
A Model-Based Test Script Generation Framework
for Embedded Software

Muhammad Nouman Zafar∗, Wasif Afzal∗, Eduard Paul Enoiu∗, Athanasios Stratis†, Ola Sellin†
∗Mälardalen University, Sweden

{muhammad.nouman.zafar, wasif.afzal, eduard.enoiu}@mdh.se
†Bombardier Transportation AB, Sweden

{athanasios.stratis, ola.sellin}@rail.bombardier.com

Abstract—The abstract test cases generated through model-
based testing (MBT) need to be concretized to make them
executable on the software under test (SUT). Multiple re-
searchers proposed different solutions, e.g., by utilizing adapters
for concretization of abstract test cases and generation of test
scripts. In this paper, we propose our Model-Based Test scrIpt
GenEration fRamework (TIGER) based on GraphWalker, an
open source MBT tool. The framework is capable of generating
test scripts for embedded software controlling functions of a
cyber physical system such as passenger trains developed at
Bombardier Transportation AB. The framework follows some
defined mapping rules for the concretization of abstract test cases.
We have evaluated the generated test scripts using an industrial
case study in terms of fault detection. We have induced faults
in the model of the SUT based on three mutation operators
to generate faulty test scripts. The aim of generating faulty test
scripts is to produce failed test steps and to guarantee the absence
of faults in the SUT. Moreover, we have also generated the test
scripts using the correct version of the model and executed it to
analyse the behaviour of the generated test scripts in comparison
with manually-written test scripts. The results show that the
test scripts generated by GW using the proposed framework
are executable, provide 100% requirements coverage and can be
used to uncover faults at software-in-the-loop simulation level of
sub-system testing.

Index Terms—Model-based Testing, Concrete Test Scripts

I. INTRODUCTION

Safety-critical embedded system software is an essential
part of modern cyber physical systems (CPSs) and errors in a
CPS software can lead to catastrophic events. Needless to say,
software testing for safety-critical embedded system software
needs to be thorough and effective. Research into Model-
Based Testing (MBT) [1] has shown that it can be a resource-
efficient technique for generating test cases, test scripts, test
verdicts as well as effective in terms of fault detection.
MBT generates abstract test cases based on a model of the
System Under Test (SUT) [2]. The abstract test cases can
be transformed into concrete, executable test scripts that can
eventually produce test verdicts. However, we have observed
that this concretization step is not covered well enough in
the literature or is discussed only in the context of web-
based and mobile applications where somewhat mature script
generation frameworks exist such as Selenium and Appium.
Thus only few papers (i.e. [3] and [4]) report on the details of
the concretization step and even fewer have addressed it for
embedded software testing at integration and system levels.

In this paper, we have developed a Model-Based Test scrIpt
GenEration fRamework (TIGER)1 based on GraphWalker
(GW)2, a freely-available MBT tool. The generated test scripts
validate the functionality of sub-systems controlled by the
train control management system (TCMS) software developed
by Bombardier Transportation (BT), Sweden. GW is utilized
for generating abstract test cases that traverses the nodes and
edges of the Extended Finite State Machine (EFSM) model
representing the SUT. The developed framework uses the GW
to generate abstract test cases, concretizes them by following
the defined mapping rules and generates test scripts in C#
language. We have evaluated the behaviour of the generated
test scripts by injecting faults in the model of a fire detection
system controlled by the TCMS. The injected faults are based
on the work on mutation operators by Belli et al. [5]. The test
scripts are then generated from the correct and fault-induced
version of the models, and executed at software-in-the-loop
(SiL) execution platform at BT. The aim of introducing faults
in the model is to generate faulty test scripts. These should
fail when executed on the SUT to guarantee the absence of
induced faults in the SUT. We have also analysed the input
combinations generated by GW to evaluate the requirements
coverage of test scripts.

The main objective of this study is as following:

• Development and preliminary evaluation of a test script
generation framework based on MBT principles for SiL
testing of embedded software.

