
Vol.:(0123456789)

Artificial Intelligence and Law
https://doi.org/10.1007/s10506-021-09285-5

1 3

ORIGINAL RESEARCH

Compliance‑aware engineering process plans: the case
of space software engineering processes

Julieth Patricia Castellanos‑Ardila1  · Barbara Gallina1 · Guido Governatori2

Accepted: 14 February 2021
© The Author(s) 2021

Abstract
Safety-critical systems manufacturers have the duty of care, i.e., they should take
correct steps while performing acts that could foreseeably harm others. Commonly,
industry standards prescribe reasonable steps in their process requirements, which
regulatory bodies trust. Manufacturers perform careful documentation of compli-
ance with each requirement to show that they act under acceptable criteria. To facili-
tate this task, a safety-centered planning-time framework, called ACCEPT, has been
proposed. Based on compliance-by-design, ACCEPT capabilities (i.e., processes
and standards modeling, and automatic compliance checking) permit to design
Compliance-aware Engineering Process Plans (CaEPP), which are able to show the
planning-time allocation of standard demands, i.e., if the elements set down by the
standard requirements are present at given points in the engineering process plan. In
this paper, we perform a case study to understand if the ACCEPT produced mod-
els could support the planning of space software engineering processes. Space soft-
ware is safety and mission-critical, and it is often the result of industrial cooperation.
Such cooperation is coordinated through compliance with relevant standards. In
the European context, ECSS-E-ST-40C is the de-facto standard for space software
production. The planning of processes in compliance with project-specific ECSS-E-
ST-40C applicable requirements is mandatory during contractual agreements. Our
analysis is based on qualitative criteria targeting the effort dictated by task demands
required to create a CaEPP for software development with ACCEPT. Initial obser-
vations show that the effort required to model compliance and processes artifacts is
significant. However, such an effort pays off in the long term since models are, to
some extend, reusable and flexible. The coverage level of the models is also ana-
lyzed based on design decisions. In our opinion, such a level is adequate since it
responds to the information needs required by the ECSS-E-ST-40C framework.

Keywords  Process compliance checking · Software process plan · ECSS-E-ST-40C

 *	 Julieth Patricia Castellanos‑Ardila
	 julieth.castellanos@mdh.se

Extended author information available on the last page of the article

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

1  Introduction

Safety-critical systems manufacturers have the duty of care1 (Ladkin 2019), i.e.,
they should follow accepted practices of reasonable care, usually found in industry
standards (Generowicz 2013). Failure or inadequate compliance with such standards
could lead to legal risks, i.e., penalties (Cusumano 2004) and prosecutions (Ingolfo
et al. 2011). For example, in 2015, The Volkswagen “Dieselgate” scandal (Walkin-
shaw 2017), i.e., emissions levels of the cars were not complying with emission
standards, resulted in huge lost to the company (Blackwelder et al. 2016). Compli-
ance with industry standards is relevant evidence for a jury to consider in a prod-
uct liability action (Schwartz 2000). In England, the Health and Safety Executive
has used compliance with IEC 61508 (IEC 2010) as a guideline for bringing legal
actions if harm is caused by safety-critical systems (Ladkin 2019).

Industry standards demand documented evidence of responsibilities and agree-
ments (Moyón et al. 2020). Usually, they place requirements on engineering pro-
cesses (Eastaughffe et al. 1999), which should be planned at the beginning of the
engineering activities (Gallina et al. 2018). Compliant engineering process plans
are used to coordinate and track engineering progress, support contractual relation-
ships between partners and agreements with certification bodies. In the context of
the European project AMASS (Ruiz et al. 2016; de la Vara et al. 2019), a safety-cen-
tered planning-time framework, called ACCEPT (Automated Compliance Checking
of Engineering Process plans against sTandards) (Castellanos Ardila 2019a, b), has
been proposed to facilitate process compliance checking tasks. ACCEPT is based
on Compliance-by-design (Lu et al. 2007), an approach aimed at integrating com-
pliance requirements at design time, permitting to resolve compliance violations in
engineering process plans before they are executed. ACCEPT is supported by rules-
based technologies to automatically check if a compliance-aware engineering pro-
cess plan (CaEPP) is designed, i.e., if the elements set down by the requirements
(e.g., tasks, personnel, work products, techniques, and tools, as well as their proper-
ties) are present at given points in the engineering process plan. A CaEPP can show
how and when the evidence will be produced, taking into account all the process-
related requirements or their tailoring (i.e., adapted to the specific project conditions
in a compliant form). A CaEPP is able to demonstrate intentional compliance (Siena
et al. 2008), i.e., planning-time allocation of responsibilities, such that if every actor
fulfills its duties, then the compliance is ensured.

ACCEPT uses Formal Contract Logic (FCL) (Governatori 2005), which pro-
vides a framework that unambiguously represents normative knowledge, i.e.,
obligations, prohibitions, and permissions. ACCEPT also uses the compliance
checker Regorous (Governatori 2015), which provides an algorithm that deter-
mines whether an annotated process model is compliant with a specific set of
FCL rules. The annotated process models required by Regorous, i.e., process

1  In tort law, a duty of care is a legal obligation which is imposed on an individual requiring adherence
to a standard of reasonable care while performing any acts that could foreseeably harm others (Icheku
2011).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

enriched with compliance effects through annotations representing the formalized
requirements, is provided via SPEM 2.0 (Systems & Software Process Engineer-
ing Metamodel) (OMG 2008). We chose SPEM 2.0, as opposed to other process
modeling notations, for several reasons. (1) SPEM 2.0 is a standardized language,
based on the Unified Modeling Language (UML) (OMG 2017). (2) SPEM 2.0-
like artifacts can be captured freely via Eclipse Process Framework Composer
(EPF-C) (Eclipse Foundation 2018) (recently ported to Eclipse Neon 4.6.3 (Javed
and Gallina 2018a)). (3) SPEM 2.0 has the ability to capture several types of
information. (4) SPEM 2.0 provides variability mechanisms that can be exploited
for flexible process derivation. Such mechanisms are currently tool-supported via
the composition of EPC-C with BVR (Base Variability Management Tool (SIN-
TEF 2016)) (Javed and Gallina 2018b) included in the AMASS tool platform (de
la Vara et al. 2020). (5) SPEM 2.0 elements can also be customized to permit
the definition of a variety of artifacts. All these characteristics facilitate the mod-
eling of process-related compliance artifacts, i.e., engineering processes and their
elements, as well as standards requirements and their derived rulesets, anno-
tated process plans, and workflows representations, which can be also reused,
tailored and explicitly documented. EPF-C models can be ported to other tools,
via model-driven transformations. Finally, SPEM 2.0 is widely accepted by the
research community (Ruiz-Rube et al. 2012) and industry (Baumgarten et al.
2015).

In this paper, we perform a case study to understand if the ACCEPT produced
models could support space manufacturers’ needs in planning space software engi-
neering processes. Space software is safety-critical since a failure could cause a
mission disaster leading to financial losses, environmental pollution, and people’s
endangerment in case of manned missions (Rantala et al. 2017). Moreover, space
software production is frequently the result of industrial cooperation. For example,
the European space context consists of space agencies often acting as customers in
projects, and companies, which act as suppliers, or as intermediate customers for
subcontractors (Lill 2018). Meeting the highest levels of industry standards helps to
coordinate such cooperation. In this context, ECSS-E-ST-40C is the de-facto stand-
ard for space software production. Thus, the planning of processes in compliance
with project-specific ECSS-E-ST-40C applicable requirements is mandatory during
contractual agreements. We have selected a portion of the ECSS-E-ST-40C (ESA
2009a) related to the design of the software items to perform our analysis, which is
based on a set of well-defined qualitative criteria defined in Ghanavati et al. (2008).
In particular, we target the effort dictated by task demands required to create a
CaEPP for software development with ACCEPT. Initial observations show that the
effort required to model compliance and processes artifacts is significant. However,
such an effort pays off in the long term since models are, to some extend, reusable
and flexible. The coverage level of the models is also analyzed based on design deci-
sions. In our opinion, such a level is adequate since it responds to the information
needs required by the ECSS-E-ST-40C framework.

The paper is organized as follows. In Sect. 2, we provide essential background. In
Sect. 3, we present the case study design. In Sect. 4, we present the data collection.
In Sect. 5, we present the case study analysis. In Sect. 6, we discuss the findings. In

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

Sect. 7, we present related work. Finally, In Sect. 8, we present the conclusion and
future work.

2 � Background

In this section, we present essential background information required in this paper.

2.1 � Compliance with industry standards

Industry standards offer frameworks that encompass adequate practices refined
by experts from historically successful experiences (Harkiolakis 2013) as well as
knowledge and awareness of public policy, societal norms, and preferences (Leveson
2016). Organizations comply with industry standards (sometimes augmented with
internal guidelines) to minimize legal risks (Kienle et al. 2012) since compliance
is the demonstration that the organization acts under well-defined and acceptable
criteria. In some industries, a compliance certification is mandatory to be able to sell
products on a specific market, e.g., medical devices (U.S. FDA 1906). Compliance
is also a mark that customers trust. For example, in space, standards requirements
are intended to support the contractual negotiation by helping customers to formu-
late their requirements and suppliers to prepare their responses and to implement the
work (ESA 2009b). Contracts are legally binding documents in which development
freedom becomes limited. Thus, non-compliance is harmful to the success of organ-
izations. In the remaining part of this section, we recall essential information regard-
ing software process standards, and we focus on the software engineering standard
that regulates the European space context.

2.1.1 � Software process standards

In the past, software companies vacate liability for software errors by licensing it
to a user that agreed that the company would not be liable for damages caused by
errors in the code (Denning and Tedre 2019). This policy contributed to enforce
the computer revolution. However, the software was limited to provide simple tasks
and sometimes computational power for complex systems. Nowadays, the software
is used to control most systems (including physical) involving potentially large and
even catastrophic loses (Leveson 2020). Consequently, software projects are becom-
ing critical in terms of legal aspects, e.g., software not delivered in time or with
ill-defined functionality could lead to legal claims (Kalus and Kuhrmann 2013). In
the safety-critical context, legal aspects are also related to each activity performed
in its production (Cosgrove 2001; Buglione et al. 2010). The reason is that a well-
defined process would make it difficult to exclude significant aspects of the soft-
ware engineering aspects. Examples of inadequate software engineering process
practices have been considered as one of the factors that cause Therac-25 radiother-
apy machine’s massive overdose (Leveson et al. 1995) and the failed launch of the
ARIADNE 5 (Dowson 1997). Choices seem not to be either deliberately planned

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

in the definition of the features created to force the plane BOEING 737-MAX to
nose down, causing fatal accidents (Cruz and de Oliveira Dias 2020). Sound engi-
neering processes present a structured collection of practices (SEI 2011). Compa-
nies that follow the process-related frameworks prescribed by industry standards
tend to achieve more consistent results (O’Regan 2018). Legal risk can also be pre-
vented since proofs of compliance can demonstrate that companies have taken cor-
rect steps while performing acts that could foreseeably harm others (Cosgrove 2001;
Kienle et al. 2012). Software process standards do not restrict organizations from
using a particular development lifecycle. Instead, the process framework focuses
on what needs to be done. Sometimes, who should be involved in the process and
the recommended techniques and tools to be used to achieve desirable results are
also prescribed. Route maps may be indicated, but exact specifications on how the
process should be done usually are not provided. In addition, software with high
requirements, such as safety, requires detailed documentation according to regula-
tions, which may imply the creation of very formal software processes (Kalus and
Kuhrmann 2013). For this reason, a software process engineer is responsible for the
selection, composition, and correct documentation of adequate software process ele-
ments aimed at achieving the required process goals (Gallina et al. 2016).

