Blended Graphical and Textual Modelling for UML
Profiles: a Proof-of-Concept Implementation and
Experiment

Lorenzo Addazi®, Federico Ciccozzi®*

*School of Innovation, Design and Engineering
Madlardalen University, Vasterds, Sweden

Abstract

Domain-specific modelling languages defined by extending or constraining the
Unified Modeling Language (UML) through the profiling mechanism have his-
torically relied on graphical notations to maximise human understanding and
facilitate communication among stakeholders. Other notations, such as text-,
form-, or table-based are, however, often preferred for specific modelling pur-
poses, due to the nature of a specific domain or the available tooling, or for
personal preference. Currently, the state of the art support for UML-based
languages provides an almost completely detached, or even entirely mutually
exclusive, use of graphical and textual modelling. This becomes inadequate
when dealing with the development of modern systems carried out by hetero-
geneous stakeholders. Our intuition is that a modelling framework based on
seamless blended multi-notations can disclose several benefits, among which:
flexible separation of concerns, multi-view modelling based on multiple nota-
tions, convenient text-based editing operations (inside and outside the modelling
environment), and eventually faster modelling activities.

In this paper we report on: i) a proof-of-concept implementation of a frame-
work for UML and profiles modelling using blended textual and graphical no-
tations, and ii) an experiment on the framework, which eventually shows that
blended multi-notation modelling performs better than standard single-notation
modelling.

Keywords: blended modelling; multi-view modelling; UML profiles; MARTE;
Xtext; Papyrus

*Corresponding author
Email addresses: lorenzo.addazi@mdh.se (Lorenzo Addazi),
federico.ciccozzi@mdh.se (Federico Ciccozzi)

Preprint submitted to Journal of Systems and Software January 19, 2021

10

15

20

25

30

35

40

1. Introduction

Expectations on software functionality and quality are increasing at a fast
pace. Additionally, the interconnected nature of software-intensive systems
makes software grow exponentially in complexity. The combination of high
functional and extra-functional demands with ever-growing complexity leads to
large increases in development time and costs.

To combat this threat, Model-Driven Engineering (MDE) has been adopted
in industry as a powerful means to effectively tame complexity of software,
systems and their development, as shown by empirical research [I], by using
domain-specific abstractions described in Domain Specific Modelling Languages
(DSML) [2]. DSMLs allow domain experts, who may or may not be software
experts, to develop complex functions in a more domain-focused and human-
centric way than if using traditional programming languages. DSMLs formalise
(for computer-based analysis and synthesis purposes) the communication lan-
guage of engineers at the level of domain-specific concepts such as an engine and
wheels for a car. These concepts may not exist in another domain. Moreover,
DSMLs support more efficient integration of software with designs and imple-
mentations of other disciplines. In this paper, we focus on DSMLs based on the
Unified Modeling Language (UML).

UML is the de-facto standard in industry [I] and an ISO/TEC (19505-1:2012)
standard. It is general-purpose, but it provides powerful profiling mechanisms
to constrain and extend the language to achieve UML-based DSMLs (hereafter
also called "UML profiles’). Domain-specific modelling demands high level of
customisation of MDE tools, typically involving combinations and extensions
of DSMLs as well as customisations of the modelling tools for their respective
development domains and contexts. In addition, tools are expected to provide
multiple modelling means, e.g. textual and graphical, to satisfy the requirements
set by development phases, different stakeholder roles, and application domains.

Nevertheless, domain-specific modelling tools traditionally focus on one spe-
cific editing notation (such as text, diagrams, tables or forms). This limits
human communication, especially across stakeholders with varying roles and
expertise. Moreover, engineers may have different notation preferences; not
supporting multiple notations negatively affects throughput of engineers. Be-
sides the limits to communication, choosing one particular kind of notation has
the drawback of limiting the pool of available tools to develop and manipulate
models that may be needed. For example, choosing a graphical representation
limits the usability of text manipulation tools such as text-based diff/merge,
which is essential for team collaboration. When tools provide support for both
graphical and textual modelling, it is mostly done in a mutual exclusive man-
ner. Most off-the-shelf UML modelling tools, such as IBM Rational Software
Architect [3] or Sparx Systems Enterprise Architect [4], focus on graphical edit-
ing features and do not allow seamless graphical-textual editing. This mutual
exclusion suffices the needs of developing small scale applications with only very
few stakeholder types.

For systems with heterogeneous components and entailing different domain-

50

55

60

65

70

75

80

specific aspects and different types of stakeholders, mutual exclusion is too re-
strictive and void many of the MDE benefits. Therefore, modelling tools need to
enable different stakeholders to work on overlapping parts of the models using
different modelling notations (e.g., graphical and textual).

Paper contribution. In this paper we describe our work towards a full-fledged
framework able to provide seamless blended graphical-textual modelling for
UML profiles. Differently from current practices, our framework is based on a
lightweight form of blended modelling, where both graphical and textual editors
operate on a common underlying model resource, rather than on separate per-
sisting resources, thus heavily reducing the need for explicit synchronisation be-
tween the two. To maximise the accessibility of our solutions, we leverage open-
source platforms and technologies only. We implemented a proof-of-concept
framework, as well as designed and ran an experiment to assess potential bene-
fits of blended multi-notation modelling as opposed to standard single-notation
modelling.

Note that the area of so called action languages, such as for instance the
UML actions (as in [5]) or the VIDEE| action language, also for UML, has focused
on how to integrate textual notations for description of algorithmic behaviours
(i.e. defined by a limited and fixed sub-portion of the original metamodel or
a new ad-hoc one) in graphical (structural) models. In our work, we focus on
a broader and more complex problem, namely the provision of a fully blended
modelling environment for any portion (partial or full) of a UML-profile, being
it structural or behavioural (or both).

Paper outline. The remainder of the paper is organised as follows. Section 2]
outlines the motivation behind the research work on blended modelling reported
in this paper, while Section [3| provides a snapshot of the states of the art and
practice related to blended modelling and an introduction of core concepts. In
Section 4] we outline our approach, the intended benefits, and the differences with
current practices. Details on the actual implementation of the framework and
exemplifications on a UML profile are provided in Section [5} The experiment’s
set-up, execution, results and threats to validity are described in Section [6] with
discussing explicitly results in relation to research hypotheses and experimental
questions. In Section[7]we provide a retrospective on the benefits and limitations
of our approach in relation to state of the art. We conclude the paper with
Section

2. Blended modelling and potential benefits

We have previously defined the notion of blended modelling [6] as:

Thttps://cordis.europa.eu/project/id/033606

https://cordis.europa.eu/project/id/033606

20

95

120

the activity of interacting seamlessly with a single model (i.e., ab-
stract syntax) through multiple notations (i.e., concrete syntazes),
allowing a certain degree of temporary inconsistencies.

At first sight, the notion of blended modelling may seem similar or over-
lapping with multi-view modelling [7] that is based on the paradigm of view-
point /view/model as formalised in the ISO/IEC 42010 standard?}

Multi-view modelling is commonly based on viewpoints (i.e. “conventions for
the construction, interpretation and use of architecture views to frame specific
system concerns” [8]) that are materialised through views that are composed of
one or more models. In blended modelling, the focus is not on identifying view-
points and related views, but rather on providing multiple blended editing and
visualising notations to interact with a set of concepts. In short, blended mod-
elling could be seen as orthogonal to multi-view modelling. While multi-view
modelling aims at defining viewpoints/views, blended modelling aims at provid-
ing a powerful multi-notation characterisation that may be used to define view-
points/views. Multi-view modelling approaches focus on the creation of view-
points/views and mechanisms for consistency management across them [9] [7].
Blended modelling focuses on the specific problems related to the provision of
multiple concrete syntaxes for a set of abstract syntactical concepts, indepen-
dently of whether the base modelling approach is multi-view or not.

The intuition is that establishing a seamless blended modelling environment,
which allows stakeholders to freely choose and switch between graphical and
textual notations, can greatly contribute to increase productivity as well as
decrease costs and time to market.

Such an environment is expected to support at least graphical and textual
modelling notations in parallel as well as properly manage synchronisation to
ensure consistency among the two. The possibility to visualise and edit the
same information through a set of diverse perspectives always in sync has the
potential to greatly boost communication between stakeholders, who can freely
select their preferred notation or switch from one to the other at any time.
Besides obvious notation-specific benefits, such as for instance the possibility to
edit textual models in any textual editor outside the modelling environment, a
blended framework would disclose the following overall benefits.

2.1. Flexible separation of concerns and better communication

Providing graphical and textual modelling editors for different aspects and
sub-parts (even overlapping) of a DSML enables the definition of concern-specific
views characterised by either graphical or textual modelling (or both). These
views can interact with each other and are tailored to the needs of their intended
stakeholders. Due to the multi-domain nature of modern software systems (e.g.,
cyber-physical systems, Internet-of-Things), this represents a necessary feature
to allow different domain experts to describe specific parts of a system using

2https://www.iso.org/standard/50508. html

https://www.iso.org/standard/50508.html

130

135

their own domain-specific vocabulary and notation, in a so called multi-view
modelling [7] fashion. The same information can then be rendered and visualised
through other notations in other perspectives to maximise understanding and
boost communication between experts from different domains as well as other
stakeholders in the development process.

There are many other aspects related to separation of concerns that could
characterise a blended modelling framework, such as layered accessibility to
shared information with multiple levels of read/write access rights, enforcement
of specific notations depending on stakeholder roles, and customisability of per-
spectives, to mention a few. In this paper we do not focus on these features, but
rather work on the infrastructural support for providing a blended modelling
framework, that is to say the ground upon which these features can be yielded.

2.2. Faster modelling tasks

We expect that the seamless combination of graphical and textual modelling
has the potential to reduce modelling effort in terms of time thanks to the
following two factors.

(1) Any stakeholder can choose the notation that better fits her needs, per-
sonal preference, or the purpose of her current modelling task, at any time. For
instance, while structural model details can be faster to describe by using dia-
grammatic notations, complex algorithmic model behaviours are usually easier
and faster to describe using textual notations (e.g., Java-like action languages).

(2) Text-based editing operations on graphical modelsﬂ such as copy&paste
and regex search&replace, syntax highlighting, code completion, quick fixes,
cross referencing, recovery of corrupted artefacts, text-based diff and merge for
versioning and configuration, are just few of the features offered by modern tex-
tual editors. These would correspond to very complex operations if performed
through graphical editors; thereby, most of them are currently not available for
diagrams. Seamless blended modelling would enable the use of these features on
graphically-described models through their textual editing view. These would
dramatically simplify complex model changes; an example could be restructur-
ing of a hierarchical state-machine by moving the insides of a hierarchical state.
This is a demanding re-modelling task in terms of time and effort if done at
graphical level, but it becomes a matter of a few clicks (copy&paste) if done at
textual level.

