
Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

Type-aware virtual machine management for energy efficient cloud data
centers

Auday Al-Dulaimya,⁎, Wassim Itanib, Rached Zantoutc, Ahmed Zekria,d

a Department of Mathematics and Computer Science, Beirut Arab University, Beirut, Lebanon
bDepartment of Electrical and Computer Engineering, Beirut Arab University, Beirut, Lebanon
c Department of Electrical and Computer Engineering, Rafic Hariri University, Beirut, Lebanon
d Department of Mathematics and Computer Science, Alexandria University, Alexandria, Egypt

A R T I C L E I N F O

Keywords:
Cloud Computing
Cloud Data Centers
Energy Efficiency
Multiple Choice Knapsack Problem
VM Consolidation
VM Placement

A B S T R A C T

To meet the growing demands on cloud services and applications, a sizeable number of large scale cloud data
centers, hosting thousands of heterogeneous servers, is established by cloud service providers. The ever growth
in establishing cloud data centers is accompanied by consuming enormous amounts of energy. Thus, proposing
efficient management approaches to reduce the energy consumption in cloud data centers becomes a top priority
for ensuring the scalability of the cloud computing architecture. In general, the main source of energy over-
consumption in today’s data centers is due to the inefficient use of the physical servers’ resources, which results
in poor server utilization patterns. So, the key aspect is to utilize the physical resources optimally while serving
the cloud user demands. This paper investigates the design and implementation of virtual machine management
strategies for energy efficient cloud data centers. Particularly, it considers the processes of virtual machine
placement and virtual machine consolidation in enhancing the energy efficiency in cloud infrastructures. While
addressing the virtual machine placement problem is important, virtual machine consolidation is even more
important to enable continuous reorganization of the already-placed virtual machines on the least number of
physical machines. This results in reducing the number of active physical machines by leveraging live virtual
machine migration enabled by the virtualization concept. Moreover, since the virtual machine migration op-
erations consume additional energy, the frequency of VM migrations needs to be limited and controlled as well.
The paper presents a distributed approach to an energy-efficient dynamic virtual machine consolidation me-
chanism. This approach determines, based on novel algorithms, which virtual machines to migrate, and when.
Then, the placement of the virtual machines selected for migration is achieved based on a generalization of the
Knapsack Problem known as the Multiple Choice Knapsack Problem. The placement process suits both static and
dynamic virtual machine placement. The results of the performance evaluation demonstrate that the proposed
new algorithms are able to enhance the energy efficiency in cloud data centers.

1. Introduction

Due to its innovative characteristics and services, the cloud com-
puting model has captured significant attention among individual users,
academia, industry, and even governments. The cloud computing ser-
vices are offered by providing an access to a wide range of infra-
structures hosted on cloud data centers. Those data centers consume
extensive amounts of energy.

Moreover, as the cloud computing model has still many challenges,
such as security and privacy, that are delaying its wide adoption, many
approaches were proposed to overcome these challenges. But the pro-
posed approaches themselves may consume extra energy. For example

and as described in details in [1], many of the approaches proposed to
solve the security and privacy issues consume energy in the encryption
and decryption phases to make the processed and stored data more
secure.

To address the problem of high energy consumption in cloud data
centers, it is highly crucial to come up with an approach that utilizes the
resources of the cloud data centers in an efficient way while keeping the
number of active Physical Machines (PMs), hosting the Virtual
Machines (VMs), as small as possible. In addition, investigating the VM
management approaches and improving them, or proposing new ap-
proaches are necessary and seem promising in enhancing the energy
efficiency of cloud data centers. One method to improve the resource

https://doi.org/10.1016/j.suscom.2018.05.012
Received 9 November 2017; Received in revised form 19 May 2018; Accepted 23 May 2018

⁎ Corresponding author.
E-mail addresses: auday.aldulaimy@gmail.com (A. Al-Dulaimy), w.itani@bau.edu.lb (W. Itani), zantoutrn@rhu.edu.lb (R. Zantout), a.zekri@bau.edu.lb (A. Zekri).

Sustainable Computing: Informatics and Systems 19 (2018) 185–203

Available online 26 May 2018
2210-5379/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/22105379
https://www.elsevier.com/locate/suscom
https://doi.org/10.1016/j.suscom.2018.05.012
https://doi.org/10.1016/j.suscom.2018.05.012
mailto:auday.aldulaimy@gmail.com
mailto:w.itani@bau.edu.lb
mailto:zantoutrn@rhu.edu.lb
mailto:a.zekri@bau.edu.lb
https://doi.org/10.1016/j.suscom.2018.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2018.05.012&domain=pdf

utilization, which in turn reduces the amount of consumed energy, is
dynamic consolidation of VMs enabled by the virtualization concept.
This paper presents a distributed approach to an energy-efficient dy-
namic VM consolidation mechanism. This approach determines which
VMs to migrate, and when, based on new solutions. Then, the place-
ment of VMs selected for migration is done based on a generalization of
the Knapsack Problem (KP) known as the Multiple Choice Knapsack
Problem (MCKP). The process of the proposed virtual machine place-
ment strategy considers the Quality of Service (QoS) parameters stated
in the Service Level Agreement (SLA). The results of the performance
evaluation show that the proposed new solutions are able to enhance
the energy efficiency in cloud data centers.

In addition to a detailed description on the virtualization concept in
general, and on VM management in cloud computing environments,
this paper tackles the problem of inefficient energy consumption in
cloud data centers by proposing the following key contributions:

1) A distributed approach to energy efficient dynamic VM consolida-
tion. The proposed approach presents novel ideas and solutions for:
i) Deciding which VMs to be migrated and when by specifying the

underloaded and overloaded PMs which host these VMs.
ii) Selecting a VM to be migrated from the set of candidate VMs.
iii) Selecting the PMs to host the migrated VMs.

2) A novel VM placement strategy, with a systematic mathematical
formulation, that considers the types of jobs to be executed by the
VMs before the process of VM placement. The strategy places the
VMs’ running jobs of different types and requirements on the same
PM whenever possible based on the MCKP approach. MCKP suits our
problem since it strives to fit items belonging to different sets in one
knapsack. This strategy is applicable for both initial VM placement
(Static placement), and for after migration VM placement (Dynamic
placement).

The rest of this paper is organized as follows: The motivation and
objectives of the paper are stated in Section 2. Section 3 provides some
background material on the virtualization concept and VM manage-
ment. It defines and describes the process of VM placement and con-
solidation. Section 4 categorizes and lists the related works of the VM
placement and consolidation processes from the energy efficiency per-
spective. The proposed system model and the major algorithms of this
paper are presented in section 5. Section 6 discusses the performance
analysis of the proposed approach with its policies and algorithms.
Conclusions are presented in Section 7.

2. Motivation and objectives

Recently, numerous data centers were established around the world.
These data centers consume large amounts of energy. In general, the
consumed energy amount is resulting in: excessive operating costs and
carbon dioxide (CO2) emissions [2].

This amount was estimated to be between 1.1% and 1.5% of the
total electricity use in 2010. It has increased by 56% from 2005, and it
will continue to increase in a rapid manner unless advanced energy
efficient resource management algorithms are proposed [3,4].

According to the US Energy Information Administration (EIA), the
World total primary energy consumption in 2015 was 575.5 Quad BTU1

[5], which is approximately (168.6) Trillion KWh2. Consuming 1.1% to
1.5% from such massive amount of energy is prohibitively expensive.

Moreover, CO2 emissions of the Information and Communication
Technology (ICT) industry were accounted to be 2% of the total global
emissions. As known, the CO2 emissions affect the global warming [3].

Addressing the problem of high energy consumption is a significant
issue due to its financial and environmental effects. One of the recent
challenges in cloud computing is to enhance the energy efficiency of
such data centers. So, it is important to improve the resource allocation
algorithms and propose new management approaches which aim to
enhance the energy efficiency in cloud data centers. To address the
problem of high energy use, it is necessary to eliminate inefficiencies
and waste in the way electricity is delivered to computing resources,
and in the way these resources are utilized to serve application work-
loads. Usually, servers operate at 10–50% of their full capacity, leading
to extra expenses on over resource provisioning. In addition, the pro-
blem of low server utilization is appearing by narrow dynamic power
ranges of servers: even completely idle servers still consume about 70%
of their peak power. Therefore, keeping servers underutilized is highly
inefficient from the energy consumption perspective.

3. Background about virtualization and virtual machine
management

Virtualization is creating a virtual version of a particular resource
(e.g. CPU, memory, storage device, or network device). A single PM,
which is the real hardware, can host one or more VMs. A VM is a piece
of software running on a PM that emulates the properties of a separate
PM.

The concept of virtualization breaks the traditional model of the PM
that host a single Operating System (OS). It creates several VMs which
are hosted on one PM, each VM may have its own OS. This concept is
organized using hypervisor technology. A hypervisor [6], also termed
as a Virtual Machine Manager (VMM), is a software that controls all PM
resources, allocates resources needed by each operating system, moni-
tors the utilization of the resources in turn, and makes sure that the
guest operating systems of the VMs cannot disrupt each other.

3.1. Virtual machine management

VM Management [6] is the process of coordinated provisioning of
the virtualized resources, as well as the runtime of such provisioning.
This feature includes the mapping of the virtual resources to the phy-
sical ones, and the overall management of capabilities such as capacity,
billing, and SLA contractual terms.

3.2. Virtual machine migration

An important issue in VM management is the VM migration process,
which is the process of transferring a VM from a source to a destination
PM. Basically there are two types of migrations:

Offline migration: It refers to moving a suspended VM from one host
to another. It is also termed as cold migration.

Live Migration: It refers to moving a running VM from a host to
another. It is also called hot migration.

In this paper, live migration is solely considered due to two main
reasons: First is that live migration is more efficient from a performance
point of view as it is able to transfer a VM between PMs with a close to
zero downtime. Second is that live migration is the most adopted VM
migration type in modern VM managers.

Although VM Live migration creates an extra load on the CPU, it has
been shown that the performance overhead is low [7] compared to the
saving resulting from utilizing the PMs more efficiently. By applying
VM live migration, the running VMs can be dynamically consolidated to
leverage fine-grained changes in the workload and keep the number of
involved active PMs at the minimum during VMs execution [8].

3.3. Virtual machine live migration

VM Live migration is the process of moving a VM from one physical
host to another, while the VM is still running with a close to zero

1 BTU, which stands for British Thermal Unit, is a standard unit of energy.
2 KWh, which stands for Kilo Watt per hour, is a standard unit of energy. Every one

Quad BTU approximately equals to 293,071,000,000 KWh.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

186

downtime [9,3]. VM Live migration has many techniques, to illustrate
them, two terms need to be defined:

1) Total migration time: It represents the duration of the complete
migration process from start to finish.