2.1.2 � ECSS standards: focus on software engineering

The European Cooperation for Space Standardization (ECSS) developed a set
of standards for use in all European space activities. The ECSS standard system
includes three branches, i.e., Management (M), Engineering (E), and Product Assur-
ance (Q). Handbooks (HB) guide the application of the requirements. The software
engineering handbook, ECSS-E-HB-40A (ESA 2013), states that in a space soft-
ware project, a customer-supplier business agreement should be established. The
customer shall produce the project requirements documentation, which could be pro-
duced by using the ECSS Applicability Requirements Matrix (EARM). The EARM
should have the list of applicable ECSS requirements with identifiers, applicability
condition, i.e., applicable without change (A), applicable with modification (M), not
applicable (D), and new generated requirement (N). The supplier responds with the
ECSS Compliance Matrix (ECM), indicating the compliance for each requirement
provided in the EARM. Partial compliance needs to be detailed, such that the cus-
tomer can assess the extent to which the objective of the ECSS is covered. Non-
compliance also needs to be investigated in terms of feasibility and acceptability
in the scope of the project. When a space project starts, the supplier has to identify
a suitable software lifecycle process. Thus, discussions about the technical speci-
fications based on the requirements baseline must start early in the lifecycle pro-
cess (Ahmad et al. 2010).

In space software development, the requirements prescribed by the standard
ECSS-E-ST-40C (ESA 2009a), which determines mission (non-safety) requirements
on how the goals can be achieved, should be applied. Such requirements could be
tailored, i.e., adapted for the characteristics of the project. For example, ECSS-E-
ST-40C-Annex R, provides a pretailoring based on safety criticality categories,
which rank from catastrophic to negligible (prescribed in ECSS-Q-ST-40C (ESA

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

2017)). Thus, mission requirements have an inherent relationship with safety issues.
Further tailoring should be analyzed in the scope of the project and its consequences
assessed and documented. If requirements are tailored out, the associated expected
outputs are also tailored out. Table 1 recalls a set of requirements from the phase
5.5. Software Design and Implementation Engineering Process, particularly the
activity 5.5.2. Design of Software Items. The inputs of this activity are the Technical
Specification of the Software Components (TSSC), the Architectural Design (AD)
the Design Justification (DJ), and the Preliminary Design Review (PDR). During the
detailed design review the expected items of every requirement are revised and com-
piled in eight work products, i.e., the DDF (Design Definition File), SDD (Software
Design Document), CDR (Critical Design Review), TS (Technical Specification),
ICD (Interface Control Document), SUM (Software User Manual), DJF (Design
Justification File) and SUITP (Software unit-integration Test Plan).

Table 1   Activity 5.5.2: Design of the software items

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

2.2 � SPEM 2.0

SPEM 2.0 (Software and Systems Process Engineering Metamodel) (OMG 2008)
is a modeling language that defines the elements required to plan engineering pro-
cesses. An engineering process is a sequence of units of work (e.g., tasks) that con-
sume resources (e.g., employee time) to transform inputs (e.g., data, raw material)
into outputs (e.g., products) (Boutros and Purdie 2014). SPEM 2.0 concepts are
defined in separated UML (OMG 2017) packages that are interrelated. For example,
the meta-class TaskDefinition, which belongs to the package MethodContent is used
to describe assignable units of work. Instances of Task Definition can be applied in
a process breakdown structure by defining a proxy with a TaskUse, a meta-class that
belongs to the package ProcessWithMethods (both meta-classes are highlighted with
red in Fig. 1). The same approach is used for the definition and use of roles and work
products. Instead, a tool definition is used to specify the tool’s participation in a Task
Definition. Guidance, which belongs to the package Managed Content, is a describ-
able element that provides additional information to other elements. There are dif-
ferent guidance kinds, e.g., concept and reusable asset. A Delivery Process, which
belongs to the package Process Structure, describes an approach for performing a
specific project. A Category is used to group elements in a recursive way. SPEM 2.0
supports variability management on breakdown structures representing processes as
well as in content elements. In particular, we recall the variability mechanism called
extends, in which the method content element that extends the base method element
inherits the attributes of the extended base element.

SPEM 2.0-like concepts can be modeled with an open-source tool, called Eclipse
Process Framework Composer(EPF-C) (Eclipse Foundation 2018). In particular,
EPF-C provides a Method Authoring, which is used to describe roles, tasks, work
products, and guidance. EPF-C also has a Process Authoring, which is used to
organize reusable process building blocks in the form of delivery processes. EPF-C
implements the method plugin package, which defines capabilities for modulariza-
tion and extensibility. Such plugins, which can contain libraries of method content
and processes, are reusable. (see Fig. 2a). Conceptually, a task can be represented
as a synergy between different process elements (see Fig. 2b). In EPF-C, the pro-
cess’s partial execution semantics can be modeled with UML activity diagrams (see
Fig. 2c).

Fig. 1   Partial representation of SPEM 2.0 taxonomy

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

2.3 � FCL

FCL (Formal Contract Logic) (Governatori 2005) is a language that permits the
formalization of normative requirements. An FCL rule has the form a1, ..., an ⇒ c ,
where r is the unique identifier of the rule, a1, ..., an are the propositions that repre-
sent the conditions of the applicability of such a rule, and c is the conclusion. The
conclusion characterizes normative deontic effects, such as obligations, prohibitions,
or permissions. FCL does not support contradictory conclusions but seeks to resolve
conflicts. For instance, if it is sustainable support to conclude both c and −c , FCL
does not conclude any of them. However, if the support for c has priority to the sup-
port of −c , then c is concluded. Thus, an FCL rules designer has to identify pairs of
rules with incompatible literals and define superiority relations, as follows:

Obligations and prohibitions are constraints that limit the behaviour of processes.
As such, they can be violated. Permissions, which cannot be violated, can be used to
determine that there are no obligations or prohibitions to the contrary. Hashmi et al.
(2013) proposes the foundations for the normative requirements that constraint pro-
cesses, which considers different types of obligations (based on the temporal valid-
ity of norms and the effects of violating these obligations). Thus, an obligation is in
force if the obligation is activated at a particular time point in a time interval. An

r ∶ a1, ..., an ⇒ c, and r� ∶ b1, ..., bn ⇒ −c, then r� > r

Fig. 2   EPF-C environment

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

obligation is considered to be non-persistent if it remains in force until it is termi-
nated. Such obligation should be obeyed for the instant it is in force. In opposition,
an obligation is considered persistent if it remains in force until it is removed. When
a persistent obligation needs to be obeyed for the whole duration within the interval
in which it is in force, it is called maintenance obligation. If achieving the content
of the obligation at least once is enough to fulfill it, it is called achievement obliga-
tion. An achievement obligation is preemptive if it could be fulfilled even before the
obligation is in force. Otherwise, it is non-preemptive. An achievement obligation is
perdurant if, after being violated, the obligation is still required to be fulfilled. Oth-
erwise is non-perdurant. A prohibition corresponds to the negation of the content of
an achievement obligation. The types mentioned above are adopted, and notated in
FCL, as presented in Table 2.

2.4 � Regorous

Regorous (Governatori 2015) is a process compliance checker that implements com-
pliance by design (Sadiq et al. 2007), i.e., check requirements that are propagated
into models of process plans. Regorous requires two specifications: (1) a rule base
representing the regulation in FCL (recalled in Sect. 2.3), and (2) a state representa-
tion of a process, i.e., a process enriched with semantic annotations. Semantic anno-
tations on process elements are literals that record data, resources, and other infor-
mation used by machines to refer, compute, and align information. The recorded
information, which represents the effects caused by the tasks, is used by Regorous
to perform compliance analysis. Two types of semantic annotations are necessary.
The first one is State (t,n), which semantically annotates the set of facts in the com-
putation to determine which rules fire (get active) for the n-th element in a trace t. A
trace is a sequence of tasks in which a process can be executed. Consequently, obli-
gations are in force after rules fire. The second one is Force(t,n+1), which contains
the obligations that are in force but are not terminated in n-th element in the trace t.
An obligation can be terminated if the deadline is reached, the obligation has been
fulfilled, or if the obligation has been violated and is not perdurant. A process is
fully compliant if all obligations are fulfilled, or if violated, they are compensated).
For example, Fig. 3, shows a fictional FCL rule base and a compliance annotated
process. As the figure depicts, the ruleset in FCL contains four rules. The first rule,

Table 2   FCL rule notations

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

r1, implies the obligation of providing A. The second rule, r2, implies the obliga-
tion of B given the provision of A. The third rule, r3, implies the permission to not
provide C given the provision of B. And r4 implies the obligation of D given the
provision of B. From the FCL rule base, we have four compliance effects, i.e., A, B,
C, and D. As seen, the compliance effects are extracted from the formulas compos-
ing the rules. The tasks in the process are annotated with the effects as follows. T1 is
annotated with effect A, T2 is annotated with effect B, T3 is annotated with effect C,
and T4 is annotated with effect D. To check compliance, we use the functions State
and Force, as previously described. The State of the start point is empty because we
have not defined any effect. After the start point, the compliance checking process
is activated. Thus, the first rule is in force. The first task is expected to provide the
effect A since there is the obligation to provide A. Then, we check the State after the
task T1. As we see in the figure, T1 produces the effect A. So, the rule is fulfilled.
Then, providing A forces the provision of B in T2. In the figure, we can see that
T2 provides effect B. So, the second rule is also fulfilled. After B is provided, it
implies two normative effects. The first one is the permission to not providing C in
T3. Second, it implies the obligation of providing D in T3. When checking T3, we
can see that it provides the effect C. However, having C as the produced effect does
not imply a violation of rule r3 because the force function has a permit, not an obli-
gation. However, in T3, we should have D, and the tasks T3 is not providing E. If
the obligation of providing D is a Maintenance or achievement preemptive, we have
a violation. A violation means that the process is not compliant. If the obligation is
achievement non-preemptive, it can be fulfilled in T4. In this case, there is no viola-
tion, and the process is compliant.

2.5 � Process compliance hints and patterns

Skillful FCL ruleset design can be reached by applying computational thinking
resources, in particular, design hints and patterns (Denning and Tedre 2019). Hints
are rules of thumb found in previous FCL formalization experiences, while patterns
indicate common situations an FCL designer is likely to encounter. Both process
compliance hints and patterns aim at facilitating the formalization of process-related

Fig. 3   Analysis of compliance

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

requirements into FCL rules. In the remaining part of this section, we recall these
resources in more detail.

2.5.1 � Process compliance hints

The divide-and-conquer strategy, adopted in software engineering as a principle to
manage complexity (Smith 1985), is a hint that can be applied in the formalization of
process-related requirements, as presented in Castellanos Ardila and Gallina (2020)
In particular, the aspects that requirements in standards regulate are the tasks, their
specific order, the mandatory in/outputs of the tasks, roles performing the tasks, and
the tools/recommended techniques used to do the tasks. Thus, the concept of a task
is central, to which properties such as the definition of roles, inputs, outputs, tools,
and techniques must apply. However, requirements not only define the properties
of the tasks. For example, roles and tools should be qualified. This kind of require-
ments does not directly affect the tasks. They directly affect other elements, which
in turn have effects on tasks. Thus, a process can be deemed compliant if we can
demonstrate that the process contains the permitted tasks, such tasks have associ-
ated the prescribed roles, inputs, outputs, tools, and techniques, and if the associated
elements have associated their related properties. With such consideration, dividing
requirements in terms of the elements they target as well as the specific properties
defined for each element seems to be the natural way in which concerns should be
separated. To facilitate the creation of compliance effects, which later can be used
to form the propositions of the rules in FCL (recalled in Sect. 2.3), two aspects are
proposed (see Fig. 4). The first aspect is the customization of icons, which describe
the targeted elements. The second aspect is the definition of templates that facilitate
compliance effects creation (fragments between {} , should be replaced by the spe-
cific element or its property). Both, icons and templates are based on the concepts
described in SPEM 2.0 (recalled in Sect. 2.2, specifically in Fig. 2). Once created,
the compliance annotations are performed in the elements that carry out their com-
pliance responsibility.