In this paper we provide a blended modelling framework and experiment with
it to assess whether its use can potentially speed-up modelling activities, if
compared to standard single-notation modelling.

3Please note that by graphical/textual model, we intend a model rendered using a graphi-
cal/textual notation.

165

200

3. Related work and core concepts

Several open-source tools and approaches have been proposed to intermix
textual and graphical concrete syntaxes. Here we present them highlighting
their strengths and weaknesses in relation to our research goals.

3.1. Text-based modelling with generation of graphical visualisations

Umple [10] merges the concepts of programming and modelling by adding
modelling abstractions directly into programming languages and provides fea-
tures for actively performing model edits on both textual and graphical concrete
syntaxes. Nevertheless, it does not provide blended modelling support for cus-
tom UML profiles.

A plethora of other open-source tools such as FXDiagram [IT], Eclipse
Sprotty [12], LightUML [13], TextUML [14], MetaUML [I5], PlantUML [I6]
focuses on textual concrete syntax for actively editing the modelling artefacts,
while providing a graphical notation for visualisation purposes only.

FXDiagram is based on JavaFX 2 and provides on-the-fly graphical visualisa-
tion of changes in the textual concrete syntax including change propagation; the
focus is on EMF models. Both notations are predefined and not customisable,
the graphical notation is read-only and there is no support for UML profiling
mechanisms.

Eclipse Sprotty, as FxDiagram, focuses on the visualisation of textual mod-
els, but it provides a certain degree of editing of the models too. Nevertheless,
concrete syntaxes are predefined and not customisable and there is no support
for UML profiling mechanisms

Light UML focuses more on reverse engineering by generating a class diagram
representation of existing Java classes and packages. It is the least advanced
of the analysed solutions and displays all limitations listed at the end of the
section.

TextUML allows modellers to leverage a textual notation for defining UML
models and providing textual comparison, live graphical visualisation of the
model in terms of class diagrams, syntax highlighting and instant validation. In
this tool, the graphical notation is read-only and cannot be customised. Also,
the subset of UML supported is fixed and not easily extensible. No support for
UML profiling mechanisms is provided.

MetaUML is a MetaPost library for creating UML diagrams through a tex-
tual concrete syntax and it supports a few read-only diagrams. Similarly, Plan-
tUML allows the modelling of UML diagrams by using a textual notation; graph-
ical visualisations are read-only. In both cases, the support UML concepts and
diagrams is limited and not extensible and there is no support for UML profiling
mechanisms.

8.2. Synchronised textual and graphical modelling

No technology provides combined means for synchronised editing in both
textual and graphical syntaxes and customisation of the concrete syntaxes for
UML profiles. JetBrains MPS [I7] is a meta-modelling environment for the

205

215

development of DSML tools which support synchronised editing in multiple
(customisable) concrete syntaxes for non-UML DSMLs, but lacks out-of-the-
box support for UML profiles and has limited automated support for integration
with domain-specific environments. Furthermore, the “textual” view of a model
in MPS is not actual text but a form-based representation with a fixed format.
This implies, not only that these form-based editors restrict the user, but more
critically, standard text-based tools such as regex search/replace, or diff/merge
cannot be used on the model.

Synchronised editing in multiple (customisable) concrete syntaxes for non-
UML DSMLs can also be realised with Qt [I8] by using a model-view architec-
ture where the 'model’ reflects the DSML concepts and any ’view’ is actually an
editor for some concrete syntax. However, Qt has no support for DSML-based
automation in any way, which means that a DSML engineer needs to basically
program most of it manually (although well supported by IDE tools).

3.3. Mixed textual and graphical modelling

Several research efforts have been directed to mixing textual and graphical
modelling. A textual editor for the Action Language for Foundational UML
(AIf) has been developed based on Xtext [19].

In [20], the authors provide an approach for defining combined textual and
graphical DSMLs based on the AToM3 tool. Starting from a metamodel defini-
tion, different diagram types can be assigned to different parts of the metamodel.
A graphical concrete syntax is assigned by default, while a textual one can be
given by providing triple graph grammar rules to map it to the specific meta-
model portion. The aim of this approach is similar to ours, but it targets specific
DSMLs defined through AToM3 and is not applicable to UML profiles.

Charfi et al. [5] explore the possibilities to define a single concrete syntax
supporting both graphical and textual notations. Their work is very specific to
the modelling of UML actions and has a much narrower scope than our work.
In addition, the defined textual notation is exclusively defined for part of the
concepts of UML actions and cannot be customised. Support for UML profiling
is not envisioned in the solution either.

In [21], the authors provide the needed steps for embedding generated EMF-
based textual model editors into graphical editors defined in terms of GMF. That
approach provides pop-up boxes to textually edit elements of graphical models
rather than allowing seamless editing of the entire model using a chosen syntax.
The focus of that paper is on the integration of editors based on EMF, while
ours is to provide seamless textual and graphical modelling for UML profiles.
Moreover, the change propagation mechanisms proposed by the authors are on-
demand triggered by modeller’s commit, while we focus on on-the-fly change
propagation across the modelling views.

Related to the switching between graphical and textual syntaxes, two ap-
proaches are proposed to ease transformations of models containing both graph-
ical and textual elements. The first is Grammarware [22], by which a mixed
model is exported as text. The second is Modelware [22], by which a model

260

265

270

275

280

285

containing graphical and textual content is transformed into a fully graphical
model. Transformation from mixed models to either text or graphics is on de-
mand rather than on-the-fly and the approach does not allow concurrent editing.
Mixed textual and graphical modelling can also be realised with Qt, where
the approach is to use a graphical environment with embedded textual editors.
However, DSML engineers need to realise most of this manually. Mixed no-
tations and the possibility to switch between them are supported in JetBrains
MPS for non-UML DSMLs and rely on the principle of projectional editing.

8.4. Projectional editing

Projectional editing is another research area which investigates the use of
various concrete syntaxes for editing models by displaying the different concrete
syntaxes as projections. JetBrains MPS and MelanEE [23] apply this approach.
With projectional editing, the user edits the model through a syntax-specific
view or editor, which itself updates the underlying abstract syntax model and
these changes are automatically reflected in other views or editors for alternative
concrete syntaxes. The main advantage is that the model can be projected in
various concrete syntaxes depending on what the user prefers. However, it
adds a considerable overhead for the DSML developer as the user actions (i.e.,
keyboard, trackpad and mouse events) have to be translated into change actions
on the abstract syntax tree. For parser-based textual DSMLs (e.g., when using
Xtext), a text editor in combination with a lexer/parser combination can be
used.

8.5. Summary

To summarise, current solutions for blended textual and graphical UML
modelling present at least one of the following limitations:
L1: one of the notations is read-only, intended for visualisation means;
L2: at least one of the two notations is enforced for a specific, self-contained
portion of UML (or a profile) only;
L3: concrete syntaxes are predefined and not customisable;
L4: synchronisation among different concrete syntaxes is not automated and
on-the-fly but rather manual or on-demand;
L5: no out-of-the-box support for custom UML profiles.
In Table [, we summarise the limitations of each of the described tools and
approaches.

We have provided a first attempt to blended modelling in [25]. In this paper,
we revisited and extended every constituent of that, from the framework’s imple-
mentation to the experiments. The framework was re-implemented to provide
support for multiple UML stereotype applications, a core feature when dealing
with profiles. A new experiment, with more than double the participants, was
run to assess the potential benefits of blended modelling in general and analyse
the use of user-preferred and task-optimal notations in particular.

305

310

Tool/approach || L1 | L2
Andres et al. [20]
Charfi et al. [5
FXDiagram [I1] || v/
Grammar /modelware [22
Lazar et al. |19
LightUML [13
JetBrains MPS [17
Maro et al. [24]
MelanEE [23]
MetaUML [15]
PlantUML [16]
Scheidgen et al. [21]
Sprotty [12]

Qv [15]

TextUML [14] || v | v
Umple [10] v’

L4

<

NAN

NANEEANERANAN
VAN VA NA VA NI ANA NANANA VAN i
<

NS

MR A AR VA NERANANA NANANANAN i

Table 1: Aggregated elapsed modelling times (in seconds)

4. Providing Blended Modelling in Papyrus

Our overall goal is to provide a full-fledged framework enabling blended
modelling for UML and profiles. To maximise accessibility to our solutions
around which a community of researchers and practitioners can be built, we
chose to only leverage de-facto standard open-source tools, i.e. Eclipse mod-
elling Framework [26] (EMF) as platform, Papyrus [27] for UML (graphical)
modelling, and Xtext [28] for textual modelling. Note that what we propose is
a seamless solution leveraging two different technologies — Xtext and Papyrus —
exploiting the common EMF infrastructure. We did not create a textual editor
in Papyrus, but rather leverage all the advantages provided by Xtext and we
modified its resource management routines to not break Papyrus models and
vice versa. To summarise, we use Xtext as textual-focused technology and Pa-
pyrus as graphical-focused one, combining and leveraging their strengths. In
Figure [I] we depict the differences between existing Eclipse-based solutions for
blended UML modelling and our framework.

The current state of the practice (see left-hand side of Fig. relies on ap-
proaches that achieve UML-based blended modelling by keeping graphical and
textual modelling almost fully detached. Graphical and textual modelling are
performed on two separate models, which are both separately persistent in two
physical resources [24]. Given a UML profile, a corresponding Ecore-based
DSML representing the profile is automatically generated or manually provided.
EMF provides automation for this task, but the resulting Ecore model needs
often manual tuning in order to be made usable. Starting from the Ecore-based
DSML, Xtext provides features for automatic generation for a textual language

315

320

325

330

335

State of the practice Our approach

| UML-based 1 R Xtext i | UML-based 1 ! Xtext :
1 DSML i J L i grammar | 'l DSML I | grammar |
It B Haiuii e se e

| Ecore-based |
' psML i

B

UML < Ecore Xtext UuML Xtext
model model model model model
o oo L

ouML ! I Xtext ! LouML !
| resource | | resource | | resource |
|:| In-memory resource — Synchronisation relation
Iii? Persistence resource <«—» (De)serialisation relation
Latent resource ~——» Conformance relation ‘
+—— Representation relation ——> Persistence relation

Figure 1: Our approach compared to the state of the practice

(in terms of a grammar) and related editors.