2) VM downtime: It represents how much time the VM takes to respond
during migration.

These techniques attempt to make a trade-off between total mi-
gration time, and VM downtime. The first technique to be described is a
pure stop-and-copy technique [10,8]. In this technique, the original VM
is stopped, all pages are copied to the destination VM, and then, the
new VM starts working. The advantage of this technique is its simpli-
city, but it has disadvantages, as the VM downtime is proportional to
the amount of physical memory allocated to that VM leading to an
unacceptable outage, if the VM is running a live service.

Another technique in VM migration is the post-copy technique
[11,12]. In this technique, the essential kernel data structures are
moved to the destination in a short stop-and-copy phase, before the
destination VM starts. Other pages are transferred to the destination VM
across the network on demand. The VM downtime is much shorter in
this technique. However it is conducive to a much longer total migra-
tion time.

In the pre-copy migration technique [12,13], the migration is done
without stopping the migrated VM. The memory pages are copied from
the source machine to the destination one in an iterative manner. This
iterative nature is proposed to serve moving the dirty pages (which are
memory pages that have been modified in the source host since last
page transfer) to the destination. Such pages must be resent to the
destination host iteratively. The weakness of this technique shows when
the rate of updating pages gets very high. In this case, the migration
time will rise to a very high value. However, it has an advantage, since
it provides the necessary updating at the destination host and hence
there will be no need to re-update the pages and the destination host
can be activated any time. Every VM will have some set of pages that it
updates very frequently, the thing which makes them poor candidates
for future pre-copy migration. However, in [14,15], modified ap-
proaches are proposed to enhance the VM management techniques
from the perspective of the total migration time, and VM downtime.

3.4. Key aspects of live migration

In live migration, three important key aspects must be considered
[16], these are: the CPU state, the memory state, and the storage con-
tent.

■ CPU State: During live migration, the CPU state context of the VMs
are switched from the source host to the destination one. It is a little
data to be transferred, and represents the lowest limit for mini-
mizing the live migration downtime. Transferring such kind of in-
formation from the source to the destination PM host is essential and
not optional.

■ Memory Content: The VMs memory state also needs to be transferred
to the destination host. This information is greater than the CPU
state. It includes the memory state of:
1) the guest OS,
2) all running processes within the VM.

To substantially reduce migration time, VMMs need to be specified,
and transferring the contents of unused memory should be avoided.
This is very crucial because transferring memory content is the main
factor that effects the live migration time. In addition to avoiding
transferring the contents of unused memory, compression and other
techniques have the ability to speed up the transfer of memory content.

Transferring memory content is also not optional in live migration.

■ Storage Content: The Storage content is the optional part of live
migration. There is no need to transfer the storage content (also
called VM image), if it is accessible to both the source and the
destination machines through Network Attached Storage (NAS). On
this front, live migration is divided into two types:
1) Memory live migration: It occurs when transferring the memory

contents only.
2) Storage live migration (or shared-nothing migration): If the sto-

rage cannot be accessed by the destination host, then a new
storage virtual disk needs to be registered on the destination host,
and the storage content needs to be synchronized from the source
to the destination

Disk storage represents, by far, the greatest deal of information to be
transferred, and the time to transfer the full disk image on the network
can be substantial. As with memory, VMMs that can identify, and avoid
transferring the contents of unused disk blocks, have the potential to
greatly reduce migration time.

3.5. Migration cost

Live migration of VMs allows transferring a VM across PMs without
suspension and with a short downtime. However, live migration has a
negative impact on the performance of applications running in a VM
during a migration. It may make each VM migration a trigger to an SLA
violation; therefore, it is crucial to minimize the number of VM mi-
grations.

The length of a live migration depends on the total size of memory
used by the VM, and the available network bandwidth. Migrating only
the memory content is reasonable. The images and the data of VMs are
stored on an accessible shared storage, which is required to enable live
migration; and hence, copying the VM’s storage is not required.

One model to estimate energy consumption of VM migration cost
was developed in [17] and is summarized in (1 and 2):

= +VM E Evm
Mig energy

Source Destination (1)

= + + +δ γ nwTRAFFIC δ γ()* ()Source Source Mig Dest Dest (2)

where

■ nwTRAFFICMig is the network switching energy
■ δ γ δ γ, , ,Source Source Dest Dest are model parameters to be trained in

both source and destination hosts.

In addition to energy dissipation, VM migration also takes time.
Therefore, time must be considered before taking any migration-related
decision. The total migration time, depends on the number of VMs to be
migrated, and the RAM size of each VM. However, the total number of
VMs to be migrated, and the size of each VM cannot be known in ad-
vance except in a probabilistic sense [18].

The time cost of migrating of a single VM can be expressed in terms
of the statistics of the CPU content size and RAM size of this VM as well
as the available bandwidth at the time of migration. It is important to
stress that the RAM size is the main parameter that affects the VM
migration time (and consequently RAM size affects the energy since
energy is propositional with time). Eq. (3) is suggested to measure the
VM migration time in this paper:

= +VM C R BW()/vm
Mig time

vm vm (3)

where

■ VMi
Mig time is the time duration of VMi migration,

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

187

■ Cvm is the CPU content size in Bytes,
■ Rvm is the RAM content size of this VM in Bytes, and
■ BW is the available bandwidth, in Bytes/Seconds, between the

source and destination PMs.

The total migration time TotalVM()Migtime for n VMs is given in Eq.
(4):

∑=
=

TotalVM VMMig time

vm

n

vm
Mig time

1 (4)

In evaluating TotalVM ,Mig time the values of VMvm
Mig time are statistically

independent for all VMi.

3.6. VM placement and consolidation

VM Placement is the process of mapping VMs to PMs. VM
Consolidation refers to the replacement process using a fewer number of
PMs, thus contributing to energy conservation.

As virtualization is a core technology of the cloud computing model.
Investigating the problems of VM placement, and VM consolidation, is
an essential part of this model. Investigating these two problems is an
important approach to a more efficient energy use, and a better utili-
zation of resources in cloud data centers.

To explain the VM placement and VM consolidation more, Fig. 1
shows two cases, in each case seven VMs execute on a different number
of PMs (assuming that the PMs capacities can host the VMs in both
cases).

Case 1 can result from:

1) Unconditional initial VM placement.
2) After finishing the execution of some VMs while other VMs are still

working on the same PM.

While case 2 can result from:

1) Optimal/near optimal initial VM Placement.
2) Consolidating the VMs of Case 1 via VM migration.

It is obvious that case 2 is more energy efficient, as the number of
the PMs involved in serving the running VMs is less, and the involved
PMs are utilized better as well.

4. VM placement and consolidation approaches: literature review

Following are some of the approaches that have been suggested in
the literature to deal with the VM placement and VM consolidation
problems from the perspective of enhancing energy efficiency in cloud
data centers:

Round Robin: It is the basic and most straightforward VM place-
ment method where VMs are placed and distributed on PMs of the data
center sequentially in a circular manner.

Linear Programming: It is a traditional approach to solve the pro-
blem of VM placement. The work in [19] relied on the linear and
quadratic programming in proposing a VM placement algorithm to

Fig. 1. VM placement and consolidation.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

188

minimize the number of the involved PMs. The authors in [20] also
proposed a linear programming approach for VMs consolidation, where
VMs are allocated to a specific number of PMs. In [21], the authors
modeled an energy-aware VM placement using linear programming
technique to find the optimal solution from the energy-efficiency per-
spective.

Constraint Programming: It is another approach to solve the VM
placement problem. The authors in [22] proposed a framework to
maximize the utilization of the VMs resources. They defined a dynamic
VM provisioning manager, and a dynamic VM placement manager, to
work together within the proposed framework. VM provisioning, and
VM placement, are modeled as constraint satisfaction problems. The
work in [23] proposed a resource manager, called Entropy, working in
homogeneous clusters. Entropy is utilized to perform dynamic con-
solidation based on constraint programming.

Bin Packing: The Bin packing approach is also used in solving the
problem of VM placement in cloud data centers. Many studies presented
the VM placement problem as a bin packing problem. In [3] and [24],
novel models and algorithms were presented for distributed dynamic
consolidation of VMs in cloud data centers. The applied VM placement
algorithm based on a variant of bin packing called Best Fit Decreasing
(BFD) bin packing. The work in [25] proposed multiple VM placement
approaches to identify the parameters with the highest impact on the
total energy consumption, carbon footprint, and cost. The proposed
approaches, which work in geographically distributed cloud data cen-
ters, aim to maximize the energy utilization of the PMs in each data
center in order to minimize the total cost. The VM placement problem
was solved by considering it as a bin-packing problem with different bin
sizes, where bins represent the PMs. A Best Fit Heuristic is used to deal
with the process of VM placement. In [26], an energy-efficient VM
consolidation algorithm, called Prediction-Based VM Deployment al-
gorithm for energy efficiency (PVDE), was proposed. PVDE employed a
linear weighted method to predict the load of the PMs and classified
them based on the load into four classes for the VMs migration if ne-
cessary. The work proposed four types of VM selection algorithms to
determine potential VMs to be migrated. Then, the VM placement
problem is modelled as a bin packing problem with variable bin sizes
and prices. A Modified Best Fit Decreasing Algorithm (MBFDA) is
proposed to deal with the VM placement problem.

Knapsack Problem: This approach, as well, is employed to solve the
VM placement problem. An example of using this approach was pre-
sented in [27]. The authors in [27] proposed a power-saving approach
to forecast the demands on the VMs for the next period based on Holt-
Winters’ exponential smoothing method. Then, a knapsack algorithm is
employed to place the VMs on the PMs hosted in the data center.

In addition to the previous approaches, various optimization
methods such as, Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO), and Genetic Algorithm (GA) are used to solve the
problems of VM placement and VM consolidation, in virtualized data
centers.

ACO: In [28], the authors defined an initial VM placement strategy
with a multi-objective optimization algorithm based on (ACO). The
proposed algorithm is able to achieve an optimal solution through ef-
ficient convergence by the constantly updated pheromone. The optimal
solution is selected from a set of solutions using the exclusion method.
In [29], the authors designed a distributed ACO-based algorithm for
solving the VM consolidation problem. The algorithm iterated over a
finite number of cycles. At each cycle, an item is selected for each ant to
be packed in a bin. In [30], the authors proposed a multi-objective ACO
to solve the problem of VM placement. The formulated multi-objective
VM placement problem represents a permutation of VM assignments.
The goal is to efficiently obtain a set of non-dominated solutions that
reduce the total high power consumption resulting from resource wa-
stage. The dissertation in [31] used an ACO-based VM placement

algorithm to solve the problem of considering only a single resource to
evaluate the PM load, and VM resource demands, while ignoring the
other resources. A consolidation algorithm based on ACO to achieve
both scalability, and high data center utilization, is also proposed in
[31]. In [32], the authors proposed a VM consolidation scheme that
focused on balanced resource utilization of servers across different
computing resources. In [33], the energy consumption during VMs
migration is considered as a main factor in proposing an Energy-aware
VM Consolidation approach. This approach formulated the VM Con-
solidation problem as a multi-objective optimization problem. The
considered objectives are the number of sleeping PMs, and the memory
size of the migrating VMs. Then, ACO is applied to solve the problem.