The preliminary results show that TIGER is able to generate
test scripts that are readily executable on BT’s SiL platform
and have the potential to uncover interaction faults at sub-
system level of TCMS testing. The rest of the paper is
organized as follows. Section II presents a description of
related studies. Section III provides a detailed description of
the proposed framework. Section IV describes the validation
methodology, case study, type of faults injected in the model,
and results of the case study. Section V presents a discussion
on the results and validity threats to the study whereas the
conclusions and future work are presented in Section VI.

1TIGER is available at https://github.com/MuhammadNoumanZafar/
TestScriptGeneration.git

2https://github.com/GraphWalker/graphwalker-project/wiki

https://github.com/MuhammadNoumanZafar/TestScriptGeneration.git
https://github.com/MuhammadNoumanZafar/TestScriptGeneration.git
https://github.com/GraphWalker/graphwalker-project/wiki


II. RELATED WORK

Since the past decade, researchers have been exploring mul-
tiple techniques to automate the software testing process and
MBT is one of them. Automation of software testing involves
the generation of test cases, test scripts and execution of test
scripts to generate test verdicts. We have found numerous stud-
ies (e.g., [3], [4], [6], [7], [8], [9], [10], [11], [12], [13], [14])
that have provided multiple solutions for automatically gener-
ating test artefacts (i.e. test cases and test scripts) using MBT
techniques. In the section, we briefly summarize these studies
and for a more complete overview of MBT techniques in
general, we refer the interested reader to sveral review papers
on the topic [15], [16], [17], [18], [19].

A model-based solution has been presented in [6] to address
the testing challenges and to automatically generate the test
scripts for distributed Multi Mission User Services (MMUS)
systems. They have developed the model representing the SUT,
linked it with GUI and generated the test cases using a tool
named ‘TEMPPO Designer’. The generation of executable test
cases/scripts has been done with Micro Focus TestPartner. The
results showed the improvement in test quality, removal of
redundancies, reduction in test effort and increase in test effi-
ciency. Wang et al. [7] proposed a model-based framework for
Cloud API testing. It uses the data modelling, individual API
modelling and API scenario model using directed diagraph to
generate the test scripts containing test cases as well as test
data. Another MBT framework has been presented in [8] to
generate test cases and test scripts for the embedded systems
by extending EAST-ADL with timed automata semantics and
also provided a chain of tools for automatically generating and
executing the test script for code validation.

Xu et al. [3] proposed a novel automated model-based test
script generation technique for functional and security testing.
They have used the Petri nets to model the control and data
flow for functional dependencies of the system. They also
have provided a mapping between the model elements and
implementation constructs for test script generation and found
that the proposed technique is significantly effective in terms
of fault detection. An automated framework to generate test
cases and scripts for Android applications based on system
sequence diagrams has been presented in [9]. The experimental
evaluation showed a significant improvement in bug detection
along with better effectiveness in terms of test coverage
when compared with other methods. Similarly, a test script
generation approach has been presented in [12]. They have
proposed a tool that automatically generates the test scripts
in C++ by translating the constructs of scenarios written in
AVALLA language based on some defined rules.

Gupta et al. [10] and Moura et al. [11] developed model-
driven approaches for generating test cases and scripts based
on Business Process Modelling Notations (BPMN) focused on
functional testing for web-based applications. The empirical
evaluation not only showed the completeness and correct-
ness of the proposed approaches but also turned out to be
efficient in terms of performance. Similarly, a model-based

approach for generating test cases and test scripts (according to
Robot Framework) from Requirements Specification Language
(RSL) has been proposed in [4]. They have also defined
a mapping for RSL constructs and GUI elements for the
concretization of test data in test scripts. The results showed
that the use of RSL improved the quality of requirements and
reduced the manual effort and time for the generation of test
artefacts.