2.5.2 � Process compliance patterns

Process Compliance Patterns (PCP) (Castellanos Ardila and Gallina 2017) are com-
monly occurring normative requirements on the permissible state sequence of a
finite state model of a process. The PCPs description is based on similar (or a com-
bination of) behaviors described for the property specification patterns (Dwyer et al.
1999), which are mapped to the notations provided in FCL (recalled in Table 2). A
global scope, which represents the entire process model execution, is defined as a
[OM]P. A before scope, which includes the execution of the process model up to a
given state, is mapped to a partial [OAP]. An after scope, which includes the execu-
tion of the process model after a given state, is mapped to a partial [OANP]. If an
obligation admits an exception, e.g., tailoring, the part of the pattern corresponding
to the exception is described as [P] since if something is permitted, the obligation
to the contrary does not hold. The excepted obligation is modeled as non-perdurant,

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

Fig. 4   Elements customization

since the permission is not a violation of the obligation. Thus, the obligation does
not persist after the permission is granted. In principle, all the requirements could
be tailored. Thus, obligations are modeled as [OAPNP] or [OANPNP]. In this case,
obligation and permission have contradictory conclusions, but the permission is
superior since it represents an exception. Table 3 presents the templates of the PCPs.
In all templates {#} should be replaced with the number that identifies the require-
ment in the standard. When it is described as {#.i} , the i should be replaced by a,
b, ..., n, where n is the number of sub-items, e.g., if there is a requirement with two
parts that is identified with the number 5, the rules’ identifiers are 5.a and 5.b. Fol-
lowing, we present a more detailed description of the patterns.

Tailoring requirements (PCP 1a and 1b) Tailoring means to adapt (omit or per-
form differently) the requirements to a specific project in a compliant form. Tailor-
ing requires a rationale (or justification). For being valid, a rationale should always
be verified by an expert. The rationale is an input element, and its verification is
a property. An expert with specific qualifications should also be appointed. Thus,
we use the templates for definitional and property-based propositions described in
Fig 4 for in/output elements and roles, i.e., provide{Rationale} , {Rationale}with-
VerificationByExpert, performedBy{Expert} and {Expert}with{Qualification} . Pro-
viding those four conditions permit to omit the requirement (in other words, per-
mit not to perform the requirement). Any of the definitional and property-based
propositions present in Fig. 4 could be the target of such omission. For explana-
tions purposes, we consider omitting a requirement that imposes the definition of
a task ( ⇒ [P] − perform{Task} ). In PCP 1a, {Rationale} should be replaced with
the title of the required justification. {Task} should be replaced with the name of
the task that will be omitted. Finally, {Expert} should be replaced with the role
required and {Qualification} with the necessary qualifications. A second rule, i.e.,

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

PCP 1b, is included in case the task is done in a different way, where [OANPNP]
perform{DifferentTask} corresponds to the new task replacing the previous one.

Provide a prerequisite (PCP 2) A prerequisite is an obligatory input element,
which should be fulfilled before it is in force (preemptive). PCP 2, {prerequisite}
should be replaced with the name of the prerequisite. If a previous rule triggers the
prerequisite, its conclusion is included in the {optionalTrigeringObligation} , e.g.,
when the prerequisite is produced by a previous task. Prerequisite could have prop-
erties. In this case, the {optionalTrigeringObligation} could be a list of such proper-
ties, using the template {Element}with{Property} . Otherwise, it is left empty.

Perform a unit of work (PCP 3a and 3b) Template PCP 3a represents the perfor-
mance of a unit of work that can be prescribed in a process (i.e., phase/activity/task).
It considers the prerequisites, if any, as the conditions of the applicability of the rule,
which normative conclusion is performing a unit of work (e.g., a phase). It could be
preemptive ([OAPNP]), if the prerequisites and the task are provided at the same
time. It can be non-preemtive ([OANPNP]) as in template 3b, if the prerequisite
is another task, that have to be done first. In the example of PCP 3a, {TitleClause}
should be replaced with the specific clause title.

Provide guidance (PCP 4) Guidance elements may not be required dur-
ing standards compliance auditing. However, internal policies in a company may
impose guidance elements. In that case, guidance elements should be provided at
the moment the element guided is created. We create the propositions by using the
template for guidance provided in Fig. 4, i.e., guidedBy{Guidance} and {Guidance}
with{Property} . Guidance can be defined for any element in the process (tasks, work
product, tool, or role). For explanation purposes, we consider perform{Task} (see
PCP 4).

Provide a work product (PCP 5) Work products are the result of certain require-
ments. Thus, these requirements are presented as antecedents that oblige the pro-
vision of the related work product. PCP 5 presents this aspect in FCL, where
{providePreviousObligations} should be replaced with the conditions that oblige the
work product’s production, usually the execution of a task (perform{Task} ). Work
product properties may be also required, i.e., ( {WorkProduct}with{Property} , where
{WorkProduct} should be replaced with the work product’s name and {Property}
with the corresponding property.

Table 3   PCP Templates

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

2.6 � ACCEPT

ACCEPT (Automatic Compliance Checking of Engineering Processes against
sTandards) (Castellanos et al. 2018b, a), is a safety-centered planning-time frame-
work aimed at facilitating the analysis of the tradeoffs associated with the planning
of compliant processes in the safety-critical context. ACCEPT uses state-of-the-art
tools and methodologies (see Fig. 5).

In particular, ACCEPT is based on compliance by design (Lu et al. 2007), a pre-
ventive approach aimed at integrating compliance requirements into process plans.
Such an approach requires the definition of two specifications. The first one is the
FCL (recalled in Sect. 2.3) based standards requirements. FCL provides a framework
that unambiguously represents the deontic notions required for compliance analysis.
The second one is the process plan enriched with compliance effects, which is pro-
vided via SPEM 2.0-like artifacts in EPF-C (recalled in Sect. 2.2). SPEM 2.0 is flex-
ible, i.e., concepts can be customized and extended to permit not only the creation
artifacts related to processes but also compliance checking artifacts, such as standard
requirements, rules and annotated process plans. SPEM 2.0-like artifacts are also
reusable since capabilities for modularization and extensibility are implemented in
EPF-C (i.e., plugins). With the composition of EPF-C and the Base Variability Man-
agement Tool (Javed and Gallina 2018b), tailoring of compliance artifacts and reuse
is also facilitated. ACCEPT is equipped with guidance regarding process compli-
ance hints and patterns (recalled in Sect. 2.5) that ease the creation of the required
specifications. ACCEPT uses Regorous (recalled in Sect. 2.4), which provides a
sound algorithm for the analysis of FCL rules that automatically check if a com-
pliance-aware engineering process plan (CaEPP) is designed, i.e., if the elements
set down by the requirements (e.g., tasks, personnel, work products, techniques, and
tools, as well as their properties) are present at given points in the engineering pro-
cess plan. The approach consists of five methodological steps, as shown in Fig. 6.

Step 1: Formalization of Requirements Standard requirements are formalized
in FCL by and FCL-trained person supported by a process engineer (or an FCL-
trained process engineer). Three inputs are required: the standard requirements, the
compliance hints and patterns guidance, and the EPF-C plugin with the customized
compliance checking artifacts (see Fig. 4). First, the requirements should be clas-
sified in terms of the process elements they target and their properties to create the
rules’ propositions (see Sect. 2.5.1). Then, PCPs are used to create the FCL rules

Fig. 5   ACCEPT Framework

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

(see sect. 2.5.2). The output is an EPF-C plugin with the FCL-based ruleset contain-
ing information about the standard, their requirements, the rules derived from the
requirements, and the separated set of propositions composing the rules.

Step 2: Modeling of Process Elements Capturing process plan elements is a task
performed by the process engineer. The required input is information about process
plans, which could steam from the organization’s practices and previous process
plans. The output is the representation of the process elements in EPF-C, as depicted
in Fig. 2a. Detailed guidance regarding the creation of content elements in EPF-C is
provided in Tuft (2010)).

Step 3: Annotation of Process Tasks The annotation process, which a process
engineer performs manually, consists of assigning the compliance effects to the ele-
ments that fulfill them as presented in Fig. 7. For this, the compliance effects mod-
eled in the FCL ruleset (created in step 1) and the process elements (created in step
2), or previous process plans, are the inputs of this step. The output is the annotated
process elements in EPF-C.

Step 4: Modeling of Process Workflow The process engineer uses the compli-
ance annotated process elements resulting from step 3 to model the workflow (see
Fig. 2c). The output is the delivery process in EPF-C, which contains the process
plan checkable for compliance, i.e., the compliance state representation of the pro-
cess plan.

Step 5: Checking and Analysis Checking and analyzing compliance is a task per-
formed by the process engineer. The required inputs are the FCL-based ruleset and
the delivery process. The output is the compliance analysis, which contains informa-
tion regarding the rules violated by the process, their reparation policies, and the
rules that were not activated during the compliance checking analysis. Such infor-
mation is used to improve the process plans to be checked iteratively. Reasons for
such improvements could be workflow problems (error in the placement of tasks),
failure in the annotation process (errors in the assignment of the compliance effects),
failure in the selection of process elements (e.g., missed elements), or FCL ruleset
errors (not applicable rules due to tailoring or standards evolution).

Fig. 6   Methodological steps required for using ACCEPT

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

3 � Case study design

In this section, we present the essential details regarding the case study design.

3.1 � Rationale for the case study

In the European context, space software production is often the result of industrial
cooperation. Such cooperation is coordinated using the de-facto standard ECSS-
E-ST-40C (recalled in Sect. 2.1.2). Such a standard provides requirements that
help customers formulate their project-specific requirements by using the EARM
matrix. Suppliers need to prepare their responses by using the ECM matrix, which
will help them implement the work. ECSS-E-ST-40C is a process-related standard.
Thus, the planning of software engineering processes in compliance with project-
specific ECSS-E-ST-40C applicable requirements is mandatory during contractual
agreements. Moreover, the tailoring decisions, i.e., A, M, D, and N, should be docu-
mented. Thus, we wonder if the current status of the models produced by ACCEPT
could support space manufacturers’ needs. For this, we perform a case study, accord-
ing to the guidelines provided in Runeson et al. (2012). In particular, we consider
the selected portion of ECSS-E-ST-40C requirements related to the software items’
design (recalled in Table 1). Our case study is descriptive (i.e., it portrays the current
status of ACCEPT) and exploratory (i.e., it seeks future ACCEPT improvements).
The data collected is qualitative involving models and their descriptions. The cri-
teria used for the analysis is described in Ghanavati et al. (2008). In particular, we
analyze the effort to model (needed to establish a model for managing compliance),
the effort to comprehend (processes and standards models), the effort to document
compliance, (needed to verify whether process models comply with standards mod-
els), and the effort to manage evolution, (needed to find potential instances of non-
compliance when standards change). Moreover, we take into account the level of
coverage for the model (which shows how much of the requirements and engineer-
ing processes can be modeled), the level of coverage for compliance documentation
(which examines the level of success of the approach in terms of documenting the
compliance), and the level of coverage for the evolution management (which exam-
ines the approach’s success in handling the changes).