PSO: The work in [34] proposed a PSO based VM scheduling
strategy for VM placement. This strategy focused on efficient VM pla-
cement, aiming to minimize the number of the PMs used. In [35], the
authors proposed a model, based on PSO, to place the migrated VMs in
the over-loaded PMs on other hosts, and to consolidate the under-
loaded PMs, which saves power. In [36], a novel VM selection algo-
rithm based on memory utilization, BW utilization, and VM size is
proposed. After selecting the VM, the work presented a modified Dis-
crete Particle Swarm Optimization (DPSO) method to solve the VM
placement problem. In [37], the VM placement problem is modeled as a
multi-objective function which considers both the resource wastage and
energy consumption as two conflicting objectives. To solve the pro-
blem, a binary version of PSO with some modifications is presented.

GA: Another approach to solve this problem is to use GA. Examples
of this approach were presented in [38] and [39]. The authors in [38]
proposed a Genetic Algorithm for Power-Aware (GAPA) scheduling to
find the optimal solution for the problem of VM placement. In the
proposed algorithm, a tree structure is used to encode a chromosome of
an individual job. The fitness function of GA is calculating the eva-
luation value of each chromosome. Using this model, each instance of
the tree structure showed the VM to PM placement. In [39], a profile-
based framework is proposed for dynamic VM allocation. The frame-
work estimates the applications finishing times and then implements a
dynamic assignment strategy based on a Repairing Genetic Algorithm
(RGA). By employing realistic profiles for applications, VMs and PMs,
RGA works in a three-layer energy management system to perform
energy efficient VM placement.

In general, by studying the approaches presented in the literature to
enhance the energy efficiency in virtualized cloud data centers, it could
be noted that the approaches with conditional VM placement are much
better compared with random VM placement approaches. The condi-
tional VM placement approaches results in better energy efficiency.

Also, it is important to mention that examining the workload
characteristics can lead to a better resource utilization, which conse-
quently enhance the energy efficiency. The work in [40] showed the
importance of investigating the workload characteristics before the
process of VM placement. It presented a VM placement strategy based
on the peak workload characteristics. After measuring the similarity of
VMs’ workload with VM peak similarity, VMs with peak workload
staggering at different time are placed together. The strategy aimed to
achieve better VM consolidation through VM peak similarity, resulting
in better resource utilization and more energy efficient cloud data
centers.

However, to the best of our knowledge, no work from the literature
considers the type of the tasks/jobs/applications which are served by
the VMs, nor employ the MCKP approach in solving the VM placement
problem. The work presented in this paper is inspired from our previous
work in [41].

5. Distributed dynamic virtual machine consolidation model

Consolidation is considered highly important in enhancing the

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

189

energy efficiency in cloud data centers. As the modern data centers do
not maximize the resource utilization of their PMs, co-locating VMs
allocated to the users’ jobs allows to minimize the total number of the
PMs which are involved in serving those jobs. Particularly, the involved
PMs are not energy proportional, in other words, they consume energy
even when they are idle. So, switching some of them off is worthy from
the energy consumption perspective.

There are two main VM consolidation categories: static and dy-
namic. Static VM consolidation assumes empty PMs when starting the
process of VMs to PMs placements. In contrast, Dynamic VM con-
solidation assumes pre-placed VMs when starting the process of VMs to
PMs placements, which is a more complex process [42].

In the literature, the importance of VM consolidation on energy
efficiency in cloud data centers is studied and verified. In 2007, one of
the first works which applied dynamic VM consolidation to minimize
energy consumption in a data center, has been performed in [43]. The
energy benefits obtained by consolidating VMs using migration are
explored and found that the overall energy consumption can be sig-
nificantly reduced compared with the studies that ignore the VM con-
solidation. However, the authors did not apply any explicit algorithm
for determining when it is necessary to optimize the VM placement.

In [44], the authors investigated the effects of dynamic consolida-
tion of applications on minimizing energy consumption in the data
center. They showed that dynamic consolidation influences the re-
lationship between energy consumption and utilization of resources.
When the resources utilization is low, the resource is not efficiently
used leading to a higher cost in terms of the energy-performance metric.
At the same time, when the resource utilization is high, this results in an
increased cache miss rate, context switches, and scheduling conflicts
leading to high energy consumption due to performance degradation
and consequently longer execution times. Based on the results of their
experiments, the authors stated that, from the energy-aware point of
view, the goal of dynamic consolidation is to keep the PMs efficiently
utilized, while avoiding performance degradation caused by high uti-
lization.

It is worth mentioning here that the energy consumption resulting
from live migration is a relatively small value, compared to the energy

saving gains incurred from VM consolidation [45].
This section presents a distributed Dynamic VM consolidation ap-

proach for enhancing the energy efficiency in cloud data centers. The
target system which relies on the one presented in [3] is demonstrated
in Fig. 2, by a data center consisting of N heterogeneous PMs. Each
node PMi has a multi-core CPU (the CPU performance is defined in
MIPS), amount of RAM, and network bandwidth. PMs do not have di-
rect-attached storage, as the storage is provided by a Network Attached
Storage (NAS), or a Storage Area Network (SAN) to enable the process
of VM live migration.

Multiple independent users submit requests for the provisioning of
M heterogeneous VMs which have the characterizations that meet the
requirements of the PMs resources (defined in MIPS, amount of RAM,
and network bandwidth). The data center has a Local Manager (LM)
(which resides on each PM), and a Global Manager (GM) (which
maintains the overall system’s resource utilization of a set of PMs by
interacting with their LMs).

In the data center, LMs and GMs work as follows:

1) In each PM, the LM detects under/over load conditions by mon-
itoring the PM utilization.

2) The GM collects information from the LMs to maintain the overall
view of the system’s resource utilization.

3) The GM issues VM migration commands to optimize the VM pla-
cement, based on the information collected by the LMs.

4) VMMs perform actual migration of VMs. VMMs are also responsible
for changing the power modes of the nodes.

As in [3], the approach to dynamic VM consolidation follows a
distributed model, where the problem is divided into 4 sub-problems:

1) Host under-load detection: Determining if a host is considered to be
under-loaded, so that all VMs should be migrated, and the host
should be switched to a low-power mode.

2) Host overload detection: Determining if a host is considered to be
overloaded, so that some VMs should be migrated to other active, or
reactivated hosts, to meet the QoS requirements.

Fig. 2. The Data Center Model.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

190

3) VM selection: Selecting VMs that would be migrated from an under/
overloaded hosts.

4) VM placement: Placing VMs selected for migration to other active,
or reactivated hosts.

The four sub-problems, and the proposed solution to deal with each
one of them, are discussed in the next subsections.

5.1. Under-loaded physical machine detection

When the PM utilization is low, it is worthy to transfer the hosted
VMs and switch the PM to off mode. Such case can be result if the job
prediction is not precise, or after finishing the execution of some VMs.

To detect the under-load utilization, this study depends on the re-
sources utilization of the node to select a threshold that specifies the
under-load in that PM. Utilization of the host can be measured as fol-
lows:

∑=
=

U t
actual use of Resource

total capacity of Resource
() () * 100PM

i

No of Resources in PM
i

i1 (5)

where:

U t utilization of the PM at time t():PM

According to the PM utilization, two threshold techniques are used:
static and dynamic.

1) Static Thresholding: A fixed value is set to a utilization threshold,
and below this value, the PM is considered under-loaded. However,
this is the simplest under-load detection technique.

2) Dynamic Thresholding: In general, a cloud computing environment
has dynamic, and unpredictable workloads. Therefore, fixed values
of the utilization threshold are unsuitable for such environment. The
system should be able to automatically adjust its behavior de-
pending on the workload patterns. Two methods are proposed in
this study:

3) Adaptive Thresholding (AT): This study proposes an Adaptive
Thresholding (AT) technique based on statistical analysis of histor-
ical data, collected during the lifetime of VMs. AT adjusts the value

of the CPU utilization threshold depending on:

• Mean Adaptive Thresholding (MEANAT
underload): Depending on the

mean of the values of the minimum PMs utilization in the data
center, an adaptive value is set to a utilization threshold. This
value is changed frequently due to the dynamic, and the un-
predictable workloads of the cloud environment.

• Median Adaptive Thresholding (MEDIANAT
underload): As in

MEANAT
unerload but it depends on the median, rather than the mean.

An adaptive value is set to a utilization threshold. This value is
also changed frequently in a cloud environment.

4) Boxplot: It is one of the most frequently used graphical techniques
for analyzing data sets. To create a boxplot (as the one in Fig. 3), the
elements of any data set are arranged in ascending order. Then, the
median value of the arranged numbers, (called in this method Q2),
is calculated. Q2 divides the data into two subsets. To divide the
data into quarters, the medians of these two subsets are calculated
too. The median of the left subset is called Q1, while the median of
the right one is called Q3. If the data set has an even number of
elements, Q1 will be the average of the two middle elements. This
works with the two subsets as well, if they have an even number of
elements. The work in [46] explains the details of solving the box-
plot method.

The boxplot thus shows information about the location, and the
spread of the data by means of the median, and the interquartile range.
The length of the whiskers on both sides of the box, and the position of
the median within the box, are helpful in detecting any possible
skewness in the data. Finally, observations, which fall outside the
fences, are pinpointed as outliers. PMs of utilization less than Q2 are
considered under-utilized PMs.

5.2. Overloaded physical machine detection

When the CPU utilization of a specific PM approaches 100%, the
VMs allocated to this PM do not get the required CPU capacity which, in
turn, may lead to performance degradation. The reason behind this
observation is that: if the PM which hosts and serves VMs allocated to
users’ jobs is experiencing 100% utilization, then, the performance of
the jobs is constrained by the PM’s capacity. Therefore, the VMs are not

Fig. 3. Description of the Boxplot Method.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

191

being provided with the required performance level. Such case can
result if the job prediction is not precise, or as a results of unconditional
placement.

As in under-load utilization detection, the overload utilization in
this work depends on the resource utilization of the node to select the
required threshold indicating that the PM is overloaded. The PM
overload occurs when there are insufficient resources to meet the
system demands. The VMs hosted on the overloaded PMs may not get
the required resources under peak load conditions, and thus fail to meet
the QoS of the jobs they serve.