Vanhecke et al. [13] developed a plugin to concretize
abstract test cases by using a transformation and adaption
approach. They have also provided the mapping of operations
and verification with corresponding assertions and actions
defined in abstract test cases to generate executable python
scripts in QTaste format. The results show that the plugin
increased the generality of QTaste by raising the abstraction
level of the SUT interface and the test API. Similarly, a
test reuse strategy to minimize the concretization effort has
been proposed in [14]. After the concretization of FSM-
based generated abstract test cases, they have used a selection
algorithm to select the non-redundant concrete test cases,
which can be used to test the unchanged behavior of a new
product. The results showed that the reusablity of concretized
test cases not only provided a reduction in effort but also
minimized the cost of testing.

III. PROPOSED FRAMEWORK

The proposed Model-Based Test scrIpt GenEration fRame-
work (TIGER) is intended to provide a cost and time-efficient
solution to automatically test sub-systems controlled by BT’s
TCMS. The framework consists of three main parts (Figure 1):

1) Abstract test case generator
2) Test case concretizer
3) Test script generator

In the below text, we describe each of these main parts of
TIGER in detail with respective constituent steps.

A. Abstract Test Case Generator

The framework is based on GraphWalker (GW), an open
source MBT tool, that is able to generate abstract test cases.
These test cases do not explicitly contain the precise informa-
tion about the input/output signals involved in the operation of
the SUT and thus can not be executed directly on the SUT to
verify the correctness of results [2]. GW uses a model file in
JSON or GraphML format and generates the abstract test cases
in the form of multiple test steps by traversing through the
model elements (i.e. nodes and edges) using a generator and
a stopping condition. It provides multiple options that could
be used to generate different information about the model in
the test cases. For example, one could generate the test cases
without including the test data (variables and their respective
values) in it. In this case, the GW-generated test cases only
contain the name of the nodes and edges. Similarly, options
to include test data, filtering blocked elements could be used
to include other pieces of information related to the model
in test cases. However, in our case, the verbose feature for
generating test cases is useful as it generates all the relevant



Fig. 1. The Architecture of the Model-Based Test scrIpt GenEration fRamework (TIGER)

details related to the model in test cases, such as initialized
variables, actions, currentElementID, and properties of nodes
and edges.

1) Format of Abstract Test Cases: GW generates the ab-
stract test cases in a JSON format. Figure 2 shows a test step
in the JSON format generated using the verbose option.
The model name in JSON object (“modelName”) contains
the name of the model that GW traversed while generating
this test step, “data” holds the names of variables and their
initial values (these variables are used to predict the behavior
of the model based on guard conditions and actions), “cur-
rentElementID” represents the unique identifier for the model
element, “currentElementName” is the user-specified name for
the model element, “actions” indicate the change in the values
of variables when a transition is taken through the element,
and “properties” specifies the extra information if included in
the model, i.e. a description regarding the node or edge.

B. Test Case Concretizer

To execute the test cases on BT’s test execution platform,
we need to have concrete test cases, which contain the precise
actions, data values and signals’ names not present in the
abstract test cases [2]. Our framework uses transformation and
adaption approach [20] for the concretization and execution
of generated test scripts. The transformation of abstract test
cases to concrete test cases is done while generating the test
scripts whereas the adaption layer is added at execution level.
The concretization of test cases include the extraction of the
test data from the actions (generated in a test step) from the

Fig. 2. Example of an JSON formatted test step generated by GW

JSON file, and providing the system’s signals in a XML format
i.e. logical and technical signal names used by the TCMS as
shown in Figure 3. Engineers at BT use these logical signal
names in requirements and test specification at initial levels of
development and testing phases. Logical names are the initial
names for signals representation, which are available to the
developers and testers. However, these logical signal names



must map to one or more technical signal names, which are the
actual signal names used by the SUT to complete operations.
So, the last step in the concretization process includes rules
to map these logical and technical signal names with test data
generated in test cases.