3.2 � Goal and research questions of the case study

As presented in Sect. 3.1, we want to analyze ACCEPT in the context of space soft-
ware engineering processes planning in compliance with ECSS-E-ST-40C. We have

Fig. 7   Annotation

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

also selected specific criteria, which essentially consider two variables: effort and
coverage level. The effort, according to Steele (2020), is a variable that could be
estimated during task performance in two ways: the actual effort (determined by
task demands) and the perception of effort (relative to a subject’s capacity to recog-
nize the effort). In this case study, our analysis is based on actual effort (from now
on called effort) since, in theory, it can be used to determine the intent to complete
a task a priori, independently of any conscious actor. The coverage level is analyzed
considering how the models respond to the information that needs to be required
by the ECSS-E-ST-40C framework, i.e., information regarding standards, process
plans, and compliance (i.e., EARM and ECM matrices). Thus, our goal is to quali-
tatively analyze the current effort required to model a CaEPP in ACCEPT for
software development processes in compliance with ECSS-E-ST-40C and the
coverage level of such models. Based on this goal, we derive the following research
questions:

RQ1:	� How could we consider the effort required in designing a CaEPP with
ACCEPT for software development? The answer of this question will be
supported by answering the following subquestions:

	� RQ1.1: How could we consider the effort required to create models?

	� RQ1.2: How could we consider the effort required to comprehend the
models?

	� RQ1.3: How could we consider the effort required to document
compliance?

	� RQ1.4: How could we consider the effort required to manage evolution?
RQ2:	� How could we consider the coverage level of a CaEPP for software

development created with ACCEPT? The answer of this question will be
supported by answering the following subquestions:

	� RQ2.1: How could we consider the coverage level of the models?

	� RQ2.2: How could we consider the coverage level of the documentation?

	� RQ2.3: How could we consider the coverage level of the evolution
management?

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

3.3 � Unit of analysis and method

To support our goal (defined in Sect. 3.2), we model a CaEPP for space software
engineering processes. The standard requirements involved in our models are the
ECSS-E-ST-40C, focus on software design (recalled in Sect. 2.1.2). In general,
ECSS-E-ST-40C determines mission-critical requirements that have an inherent
relationship with safety issues since a software failure could lead to mission loss
that could have catastrophic consequences. Thus, such requirements belong to the
safety-critical context. The portion selected provides a view to the general structure
of such a standard, i.e., prescribes requirements that impose the presence of process
elements that can be tailored in a process plan. Thus, we consider such a portion
representative of the whole standard. The method selected for conducting the case
study is described in the steps required for facilitating automated compliance check-
ing of engineering processes against standards (see Fig. 6). Such a method permits
us to collect the data required for the analysis.

3.4 � Validity of the study

Case studies in software engineering are conducted to increase knowledge and
bringing change in the studied phenomenon (Runeson et al. 2012). Researchers
must consider issues that may diminish the results’ trustworthiness by demonstrat-
ing the extent to which the researchers’ subjectiveness does not bias the results. In
this study, we consider a scheme of four aspects of validity in case studies in soft-
ware engineering defined in Runeson et al. (2012). (1) Construct validity reflects the
extent to which the research represents the theoretical concepts used in the study.
(2) Internal validity is of concern when causal relations are examined. (3) Exter-
nal validity addresses the ability of the research to be generalized. (4) Reliability is
concerned with the extent to which the data and analysis are dependent on specific
researchers. Addressing these four validity aspects is essential since it permits an
accurate account of the research by selecting and using acceptable methodological
practices that guarantee correct steps for collecting and analyzing the data. The con-
crete ways in which we addressed the mentioned validity aspects are listed below.

Construct validity	� To avoid construct validity, we established a chain of evidence
by rigorously following our defined methodology (see Fig. 6),
reporting the results consistently with such a methodology.
However, designed methodologies may be biased. For mitigat-
ing this aspect, we review our assumptions against theoretical
foundations several times during several sessions to avoid over-
simplifications that may confirm our preconceptions. We also
got external reviews in previous phases of our work, as well as
initial stages of this case study. We use such reviews to improve
our methodology, its presentation, and the definition of the case
study itself.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

Internal validity	� The manual formalization of the FCL rules may imply a inter-
nal validity threat, due to the possibility of typos in the syntax
and inconsistencies in the rules statements. For mitigating this
aspect, we instantiated the process compliance hints and pat-
terns (see Sect. 2.5) and performed manual syntactic correc-
tions of the FCL specification. In the future, we plan to develop
tools for supporting the process of writing and verifying rules.

External validity	� We have performed an ACCEPT analysis on a limited portion
of a software process standard. It is a single case study, but it is
not trivial. It shows dilemmas and design choices that are typi-
cal in safety-related engineering process plans. In particular,
ECSS-E-ST-40C determines mission-critical requirements that
have an inherent relationship with safety issues since mission
loss could lead to catastrophic consequences. Thus, they belong
to the safety context. Moreover, the ECSS-E-ST-40C portion
selected contains all the characteristics regarding process-based
standards, i.e., the definition of work units, in/outputs, ele-
ments properties, and other process-related elements such as
guidance, which have the possibility to be tailored. Such char-
acteristics are presented in whole standard. Thus, the selected
requirements are representative and can be generalized to the
complete ECSS-E-ST-40C standard. However, the outcome of
this case study applies to a CaEPP for software development
that respond to the mentioned characteristics. Additional chal-
lenges may arise when analyzing standards beyond safety and
software that also apply in the safety-critical context. Thus, to
generalize our framework capabilities, we must carry out case
studies beyond the ones we have already performed.

Reliability	� Reliability threats were mitigated by involving the research-
ers in peer debriefing, i.e., iterative review of research artifacts
(formalization of standard requirements, EPF-C models) during
all the process.

4 � Data collection

In this section, we collect the data required for the case study.

4.1 � Formalization of ECSS‑E‑ST‑40C requirements

As described in Sect. 2.6, we classify the requirements in terms of the process
elements and their properties (see Table 4), and create the rules’ propositions (see
Fig. 8) based on process compliance hints (see Sect. 2.5.1).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

The initial part of the ruleset defines the provision of requirements TSSC, AD,
DJ, PDR, which are needed to start the activity described in Table 1. The PCP 2
is used to create the rules mandating the requirements (rules r5.5.2.a to r5.5.2.d)
and PCP 3a to create the rule mandating the phase definition (rule r5.5.2) as
follows:

We define a custom category in EFP-C (ECSS-E-ST-40C) to create the rule set.
For each requirement, we nest a category. In each category, we nest the rule. We
assign the compliance effect (the conclusion of the rule) to each rule (see Fig. 9). All
requirements and rules are modeled in a similar way.

We use PCP 3b formalize the requirements that define the first task Detailed
design of each software component (see rule 5.5.2.1), which prerequisite is the
activity definition (see rule 5.5.2). Then, we use PCP 5 to define the expected
item (ei), which is the work product of this task (see rule r5.5.2.1.ei). Then we
used the PCP 4 to define the guidance (see rule r5.5.2.1.guide).

Requisite 5.5.2.2 is the definition of the task Development and documentation of the
software interfaces detailed design, which produces two expected items (ei) Eid and
Iid. As two ei are created, we further identify the rules by adding a and b to the rules
(see rules r5.5.2.2.ei.a and r5.5.2.2.ei.b).

��.�.�.� ∶⇒ [OAPNP]provideTSSC

��.�.�.� ∶⇒ [OAPNP]provideAD

��.�.�.� ∶⇒ [OAPNP]provideDJ

��.�.�.� ∶⇒ [OAPNP]providePDR

��.�.� ∶ provideTSSC, provideAD, provideDJ, providePDR

⇒ [OAPNP]performDesignOfTheSoftwareItems

��.�.�.� ∶ performDesignOfTheSoftwareItems

⇒ [OANPNP]performDetailedDesign

��.�.�.�.�� ∶ performDetailedDesign ⇒ [OANPNP]provideScdd

��.�.�.�.����� ∶ performDetailedDesign

⇒ [OANPP]guidedByReq5 − 5 − 2 − 1

Table 4   Process elements required by ECSS-E-ST-40C

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

��.�.�.� ∶ performDetailedDesign

⇒ [OANPNP]performDevelopAndDocumentSwInterfacesDesign

��.�.�.�.��.� ∶ performDevelopAndDocumentSwInterfacesDesign

⇒ [OANPNP]provideEid

��.�.�.�.��.� ∶ performDevelopAndDocumentSwInterfacesDesign

⇒ [OANPNP]provideEid

Fig. 8   Rules propositions

Fig. 9   Rules definition

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

Requisite 5.5.2.3 is the definition of the task Production of the detailed design model
(see rule r5.5.2.3) and three items are expected (see rules r5.5.2.3.ei.a, r5.5.2.3.ei.b
and r5.5.2.3.ei.c).

Requisite 5.5.2.4 is the definition of the task Software detail design method (see rule
r5.5.2.4) and one item is expected (see rule r5.5.2.4.ei).

Requisite 5.5.2.5 is the definition of the task Detailed design of real–time software
(see rule r5.5.2.5) and one item is expected . However, this expected item has several
properties, which are included in the antecedent of the rule r5.5.2.5.ei. Additionally,
guidance is defined for this task. So, we use PCP 4 to define the mandatory guidance
(see rule r5.5.2.5.guide).

Requisite 5.5.2.6 is the definition of the task Utilization of description techniques
for the software behaviour (see rule r5.5.2.6) and one item is expected (see rule
r5.5.2.6.ei).

Requisite 5.5.2.7 is the definition of the task Determination of design method con-
sistency for real–time software (see rule r5.5.2.7) and one item is expected (see rule
r5.5.2.7.ei).

��.�.�.� ∶ performDevelopAndDocumentSwInterfacesDesign

⇒ [OANPNP]performProductionDetailedDesign

��.�.�.�.��.� ∶ performProductionDetailedDesign ⇒ [OANPNP]provideSsdm

��.�.�.�.��.� ∶ performProductionDetailedDesign ⇒ [OANPNP]provideSddm

��.�.�.�.��.� ∶ performProductionDetailedDesign ⇒ [OANPNP]provideSbdm

��.�.�.� ∶ performProductionDetailedDesign

⇒ [OANPNP]performDescribeSwDetailDesignMethod

��.�.�.�� ∶ performProductionDetailedDesign ⇒ [OANPNP]provideSdm

��.�.�.� ∶ performDescribeSwDetailDesignMethod

⇒ [OANPNP]performDetailedRealTimeSw

��.�.�.�.�� ∶ performDetailedRealTimeSw,R

−tddmWithDynamicAllocationResources,

R − tddmWithMutualExlcusionsMechanisms,R

−tddmWithSynchronizationMechanisms,

R − tddmWithTimingMechanisms ⇒ [OANPNP]provideR − tddm

��.�.�.�.����� ∶ performDescribeSwDetailDesignMethod

⇒ [OAPNP]guidedByReq5 − 5 − 2 − 5

��.�.�.� ∶ performDetailedRealTimeSw

⇒ [OANPNP]performDescribeTechniquesSwBehavior

��.�.�.�.�� ∶ performDescribeTechniquesSwBehavior

⇒ [OANPNP]provideSbdmt

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

Requisite 5.5.2.8 is the definition of the task Development and documentation of
the software user manual (see rule r5.5.2.8) and one item is expected (see rule
r5.5.2.8.ei).