Graphical modelling is performed using UML editors and the model persists
as UML model resource. On the other hand, textual modelling is performed
using generated Xtext editors and the textual representation persists in a sepa-
rate text file. Moreover, Xtext works internally with an Ecore model resource.
More specifically, the Ecore model represents the AST obtained from parsing
the textual model at a given time and is used by validators, generators, and
other features. The parser always generates a new FEcore model, rather than
update an existing one. This means that the only source of reliable persistent
information is the textual file itself.

To synchronise graphical and textual models, semi-automated mechanisms
in the form of synchronisation model transformations are used. These model
transformations are, in some approaches, also generated, thanks to higher-order
model transformations (HOTs) [24]. Although this provides a certain degree
of flexibility when it comes to the evolution of the involved UML-based DSML
and automatic co-evolution of the synchronisation mechanisms, HOTs would
stop working as soon as the generated Xtext grammar is manually edited. This
practice is very often needed in order to make the grammar (and related editors)
fit the developer’s needs. But why would grammar customisations be needed?

As a concrete example of the need to customise a DSML grammar, consider
the UML-RT language [29]. UML-RT has two core concepts: capsules and pro-
tocols. Capsules are active classes and have a well-defined interface consisting
of ports typed by protocols. Capsules may have an internal structure consisting
of parts that hold capsule instances linked by connectors bound to the corre-
sponding capsule ports. All interaction between capsule instances takes place

10

345

350

by message-passing through connected ports.
UML-RT has a UML profile. If we start from the UML-RT profile, we obtain
an EBNF grammalﬂ that contains rules like these:

Capsule returns Capsule:
’Capsule’
ryr
"base_Class’ base_Class=[uml::Class
EString]

ryr;

Class returns uml::Class:
Class_Impl | Activity | Stereotype |
ProtocolStateMachine | StateMachine_Impl
| FunctionBehavior | OpaqueBehavior_Impl
| Device | Node_Impl | ExecutionEnviron-
ment | Interaction | AssociationClass
| Component;

© W N U W

e e e
o ok W N RO

Class_Impl returns uml::Class:
’"Class’
ryr

o e
© ®

(’name’ name=String0)?

("visibility’ visibility=Visibility-
Kind) ?

’isLeaf’ isLeaf=Boolean

NN NN
W N = O

("useCase’ ’ ('’ useCase+=[uml::Use—
Case |EString]
("," useCase+=[uml::UseCase]
EStringl)x ")’)?

NN NN
© ® N o o

(" ownedAttribute’ ’{’ ownedAttri-
bute+=Property
("," ownedAttribute+=Property) *
DA I
(" ownedConnector’ ' {’ ownedConnect-—
or+=Connector
("," ownedConnector+=Connector)
DA I

W oW W W W wwww
S RGN N R U =)

ryr;

This clearly entails a great amount of information related to UML, but not
relevant to UML-RT. In fact, the rule for Class_Impl includes clauses for each
and every feature of the UML Class metaclass, many of which we removed for
the sake of space. Of these clauses, many, such as useCase, are irrelevant to
the DSML, and only a few, such as ownedAttribute and ownedConnector,
are relevant, but they do not reflect the concepts of UML-RT, and even the
concrete syntax may not be desirable. For UML-RT, we would like to obtain a
grammar with rules that reflect the DSML’s concepts directly and hides away
any additional UML structure that may be used to represent the concept. For
example, instead of having a single clause ownedAttribute, we would like to
have clauses for ports and parts, in a rule like this:

1 Capsule returns Capsule:
2 ’capsule’ name=EString

4In Xtext, grammars are defined as sets of Extended Backus-Naur Form-like (EBNF)
expressions.

11

355

"y
(ports+=RTPort) *
(parts+=CapsulePart)
(connectors+=Connector) %
StructuredTypeCommonCoreFragment
BehaviourFragment

ryr;

© W N U W

Another reason for customising grammars is to enable swift, condensed and
convenient application of stereotypes, especially in case of multiple applica-
tions. When generating grammars from UML profiles, Xtext generates separate
explicit metaclasses for each stereotype applicable to a UML base element. Let
us consider the MARTE profile [30] and a snippet of the grammar generated by
Xtext as follows:

HwComputingResource returns marte::HwCompu-—
tingResource:

"hwComput ingResource’

rr

"base_Classifier’ base_Classifier=
[uml::Classifier]

© 0N U W N

ryr;

= e
= o

HwTimingResource returns marte::HwTiming-
Resource:
"hwTimingResource’

"

o e
B oW oN

15 PR

16 "base_Classifier’ base_Classifier=

17 [uml::Classifier]

18

19 oL

Through these two rules, the Xtext grammar represents two stereotypes,

HwComputingResource and HwTimingResource, applicable to the base element
Classifier. Clearly, this mimics a stereotype application, but in reality it
is quite far from it. In fact, the grammar allows to create a component A
and afterwards two separate elements of type HwComputingResource B and
HwTimingResource C, both referring to A:

1 component

2 {

3 name = A;

4

5 }i

6

7 hwComputingResource

8 {

9 name = Bj;

10 base_element = A;
11

12 }i

13

14 hwTimingResource

15 {

16 name = Cj;

17 base_element = A;
18

19 }s

12

This does not properly reflect the stereotype application mechanism in UML

ses (shown in Fig. [2). The same, using a UML graphical editor (e.g., Papyrus),
would be defined as a single element, component A, stereotyped with both
HwComputingResource and HwTimingResource:

370

«component»
«HwComputingResource, HwTimingResource»

Bl

Figure 2: Stereotype application in Papyrus

We want to reproduce this modelling pattern also in the related grammar as:

1
2
3
4
5

hwComputingResource hwTimingResource component

{

name = A;

bi

The reasons for reproducing this pattern are the following:

e Conformity to UML modelling: as described above, applying a stereo-

type to a base element is realised by extending the base element itself
rather than creating a brand new element, typed as the stereotype, and
referring to the base element.

Conciseness: apart from being in line with UML profiling and application
of stereotypes, this solution is textually much more concise, since base
element and applied stereotypes are described by one element only.
Modifiability: when the base element or the applied stereotypes need
revision and changes, the fact that they can all be found in one single place
helps identifying the elements and modifying them, without jeopardising
consistency nor breaking model conformance.

Automation: when manipulating models (e.g., through model transfor-
mations), their navigation can be expensive in terms of execution time,
especially when dealing with profiles [3I]. Clearly, having all informa-
tion about one element (A) and its stereotypes in one single place, rather
than spread across the model, simplifies model navigation, thus potentially
leading to better performing model transformations.

Although in our grammar we enforced the aforementioned all-in-one stereotypes
application pattern, the approach itself does not hinder the user from customis-
ing a grammar to work with separate stereotype applications.

Overall, Xtext is designed for being used with EMF-based modelling lan-

guages. The UML implementation in Eclipse is EMF-based, thus Xtext can be
used to define textual concrete syntaxes for UML. However, Xtext is neither
designed to work with UML resources nor with UML-based DSMLs directly.
This raises the need for explicit complex synchronisation between the two, both
at abstract and concrete syntax level. This boils down to two facts:

13

1. The Ecore-based DSML is the pivot abstract syntax. If either the UML-
based DSML or the grammar is changed, the representation relationships
from them to the Ecore-based DSML are broken and so are the synchroni-
sation relations among the related conforming models (concrete syntax).
In summary, those changes would break the synchronisation across nota-
tions.

2. UML and Xtext models are persistent in two different resources. The
textual resource can be edited with, virtually, any editor, while the UML
resource is editable with UML editors. The modelling is not blended,
but rather detached and complex model transformations keep the two
notations in sync.

Our approach is inherently different (see right-hand of Fig. [1)). In fact, we
make Xtext work with UML profiles by exploiting a single underlying abstract
syntax (UML-based DSML), two concrete syntaxes (graphical given by UML
and textual given by Xtext), one single persistent resource (UML resource),
and thereby reducing the need for ad-hoc heavyweight synchronisation mecha-
nisms. Synchronisation is achieved extending the default content management
operations performed in Xtext editors. The parsing process does not use the
content of the persisted UML resource, but rather the result of a model-to-
text transformation applied on it. Inversely, the serialisation process does not
persist the plain-textual editor content. The textual model is merged with the
persisted UML model using a model-to-model transformation, which propagates
the changes and manages the application/removal of stereotypes.

Advancing the state of the art and practice. Our solution provides the following
improvements to the current state of the practice:

e Grammar customisability. Given a specific UML profile, Xtext gram-
mars are semi-automatically derived to provide a textual language for the
profile (or part of it). Xtext grammars can be customised and refactored to
fit the stakeholder’s needs. This does not jeopardise the (de-)serialisation
mechanisms as long as it does not break the conformance of models to the
UML profile specification (i.e. metamodel).

e Multiple stereotypes application. Given a specific UML profile, Xtext
provides an out-of-the-box feature for generating grammar and editor for a
textual language related to the profile. This generation is not customisable
nor parametric. More importantly, there is no feature to automatically
derive cross-profile grammars. A cross-profile grammar would entail the
possibility to apply stereotypes from different profiles to the same base
UML model. This is a very common feature in UML modelling and in
this work we demonstrate how to achieve it using Xtext grammars.

e Cross-profile modelling. Virtually, any UML profile can be leveraged
without the provision of ad-hoc complex synchronisation transformations.
In practice, for complex profiles as well as in case of multiple applications
of stereotypes to the same base UML elements, (de-)serialisation might
need additional input from the blended DSML developer so to better re-
flect the purposes of the textual language(s) (see stereotypes application

14

470

475

480

transformation described in Section .

e On-the-fly changes propagation. Model changes done in one view
(e.g., UML graphical) are seamlessly reflected and visible on-the-fly in
the other view (e.g., Xtext textual). This is possible thanks to the single
persistent resource shared among the views. Such a propagation is incre-
mental, thus not producing tangible delays in the rendering of the changed
model across notations. This can be particularly useful for live assessing
of model changes as well as real-time collaborative modelling.

e Cross-notation multi-view modelling. Multiple Xtext grammars/lan-
guages representing different sub-sets (even partially overlapping) of the
UML profile (or several profiles) exposed to stakeholders in ad-hoc views/ed-
itors can seamlessly work on the same UML resource, along with UML
editors. This, along with the possibility to “import” profiles in a joint
Xtext grammar for multiple stereotypes application, provides a full-fledged
blended modelling framework for UML and profiles. An overall precondi-
tion for the framework to properly function is that Xtext grammars always
enforce model conformance to the entailed profiles.