According to the PM utilization measured by Eq. (5), two techniques
are used to detect the overloaded PMs (as in under-loaded PMs detec-
tion): static and dynamic.

1) Static Thresholding: The simplest overload detection technique is to
set a fixed value as a utilization threshold, and above this value, the
PM is considered overloaded.

2) Dynamic Thresholding: The system should be able to automatically
adjust its behavior depending on the workload patterns. Two
methods are proposed in this study to detect overload utilization:

3) Adaptive Thresholding (AT) technique is proposed based on statis-
tical analysis of historical data collected during the lifetime of VMs.
AT adjusts the value of the CPU utilization threshold depending on:

• Mean Adaptive Thresholding (MEANAT
overload): Depending on the

mean of the values of the maximum PMs utilization in the data
center, an adaptive value is set to a utilization threshold. This
value is changed frequently due to the dynamic, and un-
predictable workloads of the cloud environment.

• Median Adaptive Thresholding (MEDIANAT
overload): Quite as in

MEANAT
overload but it depends on the median rather than the mean.

An adaptive value is set to a utilization threshold. This value is
also changed frequently in cloud environment.

4) Boxplot: As in under-load detection, the observations that fall out-
side the fences are pinpointed as outliers. PMs of utilization greater
than Q4 are considered over-utilized PMs.

5.3. VM selection

Four main policies are used in this work to select the VM to be
migrated, they are: The Random Sampling (RS) Policy, The Systematic
Sampling (SS) Policy, The Minimum Time Cost Migration (MTCM)
Policy, and The Minimum Energy Cost Migration (MECM) Policy.
However, RS, MTCM and MECM policies are used in the literature, and
they are included here for the purpose of comparison with the proposed
SS policy.

In all policies, to meet the deadline of the jobs, the selected VM to be
migrated must consider Eq. (6):

+ ≤ExT VM DLi
vm pm d

i
Mig time

i
, , (6)

where:

■ ExTi
vm pm d, , is the total execution time for jobi when executed on the VM

allocated to it.
■ VMi

Mig time is the time duration of migrating the VM allocated to jobi
■ DL is the deadline of jobi i

The details of the VM selection policies are:
i. RS Policy: RS randomly selects a VM from a set of VMs to be

migrated from the source host to the destination one.

The time complexity of Algorithm 1 is O(1). This is due to the fact
that the random VM selection method (line 1 in Algorithm 1) does not
depend on the number of VMs and thus executes in a constant time
algorithmic complexity.

ii. SS Policy: SS policy is similar to RS, but with a slight differ-
ence. Suppose that n VMs are numbered from 1 to n in some order. Then
the set of VMs is divided into R regions (…S S S, , , R1 2), each region or
subset Sr has sr elements. The total number of VMs is equal to the sum
the number of region’ elements, = ∑ =n sr

R
r1 . The classic SS method

selects one VM from each region Sr . The selected VMs from each region
are combined in one set. From this new set, the final selected VM is
chosen randomly as in RS policy.

In this work, the classic SS is modified by following two directions:

• Dividing the VMs set into four subsets according to the job types,
which these VMs are allocated. Then select a VM from each subset
randomly to examine the effect of job type on VM migration. This
direction is suggested to examine the effect of job type on VM mi-
gration process. Four sub policies result from this direction.

• Dividing the VMs set into subsets equal to the number of VMs type,
offered by the provider. There are four types of VMs used in this
study, and they are offered by Amazon as the “M family” (medium,
large, xlarge, and 2xlarge). Then select a VM from each subset
randomly. This direction is suggested to examine the effect of the
VM instance type on the VM migration process. Four sub policies are
result from this direction as well.
The time complexity of Algorithm 2 is O(R), where R is the number
of regions (i.e. R is constant). Here again the algorithmic complexity
of Algorithm 2 does not depend on the number of VMs but rather on
the number of regions R which is a constant independent on the
number of VMs.

iii. MTCM Policy: In this policy, all VMs to be migrated are sorted
in ascending order in a queue according to the migration time of such
VMs that they spend from the source to destination PMs. Then MTCM
selects the VM which is on the top of the queue. The migration time is
calculated using Eq. (3). In this work, the value of the available
bandwidth between the source and destination PMs in Eq. (3) is as-
sumed to be equal among all PMs. Another assumption is that there is
no overhead traffic.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

192

The time complexity of Algorithm 3 is O(n2 log n), where n is the
number of the selected VMs to be migrated. This is due to the fact that
the for loop in step one iterates n times and thus takes O(n) algorithmic
time to calculate the minimum migration time among the selected VMs,
and the sort process in step 3 is performed in O(n log n). This renders
the total time complexity to be the product of n and n log n, hence O(n2

log n).
iv. MECM Policy: According to this policy, all VMs to be mi-

grated are sorted in ascending order in a queue, depending on the en-
ergy such VMs consume when moved from the source PM to the des-
tination PM. Then MECM selects the VM, which is on top of the queue.
The migration time can be calculated using Equations (1 and 2). In this
work, the energy consumed by VM migration is not based on Equations
(1 and 2), instead, the consumed energy is estimated as a function of
memory content size as energy is proportional to VM memory content
size.

So, the energy consumed during the process of VM migration can be
expressed as:

= +VM C R VM()*vm
Mig energy

vm vm vm
Migtime (7)

The value of Cvm is negligible, so it may not be considered in Eq. (7).

Similar to the algorithmic complexity analysis of Algorithm 3, the
time complexity of Algorithm 4 is O(n2 log n), where n is the number of
the selected VMs to be migrated, as the loop in step one takes O(n) to
calculate the minimum energy consumed during the migration process
among the selected VMs, and the sort process in step 3 can be per-
formed in O(n log n).

5.4. Virtual machine placement

VM placement is the process of mapping the VMs into their best fit
PMs. The problem of VM placement arises in two places of the VM
management process:

■ Initial VM placement (Static VM Placement): It is the process of
placing a set of VMs to start their execution on the PMs of the data
center, considering the requirements of VMs, the capacities of PMs,
and some other factors such as the consumed energy and the system
performance. This type of placement has long-term effects because
extensive changes in VM placement are impractical due to the
overhead incurred and time consumed by multiple VM migrations.
Generally, it occurs much less frequently than dynamic placement,
for example, it occurs when the data centers start operation or when
dynamic resource provisioning leads to unsatisfactory states. For
such scenarios, the system can take a long time (relative to dynamic
placement) to determine the placement, which is typically an NP-
hard problem.

■ After Migration VM Placement (Dynamic VM Placement): It is
the process of re-placing the VMs on other PMs to balance the
system conditions, or to adapt with the changes in the VM re-
quirements. So, this type of placement is a VM consolidation. For
this type of placement, the system is required to make decisions at
runtime to overcome any performance degradation.

In this paper, a novel model is proposed to solve the problem of VM
placement. The model is based on MCKP, which is a generalization of
the classical version for KP. The proposed model is employed for both
Initial VM placement, and After Migration VM Placement.

The MCKP model is chosen because it is able to target two goals:

1. Minimizing the total number of the involved knapsacks by the
process of items packing (in our case, every knapsack represents one
PM) which minimizes the consumed energy.

2. Maximizing the utilization of the involved PMs, resulting in com-
bining VMs which different types of jobs on the same PM whenever
possible. Different types of jobs utilize different physical resources,
and in this case, all resources are keeping busy, which in turn, en-
hance the PM utilization

Minimizing the number of the involved PMs, which are utilized in
an optimal way, leads to enhance the overall energy efficiency of the
cloud data centers.

KP, and all its generalizations, is divided into two forms: Fractional
KP, where the items can be broken into fractions, and then, the frac-
tions are placed on the knapsacks, and 0-1 KP, where the items cannot
be divided, they are either picked as complete items to be placed on the
knapsacks, or are not picked. In our case, the VMs cannot be divided.
So, the KP form used in presenting the VM placement process is the 0-1
KP.

5.4.1. Physical machines representation
The set of PMs in the cloud data center is represented as follows:
= …PM pm pm pm{ , , , }m1 2 . Each PM has a limited capacity of the fol-

lowing resources: processing core(s), RAM, storage, and bandwidth.
The capacities are represented as follows:

■ ∀ ∈Capacity j j m() {1,2, .. }core represents the available cores of pm ,j
■ ∀ ∈Capacity j j m() {1,2, .. }RAM represents the available RAM of pm ,j
■ ∀ ∈Capacity j j m() {1,2, .. }storage represents the available storage of

pm ,j
■ ∀ ∈Capacity j j m() {1,2, .. }bandwidth represents the available band-

width of pm .j

So, the total capacity of the resources of any PM can be represented
the vector as shown in Equation (8):

=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

PM

Capacity j
Capacity j
Capacity j
Capacity j

()
()
()

()

j
Cap

core

RAM

storage

bandwidth (8)

5.4.2. Virtual machines representation
The set of VMs which will be hosted on the set of PMs of the data

center is represented as follows: = …VM vm vm vm{ , , , }n1 2 . The specifi-
cations of each VM are represented as follows:

= ⎧
⎨⎩

core j
c when vm is mapped to pm

otherwise
()

,
0 ,

i
ij i j

= ⎧
⎨⎩

RAM j
r when vm is mapped to pm

otherwise
()

,
0 ,

i
ij i j

= ⎧
⎨⎩

storage j
s when vm is mapped to pm

otherwise
()

,
0 ,i

ij i j

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

193

= ⎧
⎨⎩

bandwidth j
b when vm is mapped to pm

otherwise
()

,
0 ,

i
ij i j

where the vector c r s b(, , ,)ij ij ij ij represents the required number of
cores, the amount of RAM, the amount of disk storage, and the amount
of bandwidth for a VMi on PMj.

So, the requirements of an instance VMi on an infrastructure phy-
sical machine PMj can be represented as a vector shown in Eq. (9):

=
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

VM j

c
r
s
b

()i
Req

ij

ij

ij

ij (9)

5.4.3. Virtual machine placement problem
According to the above PMs and VMs representations, the problem

now is how to perform the VMs placement process for these two sce-
narios:

1) The demanded VMs allocated to the jobs submitted by cloud users.
The VM allocation is a problem for the admission of new requests for
VMs provisioned to be placed later on PMs.

2) The VMs to be migrated during execution from the PMs with under/
overload utilization.

The problem of VM placement resulting from the above two cases is
represented and solved based on the MCKP Method as discussed in
details in the next sections.

5.5. The knapsack problem

There are different variants of the KP, which all fall under the NP-
hard class of problems [47]. The knapsack problem is the one that se-
lects a subset of n items. The selection is done in such a way that the
corresponding profit sum is maximized, while their weight sum of the
selected items does not exceed the capacity of a knapsack.

The problem of knapsack can be deployed to serve the problem of
VM placement, and it is possible to use the fundamentals of the knap-
sack problem to deal with VM placement.

