with a single deadline
that is equal to the length of the allocated service time,
it is impossible to move such a SoftECU to slower
platform. However this is detected with ordinary real-
time analysis. The basic condition for a platform mi-
gration is that SoftECUs get the same computing
power within all allocated intervals. A processor with
speedup ratio 3, executes the same code three times as
fast. The different steps required for integration is
listed below:
1. For SoftECUs developed and verified on another

platform, find the speedup for the hardware plat-
form used for integration. The result PI is the
speedup for the integration platform relative to the
same reference platform, as the speedup for the
development platform is relative to. For SoftECUs
developed for the integration platform directly, set
PI=PD≠0

2. Calculate service time requirements for all reser-
vations relative to the chosen integration platform;
replace SD representing the service time required
on the development platform with SI using equa-
tion 1, where SI represents the service time re-
quirement on the integration platform.

SI = SD*PD /PI (1)
3. Calculate offsets [20][10] that are used for con-

trolling the jitter. The offset for an allocation rep-
resent the earliest time, relative to the start of each
period, when the reserved service time SI can be
serviced. The offset (O) is calculated for all ser-
vices time reservations with jitter constraints,
methods that can be used are, e.g., [4] or [16].

4. Next step is to perform a priority assignment for
FPS scheduling of the reservations. This can be
done by, e.g., [3], or [16].

5. Eventually, temporal analysis has to be performed;
it has been extensively covered in the research
community. With exact analysis we can calculate
response times for all allocations and verify that
all deadlines are met, as if they were real-time
tasks. The number of calculations necessary has
been reduced for priorities assigned using a dead-
line monotonic heuristics in [3]. More general FPS
analysis techniques with complex constraints is
presented in [14].

 7

6.3. Run-Time Behaviour
The parameters supplied by the developer in the

reservation vector restrict the window when the re-
served time can be serviced. In this section a model of
the run-time behavior with respect to parameters in the
reservation vector and hardware is presented. The
model gives an expression for the time an event gener-
ated and taking place inside a SoftECU can occur,
given a possible interval of occurrence on the devel-
opment platform. The model can be used to calculate
the impact of integration for different events, e.g., start
and completion times for sampling-actuation, or tasks.

T

D

SD

estD(E) t
lstD(E)

estD(E)estD(E)

E

Fig. 6, the relative interval [estD(E), lstD(E)] for

the occurance of an internally generated event E

Figure 6 shows an interval with the earliest start
time estD(E), and latest start time lstD(E). The interval
represents the time of an event E generated internally
in the SoftECU, relative to the activation of an instance
of reserved service time, when the SoftECU is exe-
cuted in isolation on the development platform. That is
the case when the reserved time can be served immedi-
ately utilizing the full capacity of the processor until
completion. The occurrence of the event must be ex-
pressed as an interval, due to possible variations of
execution times for preceding activities.

The earliest start time of the event estI(E), relative
to the activation of an instance of reserved service
time, on another hardware platform together with other
SoftECUs is illustrated to the left in figure 7. It occur
when the SoftECU is served with the reserved time
immediately, and execute undisturbed until comple-
tion. However, the speedup between the integration
platform and the development platform must be con-
sidered. The expression is given in equation 2, the rela-
tive speedup of the integration platform compared to
the development platform (PD/PI) times the start time
of the earliest start time of the event on the develop-
ment platform.

The latest start-time lstI(E) relative to the activation
of an instance of reserved service time is given by
equation 3, and illustrated to the right in figure 7. All
reserved service time are served before the deadline of
the reservation, which is guaranteed through temporal

analysis during the integration. Thus, the latest start-
time lstI(E) for an internally generated event is as close
to the deadline as possible without violating it. That
situation appears when the reservation is exposed to
the maximum temporal interference from SoftECUs.

estI(E) = estD(E) * PD/PI (2)
lstI(E) = (D – O) – PD/PI * (SD +lstD(E)) (3)

T

D

estI(E)

O
T

D

O

tlstI(E)

D

Fig. 7, the earliest and latest occurrence of an in-
ternally generated event estI(E) and lstI(E), under
maximum interference from other SoftECU, and
possibly on another processor than the temporal

reservation is aimed for

The possible interval for the occurrence of an event
E, independent of hardware platform and other SoftE-
CUs is thus given by the interval [estI(E),lstI(E)]. The
fundamental information can be used for deriving ex-
pressions for many important temporal run-time char-
acteristics. Consider the start (Ts) and completion time
(Tc) of a periodic task in a SoftECU, then
[estI(Ts),lstI(Ts)] and [estI(Tc), lstI(Tc)] are possible
intervals for occurrence of the events that the task
starts and finish its execution respectively. It is trivial
to determine expressions for e.g., maximum response
time max(R) (4), minimum and maximum time be-
tween two consecutive activations min(T) (5) and
max(T) (6). In figure 8, max(R) max(T), and min(T) is
visualized.

max(R) = lstI(Tc) – estI(Ts) (4)
max(T) = T + estI(Ts) - lstI(Ts) (5)
min(T) = T + lstI(Ts) - estI(Ts) (6)

t

min(T)
max(R)

max(T)
T T

D

lstI(Ts)

estI(Ts)

lstI(Tc)

estI(Tc)

D

lstI(Ts)

estI(Ts)

lstI(Tc)

estI(Tc)

Fig. 8, visualisation of maximum response time

max(R), maximum and minimum time and mini-
mum time between two consecutive activations,

max(T), and min(T)

 8

7. Conclusions

In this paper we have presented a method for con-
trol of interference caused by integration of large real-
time software components, denoted SoftECUs. We
show how the method can be used with specification
of real-time constraints that can be processor inde-
pendent, given that it is possible to determine the
speedup between processors. The usage context and
main parts of a component technology using the
method is also briefly described.