Other benefits stem from the aforementioned ones. An example is the fact that
code generators can reuse a single, shared abstract syntax for both graphical
and textual representations of a model, without relying on additional trans-
formations which result in added maintenance costs. Another is that different
stakeholders can view and edit model parts of their collaborators in their pre-
ferred syntax (or in a syntax that is optimised for them). In this way, potential
inconsistencies can be identified very early already during the modelling process
and communication among different stakeholders is greatly improved.

In the next section we describe our blended modelling solution from a techni-

cal perspective, providing concrete exemplifications of the aforementioned ben-
efits.

5. Technical solution

Our blended graphical-textual modelling approach combines Xtext and Pa-
pyrus for UML (a demo of the running framework can be found at https:
//bit.ly/blended_demo). As mentioned in Section |3| existing blended mod-
elling approaches using these technologies rely on detached sets of abstract and
concrete syntaxes, as well as persistence resources. This results in separated
graphical and textual modelling support, where partial blended modelling is
achieved through explicit synchronisation between separate resources represent-
ing different concrete syntaxes. However, relying on different abstract syntaxes
makes the synchronisation process non-trivial as it requires complex exogenous
DSML-specific model transformations.

Given a UML-based DSML, our solution supports blended modelling using
multiple concrete syntaxes with a single abstract syntax and persistence re-
source, as depicted in Fig. Unfortunately, Xtext does not provide built-in
UML support and two major challenges hinder the feasibility of our approach,
i.e. resource persistence and profiling support. Given a grammar specification,

15

https://bit.ly/blended_demo
https://bit.ly/blended_demo
https://bit.ly/blended_demo

485

Xtext automatically generates an ANTLR parser and an Ecore metamodel. At
runtime, the parser produces Abstract Syntax Tree (AST) instances conform-
ing to this metamodel. The instances are subsequently used to provide features
such as validation or code generation, but are not stored in a persistent resource.
Models are rather treated as plain-textual resources, which makes the framework
fundamentally incompatible with editors using XMI serialisation, e.g. Papyrus
for UML. Furthermore, the Ecore-based nature of Xtext implies lack of support
for UML-specific features, such as profiling.

The following sections describe in detail how these challenges have been tack-
led. First, we illustrate how Xtext grammar rule and validation patterns can be
combined to mimic UML profiling tasks at runtime, e.g. stereotypes application
and editing (the blended modelling environment in Papyrus is depicted in Fig. [}
in Appendix A). Then, we describe how the Xtext resource management work-
flow can be extended to parse and serialise models conforming to UML-based
DSMLs. To demonstrate our approach, we define a textual modelling language,
XMarte, supporting a small portion of the MARTE profile. In Tables[2and [3]we
list metaclasses, stereotypes and features from (UML and) MARTE included in
XMarte.

Metaclass Features Stereotypes
name
Model -
ode packagedElement
HwProcessor
name
Component ackagedElement HwCache
men
P & Allocated

Table 2: XMarte - Metaclasses

Stereotype Features
HwProcessor nbCores
caches
HwCache level
Allocated kind

Table 3: XMarte - Stereotypes

5.1. UML Profiling in Xtext

The integration of UML profiling in Xtext languages requires appropriate
mechanisms supporting stereotypes application and value editing of their fea-
tures. In particular, multiple stereotypes should be applicable on the same UML
base element, and their features should be editable along with those of the base
element.

16

510

520

525

530

5.1.1. Stereotypes application

Given a stereotyped UML element, the set of editable features consists of
metaclass and stereotype properties. An intuitive approach to represent the
stereotype application on a given metaclass instance would consist in defining
specific grammar rule alternatives originating from the metaclass rule. Indeed,
the Ecore metamodel inference process would generate a metaclass extending
the UML metaclass and containing the stereotype properties. For example, the
rule representing elements of type Component stereotyped as HwProcessor could
be defined as follows.

1 Component returns uml::Component:
2 HwProcessor | ComponentImpl

3

4 HwProcessor returns HwProcessor:
5 'processor’ name=ID ’;'

Exploiting dedicated rule alternatives for each stereotype individually presents
major drawbacks. First, adopting such a strategy to represent the applica-
tion of a single stereotype on multiple base elements could lead to ambiguities,
as illustrated in the grammar below. There, multiple parsing paths connect
HwProcessor rule instances from the packagedElement property in the Model
rule.

Model returns uml::Model:

"model’ name=ID
packagedElement+=Classx*

Class returns uml::Class:
HwProcessor | Component | ClassImpl

Component returns uml::Component:
HwProcessor | ComponentImpl

© 0N U W N

=
o

HwProcessor returns HwProcessor:
'processor’ name=ID ’;’

[
N o=

Moreover, the inferred stereotype metaclass would only extend leaf target
metaclasses, i.e. Component and not Class. Therefore, representing elements
of type Class stereotyped as HwProcessor is not possible. Finally, no support
is provided for multiple stereotype applications on a single element. Although
grammar ambiguities could be addressed by defining dedicated stereotype rules
for each target metaclass, e.g. HwProcessorClass and HwProcessorComponent,
this issue would remain.

In our solution, we addressed the problem by defining a single generic rule
for each metaclass, and possible stereotype applications as boolean properties,
as follows.

Model returns uml::Model:

'model’ name=ID
packagedElement+=Classx*

B oW N =

Class returns uml::Class:
XClass | Component

XClass returns XClass:
(

© ® N o v

17

535

540

545

10 isHwProcessor?='processor’?
11 & isAllocated?="allocated’?
12) ’"class’ name=ID ’;’

13

14 Component returns uml::Component:
15 XComponent

16

17 XComponent returns XComponent:

18 (

19 isHwProcessor?='processor’?
20 & isAllocated?=’allocated’?
21) ’/component’ name=ID ’;’

The grammar above provides an example of stereotypes application using the
XMarte language. The initial rule allows to define a Model containing Component
and Class instances as values of the packagedElement containment reference.
The XComponent and XClass rules illustrate our stereotype application ap-
proach, see lines 8-12 and 17-21. In Xtext, the ?= operator defines boolean
properties with value depending on the presence of a given token, e.g. processor
or allocated. In particular, the value is true if present, false otherwise. In our
context, the value indicates whether or not the corresponding stereotype is ap-
plied. Finally, the & operator indicates unordered groups, i.e. sets of properties
whose order is irrelevant. An example of model conforming to the above gram-
mar, showing unordered combinations of tokens, is illustrated below.

1 model ml {

2 processor component cl;

3 allocated class c2;

4 processor allocated class c3;

5

6

allocated processor component c4;

}

In this, the m1 model contains four stereotyped elements, two components and
two classes. Lines 4-5 provide an example of multiple stereotypes applied on
the same element.

5.1.2. Stereotype properties

An intuitive approach to support the all-in-one-place editing of properties
of the UML base element and applied stereotypes could consist in aggregating
both sets into a single grammar rule, as follows.

1 XComponent returns XComponent:

2 (

3 isHwProcessor?='processor’? &
4 isAllocated?="allocated’? &

5 isHwCache?=’cache’?

6)

7 ’ component’ name=ID '’ {’

8 "nbCores’ ’=’ nbCores=INT?

9 kind’ ’=’ kind=Kind?

10 "level’ ’'=’ level=INT?

11 "caches’ = "{’

12 caches+=XComponent *

13 1y

14 ’'packagedElements’ =" ' {’

15 packagedElement+=Component *

16 1y
17 ryr
18 ;

18

555

560

565

570

575

580

However, this solution presents two fundamental issues. In order to integrate
editing of properties of stereotypes and UML base element, application of a given
stereotype and editing its properties are located in two different parts of the rule.
This solution supports access to the values of stereotype properties, but does
not provide control over their modifiability. For example, the nbCores property
should only be included (thereby modifiable) if the HwProcessor stereotype
is applied, i.e. isHwProcessor is true. Furthermore, treating stereotype and
UML metaclass containment features in the same way leads to illegal models,
see lines 11-16. There, XComponent instances in caches cause problems as
their container remains unset. The instances should rather be inserted in the
packagedElement containment feature and their insertion in caches managed
whenever persisting the model.

Similarly to stereotype applications, our approach provides control over the
modifiability of a given stereotype property by integrating boolean rule proper-
ties and Xtext validation rules. In particular, the solution above is modified as
follows.

1 XComponent returns XComponent:

2 (

3 isHwProcessor?='processor’? &
4 isAllocated?="allocated’? &

5 isHwCache?=’cache’?

6)

7 ’ component’ name=ID '/ {’

8

(

9 (hasNbCores?="nbCores’’="nbCores=INT) ?
10 & (hasKind?=’kind’’=’"kind=Kind) ?

11 & (hasLevel?='level’’='1level=INT)?

12)

13 packagedElement += Componentx

14 ryr

15 ;
For each stereotype property, a simple validation check is defined to raise a
warning on the model if the corresponding stereotype is not applied. The
following Xtend snippet represents a validation check regulating nbCores and
HwProcessor on Component instances.

1 @Check

2 def void checkHwProcessorCores (XComponent xComponent) {
3 if (xComponent.hasNbCores &&

4 !xComponent .isHwProcessor) error(...)

5 }

5.2. Resource management extension

Given a grammar specification, Xtext generates a dedicated textual editor.
The information flow among this and the modified model resource is orches-
trated through a document provider component. All languages share a de-
fault implementation loading and serialising models as plain textual resources.
Inevitably, introducing Xtext-based languages directly editing UML resources
requires adaptations of the document provider to avoid that Xtext and UML
editors corrupt the models whenever they are edited.

In order to address this issue, an extended document provider implementa-
tion introducing a transformation step whenever loading and persisting models

19

585

590

600

is proposed. On the one hand, the editor is populated with the result of a
model-to-text transformation applied on the persisted UML resource and con-
forming to the Xtext grammar. Inversely, the editor content is parsed using the
generated Xtext language-specific parser and merged with the persisted UML
resource using a model-to-model transformation. Both transformations only
take into consideration metaclasses, stereotypes and properties covered by the
Xtext-based textual language representing the specific UML profile.