Each PM is considered as a knapsack, and each VM is considered as
an item. The capacity of a knapsack consists of the available cores,
RAM, storage, and bandwidth of each PM. Each item has profit value
and weight.

Eqs. (8) and (9) described above can explain the capacity of the
knapsack (PM capacity), and the weight of the items (requirement of
the VMs) respectively.

5.6. The standard knapsack problem

The Knapsack problem can be described as:
Given a set of items to be placed on a limited capacity Knapsack.

Each item has a profit value and a weight. The problem is to choose
specific items such that the sum is maximized/minimized for specific
value, without having the weight sum to exceed the capacity of the
knapsack.

The standard KP can be formulated as [47]:

∑
=

Max Min v x/
i

n

i i
1 (10)

Subject to

∑ ≤
=

r x KnapsackCapacity
i

n

i i
1 (11)

= …i n1,2, ,

∈x {0,1},i

Eqs. (10) and (11) represent the objective and constraint functions
respectively. In KP, all coefficients v r, , KnapsackCapacity are positive,
and their details are as below:

■ vi represents a value associated with each item (i.e. the values of the
items to be maximized/minimized).

■ ri represents the required capacity by the item

■ = ⎧
⎨⎩

x if the item placed on the Knapsak
otherwise

1
0i

So, to solve the problem of after migration VM placement, where
VMs are mapped to their best PMs under the condition of PMs limited
capacity, Eqs. (12) and (13) are proposed to minimize the energy
consumption:

∑
=

M in v x
i

n

i j i j
1

, ,
(12)

Subject to

∑ ≤
=

VM x PM
i

n

i
Req

i j j
Cap

1
,

(13)

= …i n1,2, ,

= ⎧
⎨⎩

x if VM placed on the PM
otherwise

1
0

i j
i j

,

∑ =∀ x 1i j i j, ,

+ ≤VM Makespan DLi
Mig

i
time

where:

■ VMi
Mig time is the time duration of migrating the VM allocated to jobi

■ DL is the deadline of job which is served by VMi i i
■ vi j, is the amount of energy consumed when executing VMi on PMj. It

can be estimated as in the model described in [48].

The constraint function in (13) means that the following conditions
must be satisfied for all packed items:

≤core j capacity j() ()i core

≤RAM j capacity j() ()i RAM

≤storage j capacity j() ()i storage

≤bandwidth j capacity j() ()i bandwidth

Notably, the capacity of each resource can be the total capacity if the
PM does not host any VM, or the remaining available capacity if the PM
hosts one VM or more.

The remaining available capacity means that capacity of every PM
which is described in Eq. (8) is modified after every VM placement
process. The description of the modification is as below:

For any PMj, the new available capacity of PMj after placing VMi on
it is described as:

=

⎛

⎝

⎜
⎜
⎜⎜

−
−
−

−

⎞

⎠

⎟
⎟
⎟⎟

PM

Capacity j c
Capacity j r
Capacity j s
Capacity j b

()
()
()

()

j
Cap Available

core ij

RAM ij

storage ij

bandwidth ij (14)

where PMj
Cap Available is the resulting available capacity of PMj after

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

194

placing the VMi on it in the VM placement process.
It is obvious that the VM placement process in this study requires

more than a single constraint in the selection and packing. The con-
sidered constraints are cores, RAM, storage, and bandwidth. This gen-
eralization of (KP) is called multidimensional KP, or d-dimensional KP
(d-KP), which is represented as below [49]:

∑
=

Min v x
i

n

i i
1 (15)

Subject to

∑ ≤
=

r x KnapsackCapacity
i

n

id i
1 (16)

= …d d1,2, ,
= …i n1,2, ,
∈x {0,1}i

In our case =d 4, which represents the 4-tuple of resources re-
quirement requested by each VM. The required resources are: (1) CPU
Cores, (2) RAM, (3) Storage, and (4) BW.

5.7. The multiple choice knapsack problem

MCKP is a generalization of the classical KP. This generalization can
be described as:

Given T classes (…S S S, , , T1 2) of items to be placed on a limited
capacity knapsack. Each item i ∈ St has a profit value and a weight. The
problem is to choose an item from each class such that the sum of a
specific value is maximized/minimized, without having the weight sum
to exceed the capacity of the knapsack.

MCKP can be formulated as [47,49]:

∑ ∑
= ∈

Max Min v x/
t

T

i S
ti ti

1 t (17)

Subject to

∑ ∑ ≤
= ∈

r x KnapsackCapacity
t

T

i S
ti ti

1 t (18)

= …i n1, ,

∈i St

∈x {0,1}ti

Eqs. (17) and (18) represent the objective and constraint functions
respectively. In MCKP, all coefficients v r KnapsackCapacity, , and are
positive, and their details are listed below:

■ vti is the value associated with each ith item belonging to the tth class
when it is placed on the knapsack (i.e. the values of the items to be
maximized/minimized).

■ rti represents the required capacity by the item

■ = ⎧
⎨⎩

x if the item placed on the Knapsak
otherwise

1
0ti

■ Subsets or Classes (…S S S, , , T1 2) are mutually disjoint. Each class St
has st items. The total number of items to be knapsacked (n) is equal
to the sum the number of classes’ items, = ∑ =n st

T
t1 .

Generally, in cloud data centers, VMs are owned by independent
individuals or enterprises. This implies that the resulting workload is of
mixed types of jobs. The mixed workload is formed by combining
various types of applications, such as high-performance computing
applications, and web-applications. These applications require and
utilize the resources of the cloud data centers at the same time. Users

establish SLAs with cloud provider to formalize and meet the QoS re-
quirements when submitting their jobs. Compute Intensive (CI) jobs can
be combined with the Data Intensive (DI) jobs, as the former mostly
utilizes the compute resources, whereas the latter utilizes the non-
compute resources (i.e. storage and bandwidth). This results in better
PMs utilization, as all PM resources are keeping busy while servicing
the user’s jobs.

This paper deploys MCKP to be in line with the proposed VM pla-
cement strategy. The proposed VM placement strategy, called Mixed
Type Placement (MTP) strategy, combines the VMs allocated to dif-
ferent types of jobs on the same PM whenever possible.

Upon their resources requirements, users’ jobs can be divided into
four subsets (classes) as explained in [50,51]:

• Type 1: CI jobs, they are the set of jobs, which highly utilize com-
pute resources.

• Type 2: DI jobs, they are the set of jobs, which highly utilize storage
and/or bandwidth resources.

• Type 3: CIDI jobs, they are the set of jobs, which utilize compute
resources together with storage and/or bandwidth resources all in a
high manner.

• Type 4: NORMAL jobs, they are the set of jobs that do not fit in any
of the types specified above.

After classifying the jobs, a VM is allocated to each job. Then, VMs
allocated to jobs from type 1, type 2, type 3, and type 4 are gathered in
four subsets S1, S2, S3 and S4 respectively.

In the initial VM placement, MCKP is applied to the subset (S1 and
S2), and to the subset (S3 and S4), to place their items (VMs), on the
same knapsack (PM) wherever possible. The remaining VMs, which do
not find their corresponding VMs based on MTP strategy, are combined
in one set. Then, KP is applied to the items of this set to be placed on the
Knapsack. As a result of such placement process, the minimum number
of switched-on PMs that consume the minimum energy, and do the
users’ jobs, is guaranteed. At the same time, the involved PMs are used
optimally, because they host VMs which request different kinds of re-
sources. In such case, the PMs resources are kept busy and consequently
the PMs utilization is maximized. The static VM placement can be il-
lustrated in Fig. 4.

In Fig. 4, the cloud users submit their jobs (say n jobs) to the cloud
provider which in turn classifies the jobs into four subsets: S1, S2, S3 and
S4 of n n n1, 2, 3 and n4 elements respectively, such that:
(+ + + =n n n n n1 2 3 4). After the classification process, the cloud
provider allocates the proper VMs to the submitted jobs, and then,
employs the MTP strategy in the VM placement process.

In the after migration VM placement, MCKP is applied to the subset
(S1 and S2), and to the subset (S3 and S4), to place their items (VMs) on
the same knapsack (PM) wherever possible. If the VMs do not find their
corresponding VMs based on MTP strategy, the classical KP is applied to
the items of this set to be placed on the Knapsack. There are many
scenarios to employ the algorithms of the proposed energy efficient
dynamic VM consolidation approach.

Figs. 5 and 6 explain two scenarios. In Fig. 5, the energy efficient
dynamic VM consolidation approach is employed to keep the involved
PMs efficiently utilized, while in Fig. 6, the approach is employed to
switch off unnecessary PMs hosted in the data center.

The process of the proposed VM placement strategy is similar to
MCKP. In MCKP, the set of items is classified and then, instead of taking
two or more items from the same set, one item is selected from each
class to be packed in the knapsack [49]. This suits both static and dy-
namic VM placement.

The MCKP can be rewritten as given below to represent the static
(initial) VM placement:

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

195

For every PMj:

Place a set of VMs that consider the capacity of PM such that, :j

∑ ∑
= ∈

Min v x
t

T

i S
ti j ti j

1
, ,

t (19)

Subject to

∑ ∑ ≤
= ∈

VM x PM
t

T

i S
ti
Req

ti j j
Cap

1
,

t (20)

= …i n1, ,

∈i St

= ⎧
⎨⎩

∈x if VM S placed on the PM
otherwise

1
0

ti j
i t j

,

∑ =
∀

x 1
ti j

ti j
,

,

≤Makespan DLti

Also, the MCKP can be rewritten as given below to represent the
dynamic (after migration) VM placement:

On PMj:

Fig. 4. Static VM Placement based on MTP strategy.

Fig. 5. Energy Efficient Dynamic VM consolidation to keep the active PMs efficiently utilized in the data center.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

196

Place the VM selected to be migrated such that, :ti

∑ ∑ +
= ∈

Min v x v
t

T

i S
ti j ti j ti j

1
, , ,

t (21)

Subject to

∑ ∑ ≤
= ∈

VM x PM
t

T

i S
ti
Req

ti j j
Cap

1
,

t (22)

= …i n1, ,

∈i St

= ⎧
⎨⎩

∈x if VM S placed on the PM
otherwise

1
0

ti j
i t j

,

∑ =
∀

x 1
ti j

ti j
,

,

+ ≤VM Makespan DLti
Mig

ti
time

where:

■ VMti
Mig time is the time duration of migrating the ∈VM Si t

■ ∈DL job VM Sis the deadline of which is served byti i i t
■ vti j, is the value of the ith item of the tth class when it is knapsaked on

PMj. In our case, it is the consumed energy when placing VMi ∈ Class
t on PMj which hostVMi ∈ Class t . While v ti j, is the consumed energy
when placing VMi ∈ Class t on PMj. The values (vti j, and v ti j,) can be
estimated as in the model described in [48].

