
Verification and Validation of Concurrent and
Distributed Systems (Track Summary)

Marieke Huisman1 and Cristina Seceleanu2

1 University of Twente, Enschede, The Netherlands
2 Mälardalen University, Sweden

Abstract. Usually, greater concurrency is the goal of any distributed
system, yet distribution also introduces issues of consistency and sepa-
rate failure domains. With the increase of device connectivity and vir-
tualization techniques, developing correct and reliable concurrent and
distributed systems characterized by high performance is notoriously dif-
ficult. This requires novel verification techniques, or extensions, adapta-
tions and improvements of existing ones, to address emergent problems.
The track on Verification and Validation of Concurrent and Distributed
Systems aims to discuss key challenges that need to be tackled in order
to enable the efficient and scalable assurance of modern concurrent and
distributed systems, as well as present methods and tools that bear the
promise to achieve the latter.

1 Motivation and Goals

Concurrent and distributed systems are becoming omnipresent for two reasons.
First of all, concurrency and distribution are necessary to fulfill performance
requirements of modern software. Second, such systems’ paradigms are a nat-
ural fit with most underlying application domains. However, concurrent and
distributed systems add a lot of extra complexity to systems, and allow many
different kinds of errors to occur, which cannot happen in sequential software.
As Leslie Lamport, known for his seminal work in distributed systems, famously
said: “A distributed system is one in which the failure of a computer you did not
even know existed can render your own computer unusable” [13]. Similarly, for
concurrent systems, an error might occur in one execution, and then disappear
in the next execution of the system.

Nevertheless, over the last years, we see a plethora of different tools and tech-
niques to reason about distributed systems [7, 12, 17] and concurrent software [3,
5, 8, 10, 14, 16] being developed and applied under different specific scenarios.

The next step is then to think about how to develop verification techniques
for systems that combine distributed and concurrent aspects. One can refine
this ambition by asking: How can verification techniques for concurrent systems
benefit from verification techniques for distributed systems, and vice versa?

The Verification and Validation of Concurrent and Distributed Sys-
tems(VVCDS) track focuses on providing answers to these questions, by pre-
senting invited papers that propose models, techniques, and tools for the rigorous



analysis of various concurrent and distributed systems. The included contribu-
tions give a good overview of the current state-of-the-art in the verification
of concurrent and distributed systems, and propose solutions to difficult prob-
lems related to modern topics such as cloud-native microservice architectures,
blockchain synchronization, or validation and dynamic monitoring of multi-
threaded programs, but also to long-standing issues such as ensuring quality
and correctness of distributed protocols used in industry, taming the complexity
of distributed systems design via incremental development, or applying aca-
demic tools for verifying distributed systems in an industrial context. The track
closes with a discussion to look further ahead: given the current-state-of-the-
art, how can we combine verification and validation techniques for concurrency
and distribution such that not only the systems’ specific issues are tackled, but
also the scalability and applicability in industry of the proposed approaches are
achieved. For this, we would like to understand similarities and differences be-
tween concurrent yet not distributed, and truly distributed systems, and their
respective techniques of verification and validation, in an attempt to leverage
the key strengths of such approaches and reduce their potential weaknesses.

Finally, we would like to express our deep gratitude to the ISoLA organisers,
in particular Prof. Tiziana Margaria and Prof. Bernhard Steffen, for working so
hard to provide such a wonderful platform for our and other tracks, enabling
lively and creative interaction between individuals and communities, helping us
all to not forget the bigger picture of working for the development of systems
that people can rely on.

2 Overview of Contributions

In Step-wise Development of Provably Correct Actor Systems [1], the authors
Bernhard K. Aichernig and Benedikt Maderbacher present an approach for the
incremental formal development of actor systems via refinement, in the Event-
B tool. The assumption is that distributed software modeled using the actor-
based paradigm benefits from the latter’s simple asynchronous message passing
for interprocess communication, and does not suffer from the common pitfall
of shared mutable state. The technique is shown on Agha’s classical factorial
algorithm, which has been proven correct via a series of refinement steps, starting
from an abstract description. The authors have also proven deadlock-freeness
and convergence from which the termination of a single computation follows.
The paper shows that the key to handling complexity is to keep the actor model
simple enough yet as faithful to reality as possible, such that all proofs can be
resolved automatically.