The following Xtend template illustrates the model-to-text transformation
rule serialising Component instances in XMarte. In this, stereotype application
checks and property accesses are encapsulated into separate extension methods
for the sake of brevity.

rrr

1 def transform(Component component)
2 «IF component.isAllocated»

3 allocated

4 «ENDIF»

5 «IF component.isHwProcessor»

6 processor

7 «ENDIF»

8 «IF component.isHwCache»

9 cache

10 «ENDIF»

11 component «component.name» {
12 «IF component.hasKind»

13 kind = «component.kind»

14 «ENDIF»

15 «IF component.hasNbCores»

16 cores = «component.nbCores»
17 «ENDIF»

18 «IF component.hasLevel»

19 level = «component.level»

20 «ENDIF»

21 «FOR element : component.packagedElement»
22 «element.transform»

23 «ENDFOR>»

24 }
25 s

Code in lines 2-10 checks whether the Allocated, HwProcessor or HwCache
stereotypes are applied on the element. If yes, the corresponding token is added.
Code in lines 12-20 handles stereotype properties. Finally, the execution con-
tinues recursively transforming the elements contained in the packagedElement
containment feature.

The model-to-text transformation replaces the serialiser generated by Xtext
that is not able to handle stereotype serialisation nor to process UML elements
not included in the Xtext language but present in the resource. The model-
to-model synchronisation rule addressing pairs of XComponent and Component
instances is illustrated below.
def merge (XComponent xComponent, Component component) {

// Component.name

component .name = xComponent.name

// Allocated

if (xComponent.isAllocated) {
component .applyStereotype (Allocated)

// Allocated.kind

if (xComponent.hasKind) {
component .kind = xComponent.kind

}

© 0N U s W N

=
o

20

620

11 }
12 // HwProcessor

13 if (xComponent.isHwProcessor) {

14 component .applyStereotype (HwProcessor)
15 // HwProcessor.nbCores

16 if (xComponent.hasNbCores) {

17 component .nbCores = xComponent.nbCores
18 }

19 }

20 // HwCache

21 if (xComponent.isHwCache) {

22 component .applyStereotype (HwCache)

23 // HwCache.level

24 if (xComponent.hasLevel) {

25 component.level = xComponent.level

26 }

27 }

28

29 // Component.packagedElement - deleted

30 deletedComponents (xComponent, component)
31 .forEach[destroy]

32 // Component.packagedElement - inserted
33 insertedComponents (xComponent, component)
34 .forEach[create]

35 // Component.packagedElement - updated

36 updatedComponents (xComponent, component)
37 .forEach [merge]

38

39 // HwProcessor.caches

40 if (xComponent.isHwProcessor) {

41 component .caches = getComponents (component)
42 .filter[isHwCache]

43 }
44 }

Code in lines 4-27 propagates XComponent stereotype applications and prop-
erties on the Component instance, if set. As previously mentioned, extension
methods are used to encapsulate operations involving stereotypes. Code in
lines 29-37 manages the packagedElement containment reference with specific
focus on Component instances. There, deleted components represent those per-
sisted elements not having a counterpart in the Xtext model. Inversely, inserted
components are only contained in the Xtext model. Finally, code in lines 39-43
handles the HwProcessor.caches stereotype reference. In our approach, in-
deed, stereotype references are not explicitly managed in the grammar. The
reference is simply processed inserting the components stereotyped as HwCache
from packagedElement.

The model-to-model transformation is needed to handle the merging of the
textual model with the persistent UML resource, and more specifically to pre-
serve UML elements in the resource that are not covered by the textual lan-
guage.

6. Experiment

We set up and ran an experiment following in general the guidelines for
experimentation in software engineering by Wohlin et al. [32] and in particular
the practical guide to experiments of software engineering tooling with human
participants by Ko et al. [33].

21

6.1. Design and execution

The variables identified for our experiment were:

e Independent variable: editing notations available for modelling purposes.
Possible values: single-notation (S), blended multi-notation (B).

e Dependent variable: modelling effort in terms of time (MT). To test the
effects on it, we separate it into modelling time with single notation (MTs)
and modelling time with blended notations (MTg5)

The independent variable was controlled to test the effects of its possible values
on the dependent variable.
Our null and alternative hypotheses were:

Null hypothesis (Hg): modelling time using seamless blended modelling fea-
tures (MTg) is equal or greater than modelling time using standard single-
notation modelling features (MTs): MTg > MTs.

Alternative hypothesis (H;): modelling time using seamless blended mod-
elling features (MTg) is lower than modelling time using standard single-notation
modelling features (MTs): MTp < MTs.

The experimental questions (EQs) that we wanted to answer while testing Hy

were:

EQ1 - Given blended modelling support, does usage of user-preferred modelling
notations decrease modelling time compared to standard single-notation?

EQ2 - Given blended modelling support, does usage of task-optimal modelling
notations decrease modelling time compared to standard single-notation?

EQ3 - Given blended modelling support, which among usage of task-optimal
and usage of user-preferred modelling notations is more efficient in terms
of modelling time?

Before addressing EQs to test Hy, we carried out an informal review of
state of the art and practice of blended modelling in order to identify possible
existing solutions to use for our purposes. As explained in detail in Section [3]
there was no solution with fully-fledged blended modelling features. So, we first
designed and implemented a proof-of-concept solution for blended modelling for
UML profiles, focusing on textual and graphical concrete syntaxes and multiple
stereotype application support. This solution, outlined in Section [d]and detailed
in Section [5| allowed us to test Hy and answering to EQ1-2-3.

As suggested by Ko et al., we designed and ran our experiment through the
following key activities:

Recruitment. We recruited potential participants by sending personal emails
to entice people. We sent out the invitation to 50 subjects and gathered
18 willing to participate.
Selection. Out of the 18 recruited subjects, 14 were selected after applying
inclusion criteria, which were the following:
— >3 years of experience with software design and development; based
on the experience trichotomy proposed by Falessi et al. [34], we did
not include subjects with shorter experience level (0-2 years).

22

705

— >2 previous projects with UML-based software design in Eclipse/-
Papyrus.

Consent. We described the experiment in detail (including the final purpose
and intent to report it as scientific peer-reviewed publication) to the sub-
jects, whom consented by accepting to participate. All selected partici-
pants gave their verbal consent.

Procedure. The subjects were to carry out all tasks right after training. The
experimenter prepared the modelling environment and switched between
editors to initialise tasks. He also managed time keeping by measuring
actual elapsed time per task. Questions were allowed in the training ses-
sions and before starting with a task. Once a participant had completed
all the tasks, we asked whether (s)he had a preferred notation; we used
that information to aggregate data for answering to EQs.

Assignment to tasks. To distribute variation in participants’ behaviour across
conditions evenly, we chose to make all subjects carry out all tasks.
Training. The notations that we exploited were the UML standard graphi-
cal notation and two custom textual languages defined by us with Xtext,
with related grammar and editor: XMarte, representing a sub-set of the
HwLogical package of the MARTE profile for UML, and SmText, repre-
senting a minimal sub-set of UML state machines (supporting only states
and transitions). All subjects started the experiment with a 3-hour train-
ing time to study the Xtext languages for XMarte and SmText as well as
the tasks to be performed, including questions to the experimenter. More
specifically, 1.5h was dedicated to an introduction, by the experimenter,
of the technologies, the languages to be used as well as a description of
the experiment and entailed modelling tasks. After that, the subjects
had 1h for experimenting and trying out the modelling environment and
the languages. To conclude the training session, 0.5h was dedicated to an
open session for Q/A (questions to the experimenter could be asked during
the entire training session, too). During the training sessions, it was quite
clear that different people reacted differently (i.e., varying learning curves)
to the two notations, depending on their previous skillset and familiarity

to them.

Tasks. We defined the following four modelling tasks:

— C1: create a UML platform package with two processors as follows:

1. create a Class called Platform’

2. create a Component called ’AProcessor’ with applied stereotypes
Allocated and HwProcessor

3. set kind property of Allocated stereotype to ’executionPlat-
form’

4. set nbCores property of HwProcessor to ’'4’

5. add pre-existing HwCache element 'ACache’ to caches property
of HwProcessor of ’AProcessor’

6. create a Component called 'BProcessor’ with applied stereotypes
Allocated and HwProcessor to 'BProcessor’

7. set kind property of Allocated stereotype to ’executionPlat-

23

715

720

725

730

735

form’

8. set nbCores property of HwProcessor to ’1’

9. add pre-existing HuCache 'BCache’ to caches property of HwProcessor
of "BProcessor’

1. create a Class called ’CCache’ with applied stereotypes Allocated
and HwCache
2. add 'CCache’ to caches property of HwProcessor of ’AProces-
sor’
caches property of HwProcessor stereotype of Component ’AProces-

: populate a UML state-machine diagram (see Fig. {4 as follows:
create an Initial called 'state 0’
create a State called 'state 1’
create a State called 'state 2’
create a State called 'state 3’
create a Join called ’state 4’
create a FinalState called 'state 5’
create a Transition from ’state 0’ to ’state 1’
create a Transition from ’state 1’ to ’state 2’
create a Transition from ’state 1’ to ’state 3’
10. create a Transition from ’state 2 to ’state 4’
11. create a Transition from ’state 3’ to ’state 4’
12. create a Transition from ’state 4’ to ’state 5’
— M2: rename all states from ’state x’ to ’s_x’
The graphical models resulting from task C1 and C2 are depicted in Fig.
and Fig. [respectively, while the textual ones are listed in Listing [I] and

Listing

I
Qg
© 00N ST WSS

7 Platform
«Component» «Component»
«Allocated, HwProcessor» «Allocated, HwProcessor»
= | AProcessor = | BProcessor
Q «Allocated, HwCache» ACache Q «Allocated, HwCache» BCache

Figure 3: Resulting class diagram from C1 modelling task

Each participant was asked to perform all tasks described above sequen-
tially (in the order above). The experimenter prepared the modelling
environment and the specific (graphical or textual) editor to be used. In
graphical mode, tasks were performed in the Papyrus graphical editor
(including diagram editor, model explorer and properties view): Cl and
M1 started in an editor initialised with an empty class diagram, while

24

package Platform{
allocated processor component AProcessor {
kind = executionPlatform
cores = 4
allocated cache component ACache {
kind = executionPlatform
level =1
}
allocated cache component CCache {
kind = executionPlatform
level =1
}
}
allocated processor component BProcessor {
kind = executionPlatform
cores =1
allocated cache component BCache {
kind = executionPlatform
level = 2

Listing 1: Textual model resulting from the C1 modelling task

a SM R
§§3L4
state_1 state_3
&)=~
state_O

0

[state_2) state_5

(. J

Figure 4: Resulting state-machine diagram from C2 modelling task

C2 and M2 in an editor initialised with an empty state machine diagram.
Note that the graphical layout (i.e., the placement of graphical elements)
was not considered in the experiment and participants were free to place
elements as they liked in the graphical editing space. In textual mode,
750 C1 and M1 were performed in a Xtext textual editor generated for the
XMarte language, while C2 and M2 in a Xtext textual editor generated
for the SmText language. Each participant carried all tasks twice, once
per notation (graphical and textual).
Outcome measurement. We were interested in task completion time (i.e.,
755 modelling effort in terms of time). For each modelling task and used
notation, elapsed time for modelling was measured for each participant

25

765

770

775

780

statemachine SM{

statesq{
initialState state_0
state state_1
state state_2
state state_3
joinState state_4
finalState state_5

}

transitions{
state_0 to state_1
state_1 to state_2
state_1 to state_3
state_2 to state_4
state_3 to state_4
state_4 to state_b

Listing 2: Textual model resulting from the C2 modelling task

and the arithmetic mean across subjects was calculated.
Debriefing. We debriefed the participants by asking for general comments and
feelings while carrying out the tasks.