Requisite 5.5.2.9 is the definition of the task Definition and documentation of the
software unit test requirements and plan (see rule r5.5.2.9). One item, with sev-
eral properties is expected (see rule r5.5.2.9.ei) as well as guidance (see rule
r5.5.2.9.guide).

Finally, requisite 5.5.2.10 is the definition of the task Conducting a detailed design
review (see rule r5.5.2.10), Eight items are expected after this task (see rules
r5.5.2.10.ei.a to r5.5.2.10.ei.h).

��.�.�.� ∶ performDescribeTechniquesSwBehavior

⇒ [OANPNP]performDeterminationDesignMethodConsistencyRT

��.�.�.�.�� ∶ performDeterminationDesignMethodConsistencyRT

⇒ [OANPNP]provideCRtdm

��.�.�.� ∶ performDeterminationDesignMethodConsistencyRT

⇒ [OANPNP]performDocumentationSwUserManual

��.�.�.�.�� ∶ performDocumentationSwUserManual

⇒ [OANPNP]provideInitialSum

��.�.�.� ∶ performDocumentationSwUserManual

⇒ [OANPNP]performDefinitionSwUnitTestReq

��.�.�.�.�� ∶ performDefinitionSwUnitTestReq,

SutpWithControlProcedures, SutpWithResponsabilities,

SutpWithSchedule, SutpWithTestCaseSpecification,

SutpWithTestDesign, SutpWithTestingApproach

⇒ [OANPNP]provideSutp

��.�.�.�.����� ∶ performDocumentationSwUserManual

⇒ [OAPNP]guidedByReq − 5 − 5 − 2 − 9

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

Requirements tailored as omitted (not applicable (D) in the ECSS Applicability
Requirements Matrix (EARM)) can be formalized using PCP 1a. For example, it is
defined that requirement 5.5.2.10, which is the definition of the task Conducting a
detailed design review is omitted (see rule r5.5.2.10.Ommited). If we do not perform
the review, their work products are also not required.

We use the PCP 1b, if the same task is defined in the EARM as applicable with
modification (M), or new generated requirement (N). For illustration purpose, we
consider that a simple review could be performed instead of the detailed review (see
rule r5.5.2.10.ChangedRule).

Propositions used in rules r5.5.2.10.Ommited and r5.5.2.10.ChangedRule should be
added to the list of rule propositions presented in Fig. 8.

4.2 � Modeling of process elements

Initial process plan elements are extracted from the standard ECSS-E-ST-40C,
specifically, the requirements presented in Table 1. The result is process elements
depicted in Fig. 10, which contains work products, tasks and guidance artifacts.

��.�.�.�� ∶ performDefinitionSwUnitTestReq

⇒ [OANPNP]performConductingDetailedDesignReview

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideDDF

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideSDD

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideCDR

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideTS

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideICD

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideSUM

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideDJF

��.�.�.��.��.� ∶ performConductingDetailedDesignReview

⇒ [OANPNP]provideSUITP

��.�.�.��.������� ∶ provideJustificationNotPerformConductingDetailedDesignReview,

JustificationNotPerformConductingDetailedDesignReviewWithVerificationByExpert,

performedByAssesor,

AsessorWithExperienceECSS − E − ST − 40 − C

⇒ [P] − performConductingDetailedDesignReview

��.�.�.��.������� > ��.�.�.��

��.�.�.��.����������� ∶ −performConductingDetailedDesignReview

⇒ [OANPNP]performSimpleReview

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

4.3 � Annotation of process tasks

A copy of the process elements defined in Sect. 4.2 (depicted in Fig. 10) is created
in a new plugin, which we called ComplianceAnnotatedProcessPlan. These pro-
cess elements are also extended to the original by using the content variability type
Extends. With this extension, we ensure that the information previously defined is
also included, such as the assignment of in/output or guidance to the tasks. Then,
every process element is annotated with the compliance effect they produce by add-
ing the guidance elements that contains the effect (see Fig. 11). The complete com-
pliance annotation of process elements is presented in Table 5.

4.4 � Modeling of process workflow

The tasks annotated in Sect. 4.3 are used to create the delivery process (see Fig. 12).

Fig. 10   Process elements plugin

Fig. 11   Annotation of tasks

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

As depicted in Fig. 13, ACCEPT involves the modeling of four separated models,
which are concretized in EPF Composer as plugins. The ComplianceCheckingCus-
tomization (highlighted in red in the figure) is provided in the method and the pro-
cess engineer only needs to use it.

4.5 � Checking and analysis of compliance

The ruleset formalized in Sect. 4.1, and the workflow modeled in Sect. 4.4 (located
in the plugins ECSS-E-ST-40C-Requirements and ComplianceAnnotatedProcess-
Plan in Fig. 13, respectively) are the two specifications required by Regorous
(recalled in Sect. 2.4) to perform automatic compliance checking. The results of the
checking are presented in Fig. 14.

As Fig. 14a depicts, the process is non-compliant. Thus, the plan needs improve-
ment. Such results could point to compliance problems on the workflow, in the anno-
tation process, or missing characteristics in the process plans (e.g., absent tasks or
work products). The problems related to the rules (e.g., wrong formalization) need
to be analyzed in the context of specific standard with experts, such as safety asses-
sors. For example, there is a violation regarding provideAD (see Fig. 14b). It turns
out that rule r5.5.2.b is violated (see Fig. 14c). The reparation policy suggests to
prevent the violation, by performing provideAD after ’Start’. This means that in the
first task, which is called detailed design of each software component, we need to
add the input AD and its corresponding compliance effect provideAD (see Fig. 14d).
When the compliance checking results are positive, namely the result is the process
is compliant, it does not mean that there is no further improvement. Instead, we need
to perform the analysis, taking into account the rules that did not fire. Once the pro-
cess is improved for compliance, compliance checking is performed iteratively until
the process plan is deemed compliant by Regorous.

5 � Case study analysis

In this section, we analyse the case study results presented in Sect. 4 by answer-
ing the research questions defined in Sect. 3.2.

5.1 � Effort designing a CAEPP for software development (RQ1)

We judge the effort determined by task demand, which is based on design choices.
In theory, such effort can be used to determine the intent to complete a task inde-
pendently of any conscious actor. We refer in this analysis to the effort required to
create and comprehend the models and document and manage evolution.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

5.1.1 � Effort required to create the models (RQ1.1)

When using ACCEPT for creating a CaEPP for software projects, three models (the
ComplianceCheckingCustomization is provided in the method), which are concre-
tized in EPF-C as plugins, are required (see Fig 13). To populate the ECSS-E-ST-
40C-Requirements plugin, we needed to formalize requirements in FCL. Performing
a formalization process is, in general, a difficult task that requires skills, which can-
not be taken for granted. Moreover, due to the sheer size of the standards, this work
requires time and focus. An advantage of FCL is that it provides a valid set of under-
standable concepts to the users of the standards, i.e., obligations, prohibitions, and
permission (see Sect. 2.3). Moreover, ACCEPT provides process compliance hints
and patterns (recalled in Sect. 2.5), which facilitate the identification and modeling
of compliance artifacts, i.e., requirements and their corresponding rules as well as
compliance effects (see Sect. 4.1). However, the instantiation of hints and patterns
is done manually in a process that is repetitive and prone-to-error. Defining the Pro-
cessElements plugin required in a process is a task that is not difficult to perform

Table 5   Compliance effects annotation on process elements
Process element Compliance Effect
Detailed design of each software component performDetailedDesign

Scdd provideScdd

Development/documentation of the software interfaces performDevelopAndDocumentSwInterfacesDesign

Eid provideEid

Iid provideIid

Production of the detailed design model performProductionDetailedDesign

Ssdm provideSsdm

Sddm provideSddm

Sbdm provideSbdm

Define Software detail design method performDescribeSwDetailDesignMethod

Sdm provideSdm

Detailed design of real-time software performDetailedRealTimeSw

R-tddm provideR-tddm

Utilization of description techniques for the software performDescribeTechniquesSwBehavior

Sbdmt provideSbdmt

Determination of design method consistency for realtime performDeterminationDesignMethodConsistencyRT

CRtdm provideCRtdm

Development and documentation of the software user

manual
performDocumentationSwUserManual

Sum provideInitialSum

Definition and documentation of the software unit test re-

quirements and plan
performDefinitionSwUnitTestReq

Sutp provideSutp

Conducting a detailed design review performConductingDetailedDesignReview

Req-5.5.2.1 Detailed design of each software component

Software components design
guidedByReq5-5-2-1

Req-5.5.2.5 for the Detailed design of real–time software guidedByReq5-5-2-5

Req.-5.5.2.9 Definition and documentation of the soft-

ware unit test requirements and plan
guidedByReq-5-5-2-9

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

since EPF-C has graphical representations of the elements that can be modeled in a
well-defined structure (see Sect. 4.2). However, a specific effort in terms of time is
also required. ACCEPT states that the elements required in the ComplianceAnnotat-
edProcessPlan plugin are linked to the elements in other models in two ways (see

Fig. 12   Delivery process

Fig. 13   EPF-C plugins

Fig. 14   Compliance checking results

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

Sect. 4.3). (1) By performing extensions between elements in the method content, to
inherit the characteristics of the process elements. (2) By performing the compliance
annotation process, which is the method that guarantees that the model is checkable
for compliance. Currently, compliance annotations are performed manually, based
on the domain expert’s knowledge about the engineering process.

In summary, there is a need to manually (and iteratively) formalize requirements,
graphically model compliance and process artifacts, and extend and annotate com-
pliance effects. Thus, the effort required to create models is significant and may
increase with the continued attempting to do the same tasks repeatedly. However,
the effort required to model the ECSS-E-ST-40C-Requirements plugin is only sig-
nificant during the first time. The reason is that such a model can be used several
times in different CaEPPs that are modeled in compliance with the same standard
(until new versions of the standard are released). Similar situations could occur with
the other plugins, but they need to be evaluated in project-specific circumstances.

5.1.2 � Effort required to comprehend processes and standards models (RQ1.2)

The method uses artifacts that are systematically organized in a hierarchical and
visual structure that permits the identification of compliance information. In par-
ticular, standard requirements and their elements are arranged in a nested list of
compliance artifacts (see Fig. 9a). Moreover, process elements are created in par-
ticular structures that differentiate, e.g., work products from tasks (see Fig. 10).
The abstract association of elements within process tasks (depicted in Fig. 2b)
permits the comprehension of the required compliance information provided by
the compliance effects. This abstraction provides an approach for direct require-
ments allocation into process models. Thus, once the models are created, there is
a required low effort to comprehend the information they contain. In summary,
the models created in EPF-C have a specific structure that facilitates the visuali-
zation of their artifacts and their use, proving models that have an advantage over,
e.g., text-based approaches.