1) Test Data Extractor: The test data extractor in the
framework is responsible for reading the JSON file and
extracting the useful information from it such as model name,
currentElement, currentElementID and actions containing the
test data for test cases.

2) Signals’ Information Extractor: The signals’ informa-
tion extractor in the framework is responsible for reading the
XML file and extracting the information about each signal
such as the signal type (i.e. Input or Output), technical name(s)
(i.e. primary and secondary technical names) and information
related to data type of its respective values.

Fig. 3. Example of an XML file containing information about logical and
technical names

3) Mapping Rules: The concretization of test cases is based
on certain rules, which not only preserve the continuity of test
cases and traversing order but also prevent information loss
(Table I). These rules worked as a guideline for the framework
to concretize the test cases and to map the logical signal names
to the technical ones and with respective values.

The rule 1 defines a mapping between the each action
construct of a model element, from the JSON file, having a
‘string’ containing abstract test data with a ‘list’ of variable
names and their respective values. A mapping of each variable
names from the ‘list’ with ‘logical names’ of the signals (pro-
vided in the XML file) has been provided in rule 2. Similarly,
these ‘logical names’ are mapped to their corresponding ‘type
and technical names’ of the signals in rule 3 whereas rule 4
provides a mapping between the ‘values’ (extracted from the
JSON file) and ‘logical name’ of the signals. Rule 5 maps the
‘values of signal’s logical names’ with the ‘values of respective
technical names’ of the signals. However, if a string contains
a variable representing a timing constraint with a keyword
‘Time’, it has been mapped to the value of ‘ResponseTime’ in
rule 6, which will be used as a parameter in the verification
step of the generated test script.

TABLE I
MAPPING RULES FOR TEST CASE CONCRETIZATION

ID. Constructs Mapped Constructs
1 Model → actions → Action

→ Strings
List<VariableName, Value>

2 List<VariableName, Value>
→ VariableName

Signals → Signal → Logical-
Name

3 Signals → Signal → Logical-
Name

Signals → Signal → Signal-
Type
Signals → Signal → Primary-
TechnicalName
Signals → Signal → Pri-
mary2TechnicalName
Signals → Signal → Sec-
ondryTechnicalName
Signals → Signal → Sec-
ondry2TechnicalName

4 List<VariableName, Value>
→ Value

Signals → Signal → Logical-
Name → Value

5 Signals → Signal → Logical-
Name → Value

Signals → Signal →
PrimaryTechnicalName →
Value
Signals → Signal →
Primary2TechnicalName
→ Value
Signals → Signal →
SecondaryTechnicalName
→ Value
Signals → Signal →
Secondary2TechnicalName →
Value

6 List<VariableName, Value>
→ Variable = ‘Time’ → Value

ResponseTime → Value

C. Test Script Generator

The test script generator uses the mapping rules, the data
extracted from the JSON formatted test cases, the XML
containing logical and technical signal names, and the im-
plementation details of the test scripts (i.e. format, classes and
methods to be executed on the target test execution platform)
to generate executable test scripts. The generated test scripts
contain two main steps for each test case: forcing the input
signals and verifying the output signals. Based on the signal
type, the test script generator generates the scripts to force and
verify the signals accordingly. An example of a generated test
script is shown in Figure 4 where line 1 of the code represents
the method name, lines 2 and 3 are used to write the logs for
actions of test script, lines 4 and 5 are used to force the signals,
line 6 writes the log for verification steps, and lines 7, 8, 9
and 10 are used to validate the output signals.

Fig. 4. An Example of Generated Test Steps in C# script

The generated test scripts can be executed on the test sim-
ulation platform for TCMS. But for execution, the simulation
platform also requires some libraries (specifically designed for



the TCMS developed at BT) and a configuration file containing
information related to SUT, paths for storing test logs etc.
The test simulation platform, after executing the test scripts,
generates test verdicts specifying the failed and passed test
steps.