6.2. Results

The modelling tasks were performed individually by 14 subjects, with vary-
ing experience levels (in years: min 3, max 9, mean 4) in software (UML-based)
design and development. Three user types were considered:

e @, preferring graphical notation;

e T, preferring textual notation;

e N, no preference.

The distribution of types was: G = 6, N = 3, T = 5. Table [f] shows the results
of the experiment, where we provide the arithmetic mean (u) of the individual
sets of values overall, per notation, per user-preferred notation, and per task-
optimal notation. We provide the standard deviation on the individual total
modelling times per user type and notation too.

We measured the time it took for each participant to perform the tasks with
each notation (only active modelling time) and calculated the arithmetic mean
for each group and task by notation. Rows 1-2, 3-4 and 5-6 show the mean times
(1) for each user type (G, N, T respectively) to complete each of the four tasks
by notation. The user-preferred notation is highlighted in bold (i.e., ’Graphical’
for G users, 'Textual’ for T users, while N users did not have any preference).

Looking at the total modelling times (column X'), the use of blended nota-
tions (rows 9-10) leads to lower modelling times than by using a single notation
(rows 1-8). This made us refute Hy and accept Hj.

Looking at the performance of the individual user types, we can notice that,
overall, G (row 1) and T (row 6) performed better using their preferred notation

26

785

790

795

800

805

810

Settings w modelling time

User Notation C1 M1 C2 M2 X o

type
1 G Graphical || 130.2 39 63.5 | 32.8 265.5 | 189
2 Textual 103.9 | 21.4 | 164.1 | 35.2 324.6 25.2
3 N Graphical 150.9 | 43.2 83.5 42.1 319.7 23.1
4 Textual 93.2 22.6 165.8 | 28.1 309.7 24.9
5 T Graphical 171.1 | 81.5 | 101.2 | 61.2 415 35.7
6 Textual 71.6 18.7 134.5 20.3 245.1 12.9
7 All Graphical 150.7 | 54.6 82.7 45.4 333.4
8 Textual 89.6 | 20.9 | 154.8 | 27.9 293.2
9 | G-T | User-pref. 100.9 | 24.6 84 27.7 237.2
10 | All Task-opt. 89.6 | 18.1 | 82.7 | 24.1 || 214.15

Table 4: Aggregated elapsed modelling times (in seconds)

(X column). In some specific cases though, the free choice of notation does not
pay off (i.e., C1 and M1) and a task-optimal notation (i.e., textual for C1 and
M1) would be preferable. In fact, we noticed that different notations are more
suitable for different modelling tasks and that, besides previous experience with
one or another, in general enforcing the use of a task-optimal notation decreases
modelling time. In our experiment, the usage of task-optimal notations led to
the fastest modelling times (row 10) overall, independently of the task at hand.

Overall (rows 7-8), textual editing resulted faster when creating stereotyped
elements and setting their properties (C1). This is due to the possibility to
customise Xtext grammars to only require a minimum amount of information
to be entered by the modeller (while the underlying base UML elements are
created by our stereotypes application transformation). The same goes for the
modification of an existing model by inserting a new model element (M1). One
of the issues related to graphical editing is the need to interact with multiple
windows (e.g., properties view for profile-related operations) leading to an overly
high amount of mouse clicks needed to navigate across views and edit model
elements. The problem of mouse clicks affects the diagram editing too, but it is
mitigated in some cases by the intuitiveness of visual diagrams.

The creation of state-machines resulted to be faster with the graphical nota-
tion (C2). This is mainly due to a swifter creation of transitions between states
using the graphical editor (more effective also than using copy&paste&modify in
textual editing) As expected, the textual notation resulted to be faster when re-
naming model elements (M2). This was thanks to the possibility to copy&paste
in a swift manner. We did not use regex search&replace to avoid editor-related
bias. In fact, regex search&replace would not work for, e.g., applied stereotype
names using graphical editors (those changes would require a delete/add pair of
actions instead), while it would work on text.

Let us summarise the experiment’s results by answering our EQs:

EQ1 - Given blended modelling support, does usage of user-preferred modelling

27

815

820

825

830

835

840

845

850

notations decrease modelling time compared to standard single-notation?
Yes, the usage of user-preferred notations can decrease modelling time (X
in row 9 as opposed to X in rows 7-8).

EQ2 — Given blended modelling support, does usage of task-optimal modelling
notations decrease modelling time standard single-notation? Yes, the us-
age of task-optimal notations can decrease modelling time (X in row 10
as opposed to X in rows 7-8).

EQ3 — Given blended modelling support, which among usage of task-optimal
and usage of user-preferred modelling notations is more efficient in terms
of modelling time? The usage of task-optimal notations is more efficient
in terms of modelling time (X in row 10 as opposed to X in rows 9).

While this experiment was not meant to provide a definitive quantification
of benefits of blended modelling, it was very useful to give a glimpse on them
when users have different editing preferences/skills and face various modelling
tasks, and we can conclude that blended capabilities, no matter whether the
inclination is towards user-preferred or enforced task-optimal notations, bring
improvements in the modelling activities and decreases modelling time overall
(rows 9-10). Despite the results related to EQ3, we tend to believe that a bal-
anced combination of user-preferred and task-optimal notations could represent
the best modelling solution. The goodness of such a combination depends on
two factors: modelling tasks to be performed and stakeholder’s preference/skills.
For this reason, it is hard to identify a generic optimal combination.

Note that the modelling tasks were run sequentially and individually, thus
not requiring merge/diff support. In a fully collaborative scenario, such a sup-
port would be vital, therefore it is paramount to equip multi-notation modelling
with powerful collaborative features.

6.3. Threats to validity

In this subsection we argument on the potential validity threats of our ex-
periment and how we eventually mitigated them.

6.3.1. Internal validity

Internal validity refers to extraneous variables and inaccurate settings that
may have had a negative impact on the design of the experiment [35]. In this
study, subjects were selected in a homogeneous population of computer scientists
with focus on software engineering and modelling experience. The results show
that possibly small differences in the background of the subjects did not play
any significant role. Furthermore, there was no repeated testing on the same
subjects and no change in the modelling environment. Since each subject was
only subject to one complete experiment treatment, no differential attrition in
terms of subjects withdrawing between experiment rounds occurred. Although
we tried to shape the modelling tasks so as not to favour any subject type, it
might always occur that their actual construction may favour one over another.
Nevertheless, given the experiment results we believe that this possibility was
not to affect the drawn conclusions.

28

855

880

6.3.2. External validity

External validity refers to the generalisability of causal findings with respect
to the desired population and settings [35]. In our experiment, researchers with
software design and development experience between three and nine years were
employed as experiment subjects. Could the results be generalised to even
more experienced researchers? The fact that, in our population, we did not no-
tice extreme advantages for more experienced researchers make us believe that
this generalisation can be made, although it is hard to quantify it. Moreover,
the subjects were a mix of academic researchers (10) with experience in in-
dustrial projects and industrial researchers (4). Can the results be generalised
to industrial practitioners with more specific (narrow) expertise and stronger
notation-specific preferences? The results of the experiment make us believe
in this generalisation, although an extended experiment would be needed to
quantify the generalisability of the results.

6.3.3. Construct validity

Construct validity refers to the extent to which an identified causal rela-
tionship can be generalised from the particular methods and operations of a
specific study to the theoretical constructs and processes they were meant to
represent [35]. Regarding the modelling scenarios, although they were limited in
terms of complexity, they represented a fair variety of common modelling situa-
tions to test the usefulness of different modelling notations. Regarding the time
measurements, the validity of the elapsed times to complete the individual sce-
narios can always be questioned since possibly affected by several variables out
of control. We minimised this threat by measuring active monotonous elapsed
modelling times rather than total times for completing the scenarios.

6.3.4. Ecological validity

Ecological validity concerns the level to which experimental conditions ap-
proximate the real world [35]. In our experiment, we used the actual modelling
environment we wanted to assess and real software developers/designers to max-
imise ecological validity. One threat is represented by the fact that the modelling
scenarios where not taken directly from a real modelling project, but rather cho-
sen ad-hoc to be easily understandable by non experts of specific domains, to
exploit the most common aspects of UML and profiles, and to be simple enough
for the execution times to mostly reflect the blended modelling features rather
than the modelling of complex concepts. We are planning more extensive studies
in industrial settings, which would increase ecological validity even more.

6.3.5. Conclusion validity

This refers to the relationship between experiment measurements and ob-
tained findings [32]. We mitigated potential threats by systematically applying
and documenting synthesis of measurements. We only considered active elapsed
modelling times (i.e., time when subjects were actively carrying out a modelling
task) and only calculated average means across sub-groups of two subjects in

29

900

905

910

915

each subjects group. Note that this experiment was limited in terms of pop-
ulation size and complexity of modelling tasks, since our goal was to get a
proof-of-concept of the potential benefits of blended solutions, given the current
prototypical framework. Further experiments with more complex modelling sce-
narios and a larger population will be run once the framework reaches a release
level. Then, we will also test the possibility to use multiple notations for dif-
ferent sub-tasks, where we believe great advantages of using blended modelling
would arise. Anyhow, considering the overall results of the experiment (lower
modelling time with blended notations) in relation to the limited complexity
of modelling scenarios, we expect the benefits of blended solutions to be even
sharper when dealing with more complex modelling scenarios and carried out
by domain experts.

7. Discussion

To experiment on whether a blended modelling environment could provide
beneficial improvements to modelling activities and decrease modelling time,
we implemented a prototype based on Papyrus and Xtext in the Eclipse en-
vironment. There are alternative approaches to the development of a blended
modelling environment for UML profiles, but any such tool must address some
common issues such as the synchronisation of multiple representations by ed-
itors as well as their persistence, or the handling of cross-references between
model elements.