5.1.3 � Effort required to document compliance (RQ1.3)

The ability to provide means to document method content and processes in
SPEM 2.0-like elements was exploited in ACCEPT. Having an structural, hier-
archical representation of the standards (see Fig. 9a) with descriptive informa-
tion (see (see Fig. 9b), as well as content elements organized according to their
function (see Fig. 10) helps to have a written record of the artifacts required for
compliance. This structural representation, originally provided by SPEM 2.0,
may facilitate the work of a third party (independent) assessor in case the par-
ties decide to include additional certainty to their assessment schema. Thus, the
required high modeling effort results in lower compliance documentation effort.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

5.1.4 � Effort required to manage evolution (RQ1.4)

The compliance information in ACCEPT created in Sect. 4.1 could be seen as an
initial frozen specification of the standard. However, such specification does not
need to be bypassed altogether, when obsolescence no longer stands the strain
of being frozen, i.e., a new version of the standard is released. In normal condi-
tions, only some requirements change, and some get deprecated, but the majority
remain. For example, the ECSS-E-ST-40-C has a log, which explicitly describes
few adjustments regarding previous versions (ECSS-E-40 Part 1B, released on
28 November 2003, and the ECSS-E-40 Part 2B, released on 31 March 2005). In
ACCEPT, such changes can be embraced. First, as specifications are reusable, a
copy of the requirements can be performed and saved with the new version name.
Second, as the requirements model is hierarchically designed, the changes can
be absorbed in an orderly way. Once a new version of the standards is defined,
changes in the rules may impact the compliance status. Thus, it becomes neces-
sary to re-check the process plans. However, as the rulesets are executable, the
checking is easier, and process plans can be improved according to the new ver-
sion of the ruleset (as described in Sect. 4.5). However, standards evolution would
require some human intervention. In particular, there is a need for monitoring the
changes in the standards and maintain accuracy in the rulesets. EFP-C provides
textual descriptions regarding, i.e., versioning or revisions, which can be used to
maintain a log of information between users facilitating further revision work.

5.2 � Coverage level of a CaEPP for software development (RQ2)

We judge the models’ coverage level, taking into account how the information
provided by the CaEPP models fit in the information required by the ECSS-E-
ST-40C framework. We refer to the coverage level of the models, the compliance
documentation, and the evolution management.

5.2.1 � Level of coverage of the models (RQ2.1)

The models used in ACCEPT cover several aspects required in process compli-
ance. First, standard artifacts (see Fig. 9a) are represented by a structure that cov-
ers the textual description of the requirements, their respective FCL rules, and
compliance effects. Second, the method content provided (see Fig. 10) covers
the elements required to describe detailed process plans. Third, the compliance
effects annotation (see Fig. 11) covers the requirements allocating into process
plans, which permits us to understand the explicit relationships between artifacts.
Finally, the compliance analysis provided by Regorous (see Fig. 14) covers the
compliance status of the process plan, the compliance violations, and possible
resolutions that facilitate the compliance analysis.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

5.2.2 � Level of coverage of the compliance documentation (RQ2.2)

As previously described, the models provide all the required information for doc-
umenting compliance. Moreover, the compliance analysis is detailed enough to
describe compliance status (full or non-compliance), the compliance violations,
and the inactive rules. For our particular case study, this approach is sufficient.
On the one side, as recalled in Sect. 2.1.2, a customer of a space software project
needs to provide an ECSS Applicability Requirements Matrix (EARM), which
can be extracted from the model that contain the requirements, i.e., the ECSS-
E-ST-40C-Requirements plugin (see Fig. 9a). As the figure depicts, the plugin
contains the requirements identifier and the text. Moreover, the applicability sta-
tus can be obtained from the description of the identifier in the rules. For exam-
ple, tailored out requirements are identified with the particle Ommited (see rule
r5.5.2.10.Ommited). In contrast, modified ones are identified with the particle
ChangedRule (see rule r5.5.2.10.ChangedRule). On the other side, the supplier
needs to respond with the ECSS Compliance Matrix (ECM), which should be
done at the level of each requirement (as opposed to a global statement of com-
pliance) in order to allow the customer to detect early enough in the project the
non or partial compliance. The information required in the ECM can be extracted
from the compliance checking results (see Fig. 14b and c). Such results will iden-
tify compliance violations to the rules that belong to the requirements explicitly
defined by the customer in the EARM. An analysis of the violations may lead
to modification of the requirements upon agreements between the parties when
compliance has become excessively demanding or unreachable (due to unpredict-
able or changing conditions in the project).

5.2.3 � Level of coverage of the evolution management (RQ2.3)

ACCEPT is defined in an authoring platform that permits the organization the com-
pliance information as standards evolve. Thus, successive models that represent the
evolution of the standards can be defined and stored in EPF-C plugins as a library
of reusable knowledge (see Fig. 13). Administrative directives from the organiza-
tion that apply the standards could also be defined and included as FCL rules (as
presented in Sect. 4.1). Consequently, the process engineer, whose expertise may
be limited by specific knowledge, could find the hints that facilitate applying the
specific standard version. Moreover, the process engineer could also include his/her
knowledge (or lessons learned) after performing compliance practices, as part of the
documentation that is permitted by EPF-C.

6 � Discussion

As presented in Sect. 2.1.1, a software process engineer is responsible for the com-
position and documentation of compliant software engineering processes plans.
In general, the planning of engineering processes, which criteria could be initially

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

abstracted from ad-hoc practices, needs to be concretized to support manufacturers
in achieving goals. Specifically, in the space context, baseline criteria for software
process planning are defined by the de-facto standard ECSS-E-ST-40C (recalled
in Sect. 2.1.2). ECSS-E-ST-40C proposes reference models that prescribe artifacts
related to planning activities, i.e., a set of units of work necessary to engineer sys-
tems. ECSS-E-ST-40C also contains process-related requirements, which prescribe
properties for the activities, e.g., the prerequisites for performing activities, the work
products to be produced, and specific guidance (see Table 4). Guidance elements
may not be required for compliance auditing. However, internal policies in a com-
pany may impose the need to have guidance that facilitates the process’s execution.
All those requirements need to be specified in the project-related documents, e.g.,
the EARM, after careful selection by the customer. The requirements specification
should contain the definition of one party’s obligations towards the other and the
authorization from the customer to the supplier to deviate from the standard require-
ments. The specification of the customer’s requirements is an input for software
project-specific contractual agreements with the supplier, who use them to define
a CaEPP to perform the job. Thus, for defining contractual obligations regarding
software projects, the discussions about the technical specifications based on the
requirements baseline provided by ECSS-E-ST-40C must be carried out early in the
lifecycle process. Selected requirements must be correctly adopted in the software
engineering process plan. Otherwise, they may constitute a legal cause of action for
breaching the contractual agreements.

Manually checking software process plans compliance with the EARM require-
ments is a common practice in this context. Indeed, the ECSS secretariat provides
the EARM matrix with all requirements2 for that purpose. Filled checklists highlight
specific defects in the process (e.g., missed tasks) respect the defined requirements,
which could be the source of compliance risks (as well as legal risks) during pro-
cess execution. Besides, these checklists provide hints to improve processes perfor-
mance and re-negotiate requirements if full compliance has become too demanding
or unnecessary for the specific project. However, performing manual checks could
be overwhelming. In particular, the knowledge included in ECSS-E-ST-40C is abun-
dant (656 requirements), and their complexity (there are connections between differ-
ent requirements and standards) have a direct implication in the correctness of the
resulting process plans, i.e., the sequencing of process tasks and the definition of the
properties of such tasks. Moreover, standards evolve (new versions are frequently
released). Extensive process plans, which typically have a high number of states and
transitions, are difficult to verify against industry standards’ changing nature. Thus,
the lack of methodological support for dealing with compliance management could
involve unstructured practices, uncertain outcomes, compliance, and legal risks. Due
to the fact that we are performing a single-case study, no firm conclusions should be
done for the results. However, the data collected (see Sect. 4) and its analysis results
(see Sect. 5) can be used as indications to guide the shaping of future designs and
prototypes. In the remaining part of this section, we present a specific discussion

2  https://​ecss.​nl/​stand​ards/​downl​oads/​doors-​downl​oad/

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

regarding the case study insights as well as the challenges and potential improve-
ments that could be done to enhance ACCEPT.

6.1 � Case study insights

When planning a software engineering process plan, the challenge is to under-
stand how many process elements should be specified and their order. In the case
study conducted, we defined a model of a software process plan by the book, i.e.,
we extract the process elements suggested by the selected portion of ECSS-E-ST-
40C standard without any tailoring. It is called CaEPP since such process elements
are enriched with compliance information. In case of deviation (e.g., tailoring), we
can also know if the requirements are tailored out or modified (as done for rules
r5.5.2.10.Ommited and r5.5.2.10.ChangedRule in Sect. 4.1). ACCEPT states that
creating a CaEPP requires several models, which design is a process that is not free
of effort, as presented in Sect. 5.1.1. However, initial observations have shown that
the effort required to comprehend processes and standards models (see Sect. 5.2.2)
and document models (see Sect. 5.1.3) is significantly less. The reason is that formal
specifications are accompanied by informal explanations that clarify their meaning
and place them in context. Moreover, the visual approach adopted allows for more
focused reviews. It is clear that organizations may depart from normative practices
(not creation process plans by the book) for project-inherent reasons that can be jus-
tified. In such cases, logic-based requirements representations can be effortlessly
superseded (as analyzed in Sect. 5.1.4). In addition, the level of coverage of the mod-
els is higher (as analyzed in Sect. 5.2). Thus, we can take good advantage of such an
initial effort in the long term. Specifically, the models are created in an authoring
environment that permits a well-defined organization of compliance-related artifacts
in a hierarchical, visual, and enriched structure, which can be reused. This modeling
strategy minimizes the distance between the specification of the requirements’ nor-
mative intention and the process elements that should respond to such requirements.
We could also include the possible exceptions that are derived from the deviations.
Once the models are created, the process plans’ validity can be established by doing
automatic reasoning about the standard conditions. In particular, compliance viola-
tions could be drafted better since failure to requirements is connected to textual
sources. Therefore, the comprehension of processes, standards, and their relation-
ships is more natural, and the documentation of compliance and the management of
evolution get better support than in manual checklists. These features are a valuable
gain since once industry standards and process plans are formalized, process engi-
neers do not need to expend valuable hours on reading regulatory documentation to
infer the actions that must be taken to maintain compliance.

6.2 � Challenges and potential improvements

A key challenge in the use of ACCEPT is that standards are currently written in
natural language, and formalizing them is an intimidating and fairly sophisticated

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

task. The reason is that the number of requirements in a standard is significant and
context-specific. Thus, their interpretation requires expertise. However, FCL has
a limited set of constructs, which provide the expressivity required for formaliz-
ing requirements. Such constructs also provide a framework for thinking about the
requirements in terms of deontic notions and exceptions, which could simplify their
interpretation. Therefore, showing process engineers the FCL potential and its easy
to use aspect may strive the interest for its exploitation.

The work to be done when creating a CaEPP for software projects in the space
context has the tendency to be repetitive. Repetition could cause a drop in a sub-
ject’s capacity to perform the modeling task (i.e., disinterest, boredom, fatigue),
making relative task demands greater than necessary. Further automation of such
tasks might reduce the absolute demands, and thus the actual effort. For example,
the manual creation of the compliance effects is a repetitive task that has to be done
for each effect. In this case, we repeated this task 48 times (see Fig. 8). It was also
prone to error since the effects’ names have similarities (e.g., almost all the tasks’
effects have the word design). Thus, we needed to review our design several times
and manually track the information we were writing in EPF-C. However, this task is
systematic and supported by templates. As such, it could be automatized by using a
domain-specific language that permits an adequate characterization of the specific
compliance effects and their production.