VMti is the migrated VM ∈ Class t, VMti is the VM ∈ Class t which is
already hosted on the PM which is selected to host the migrated VM.
Class t is the opposite of class t . The opposite Classes in this work are:

VMs allocated to CI jobs are the opposites of VMs allocated to DI
jobs, while VMs allocated to CIDI jobs are the opposites of VMs allo-
cated to Normal jobs.

The constraint function (5.20) means that the following conditions

must be satisfied for all migrated items:

≤core j capacity j() ()ti core

≤RAM j capacity j() ()ti RAM

≤storage j capacity j() ()ti storage

≤bandwidth j capacity j() ()ti bandwidth

Notably, the capacity of each resource can be the total capacity if the
PM does not host any VM, or the remaining available capacity if the PM
hosts one VM or more.

The remaining available capacity means that capacity of every PM
which is described in Eq. 8 is modified after every VM placement
process. The description of the modification can be described as fol-
lows:

For any PMj, the new available capacity of PMj after placing VMi on
it is described as:

=

⎛

⎝

⎜
⎜
⎜⎜

−
−
−

−

⎞

⎠

⎟
⎟
⎟⎟

PM

Capacity j c
Capacity j r
Capacity j s
Capacity j b

()
()
()

()

j
Cap Available

core ij

RAM ij

storage ij

bandwidth ij (23)

where PMj
Cap Available is the resulted available capacity of PMj after pla-

cing the VMi on it in the VM placement process.
Each item from the four subsets has a particular value and it re-

quires some resources. The objective of the MCKP is to pick only one
item (VM) from each subset and combined the picked items together on
the same knapsack (PM) to minimize the total value of the picked
combined items, subject to the resource constraints (capacity) of the
PM.

The indexes in the proposed formulation can be separated into two
parts:

■ Part related to VMs (represented by variables t and i)
■ Part related to PMs (represented by variable j).

Fig. 6. Energy Efficient Dynamic VM consolidation to switch off unnecessary PMs hosted in the data center.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

197

The part that related to VMs can be further separated into two parts:

■ Part related to the jobs types (represented by variable t)
■ Part related to the index of the item (VM) in the jobs types subset

(represented by variable i)

So, variable t is responsible for ensuring placing VMs allocated to
different job types on the same PM.

Algorithms 5 and 7 are the proposed static and dynamic VM pla-
cement respectively.

Algorithm 5 performs the process of VM to PM placement process
based on MCKP. In step 1, the algorithm sorts the PMs of the data center
in decreasing order based on their capacity. Step 2 gives an index to the
first available PM which is the one of the maximum capacity (index j is
for the PMs). Steps 3–14 try to combine VMs allocated to CI jobs with
VMs allocated to DI jobs, and VMs allocated to CIDI jobs with VMs
allocated to Normal jobs on the same PM. Step 15 checks if there are
more VMs which are not placed on PMs. If there are remaining VMs,
step 17 combines them in one list. This list results in unequal dis-
tribution between CI and DI jobs, and between CIDI and Normal jobs.
Step 17 sends the list of remaining VMs to be placed based on classical
KP using Algorithm 6. Step 18 returns the results of the VM placement
process.

The time complexity of Algorithm 5 is O(n + m log m), where n is
the number of VMs and m is the number of PMs which will host the
VMs. This complexity is obtained as the PMs sorting process in step 1
costs O(m logm), and the loop starting in step 3 iterates n times (n is the
number of VMs) and, hence, costs O(n). Since the PM sorting process
and the loop are sequential, their total running time is the summation of
the individual running times, that is: O(n + m log m).

Algorithm 6 performs the process of VM to PM placement based on
classical KP. In step 1, the algorithm sorts the PMs of the data center in
decreasing order based on their capacity. Step 2 gives an index to the
first available PM which is the one of the maximum capacity (index j is
for the PMs). Steps 3–9 try to pack a selected VM on a picked PM, the
process is repeated until no more VMs remain. Step 10 returns the re-
sults of the VM placement process.

The time complexity of Algorithm 6 is O(n + m log m) as well,
where n is the number of VMs and m is the number of PMs which will
host the VMs. This complexity is obtained from two main components:
(1) the PMs sorting process in step 1 which costs O(m log m), and the
loop starting in step 3 which iterates n times (depending on the number
of VMs) and hence costs O(n). The two components are independent
and thus their total running time is the summation of the respective
individual running times: O(m log m) + O(n) = O(n + m log m).

Notably, Algorithms 5 and 6 are based on the greedy algorithm
concept, which sort the containers in decreasing order based on their
capacity before performing the packing process. Then, they pick one by
one PM to pack the VMs on it based on MCKP and KP respectively.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

198

In Algorithm 7, step 1 sorts the PMs in ascending order based on
PMs utilization. This way of sorting increases the possibility of placing
the VMs selected to be migrated to be placed on the PMs of minimum
utilization. Placing a VM on an under-utilized PM increases the PM
utilization which, in turn, enhances its energy efficiency. In other
words, the sorting based on PMs utilization gives a better results from
the energy efficiency perspective rather picking a random PM because
the sorting process advantages in choosing the most energy-efficient PM
first. Step 2 gives an index to the PMs. Steps 3 and 4 select a VM from
the VMs to be migrated list. Then, the algorithm starts to check the job
type which the selected VM is allocated to it. In step 5, if the selected
VM is allocated to a CI job, then the algorithm moves to steps 6 to 12 to
allocate the selected VM on a PM with the minimum utilization and
hosts a VM allocated to a DI job at the same time, under considering the
availability/capacity condition.

In step 13, if the selected VM is allocated to a DI job, then the al-
gorithm moves to steps 14–20 to allocate the selected VM on a PM with
the minimum utilization and hosts a VM allocated to a CI job at the
same time, under considering the availability/capacity condition.

In step 21, if the selected VM is allocated to a CIDI job, then the
algorithm moves to steps 22–28 to allocate the selected VM on a PM
with the minimum utilization and hosting a VM allocated to a Normal
job at the same time, considering the availability/capacity condition.

In step 29, if the selected VM is allocated to a Normal job, then the
algorithm moves to steps 30–36 to allocate the selected VM on a PM
with the minimum utilization and hosting a VM allocated to a CIDI job
at the same time, considering the availability/capacity condition.

Analogous to the complexity analysis of Algorithms 5 and 6, the
time complexity of Algorithm 7 is O(n + m log m), where n is the
number of VMs and m is the number of PMs which will host the VMs.
This complexity is obtained as the PMs sorting process in step 1 costs O
(m log m), and the loop starting in step 3 costs O(n).

6. Performance evaluation

The results in this section were obtained using CloudSim simulator
in different cloud computing environment configurations. The PMs and
VMs configurations are as those provided by Amazon cloud data cen-
ters. The VMs instance types, called M3 family, offered by Amazon and
used in the experiments in this work are listed in Table 1.

CloudSim simulator is a powerful simulation platforms for cloud
computing. To get more accurate estimation of power consumption in
cloud computing environments, some works, as the one presented in
[52], extended this simulator with a multi-resource scheduling and
power consumption model.

The proposed algorithms and policies are applied using real work-
load traces from Google. The workload consists data set of different
types of jobs. More details about this data are available in [53]. Using
random data from this workload, the proposed PM under/overload
detection algorithms, VM selection algorithms, and VM placement
strategy, are simulated.

To evaluate algorithms and models proposed in this work, four sets

Table 1
VM instance types in M3 family offered by Amazon.

VM Type CPU Clock vCPU Memory BW

M3
medium

Intel Xeon E5-2670 v2
Processors

2500 1 3750 Moderate

M3
large

Intel Xeon E5-2670 v2
Processors

2500 2 7500 Moderate

M3
xlarge

Intel Xeon E5-2670 v2
Processors

2500 3 15000 High

M3
2xlarge

Intel Xeon E5-2670 v2
Processors

2500 4 30000 High

Fig. 7. The results of applying under-load detection algorithms on the number
of PMs by involving part from the PMs of the data center in calculating the
under-load threshold.

Fig. 8. The results of applying under-load detection algorithms on the number
of VMs to be migrated by involving part from the PMs of the data center in
calculating the under-load threshold.

Fig. 9. The effects of applying the under-load detection algorithms on the
consumed energy by involving part from the PMs of the data center in calcu-
lating the under-load threshold.

Fig. 10. The results of applying under-load detection algorithms on the number
of PMs by involving all the PMs of the data center in calculating the under-load
threshold.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

199

of experiments are done using the real workload data described in the
previous section.

The first set of experiments was done to evaluate the performance
the under-load detection algorithms. The experiments are repeated for a
fixed number of 25 PMs, and a various number of VMs, from 20 to 100.
The static under-load threshold value is set to 30%. Two directions to
calculate the dynamic threshold are used. The first direction considers
only the PMs which host a specific number of VMs in calculating the
under-load threshold. The second direction considers all PMs of the
data center in calculating the under-load threshold.

The results of the first direction are summarized in Figs. 7–9. The
figures represent the effects of applying the proposed four algorithms
(Static thresholding, dynamic mean thresholding, dynamic median
thresholding, and boxplot) on the number of under-loaded PMs in each
algorithm, the number of VMs to be migrated which are hosted on the
resulting under-loaded PMs, and the approximate energy consumption
corresponding to each algorithm respectively.

The results of the second direction are summarized in Figs. 10–12.
The figures represent the effects of applying the proposed four algo-
rithms (Static thresholding, dynamic mean thresholding, dynamic
median thresholding, and boxplot) on the number of under-loaded PMs
in each algorithm, the number of VMs to be migrated which are hosted
on the resulted under-loaded PMs, and the approximate energy con-
sumption corresponding to each algorithm respectively.

By studying Figs. 7–12 the following observations can be concluded:

1) The dynamic under-load detection methods outperform the static
method. Static methods are inefficient to be applied when the
system workload is unknown or when it can vary over time, which is
the norm in cloud computing environment.

2) The second direction of the experiments outperforms the first di-
rection because it reflects more accurate approximations about the
system conditions, including the under-load thresholds.

Fig. 11. The results of applying under-load detection algorithms on the number
of VMs to be migrated energy by involving all the PMs of the data center in
calculating the under-load threshold.

Fig. 12. The effects of applying the under-load detection algorithms on the
consumed energy by involving all the PMs of the data center in calculating the
under-load threshold.

Fig. 13. The results of applying overload detection algorithms on the number of
PMs by involving part from the PMs of the data center in calculating the
overload threshold.

Fig. 14. The results of applying overload detection algorithms on the number of
VMs to be migrated by involving part from the PMs of the data center in cal-
culating the overload threshold.

Fig. 15. The effects of applying overload detection algorithms on the consumed
energy by involving part from the PMs of the data center in calculating the
overload threshold.