For the purpose of synchronisation, some tools may choose to keep sep-
arate representations and use explicit transformations between them to keep
them up-to-date. An advantage of this approach is that representations could
be persisted in the format preferred by the users or tools. The disadvantage
is that such transformations must be explicitly written and maintained, when
the language evolves. This entails the problem of keeping the transformations
consistent with the language and with each other. Furthermore, keeping sepa-
rate representations would be prone to error in a collaborative environment, as
multiple copies of the same model could be modified separately in inconsistent
ways.

A different approach is that of projectional editors which, as previously dis-
cussed, keep only one underlying representation of the model’s abstract syntax
and different editors and viewers are responsible for the conversion between ab-
stract and concrete syntax. The obvious advantage here is that it avoids the
problems described in the previous paragraph, as there is no need for transfor-
mations between representations. A disadvantage is that it may not provide the
same flexibility of storing multiple representations.

For the purpose of supporting UML-based profiles specifically in a blended
environment, there are additional challenges, in particular, the support for mul-
tiple stereotype applications. Our solution leverages Xtext’s own mechanisms
which infer an appropriate Ecore meta-model upon which the generated envi-
ronment operates. To achieve the seamless synchronisation we override Xtext’s
document provider behaviour, which maps domain elements to documents, and

30

970

975

9280

is used by (textual) editors to update the textual representation, the abstract
syntax elements, notify listeners of changes, etc. By overriding Xtext document
provider, we are able to maintain only one common resource.

Our approach can be considered as semi-projectional, differing from existing
projectional tools, such as MPS, in several ways: 1) it addresses support for
DSMLs defined as UML profiles; 2) the textual representation is truly textual,
as opposed to a form-based representation, and thus enables the use of text-
based tools (e.g. regex search); 3) it relies on existing mature frameworks for
graphical modelling with UML (Papyrus) and text-based IDEs (Xtext).

In Section[4] we listed a set of five improvements to current practices brought
by our blended modelling framework, which we discuss in the followings.

7.1. Grammar customisability

Given a UML profile (or any other EMF-based DSML), Xtext grammars
could be semi-automatically generated to define a textual concrete syntax for
the profile (or part of it). Xtext provides an out-of-the-box features for gener-
ating grammars from UML profiles. The generation process is not customisable
nor parametric. That is to say, generated grammars are in most cases unus-
able in practice without refactoring and manual tuning. That was the case for
the MARTE profile. In our solution, we manually created and customised an
Xtext grammar from a sub-set of MARTE. Doing so, we were able to provide a
customised and convenient solution to blended modelling for UML and MARTE.

Nevertheless, a blended modelling environment shall provide a specific fea-
ture for parametric and semi-automatic generation of Xtext grammars from
profiles, so as to be customisable and refactorable to fit the stakeholder’s needs.
This would not jeopardise the (de-)serialisation mechanisms as long as it does
not break the conformance of models to the UML profiles specification (i.e.,
metamodel). We are currently working on such a feature, which is expected to
heavily simplify the job of a DSML developer.

7.2. Multiple stereotypes application in textual format

The possibility to apply multiple stereotypes (coming from the same and/or
from different profiles) is crucial to provide a full-fledged modelling environment
for UML and profiles. Currently, since Xtext does not provide out-of-the-box
features for generating grammars entailing concepts embodied in different pro-
files (or packages within a profile), this is not trivial to achieve. In this work, we
showed how we provided our framework with such a feature combining gram-
mar rules representing stereotyped metaclass instances and runtime validation
checks. Stereotype applications correspond to boolean rule properties, literally
indicating whether or not a given stereotype is applied. A similar approach sup-
ports stereotype properties together with dedicated validation checks regulating
their availability, i.e. prevent editing the properties of non-applied stereotypes.
Each stereotype is managed independently, hence an indefinite number of stereo-
type applications can be handled on a single element. Furthermore, users have
the possibility to easily introduce additional constraints concerning one or more

31

985

9290

1000

1005

1010

1015

1020

stereotypes in the form of validation checks, e.g. HwProcessor instances should
contain at least one packaged element stereotyped as HwCache.

When a stereotype is applicable to multiple UML base elements, there would
be duplicates in the grammar (one rule per base element). Initially, we tried
to avoid this by using Xtext’s fragment rules. However, since fragments were
not compatible with unordered sets in Xtext and we did not want to impose a
specific order for stereotype tokens and stereotype properties, we decided to get
rid of fragments and opt for better usability of the textual languages instead
rather than a more condensed grammar.

7.3. Cross-profile modelling

One of the main characteristics of our solution is that it does not entail
complex profile-specific explicit synchronisation transformations between tex-
tual and graphical notations. This makes most of the framework cross-profile.
The only transformations needed for propagating stereotype applications across
the notations are mainly based on the grammar, hence generalisable. The mech-
anism itself is cross-profile and profile-specific instances such as XMarte can be
generated from its metamodel definition in a semi-automated manner, with the
help of the blended DSML developer for more complex cases.

7.4. On-the-fly changes propagation

Model changes done in one view are seamlessly reflected and visible in the
other views (graphical, textual and tree-based views in Figure [5)). On-the-fly
propagation is achieved thanks to a single persistent resource shared among
the views. Although the propagation does not produce tangible delays in the
rendering of the changed model across notations, the stakeholder may want
to disable it for specific reasons (e.g., sketching purposes with non-conforming
models). This feature is currently not available in the framework, but we are
working on it.

7.5. Cross-notation multi-view modelling

We showed how an Xtext-based textual language (XMarte), with related
grammar and editor, representing only a sub-set of the HwLogical package of
MARTE can seamlessly work on a UML resource containing other UML and
MARTE concepts (e.g., UML elements in SW_Functions package and MARTE
«Allocate» in Figure |5). For instance, XMarte would be suitable for a plat-
form modeller, who might not need or want to view functional details. This is
possible thanks to our enhanced Xtext resource management, which, instead of
overwriting the in-memory model with plain text, propagates changes directly
to the UML resource, the same used for editing and rendering UML models in
the graphical and tree-based views by Papyrus.

As further enhancements of the multi-view nature of our framework, we plan
to provide features for layered accessibility to shared information with multi-
ple read/write access rights levels, enforcement of specific notations depending

32

1025

1030

1035

1040

1045

1050

1055

1060

1065

on the stakeholder roles, wizard-based customisability of perspectives, and in-
clusion of additional notations (besides graphical and textual, such as tabular,
form, etc).

8. Conclusion

In this paper we described our work towards an open-source framework for
blended graphical-textual UML modelling based on Eclipse, Papyrus and Xtext.
The framework aims at advancing the state of the practice of blended UML
modelling by providing support for: textual grammar customisability, flexible
application of multiple stereotypes on UML base elements using textual lan-
guages, cross-profile modelling based on blended notations, on-the-fly changes
propagation across notations, and cross-notation multi-view modelling. We ran
two experiments to assess the potential impact of blended solutions on modelling
effort, in terms of time.

Different notations are more suitable for different modelling tasks and, be-
sides previous experience of the modeller with one or the other, enforcing the
use of a task-optimal notation can decrease modelling time. Overall, stake-
holder’s free choice of notation does decrease modelling time and subjects used
to a specific notation perform overall better using their preferred notation. Nev-
ertheless, for specific modelling tasks, enforcing a task-optimal notation has a
better impact on modelling time. To summarise, we can conclude that a bal-
anced combination of freely chosen and fixed task-dependent notations may
represent the optimal solution. The goodness of such a combination depends on
two factors: modelling tasks to be performed and stakeholder’s preferences. For
this reason, it is hard to identify a generic optimal combination. In any case,
we could observe that blended capabilities bring improvements in the modelling
activities and decreases modelling time.

9. Future work, dissemination and communication

One limitation of our approach is that the process of developing the blended
environment for UML-based DSMLs is not fully automated, as the designer
is expected to adapt the Xtext grammar according to her taste and write the
endogenous model-to-model transformation described in the technical solution.
This transformation may be achieved in a (semi-)automated fashion, but we
leave this for future work, as it was not needed to address our EQs.

Our current solution does not persist a textual file representing the model
since synchronisation is achieved in-memory. Nevertheless, we are aware of the
fact that the user could want to work on a plain-textual file for, e.g. storing in
a version control system. We plan to enhance the approach to give the users
the possibility to persist the model in its textual format, and transform it to
and from an in-memory model to exploit the blended modelling environment.
When the model is in memory, all synchronisations would occur on it, but when

33

1070

1075

1080

1085

1090

1095

1100

1105

saving it to a persistent resource, the user would get the choice to transform it
back to text or as a UML resource.

In order to provide a more definitive quantification of the potential improve-
ments brought by blended modelling, we plan to run additional experiments with
practitioners from different domains and at different phases of the development
life-cycle (e.g., requirements modelling, software design, information modelling,
etc). We have built an international consortium across 3 countries and run-
ning a project in the ITEA3 cluster programme on blended graphical-textual
modelling called BUMBLHﬂ In that context, we plan to build upon the work
reported in this paper for the framework to reach a full-fledged level. In the
same context, we will run more extensive controlled experiments and industrial
case-studies too.

The solutions originated from this work and enhanced in the BUMBLE
project will be released as part of the Eclipse ecosystem and with EPL license.
We aim at establishing a long term Eclipse project providing and supporting
those solutions. Since the base technologies are meant to be released in the
open-source community, an important element of the dissemination plan con-
sists in leveraging the different opportunities provided in the Eclipse community,
including Eclipse conferences (e.g., EclipseCon Europe) and marketing. We will
also collaborate with the Eclipse Working Groups, Papyrus and Capella Indus-
try Consortia to reach out to industrial MDE tool users.

We plan to disseminate results via research forums (conferences, workshops),
corporate presentations, participation to industrial events like expos, on-line
community forums for Eclipse, social media, fact sheets and wikis.

The intended end users for these technologies are practitioners, researchers,
teachers and students as follows:

e Companies using modelling tools: seamless blended modelling has the po-
tential to lower development time. Communication between stakeholders
will improve and the communication overhead due to mismatching views
and different familiarity level to specific notations is expected to decrease
both at provider level (company) and at end-user level (company’s cus-
tomers). The learning time for a new user is reduced thanks to multiple
notations. The possibility to alternate graphical and textual is expected
to provide a better mutual understanding between collaborating users and
across different stakeholders already from the learning phase.

e Research: blended modelling will provide a flexible multi-notation infras-
tructure boosting research in multiple domains. The possibility to switch
between notations allows to focus on the semantics of the information
to be modelled rather than on their representation. Graphical notations
provide a means for reasoning and sketching, while textual notations can
be used for maximising the efficiency of model manipulations and trans-
formations. Collaborative features of the framework will boost research

5https ://itea3.org/project/bumble.html

34

https://itea3.org/project/bumble.html

1110

1115

1120

1125

1130

1135

1140

carried out in a collaborative fashion too.

e Education/training: blended modelling techniques and tools can be em-
ployed for teaching and training, and are expected to dramatically push
down the learning curve for modelling activities, by making students/-
trainees less reliant on one single specific notation.