In general, different mechanisms can be defined to determine the meaning of
context-dependent situations that could affect rules’ formalization. In particular, pat-
terns facilitate the recognition of relevant requirements, improving efficiency and
consistency when producing rules. Our current selection of compliance patterns is
limited to general situations, and they are also manually instantiated. Still, they can
provide some assistance. Moreover, the process compliance hints could be used to
establish conceptual relationships between the elements composing process plans
and their compliance effects in the general compliance status. Thus, automated for-
malization of requirements could also be provided by performing an intermediate
translation step into controlled English. For the compliance annotation of processes,
programming scripts that examine the semantic similarity between process elements
and compliance effects can be created. The modeling part could also be facilitated
by providing general-purpose process model repositories to process engineers.
Indeed, EPF-C offers such kind of repositories with libraries that can be downloaded
and assemble in specific projects3.

3  https://​www.​eclip​se.​org/​epf/​downl​oads/​pracl​ib/​pracl​ib_​downl​oads.​php

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

7 � Related work

ECSS standards are difficult to manage since they involve hundreds of pages con-
taining around 25.000 requirements for the development and operations of European
Space Systems. These standards are available in the form of documents (Word and
PDF). In an effort for helping organizations, The European Space Agency (ESA)4
provides an Excel document that contains the ECSS Applicability Requirement
Matrix (EARM), which is useful for selecting requirements and document tailoring
procedures. However, process engineers need to check the applicable requirements
one by one. In addition, the data model requirements are specified in the ECSS
digital Requirements Management System (E-RMS) conceptual data model (ESA
2018), which guarantees the persistence of the ECSS requirements, but it does
not have facilities for process modeling processes. A more sophisticated approach
is presented in Armbrust et al. (2005), which proposes a persistent connection via
relational databases to word processor documents that contain the work products
required in the standard. With this approach, compliance checking results may be
incomplete, as not all activities produce work products, leaving mandatory activi-
ties out of the checking scope. In contrast, ACCEPT provides compliance checking
of the process workflow, which not only takes into account the results of the tasks
(e.g., work products). For this reason, it is more useful at planning stages. Moreover,
ACCEPT is not only domain-specific as the ESA Excel document. In principle, any
process-based requirements catalog can be formalized, uploaded and applied to a
variety of safety-critical related software process plans.

Compliance-related artifacts modeling has also been the target of some research
efforts. For example, in Panesar-Walawege et al. (2010), the authors provide a model
of the process concepts, via the UML (OMG 2017) class diagrams. Automated rule
checking with OCL (Object Constraint Language) constructs5 is also suggested (but
not implemented). In de la Vara and Panesar-Walawege (2013), the authors intro-
duce SafetyMet. SafetyMet is a generic metamodel that includes the concepts and
relationships common to different safety standards and project practices. With Safe-
tyMet, mapping standards models and project information is also possible. In Eito-
Brun and Amescua (2017), the authors describe a SPEM 2.0 extension, which incor-
porates process requirements, guidelines, and their properties. The extension is used
to generate an ontological representation that can be visualized with the Semantic
Media Wiki (SMW)6. In contrast to the work presented in Panesar-Walawege et al.
(2010), de la Vara and Panesar-Walawege (2013), Eito-Brun and Amescua (2017),
we consider SPEM 2.0 (without performing any extension), an Object Management
Group specification7 that is well-documented, mature, and open, and permits to
model not only the processes and their related library but also the artifacts required
for performing compliance checking.

4  https://​ecss.​nl/
5  https://​wiki.​eclip​se.​org/​OCL
6  https://​www.​seman​tic-​media​wiki.​org/​wiki/​Seman​tic_​Media​Wiki
7  https://​www.​omg.​org/​spec/

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

Logic-based approaches have also provided a suitable framework to represent and
reasoning upon normative knowledge. In Emmerich et al. (1999), the authors pro-
pose a document schema specification in UML. The properties of the documents
prescribed by the standards are formalized in first-order logic (FOL). Checks are
performed when there is an attempt to read/write documents during process enact-
ment. FOL can express property specifications, but it is insufficient to express the
sequence of tasks in a process plan. In Martinelli et al. (2019), the authors propose
an approach for compliance checking based on temporal logic. However, it does not
build an operational model of the process from the beginning. Instead, it needs the
extraction of knowledge from event logs provided by the systems to create traces.
Traces only contain tasks, which means that other process elements are not explic-
itly defined. As in Emmerich et al. (1999), this approach only detects uncompliant
states in the process execution. Moreover, the explicit definition of process ele-
ments beyond tasks is not possible. In Bartolini et al. (2016), the authors present a
framework based on Natural Language Semantics and Natural Language Process-
ing techniques for recognizing correlations between provisions in a standard and
requirements in a given law. However, it does not provide logic constructs to rep-
resent process plans, which is also part or our work. Our approach, as in Emmer-
ich et al. (1999), Martinelli et al. (2019), Bartolini et al. (2016), uses logical-based
approaches for the formulation of requirements constraints. However, it is process-
centered, planning-time, which means that a process and its elements are essential
inputs.

Compliance checking by design is approached in the safety-critical context.
In Chung et al. (2008), the authors propose the comparison between an initial model
of the process lifecycle prescribed by the standards and the plan provided by the
users. The compliance checking is the result of the matching between the two pro-
cess-based models. In contrast to the approach provided by Chung et al. (2008),
other approaches provide a comparison between the process and the requirements
specification. For example, the authors in Golra et al. (2017) propose a framework
that uses Linear Temporal Logic to model a specification of the reference model
provided by a standard. This specification is used to check the model of a SPEM 2.0
process. The work presented in Rodriguez et al. (2010), Valiente et al. (2012) aims
at facilitating the checking of constraints by using SWRL (Semantic Web Rule Lan-
guage) (Horrocks et al. 2004) on a process defined in SPEM 2.0. In Wang et al.
(2006), the authors present an approach for representing SPEM 2.0 process models
in Description Logics, to provide process analysis such as reasoning and consist-
ency checks. ACCEPT has similarities with the approaches provided in the previous
works (Golra et al. 2017; Rodriguez et al. 2010; Valiente et al. 2012). First, it con-
siders that the model of the norms and the model of the process are necessary inputs
for compliance checking. Second, processes are modeled with SPEM 2.0-like arti-
facts. However, ACCEPT uses customized SPEM 2.0-like artifacts to provide visual
relationships between compliance artifacts. Moreover, ACCEPT uses FCL, which is
a deontic language able to directly provide normative notions, i.e., obligation, pro-
hibition, and permission, without the need for combining expressions. Moreover,
FCL, which is also a defeasible logic, is capable of providing the management of the
tailoring rules.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

8 � Conclusions and future work

ACCEPT is a framework based on a proactive strategy called compliance-by-design
that permits process engineers to create compliance-aware engineering process plans
(CaEPP). A CaEPP can show the planning-time allocation of standard demands, i.e.,
if the elements set down by the standard requirements are present at given points in
the engineering process plan. A CaEPP avoids that process engineers experience the
tasks related to process compliance management as reactive, i.e., it provides a risk con-
trol mechanism at planning-time that facilitates the decision-making process. Thus,
a CaEPP could increase confidence in process compliance, which at the same time
could reduce liability in case of an adverse event occurs. This situation is essential in
the safety-critical context since the duty of care and standards compliance are typically
linked together. In this paper, we performed a case study to understand if the ACCEPT
produced models could support the planning of space software engineering processes.
Space software is safety-critical since a software failure could cause a space mission
disaster leading to financial losses, environmental pollution, and people’s endanger-
ment. Space software production is frequently the result of industrial cooperation. Such
cooperation is coordinated through compliance with relevant standards. In the Euro-
pean space context, in which projects are share between companies that act as sup-
plies with others that act as customers, the de-facto standard that regulated software
development is the ECSS-E-ST-40C. Such a standard provides requirements that help
customers formulate their project-specific requirements (ECSS Applicability Require-
ments Matrix or EARM) and suppliers to prepare their responses and implement the
work (ECSS Compliance Matrix or ECM). For this reason, the planning of software
engineering processes in compliance with project-specific ECSS-E-ST-40C applica-
ble requirements is mandatory during contractual agreements. The sheer volume of
the requirements in this specific standard, which requires tailoring and documentation,
make compliance duties challenging. The case study’s goal was to qualitatively analyze
the current effort required to model a CaEPP in ACCEPT for software development
processes in compliance with ECSS-E-ST-40C and the coverage level of such models.
In particular, we analyzed actual effort, which is determined by task demands. Initial
observations show that the effort required to model compliance and processes artifacts
is significant. However, the effort is reduced in the long term since models are, to some
extend, reusable and flexible. Thus, process engineers in the space context do not need
to start from scratch in every project. Reusing artifacts in the compliance checking pro-
cess may simplify the work that process engineers need to perform in every process
planning. Such gain could be interpreted as a benefit in terms of resource savings since
professionals’ time is costly. We also analyzed the coverage level of the models based
on design decisions. In our opinion, such a coverage level is adequate since it responds
to the information needs required by the ECSS-E-ST-40C framework, i.e., information
requested by EARM and ECM matrices, the process they regulate, and their required
alignment (compliance annotations, analysis, and results).

The outcome of this case study only applies to compliance-aware software engineer-
ing processes with the characteristics demanded by ECSS-E-ST-40C. Other safety-
critical engineering processes, such as safety-critical processes in chemical plants, may

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

exhibit additional challenges. Thus, to generalize our framework capabilities, we have
to perform more case studies with a broader range of standards applicable to the safety-
related context. Additional case studies may also help us further improve our framework
and provide more cases that facilitate its introduction in different contexts. However,
the analysis performed in this case study gave us insights that could lead to additional
refinements and improvements. In general, ACCEPT methodology is systematic and
can be further automated. Thus, we consider adding mechanisms that facilitate the edi-
tion of rules and the use of templates for safety compliance hints and patterns. We also
aim to design algorithms that facilitate the automation of the formalization of require-
ments and examine the semantic similarity between process elements and compliance
effects to facilitate the compliance annotation of process elements. In terms of analysis,
we have a further job to do. The experience of effort (or perception of effort) is a factor
that is also important to analyze since it can provide feedback on task difficulty. There-
fore, we plan to conduct experiments that include users perceiving effort in the mod-
eling tasks required to create CaEPPs. Moreover, we aim to evaluate user acceptance
by using frameworks, such as the technology acceptance model (TAM) (Davis 1985)).
We also need to specify well-defined metrics to demonstrate our approach’s value-add
in terms of efficiency. Finally, we could generate fitness functions that facilitate calcula-
tions regarding the adequacy of the information coverage level provided by the models,
the compliance documentation, and the evolution management.