In Violation Witnesses and Result Validation for Multi-Threaded Programs [2],
the authors Dirk Beyer and Karlheinz Friedberger present how the standard
format for violation witnesses for program analysis tools is extended to multi-
threaded programs. It discusses what information about threading needs to be
captured in the witness. It turns out that the main information that is needed
is the thread identifier that executes an instruction, whereas other information

2



about monitors etc. does not have to be kept. The paper also presents a validation
tool that can be used to confirm detected violations. An extensive experimental
evaluation is done, which confirms that for larger problems validation time is
faster than the original verification time.

In Tendermint Blockchain Synchronization: Formal Specification and Model
Checking [4], the authors Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko
Milosevic, Ilina Stoilkovska, Josef Widder, and Anca Zamfir present a formal
specification of the blockchain synchronization protocol of Tendermint, called
Fastsync. The protocol is firstly specified in English language, after which it is
decomposed and abstracted in TLA+. Various safety and liveness properties are
encoded in the property language of checkers TLC and Apalache, and the result-
ing specifications are model checked. The generated counter-examples have led
to better understanding of different issues of both the specification and imple-
mentation of Fastsync. The authors discuss also the lessons learned, including
the scalability issues that has forced them to resort to bounded model checking
with Apalache, in order to account for faulty peers too.

In Safe Sessions of Channel Actions in Clojure: A Tour of the Discourje
Project [6], the authors Ruben Hamers and Sung-Shik Jongmans give an overview
of the Discourje project. Discourje supports dynamic monitoring of concurrent
Clojure programs. The monitored properties describe the expected system be-
havior at an abstract level, and the monitor implementation then checks whether
the implementation behaves as specified. The system is illustrated by three differ-
ent examples, each illustrating different aspects of the specifications and imple-
mentations. It also discusses how the monitor is added into the implementation.
The paper completes with a short summary of the Discourje formalization.

In Modular Verification of Liveness Properties of the I/O Behavior of Im-
perative Programs [9], the author Bart Jacobs describes a modular verification
technique to reason about I/O behaviour of programs. The verification technique
allows to verify properties such as eventually something will happen, response
and reactive properties, and persistence properties (something will eventually
become true forever). The paper first illustrates typical specifications for all
these patterns. It then formalizes the verification technique, and discusses how
verification proceeds for some of the examples discussed earlier.

In Formal Verification of an Industrial Distributed Algorithm: an Experi-
ence Report [11], the authors Nikolai Kosmatov, Delphine Longuet and Romain
Soulat report on experiences with modeling and verification of some consensus
algorithms. Their paper explains that even though the literature contains many
verified consensus algorithms, in industrial practice slight variations are often
needed, so we need techniques to reason about those easily. The paper sketches
a consensus algorithm that is used at Thales on a distributed internet-of-things
system. The algorithm is modeled in two different ways: fully explicitly and
in the form of an abstract model, where a single node is modeled, interacting
with a model that represents the rest of the network. The authors experiment
with 3 different tools (SafeProver, CBMC and KLEE) to analyze the model,
and they discuss the lessons learned from these experiments. In particular, the

3



experiments show that it is indeed possible to use formal analysis tools in an
industrial setting, but more work is needed to turn this into daily industrial
practice.

In Deploying TESTAR to enable remote testing in an industrial CI pipeline:
a case-based evaluation [15], the authors Fernando Pastor Ricós, Pekka Aho,
Tanja Vos, Ismael Torres Boigues, Ernesto Calás Blasco, and Héctor Mart́ınez
Mart́ınez describe the application of an academic tool for testing, called TES-
TAR, on a commercially-available distributed system. The technical challenges
of a distributed software system, which the tool has not been initially designed
for, are described, as well as how these gaps have been bridged. The paper also
highlights the differences between industry and academia, in approaching prob-
lems and their corresponding classification, respectively.

In A Formal Model of the Kubernetes Container Framework [18], the au-
thors Gianluca Turin, Andrea Borgarelli, Simone Donetti, Einar Broch Johnsen,
S. Lizeth Tapia Tarifa, and Ferruccio Damiani develop a formal model of re-
source consumption and scaling for Kubernetes containerized micro-services. The
framework, encoded in Real-time ABS, is intended to provide a platform in which
various configurations can be assessed before the actual deployment. The authors
validate the model by comparing an instance of the framework, under several
scenarios, to observations of a real system running on a high-performance appli-
cation cluster called HPC4AI. The work paves the way towards the model-based
development of native-cloud solutions based on Kubernetes.