Acknowledgements

This research is funded by VINNOVA through the BUMBLE project (18006)

and the Knowledge Foundation through the HERO project (20180039).

References

(1]

2]

13

4]

[5]

16]

7]

18]

19]

J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical as-
sessment of MDE in industry, in: Procs of ICSE, IEEE, 2011, pp. 471-480.

G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng, P. Collet,
B. Combemale, R. B. France, R. Heldal, J. Hill, et al., The relevance of
model-driven engineering thirty years from now, in: International Confer-

ence on Model Driven Engineering Languages and Systems, Springer, 2014,
pp. 183-200.

IBM Rational Software Architect, http://www-03.ibm.com/software/
products/en/ratsadesigner/, latest access: 2020-05-05.

SparxSystems Enterprise Architect, http://www.sparxsystems.eu/
enterprisearchitect/, latest access: 2020-05-05.

A. Charfi, A. Schmidt, A. Spriestersbach, A hybrid graphical and textual
notation and editor for UML actions, in: Procs of ECMFA, Springer, 2009,
pp. 237-252.

F. Ciccozzi, M. Tichy, H. Vangheluwe, D. Weyns, [Blended modelling —
what, why and how, in: MPM4CPS workshop, 2019.
URL http://www.es.mdh.se/publications/5642-

A. Cicchetti, F. Ciccozzi, A. Pierantonio, Multi-view approaches for soft-

ware and system modelling: a systematic literature review, Software &
Systems Modeling (2019).

D. Emery, R. Hilliard, Every architecture description needs a framework:
Expressing architecture frameworks using iso/iec 42010, in: Procs of ECSA,
2009.

N. Boucké et al., Characterizing Relations between Architectural Views,
Springer Berlin Heidelberg, 2008.

35

http://www-03.ibm.com/software/products/en/ratsadesigner/
http://www-03.ibm.com/software/products/en/ratsadesigner/
http://www-03.ibm.com/software/products/en/ratsadesigner/
http://www.sparxsystems.eu/enterprisearchitect/
http://www.sparxsystems.eu/enterprisearchitect/
http://www.sparxsystems.eu/enterprisearchitect/
http://www.es.mdh.se/publications/5642-
http://www.es.mdh.se/publications/5642-
http://www.es.mdh.se/publications/5642-
http://www.es.mdh.se/publications/5642-

1145

1150

1155

1160

1165

1170

1175

[10] Umple, http://cruise.eecs.uottawa.ca/umple/, latest access: 2020-05-
05.

[11] FXDiagram, http://jankoehnlein.github.io/FXDiagram/, latest ac-
cess: 2020-05-05.

[12] Eclipse Sprotty, https://projects.eclipse.org/proposals/
eclipse-sprotty, latest access: 2020-05-05.

[13] LightUML, http://lightuml.sourceforge.net/, latest access: 2020-05-
05.

[14] TextUML, http://abstratt.github.io/textuml/, latest access: 2020-
05-05.

[15] MetaUML, https://github.com/ogheorghies/MetaUML, latest access:
2020-05-05.

[16] PlantUML, http://plantuml.com/} latest access: 2020-05-05.

[17] Jetbrains MPS, https://www.jetbrains.com/mps/, latest access: 2020-
05-05.

[18] Qt, https://www.qt.io/, latest access: 2020-05-05.

[19] C.-L. Lazar, Integrating Alf editor with Eclipse UML editors., Studia Uni-
versitatis Babes-Bolyai, Informatica 56 (3) (2011).

[20] F.P. Andrés, J. De Lara, E. Guerra, Domain specific languages with graph-
ical and textual views, in: Procs of AGTIVE, Springer, 2007, pp. 82-97.

[21] M. Scheidgen, Textual modelling embedded into graphical modelling, in:
Procs of ECMFA, Springer, 2008, pp. 153-168.

[22] M. Wimmer, G. Kramler, Bridging grammarware and modelware, in: Procs
of MoDELS, Springer, 2005, pp. 159-168.

[23] C. Atkinson, R. Gerbig, Harmonizing textual and graphical visualizations
of domain specific models, in: Procs of GMLD, 2013, pp. 32-41.

[24] S. Maro, J.-P. Steghofer, A. Anjorin, M. Tichy, L. Gelin, On Integrating
Graphical and Textual Editors for a UML Profile Based Domain Specific
Language: An Industrial Experience, in: Procs of SLE, 2015, pp. 1-12.

[25] L. Addazi, F. Ciccozzi, P. Langer, E. Posse, Towards Seamless Hybrid
Graphical-Textual Modelling for UML and Profiles, in: Procs of ECMFA,
Springer, 2017, pp. 20-33.

[26] Eclipse Modeling Framework, https://www.eclipse.org/modeling/
emf /|, latest access: 2020-05-05.

[27] Papyrus, https://eclipse.org/papyrus/, latest access: 2020-05-05.

36

http://cruise.eecs.uottawa.ca/umple/
http://jankoehnlein.github.io/FXDiagram/
https://projects.eclipse.org/proposals/eclipse-sprotty
https://projects.eclipse.org/proposals/eclipse-sprotty
https://projects.eclipse.org/proposals/eclipse-sprotty
http://lightuml.sourceforge.net/
http://abstratt.github.io/textuml/
https://github.com/ogheorghies/MetaUML
http://plantuml.com/
https://www.jetbrains.com/mps/
https://www.qt.io/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://eclipse.org/papyrus/

[28] Xtext, http://www.eclipse.org/Xtext/, latest access: 2020-05-05.

[29] B. Selic, G. Gullekson, P. T. Ward, Real-Time Object Oriented Modeling,
Wiley & Sons, 1994.

uso [30] B. Selic, S. Gérard, Modeling and analysis of real-time and embedded sys-
tems with UML and MARTE: Developing cyber-physical systems, Elsevier,
2013.

[31] F. Ciccozzi, A. Cicchetti, M. Sjodin, Round-trip support for extra-
functional property management in model-driven engineering of embedded
1185 systems, Information and Software Technology 55 (6) (2013) 1085-1100.

[32] C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson, B. Regnell, A. Wess-
lén, Experimentation in software engineering, Springer Science & Business
Media, 2012.

[33] A.J. Ko, T. D. Latoza, M. M. Burnett, A practical guide to controlled ex-
1100 periments of software engineering tools with human participants, Empirical
Software Engineering 20 (1) (2015) 110-141.

[34] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Miinch, A. Jedlitschka,
M. Oivo, Empirical software engineering experts on the use of students and
professionals in experiments, Empirical Software Engineering 23 (1) (2018)

1105 452-489.

[35] M. B. Brewer, W. D. Crano, Research design and issues of validity, Hand-
book of research methods in social and personality psychology (2000) 3-16.

37

http://www.eclipse.org/Xtext/

Appendix A — Blended modelling environment in Papyrus

~J example.di

= 0O
E3 SW_Functions 4
r=--14 E AFunction = BFunction H CFunction Sl DFunction [T----
I 1
| ' ; |
L
«Allo¢ater) [!
! «Allofates «Allotate» «Allotates
i E= Platform ! ! T
i W) !
I «Compenent» «Component» i
[{= «hllocated, HwProcessors» «hllocated, HwProcessors» i
=] AProcessor = | BProcessor =g----
=] «pllocated, HwCache» ACache| | =] «Allecated, HwCache» BCache
= | whllocated, HwCache» BCache
B3 Class Diagram 2
=l example.uml & = B8 # example.uml 2 = g

model Platform {
allocated
processor
compenent AProcessor {
kind = executionPlatform

cores = 4
allocated
cache

component ACache {
kind = executionPlatform
level = 1

}

allocated

cache

component BCache {
kind = executionPlatform
level = 2

}

}
allocated
processor
compenent BProcessor {
kind = executionPlatform

cores = 1
allocated
cache

component BCache {
kind = executionPlatform
level = 1

- 2 platform:/resource/example/example.uml
~C= <Model> Platform
% <Package Import> UML Primitive Types
= J<<pAllocated, HwProcessor>> <Component> AProcessor
+ Tl<<Allocated, HwProcessor=> <Component> BProcessor
~Ea<Package>SW Functions
H <class> AFunction
H <class> BFunction
H <Class> CFunction
H <Class> DFunction
sm<<hllocate>> <Abstraction> DFunction2BProcessor
sme<hllocate>> <Abstraction= Allocate1
sm<<hllocate>> <Abstraction> Allocate2
sm<<hllocate>> <Abstraction> Allocate3
» 5. <Profile Application> MARTE
» 3. <Profile Application> Alloc
» 5. <Profile Application> HwMemory
» 3. <Profile Application> HwComputing
» 5 pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml
» 5 pathmap://UML_PROFILES/Ecore.profile.uml
» E pathmap://UML_PROFILES/Standard.profile.uml
» [E pathmap://Papyrus_PROFILES/MARTE.profile.uml
» £ pathmap://UML_LIBRARIES/EcorePrimitiveTypes.library.um

Figure 5: XMarte textual editor (bottom-left side), Papyrus tree-based editor (bottom-right
side), and Papyrus graphical editor (upper side) in Eclipse

38

	Introduction
	Blended modelling and potential benefits
	Flexible separation of concerns and better communication
	Faster modelling tasks

	Related work and core concepts
	Text-based modelling with generation of graphical visualisations
	Synchronised textual and graphical modelling
	Mixed textual and graphical modelling
	Projectional editing
	Summary

	Providing Blended Modelling in Papyrus
	Technical solution
	UML Profiling in Xtext
	Stereotypes application
	Stereotype properties

	Resource management extension

	Experiment
	Design and execution
	Results
	Threats to validity
	Internal validity
	External validity
	Construct validity
	Ecological validity
	Conclusion validity

	Discussion
	Grammar customisability
	Multiple stereotypes application in textual format
	Cross-profile modelling
	On-the-fly changes propagation
	Cross-notation multi-view modelling

	Conclusion
	Future work, dissemination and communication