Fig. 16. The results of applying overload detection algorithms on the number of
PMs by involving all the PMs of the data center in calculating the overload
threshold.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

200

The second set of experiments was done to evaluate the perfor-
mance of the host overload detection algorithms. The experiments are
repeated for a fixed number of PMs equals to 25, and a various number
of VMs, from 20 to 100. The static threshold value is set to 80%. In this
set of experiments, two directions were used to calculate the dynamic
threshold. The first direction involves only the PMs which host a spe-
cific number of VMs in calculating the overload threshold. The second
direction involves all PMs of the data center in calculating the overload
threshold.

The results of the first direction are summarized in Fig. 13–15 which
represent the effects of applying the proposed four algorithms (Static
thresholding, dynamic mean thresholding, dynamic median thresh-
olding, and boxplot) on the number of overloaded PMs, the number of
VMs to be migrated which are hosted on the resulted overloaded PMs,
and the approximate energy consumption corresponding to each algo-
rithm respectively.

The results of the second direction are summarized in Figs. 16–18
which show the effects of applying the proposed four algorithms (Static
thresholding, dynamic mean thresholding, dynamic median thresh-
olding, and boxplot) on the number of under-loaded PMs, the number
of VMs to be migrated which are hosted on the resulted overloaded
PMs, and the approximate energy consumption corresponding to each
algorithm respectively.

By studying Figs. 13–18, the following observations can be con-
cluded:

1) The dynamic overload detection methods outperform the static
method. Static methods are inefficient to be applied when the
system workload is unknown or when it can vary over time, which is
the norm in a cloud computing environment.

2) The second direction of the experiments outperforms the first di-
rection because it reflects more accurate approximations about the
system conditions, including the overload thresholds.

Notably, the optimal/near optimal initial VM placement process
results in less number of under/overloaded PMs, and as a result, less
number of VMs to be migrated (the total consumed energy is reduced).
The first and second sets of experiments show how it is essential to
place VMs on PMs conditionally since the placement process affects the
PMs utilizations.

The VM placement strategy has direct and indirect effects on the
energy efficiency:

■ The direct effect results in an initial satisfactory percentage of utili-
zation of the PMs involved when using proposed the VM placement
strategy. There is a strong relation between the utilization and en-
ergy efficiency. The better the PMs are utilized, the better is the
energy efficiency obtained.

■ The indirect effect results in saving the energy consumed from the
process of migrating the VMs from the under/over utilized PMs to
another hosts. VMs migrations consume energy. The initial place-
ment results in a distribution of VMs on PMs which minimizes the
subsequent migration of VMs thereby saving energy which would
have been consumed by migration.

The third set of experiments was done to evaluate the performance
of the algorithms which select the VM to be migrated. The VM to be
migrated is selected from the first and second sets of algorithms which

Fig. 17. The results of applying overload detection algorithms on the number of
VMs to be migrated by involving all the PMs of the data center in calculating
the overload threshold.

Fig. 18. The effects of applying overload detection algorithms on the consumed
energy by involving all the PMs of the data center in calculating the overload
threshold.

Fig. 19. The energy consumption resulted from a selected migrated VM based
on different VM selection algorithms.

Fig. 20. The average energy consumption resulted from a selected migrated VM
based on different VM selection algorithms.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

201

specify the VMs hosted on the PMs in under/overload state. The ex-
periments are repeated for 20 to 100 VMs. By repeating the experiments
five times using different workloads, the amount of the consumed en-
ergy for each policy is illustrated in Fig. 19.

Fig. 20 illustrates the average amount of the consumed energy re-
sulted from the five experiments for each policy.

From the energy perspective, it is clearly seen from Fig. 20 that the
best VM selection algorithms is MPCM. However, MPCM algorithm may
affect system performance since it requires some calculations to esti-
mate the consumed energy resulted from the migration process.

The MTCM algorithm gives good results. The shortest time VM
migration resulted when the memory content is the smallest, and the
smallest memory content results in less energy. However, MTCM also
may affect the system performance as it requires some calculations to
estimate the time resulted from the migration process.

In the SS algorithm, the less consumed energy amount resulted
when selecting both the VM of medium instance type configuration, and
the VM that is allocated to Normal jobs.

The VM of medium instance type configuration is the one with the
smallest memory size compared with the other available configurations
(as shown in Table 1). As a result, the memory content is less compared
with the other VM configurations, which consequently, results in
minimum energy in VM migration process.

In general, the VMs which are allocated to Normal jobs contain less
memory contents, and therefore results in less energy consumption in
the VM migration process. Normal jobs do not heavily utilize memory
and compute resources, and at the same time, do not utilize the
bandwidth, as explained in [50] and [51].

The fourth set of experiments was done to evaluate the energy ef-
ficiency relation to the types of the jobs which are served by the VMs in
the process of VM placement. Both the classical KP and the MCKP are
applied to solve the problem of the initial VM placement. The

experiments are repeated for a different number of VMs allocated to a
number of jobs, from 200 to 1000 jobs.

Fig. 21 shows the amount of energy consumed to do a number of
users' jobs using classical KP, and the proposed MCKP, which considers
the jobs’ types as part of VM placement strategy. Fig. 22 shows the PMs
utilization when applying MCKP and KP.

The results in Figs. 21 and 22 show that applying the MCKP is more
energy-efficient than the classical KP. This is because, when applying
MCKP, the resources of the VMs are utilized more optimally compared
to when KP is applied. By applying MCKP, the resources of the PM are
keeping busy during when the PM is involved in serving the users’ jobs.

In the initial VM placement, the proposed model enhances the en-
ergy efficiency by trying to minimize the total number of the involved
PMs which served the users’ jobs, and maximized the utilization of the
involved PMs. The minimization of the involved PMs and their accep-
table utilizations result in:

-
- The minimum possible number of active PMs. This minimizes the
consumed energy (guaranteed by the KP optimization solver
model). KP places the maximum possible items (VMs) in one
knapsack (PM) ensuring that the consumed energy is minimized.

- The better utilization for the resulted involved PMs comes up be-
cause MCKP model places the VMs allocated to different types of
jobs on the same PM whenever possible. Then if there is any
available resources, classical KP model fits the VM on these re-
sources. In this case, all the PM resources are kept busy because
different types of jobs are placed on the same PM, and every job
utilizes different kind of resources. This maximizes the PM utili-
zation, and consequently enhances energy efficiency.

In the after migration VM placement, as in the initial placement,
MCKP model places the migrated VM on a PM that hosts a VM of dif-
ferent kinds of jobs whenever possible. Thus, the resources of the in-
volved PM which are not utilized well will be utilized better by keeping
them busy during the PM involved period.

7. Conclusions

In this work, the problem of high energy consumption in cloud data
centers is investigated from the VM management perspective. The work
proposes a distributed approach to an energy-efficient dynamic VM
management. The approach determines which VMs to migrate from the
source PM, and when. Then, the destination PM is selected to place the
VM on it.

Based on the proposed approach, the following aspects can be
concluded:

1) In under/overload host detection, the proposed dynamic thresh-
olding techniques outperform the static thresholding ones. In con-
trast to the systems that adopt the dynamic thresholding techniques,
the systems with static thresholding techniques are unable to react
to the obviously under/over utilized cases. Fixed values of the
threshold (static thresholds) are not suitable for the environments
with dynamic and unpredictable workloads, as in cloud computing
environment. Different types of applications and jobs are submitted
to the cloud computing environment to share the PMs resources. For
a better performance, the system should be able to automatically
adjust its behavior depending on the workload patterns of the sub-
mitted jobs.

2) In VM selection algorithms, the results vary depending on the
workload. In general, the algorithms based on selecting the VM with
the smallest memory size results in less energy consumption com-
pared to the other algorithms.

Fig. 21. The consumed energy when applying KP and MCKP in VM placement
process.

Fig. 22. The involved PMs utilization when applying KP and MCKP in the VM
placement process.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

202

3) From the energy consumption point of view, the proposed VM pla-
cement strategy, which considers the job type in the placement
process, and based on the MCKP approach, outperforms the classical
KP. This is due to the optimal use of the resources of the involved
PMs hosted in the cloud data centers.

Data Description

The proposed algorithms and policies are applied using real work-
load traces provided by Google. The Google workload traces are col-
lected from large cloud systems (about 12,500 compute nodes over 29
days). The workload traces consist of different types of jobs. Real
workload traces can provide a very high level of realism when used
directly in performance evaluation experiments. More details about this
data are available in:

“Google Cluster-Usage Traces: Format and Schema” Version 2, By:
C. Reiss and J. Wilkes, Google Inc., 2013.

The workload traces contain millions of jobs/tasks, so, using
random data from traces, the proposed algorithms are simulated.

References

[1] J. Li, Y. Zhang, X. Chen, Y. Xiang, Secure attribute-based data sharing for Resource-
limited users in cloud computing, J. Comput. Secur. 72 (2018) 1–12.

[2] A. Al-Dulaimy, W. Itani, A. Zekri, R. Zantout, Power management in virtualized
data centers: state of the art, J. Cloud Comput. 5 (6) (2016) 1–15.

[3] A. Beloglazov, Energy-Efficient Management of Virtual Machines in Data Centers
for Cloud Computing, PhD Dissertation, Department of Computing and Information
Systems, The University of Melbourne, 2013.

[4] J. Koomey, Estimating Total Power Consumption By Servers in the US and the
World, Lawrence Berkeley National Laboratory, 2007 Technical Report.

[5] https://www.eia.gov/, Energy Information Administration, 2017. [Online].
[6] V. Josyula, M. Orr, G. Page, Cisco system inc. Cloud Computing: Automating the

Virtualized Data Center, (2012).
[7] A. Beloglazov, J. Abawajyb, R. Buyya, Energy-aware Resource allocation heuristics

for efficient management of data centers for Cloud computing, Future Gener.
Comput. Syst. 28 (5) (2012) 755–768.

[8] C. Clark, K. Fraser, S. Hand, J.G. Hansen, Live migration of virtual machines, 2nd
Symposium on Networked Systems Design & Implementation, (2005).

[9] A. Strunk, A lightweight model for estimating energy cost of live migration of
virtual machines, IEEE 6th International Conference on Cloud Computing, (2013).

[10] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam, M. Rosenblum, Optimizing
the migration of virtual computers NY, USA, 5th Symposium on Operating Systems
Design and Implementation (2002).

[11] R. Bradford, E. Kotsovinos, A. Feldmann, H. Schioberg, Live Wide-Area migration of
virtual machines including local persistent State San Diego, California, USA, 3rd
International Conference on Virtual Execution Environments (2007).