As future work, the first step is to verify this
method in practice, then iterative add and verify differ-
ent parts towards a full software component model
supporting the integration of software components
containing different vehicular functions to the same
hardware platform.

8. References

[1] N. C. Audsley. Optimal Priority Assignment and Feasi-
bility of Static Priority Tasks with Arbitrary Start Times.
Technical report, Department of Computer Science, Uni-
versity of York, 1991.

[2] N. C.Audsley, A. Burns, M. Richardson, K. Tindell, and
A. J. Wellings. Applying New Scheduling theory to Static
Priority Pre-Emptive Scheduling. In Software Engineer-
ing Journal, pages 284–292, 1993.

[3] N. C. Audsley, A. Burns, M. Richardson, and A. J. Wel-
lings. Deadline monotonic scheduling theory. In Proceed-
ings of 18th IFAC Workshop on Real Time Programming,
pages 55--60, Bruges, Belgium, June 1992.

[4] A. Bate, I. Burns. An approach to task attribute assign-
ment for uniprocessor systems. In: Proceedings of the
26th Annual International Computer Software and Appli-
cations Conference, IEEE (2002)

[5] I. Crnkovic, and M. Larsson, Building Reliable Compo-
nent-Based Software Systems, Artech House publisher
2002 ISBN: ISBN 1-58053-327-2

[6] H. J. Curnow, and B. A. Wichmann. A syntehetic bench-
mark, The Computer Journal, 19(1):80, 1976.

[7] R. Kar and K. Porter, Rhealstone . a Real-Time Bench-
marking Proposal, Dr. Dobbs’ Journal, February 1989.

[8] B. Lincoln, and A. Cervin, Jitterbug: A Tool for Analysis
of Real-Time Control Performance, In Proceedings of the
41st IEEE Conference on Decision and Control, Las Ve-
gas, NV, December 2002.

[9] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A.
Black, P. Müller, C. Zeidler, T. Genssler, R. van den
Born, A Component Model for Field Devices, Proceed-
ings of the First International IFIP/ACM Working Con-
ference on Component Deployment, Germany, June 2002.

[10] J. C. Palencia and M. Gonzalez Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. In

Proceedings of 19th IEEE Real-Time Systems Symposium,
pages 26–37, 1998.

[11] A. K. Parekh, and R. G. Gallager. A generalized proces-
sor sharing approach to flow control in integrated services
networks: the single-node case; IEEE/ACM Transactions
on Networking, Volume: 1 , Issue: 3 , June 1993,
Pages:344 - 357

[12] A. K. Parekh, and R. G. Gallager. A generalized proces-
sor sharing approach to flow control in integrated services
networks: the multiple node case; IEEE/ACM Transac-
tions on Networking, Volume: 2 , Issue: 2 , April 1994,
Pages:137 – 150

[13] D. A. Patterson and J. L. Hennesay, Computer Organi-
zation & Design the Hardware / Software Interface, sec-
ond edition, Morgan Kaufmann Publishers, Inc, 1998,
ISBN 1-55860-428-6

[14] O. Redell, M. Törngren. Calculating exact worst case
response times for static priority scheduled tasks with
offsets and jitter. In: Proc. Eighth IEEE Real-Time and
Embedded Tech-nology and Applications Symposium,
IEEE (2002)

[15] K. Sandström, J. Fredriksson, M. Åkerholm, Introducing
a Component Technology for Safety Critical Embedded
Real-Time Systems. In International Symposium on
Component-based Software Engineering (CBSE7) Edin-
burgh, Scotland, May 2004, Springer Verlag

[16] K. Sandström, C. Norström. Managing complex tempo-
ral requirements in realtime control systems. In: In 9th
IEEE Conference on Engineering of Computer-Based
Systems Sweden, IEEE (2002)

[17] L. Sha, R. Rajkumar, and J. Lehoczky. Task Period
Selection and Schedulability in Real-Time Systems.IEEE
Transactions on Computer, 39(9), 1990.

[18] J. E. Smith, Characterizing computer performance with
a single number, Communications of the ACM, Volume
31, Issue 10 (October 1988), Pages: 1202 – 1206, 1988

[19] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J.
E. Gehrke, and C. G. Plaxton. A proportional share re-
source allocation algorithm for real-time, time-shared sys-
tems; 17th IEEE Real-Time Systems Symposium, 1996.,
4-6 Dec. 1996; Pages:288 – 299

[20] K. Tindell. Adding Time Offsets to Schedulability
Ananlysis. Technical Report, Department of Computer
Science, University of Yourk, January 1994.

[21] T.-W. Kuo; W.-R. Yang; K.-J. Lin. EGPS: a class of
real-time scheduling algorithms based on processor shar-
ing; Proceedings. 10th Euromicro Workshop on Real-
Time Systems, 1998. , 17-19 June 1998, Pages:27 - 34

[22] C. A. Waldspurger, W. E. Weihl. Stride Scheduling:
Deterministic Proportional-Share Resource Management
Technical Memorandum MIT/LCS/TM-528; MIT Labo-
ratory for Computer Science; Cambridge, MA 02139;
June 22, 1995

[23] K. C. Wallnau. Volume III: A Technology for Predict-
able Assembly from Certifiable Components, Technical
report, Software Engineering Institute, Carnegie Mellon
University, April 2003, Pittsburgh, USA