Acknowledgements  This work is supported by the EU and VINNOVA via the ECSEL JU project
AMASS (No. 692474)

Funding  Open access funding provided by Mälardalen University.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Ahmad E, Raza B, Feldt R, Nordebäck T (2010) Ecss standard compliant agile software development: an
industrial case study. In: Proceedings of the 2010 national software engineering conference, pp 1–6

Armbrust O, Ocampo A, Soto M (2005) Tracing process model evolution: a semi-formal process mod-
eling approach. In: ECMDA Traceability Workshop, pp 57–66

Bartolini C, Giurgiu A, Lenzini G, Robaldo L (2016) Towards legal compliance by correlating stand-
ards and laws with a semi-automated methodology. In: Benelux conference on artificial intelligence.
Springer, pp 47–62

Baumgarten G, Rosinger M, Todino A, de Juan Marín R (2015) Spem 2.0 as process baseline meta-model
for the development and optimization of complex embedded systems. In: 2015 IEEE international
symposium on systems engineering (ISSE). IEEE, pp 155–162

Blackwelder B, Coleman K, Colunga-Santoyo S, Harrison JS, Wozniak D (2016) The volkswagen
scandal

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

Boutros T, Purdie T (2014) The process improvement handbook: a blueprint for managing change and
increasing organizational performance. McGraw-Hill Education, New York

Buglione L, April A, Rejas-Muslera RJ (2010) The need for a legal perspective in software engineering
maturity models. Intell Property 4(9):10

Castellanos Ardila J (2019a) Facilitating Compliance Checking of Processes against Safety Standards.
Licentiate thesis, Mälardalen University, Sweden

Castellanos Ardila JP (2019b) Facilitating automated compliance checking in the safety-critical context.
Electronic Communications of the EASST, p 78

Castellanos Ardila JP, Gallina B (2017) Formal Contract Logic Based Patterns for Facilitating Compli-
ance Checking against ISO 26262. In: 1st workshop on technologies for regulatory compliance, pp
65–72

Castellanos Ardila JP, Gallina B (2020) Separation of concerns in process compliance checking: Divide-
and-conquer. In: 27th European & Asian System, Software & Service Process Improvement & Inno-
vation. Springer, pp 135–147

Castellanos Ardila JP, Gallina B, Muram FU (2018a) Transforming spem 2.0-compatible process models
into models checkable for compliance. In: International conference on software process improve-
ment and capability determination. Springer, pp 233–247

Castellanos Ardila JP, Gallina B, Ul Muram F (2018b) Enabling Compliance Checking against Safety
Standards from SPEM 2.0 Process Models. In: Euromicro conference on software engineering and
advanced applications. pp 45 – 49

Chung PW, Cheung LY, Machin CH (2008) Compliance flow-managing the compliance of dynamic and
complex processes. Knowl Based Syst 21(4):332–354

Cosgrove J (2001) Software engineering and the law. IEEE Software 18(3):14–16
Cruz BS, de Oliveira Dias M (2020) Crashed boeing 737-max: Fatalities or malpractice? GSJ

8(1):2615–2624
Cusumano MA (2004) Who is liable for bugs and security flaws in software? Commun ACM 47(3):25–27
Davis FD (1985) A technology acceptance model for empirically testing new end-user information sys-

tems: Theory and results. PhD thesis, Massachusetts Institute of Technology
de la Vara JL, Panesar-Walawege RK (2013) Safetymet: A metamodel for safety standards. In: Interna-

tional conference on model driven engineering languages and systems. Springer, pp 69–86
de la Vara JL, Parra E, Ruiz A, Gallina B (2019) Amass: a large-scale european project to improve the

assurance and certification of cyber-physical systems. In: International conference on product-
focused software process improvement. Springer, pp 626–632

de la Vara JL, Parra E, Ruiz A, Gallina B (2020) The amass tool platform: An innovative solution for
assurance and certication of cyber-physical systems. In: Joint Proceedings of REFSQ-2020 Work-
shops, Doctoral Symposium, Live Studies Track, and Poster Track co-located with the 26th Interna-
tional Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2020)
CEUR Workshop Proceedings, Vol-2584, urn:nbn:de:0074-2584-1

Denning PJ, Tedre M (2019) Computational thinking. MIT Press, Cambridge
Dowson M (1997) The ariane 5 software failure. ACM SIGSOFT Softw Eng Notes 22(2):84
Dwyer MB, Avrunin GS, Corbett JC (1999) Patterns in property specifications for finite-state verification.

In: 21st international conference on software engineering, pp 411–420
Eastaughffe K, Cant A, Ozols M (1999) A framework for assessing standards for safety critical com-

puter-based systems. In: 4th IEEE International software engineering standards symposium and
forum.’best software practices for the internet age. IEEE, pp 33–44

Eclipse Foundation (2018) Eclipse Process Framework (EPF) Composer
Eito-Brun R, Amescua A (2017) Dealing with software process requirements complexity: an information

access proposal based on semantic technologies. Requir Eng 22(4):527–542
Emmerich W, Finkelstein A, Montangero C, Antonelli S, Armitage S, Stevens R (1999) Managing stand-

ards compliance. IEEE Trans Softw Eng 25(6):836–851
ESA (2009a) ECSS-E-ST-40C—Space Engineering Software
ESA (2009b) ECSS-S-ST-00C—System, Description, implementation and general requirements
ESA (2013) ECSS-E-HB-40C—Space engineering—Software engineering handbook
ESA (2017) ECSS-Q-ST-40C—Space product assurance—Safety
ESA (2018) ECSS MasterDB—User requirements Document
Gallina B, Gómez-Martínez E, Earle CB (2016) Deriving safety case fragments for assessing mbasafe’s

compliance with en 50128. In: International conference on software process improvement and capa-
bility determination. Springer, pp 3–16

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

	 J. P. Castellanos‑Ardila et al.

1 3

Gallina B, Muram FU, Castellanos Ardila JP (2018) Compliance of agilized (software) development pro-
cesses with safety standards: a vision. In: 19th international conference on agile software develop-
ment, pp 1–6

Generowicz M (2013) The easy path to functional safety compliance
Ghanavati S, Amyot D, Peyton L (2008) Comparative analysis between document-based and model-based

compliance management approaches. In: Requirements engineering and law, pp 35–39
Golra F, Dagnat F, Bendraou R, Beugnard A (2017) Continuous process compliance using model driven

engineering. in: international conference on model and data engineering. Springer, pp 42–56
Governatori G (2005) Representing business contracts in RuleML. Int J Cooper Inf Syst, pp 181–216
Governatori G (2015) The Regorous approach to process compliance. In: IEEE 19th international enter-

prise distributed object computing workshop, pp 33–40
Harkiolakis N (2013) Assurance. Springer, Berlin, pp 122–127
Hashmi M, Governatori G, Wynn M (2013) Normative requirements for business process compliance.

Lecture Notes Bus Inf Process 177:100–116
Horrocks I, Patel-schneider P, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: A semantic web rule

language combining OWL and RuleML. W3C Member Sub 21(79): 1–31
Icheku V (2011) Understanding ethics and ethical decision-making. Xlibris Corporation
IEC 61508 (2010) Functional safety of electrical/electronic/programmable electronic safety-related

systems
Ingolfo S, Siena A, Mylopoulos J (2011) Establishing regulatory compliance for software requirements.

In: International conference on conceptual modeling. Springer, pp 47–61
Javed MA, Gallina B (2018a) Get EPF Composer back to the future: a trip from Galileo to Photon after

11 years. In: EclipseCon
Javed MA, Gallina B (2018b) Safety-oriented Process Line Engineering via Seamless Integration

between EPF Composer and BVR Tool. In: 22nd international systems and software product line
conference, pp 23–28

Kalus G, Kuhrmann M (2013) Criteria for software process tailoring: a systematic review. In: Interna-
tional conference on software and system process, pp 171–180

Kienle HM, Sundmark D, Lundqvist K, Johnsen A (2012) Liability for software in safety-critical
mechatronic systems: An industrial questionnaire. In: 2nd international workshop on software engi-
neering for embedded systems. IEEE, pp 44–50

Ladkin PB (2019) Duty of care and engineering functional-safety standards. Digital Evidence & Elec.
Signature L. Rev. 16: 51

Leveson N (2020) Are you sure your software will not kill anyone? Commun ACM 63(2):25–28
Leveson N, et al (1995) Medical devices: The therac-25. Appendix of: Safeware: System Safety and

Computers
Leveson NG (2016) Engineering a safer world: systems thinking applied to safety. The MIT Press,

Cambridge
Lill A (2018) Definition of an Agile Software Development Process for the European Space Industry.

Master thesis, Technische Univesität München
Lu R, Sadiq S, Governatori G (2007) Compliance aware business process design. In: International confer-

ence on business process management. Springer, pp 120–131
Martinelli F, Mercaldo F, Nardone V, Orlando A, Santone A, Vaglini G (2019) Model checking based

approach for compliance checking. Inf Technol Control 48(2):278–298
Moyón F, Méndez D, Beckers K, Klepper S (2020) How to integrate security compliance requirements

with agile software engineering at scale? In: International conference on product-focused software
process improvement. Springer, pp 69–87

OMG (2008) Software & Systems Process Engineering Meta-Model Specification. V. 2.0
OMG (2017) Unified Modeling Language Specification V. 2.5.1
O’Regan G (2018) Overview of software engineering. World of Computing. Springer, Cham, pp 179–202
Panesar-Walawege RK, Sabetzadeh M, Briand L, Coq T (2010) Characterizing the chain of evidence for

software safety cases: A conceptual model based on the iec 61508 standard. In: 3rd International
Conference on Software Testing, Verification and Validation. IEEE, pp 335–344

Rantala V, Könnölä K, Suomi S, Isomäki M, Lehtonen T (2017) Agile embedded system development
versus european space standards. Int J Inf Syst Social Change 8(1):1–23

Rodriguez D, Garcia E, Sanchez S, Nuzzi CR-S (2010) Defining software process model constraints with
rules using owl and swrl. Int J Softw Eng Knowl Eng 20(4):533–548

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1 3

Compliance‑aware engineering process plans: the case of space…

Authors and Affiliations

Julieth Patricia Castellanos‑Ardila1  · Barbara Gallina1 · Guido Governatori2

	 Barbara Gallina
	 barbara.gallina@mdh.se

	 Guido Governatori
	 guido.governatori@data61.csiro.au

1	 IDT, Mälardalen University, Västerås, Sweden
2	 CSIRO, Brisbane, Australia

Ruiz A, Gallina B, de la Vara JL, Mazzini S, Espinoza H (2016) Amass: Architecturedriven, multi-con-
cern, seamless, reuse-oriented assurance and certification of cpss. In: 5th International Workshop on
Next Generation of System Assurance Approaches for Safety-Critical Systems (SASSUR), Trond-
heim, Norway, September, Computer Safety, Reliability, and Security (SAFECOMP), Lecture Notes
in Computer Science, vol 9923, pp 311–321

Ruiz-Rube I, Dodero JM, Palomo-Duarte M, Ruiz M, Gawn D (2012) Uses and applications of spem pro-
cess models a systematic mapping study. J Softw Maintenance Evolut Res Practice 1(32):999–1025

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering: guidelines
and examples. Wiley, Hoboken

Sadiq S, Governatori G, Namiri K (2007) Modeling Control Objectives for Business Process Compli-
ance. In: International conference on business process management, pp 149–164

Schwartz A (2000) Statutory interpretation, capture, and tort law: the regulatory compliance defense. Am
Law Econ Rev 2(1):1–57

SEI (2011) CMMI for Development V. 1.3– Capability Maturity Model Integration
Siena A, Mylopoulos J, Perini A, Susi A (2008) From laws to requirements. In: 2008 Requirements engi-

neering and law. IEEE, pp 6–10
SINTEF (2016) BVR Tool, https://​github.​com/​SINTEF-​9012/​bvr
Smith D (1985) The design of divide and conquer algorithms. Sci Comput Program 5:37–58
Steele J (2020) What is (perception of) effort? objective and subjective effort during task performance.

PsyArXiv, https://. https://​doi.​org/​10.​31234/​osf.​io/​kbyhm
Tuft B (2010) Eclipse Process Framework (EPF) Composer: Installation. Introduction, Tutorial and

Manual
U.S. FDA (1906) U.S. Food and Drug-Medical Devices
Valiente M, García-Barriocanal E, Sicilia M (2012) Applying ontology-based models for supporting inte-

grated software development and IT service. IEEE Trans Syst Man Cybern 42(1):61–74
Walkinshaw N (2017) Software quality assurance. Springer Int Publ 10:978–983
Wang S, Jin L, Jin C (2006) Represent software process engineering metamodel in description logic.

World Acad Sci Eng Technol 11:109–113

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