[12] A. Shribman, B. Hudzia, Pre-copy and Post-copy VM live migration for memory
intensive applications, Euro-Par 2012: Parallel Processing Workshops, Springer,
Berlin Heidelberg, 2013, pp. 539–547.

[13] S. Akoush, R. Sohan, A. Rice, A. Moore, A. Hopper, Predicting the performance of
virtual machine migration Miami, FL, USA, IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(2010).

[14] H. Jin, L. Deng, S. Wu, X. Shi, X. Pan, Live virtual machine migration with adaptive
memory compression New Orleans, LA, USA, IEEE International Conference on
Cluster Computing and Workshops (2009).

[15] E.P. Zawk, N.L. Thein, Improved live VM migration using LRU and splay tree al-
gorithm, Int. J. Comput. Sci. Telecommun. 3 (3) (2012) 1–7.

[16] W. Hu, A. Hicks, L. Zhang, E. Dow, H.J.R.B. Vinay Soni, J. Matthews, A quantitative
study of virtual machine live migration Miami, Florida, USA, The Cloud and
Autonomic Computing Conference (2013).

[17] H. Liu, C.-Z. Xu, H. Jin, J. Gong, X. Liao, Performance and energy modeling for live
migration of virtual machines, 20th International Symposium on High Performance
Distributed Computing, (2011).

[18] W. Dargie, Estimation of the cost of VM migration Shanghai, China, 23rd
International Conference on Computer Communication and Networks (2014).

[19] S. Chaisiri, B. Lee, D. Niyato, Optimal virtual machine placement across multiple
Cloud providers Singapore, IEEE Asia-Pacific Services Computing Conference
(2009).

[20] B. Speitkamp, M. Bichler, A mathematical programming approach for server con-
solidation problems in virtualized data centers, IEEE Trans. Serv. Comput. 3 (4)
(2010) 266–278.

[21] P. Agrawal, D. Borgetto, C. Comito, G.D. Costa, J. Pierson, P. Prakash, S. Rao,
D. Talia, C. Thiam, P. Trunfio, Large-scale distributed systems and energy effi-
ciency: a holistic View, Scheduling and Resource Allocation, John Wiley & Sons,

2015, pp. 225–262.
[22] H. Van, F. Tran, J. Menaud, Performance and power management for Cloud in-

frastructures Miami, FL, IEEE 3rd International Conference on Cloud Computing
(2010).

[23] F. Hermenier, X. Lorca, J. Menaud, G. Muller, J. Lawall, Entropy: a consolidation
manager for clusters, The ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, (2009).

[24] A. Beloglazov, R. Buyya, Energy efficient Resource management in virtualized
Cloud data centers, 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, (2010).

[25] A. Khosravi, L. Andrew, R. Buyya, Dynamic VM placement method for minimizing
energy and carbon cost in geographically distributed Cloud data centers, IEEE
Trans. Sustain. Comput. 2 (2) (2017) 183–196.

[26] Z. Zhou, H. Zhi-Gang, Y. Jun-Yang, J. Abawajy, M. Chowdhury, Energy-efficient
virtual machine consolidation algorithm in Cloud data centers, J. Cent. South. Univ.
24 (10) (2017) 2331–2341.

[27] J. Cao, Y. Wu, M. Li, Energy efficient allocation of virtual machines in Cloud
computing environments based on demand forecast, the 7th International
Conference on Advances in Grid and Pervasive Computing, (2012).

[28] F. Ma, F. Liu, Z. Liu, Multi-objective optimization for initial virtual machine pla-
cement in Cloud data center, J. Inf. Comput. Sci. 9 (16) (2012) 5029–5038.

[29] A. Esnault, Energy-Aware Distributed Ant Colony Based Virtual Machine
Consolidation in IaaS Clouds, HAL, (2012).

[30] Y. Gao, H. Guan, Z. Qi, Y. Hou, L. Liu, A multi-objective ant colony system algo-
rithm for virtual machine placement in Cloud computing, J. Comput. Syst. Sci. 79
(8) (2013) 1230–1242.

[31] E. Feller, Autonomic and Energy-Efficient Management of Large-Scale Virtualized
Data Centers, PhD Dissertation University of Rennes, ISTIC, 2013.

[32] M.H. Ferdaus, M. Murshed, R.N. Calheiros, R. Buyya, Virtual machine consolidation
in cloud data centers using ACO metaheuristic Porto, Portugal, Euro-Par 2014
Parallel Proceedings of the 20th International Conference (2014).

[33] A. Aryania, H. Aghdasi, L.M. Khanli, Energy-aware virtual machine consolidation
algorithm based on ant colony system, J. Grid Comput. (2018) 1–15.

[34] D. Kumar, Z. Raza, A PSO based VM Resource scheduling model for Cloud com-
puting Ghaziabad, IEEE International Conference on Computational Intelligence &
Communication Technology (2015).

[35] S. Dashtia, A. Rahmania, Dynamic VMs placement for energy efficiency by PSO in
Cloud computing, J. Exp. Theor. Artif. Intell. 28 (1–2) (2015) 97–112.

[36] V. Reddy, G. Gangadharan, G. Rao, Energy-aware virtual machine allocation and
selection in Cloud data centers, J. Soft Comput. (2017).

[37] A. Tripathi, I. Pathak, D. Vidyarthi, Energy efficient VM placement for effective
Resource utilization using modified binary PSO, Comput. J. (2017).

[38] N. Quang-Hung, P. Nienz, N. Namz, N. Tuong and N. Thoa, 2013. "A Genetic
Algorithm for Power-Aware Virtual Machine Allocation in Private Cloud,"
Information and Communication Technology, vol. 7804, no. Lecture Notes in
Computer Science, pp. 170-179.

[39] M. Vasudevan, Y.-C. Tian, M. Tang, E. Kozan, W. Zhang, Profile-based dynamic
application assignment with a repairing genetic algorithm for greener data centers,
J. Supercomput. 73 (9) (2017) 3977–3998.

[40] W. Lin, S. Xu, J. Li, L. Xu, Z. Peng, Design and theoretical analysis of virtual ma-
chine placement algorithm based on Peak workload characteristics, Soft Comput.
21 (5) (2017) 1301–1314 Springer.

[41] A. Al-Dulaimy, A. Zekri, W. Itani, R. Zantout, Paving the Way for energy efficient
Cloud data centers: a type-aware virtual machine placement strategy Vancouver,
Canada, IEEE International Conference on Cloud Engineering (IC2E) (2017).

[42] E. Feller, C. Morin, A. Esnault, A Case for Fully Decentralized Dynamic VM
Consolidation in Clouds, HAL (2012).

[43] R. Nathuji, K. Schwan, VirtualPower: coordinated power management in virtualized
Enterprise systems, ACM SIGOPS Operating Syst. Rev. 41 (6) (2007) 265–278.

[44] S. Srikantaiah, A. Kansal, F. Zhao, Energy aware consolidation for Cloud computing,
USENIX Workshop on Power Aware Computing and Systems, (2008).

[45] T. Hirofuchi, H. Nakada, S. Itoh, S. Sekiguchi, Making VM consolidation more en-
ergy-efficient by postcopy live migration, 2nd International Conference on Cloud
Computing, GRIDs, and Virtualization, (2011).

[46] M. Hubert, E. Vandervieren, An adjusted boxplot for skewed distributions, Comput.
Stat. Data Anal. 52 (12) (2008) 5186–5201.

[47] D. Pisinger, Algorithms for Knapsack Problems, PhD Dissertation University of
Copenhagen, 1995.

[48] X. Fan, W. Weber, L. Barroso, Power provisioning for a warehouse-sized computer,
34th Annual International Symposium on Computer Architecture, (2007).

[49] H. Kellerer, U. Pferschy, D. Pisinger, The multiple-choice knapsack problem,
Knapsack Problems, Springer, 2004, pp. 317–347.

[50] A. Al-Dulaimy, R. Zantout, A. Zekri, W. Itani, Job classification in Cloud computing:
the classification effects on energy efficiency Limassol, Cyprus, IEEE/ACM 8th
International Conference on Utility and Cloud Computing (2015).

[51] A. Al-Dulaimy, R. Zantout, W. Itani, A. Zekri, Job submission in the Cloud: energy
aware approaches San Francisco, USA, World Congress on Engineering and
Computer Science, International Association of Engineers (2016).

[52] W. Lin, S. Xu, L. He, J. Li, Multi-resource scheduling and power simulation for cloud
computing, Information Sciences vol. 397–398, Elsevier, 2017, pp. 168–186.

[53] C. Reiss, J. Wilkes, Google Cluster-usage Traces: Format and Schema - Version 2,
Google Inc., 2013.

A. Al-Dulaimy et al. Sustainable Computing: Informatics and Systems 19 (2018) 185–203

203

http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0005
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0005
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0010
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0010
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0015
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0015
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0015
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0020
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0020
https://www.eia.gov/
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0030
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0030
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0035
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0035
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0035
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0040
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0040
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0045
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0045
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0050
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0050
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0050
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0055
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0055
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0055
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0060
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0060
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0060
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0065
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0065
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0065
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0065
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0070
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0070
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0070
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0075
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0075
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0080
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0080
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0080
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0085
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0085
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0085
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0090
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0090
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0095
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0095
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0095
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0100
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0100
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0100
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0105
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0105
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0105
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0105
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0110
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0110
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0110
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0115
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0115
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0115
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0120
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0120
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0120
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0125
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0125
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0125
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0130
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0130
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0130
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0135
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0135
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0135
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0140
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0140
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0145
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0145
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0150
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0150
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0150
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0155
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0155
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0160
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0160
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0160
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0165
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0165
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0170
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0170
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0170
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0175
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0175
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0180
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0180
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0185
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0185
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0195
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0195
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0195
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0200
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0200
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0200
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0205
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0205
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0205
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0210
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0210
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0215
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0215
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0220
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0220
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0225
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0225
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0225
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0230
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0230
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0235
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0235
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0240
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0240
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0245
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0245
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0250
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0250
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0250
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0255
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0255
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0255
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0260
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0260
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0265
http://refhub.elsevier.com/S2210-5379(17)30424-9/sbref0265

	Type-aware virtual machine management for energy efficient cloud data centers
	Introduction
	Motivation and objectives
	Background about virtualization and virtual machine management
	Virtual machine management
	Virtual machine migration
	Virtual machine live migration
	Key aspects of live migration
	Migration cost
	VM placement and consolidation

	VM placement and consolidation approaches: literature review
	Distributed dynamic virtual machine consolidation model
	Under-loaded physical machine detection
	Overloaded physical machine detection
	VM selection
	Virtual machine placement
	Physical machines representation
	Virtual machines representation
	Virtual machine placement problem

	The knapsack problem
	The standard knapsack problem
	The multiple choice knapsack problem

	Performance evaluation
	Conclusions
	Data Description
	References