References

1. Bernhard K. Aichernig and Benedikt Maderbacher. Step-wise development of prov-
ably correct actor systems. In Tiziana Margaria and Bernhard Steffen, editors,
ISoLA 2020, LNCS. Springer, 2020. (in this volume).

2. Dirk Beyer and Karlheinz Friedberger. Violation witness and result validation for
multi-threaded programs. implementation and evaluation with CPAchecker. In
Tiziana Margaria and Bernhard Steffen, editors, ISoLA 2020, LNCS. Springer,
2020. (in this volume).

3. S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. The VerCors Tool Set: Verifi-
cation of Parallel and Concurrent Software. In iFM, volume 10510 of LNCS, pages
102 – 110. Springer, 2017.

4. Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina
Stoilkovska, Josef Widder, and Anca Zamfir. Tendermint blockchain synchroniza-
tion: Formal specification and model checking. In Tiziana Margaria and Bernhard
Steffen, editors, ISoLA 2020, LNCS. Springer, 2020. (in this volume).

5. P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A logic for time
and data abstraction. In European Conference on Object-Oriented Programming
(ECOOP), LNCS. Springer, 2014.

6. Ruben Hamers and Sung-Shik Jongmans. Safe sessions of channel actions in clo-
jure: A tour of the discourje project. In Tiziana Margaria and Bernhard Steffen,
editors, ISoLA 2020, LNCS. Springer, 2020. (in this volume).

7. C. Hawblitzel, J. Howell, M. Kapritsos, J.R. Lorch, B. Parno, M.L. Roberts, S.T.V.
Setty, and B. Zill. Ironfleet: Proving Practical Distributed Systems Correct. In

4



Proceedings of the 25th Symposiumon Operating Systems Principles, SOSP 2015,
pages 1–17. ACM, 2015.

8. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NFM,
2011.

9. Bart Jacobs. Modular verification of liveness properties of the I/O behavior of
imperative programs. In Tiziana Margaria and Bernhard Steffen, editors, ISoLA
2020, LNCS. Springer, 2020. (in this volume).

10. R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and
D. Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning. In POPL, pages 637–650. ACM, 2015.

11. Nikolai Kosmatov, Delphine Longuet, and Romain Soulat. Formal verification of
an industrial distributed algorithm: an experience report. In Tiziana Margaria and
Bernhard Steffen, editors, ISoLA 2020, LNCS. Springer, 2020. (in this volume).

12. M. Krogh-Jespersen, A. Timany, M.E. Ohlenbusch, S.O. Gregersen, and
L. Birkedal. Aneris: A Mechanised Logic for Modular Reasoning about Distributed
Systems. In Proceedings of European Symposium on Programming, Programming
Languages and Systems, ESOP 2020, volume 12075 of LNCS, pages 336–365.
Springer Cham, 2020.

13. Leslie Lamport. Distribution, May 1987. Email message sent to a DEC SRC
bulletin board at 12:23:29 PDT on 28 May 87.

14. P. Müller, M. Schwerhoff, and A.J. Summers. Viper - a verification infrastructure
for permission-based reasoning. In VMCAI, 2016.

15. Fernando Pastor Ricós, Pekka Aho, Tanja Vos, Ismael Torres Boigues,
Ernesto Calás Blasco, and Héctor Mart́ınez Mart́ınez. Deploying testar to en-
able remote testing in an industrial ci pipeline: a case-based evaluation. In Tiziana
Margaria and Bernhard Steffen, editors, ISoLA 2020, LNCS. Springer, 2020. (in
this volume).

16. I. Sergey, A. Nanevski, and A. Banerjee. Specifying and Verifying Concurrent
Algorithms with Histories and Subjectivity. In ESOP, volume 9032 of LNCS,
pages 333–358. Springer, 2015.

17. I. Sergey, J.R. Wilcox, and Z. Tatlock. Programming and Proving with Distributed
Protocols. In Proceedings of PACMPL2(POPL), volume 2, pages 28:1–28:30. ACM,
2018.

18. Gianluca Turin, Andrea Borgarelli, Simone Donetti, Einar Broch Johnsen,
S. Lizeth Tapia Tarifa, and Ferruccio Damiani. A formal model of the kuber-
netes container framework. In Tiziana Margaria and Bernhard Steffen, editors,
ISoLA 2020, LNCS. Springer, 2020. (in this volume).

5