IV. EXPERIMENTAL EVALUATION

This section presents the evaluation of generated test scripts
using an industrial case study of a fire detection sub-system
controlled by the TCMS. Initially, we have developed an
EFSM model representing the SUT using requirements and
test specifications. We have generated test cases and scripts
with TIGER and executed the test scripts on the SUT. We
have also injected some faults in the model, generated and
executed test scripts to evaluate the framework in terms of
fault detection from conformance perspective.

A. SUT

The case selected for the evaluation belongs to an on-
going TCMS development project for MOVIA vehicle product
of BT’s family of metro cars. TCMS is the centre of a
distributed system, built upon an open standard IP-technology
to communicate and control multiple sub-systems (i.e. doors,
air conditioning, ventilation etc.) of the modern train. In
discussion with BT, we have selected requirements of the SUT
related to the fire detection sub-system of TCMS [21]. TCMS
uses fire detection system for the indication of two type of fires
in driver’s cab: internal fire and external fire. The fire detection
system uses two instances of a Fire Detection Control Unit
(FDCU) device. Both FDCUs can have two states: slave and
master. The fire detection system sends signal to the TCMS
about the status of fires depending on the state of each FDCU.
Based on these signals, TCMS indicates internal or external
fire.

B. Modelling of SUT

We have modelled the expected behaviour of aforemen-
tioned sub-system in GW studio by exploring and understand-
ing the requirements and test specifications as well as by
getting continuous input from the testing team at BT. GW
studio is one of the versions of GW to create and validate the
EFSM model of the system. The model created in GW studio
consists of nodes, edges and guard conditions. Nodes represent
the states, edges represent the transition taken by the system
from one state to another and guard conditions are Boolean
expressions representing the expected behaviour of the model.
To model the fire detection system, we have identified all
possible states, transitions and guard conditions of the system
based on requirements and test specification. Figure 5 depicts
the EFSM model in three diagrams representing the SUT.

Two diagrams (a) and (b) represent the FDCUs and
one diagram (c) represents the TCMS as black box.
FDCU1 is an initial as well as shared node of the model.
FDCU1Signal, FDCU2, FDCU2Signal, TCMSisActive
and FDCUsFireSignals are rest of the shared nodes of the
models. These shared nodes are used by the GW to traverse

between different models while validating the model and
generating test cases. Master, Slave, InternalFire,
ExternalFire, InternalAndExternalFire and
Reset nodes represent the other states of the SUT based on
requirements and test specifications. Similarly, 39 edges were
added based on the expected behaviour of the SUT.

C. Fault Injection in EFSM Model

Due to unavailability of source code, we have injected
some faults based on insertion and omission of mutant op-
erators [5] in the model to produce faulty test scripts. We
have used three mutant operators (output exchanged, change
in guards/programming mistake and state missing) and created
three versions of the faulty model. In first version of the
faulty model, we exchanged the output values of internal and
external fire such that if a system is supposed to indicate
the internal fire, it will indicate the external fire and vice
versa. Similarly, in second version, we made some changes
in the guard conditions while we removed the Master state
of one of the FDCUs in the third version to make these models
contradictory to the original specification.

D. Results

This section describes our findings based on fault injection
analysis to evaluate the test scripts generated by TIGER.

1) Generation and Execution of Test Scripts: After creating
different versions of model, we have generated the test cases
and scripts multiple times using each model. We provided
logical and technical names of the signals to TIGER and
executed the test scripts on the SUT. Here we report results
from five test generations based on the variation in number
of generated test steps and the failed test steps. We have also
executed the manually written test scripts to compare the test
verdicts with TIGER-generated test scripts.

2) Fault Injection Analysis: As shown in Table II, no fault
was identified in the SUT by executing the manually written
test scripts. The correct version of the model conforms with
the requirements specification of the SUT, hence no failed test
steps were reported on each execution of test scripts generated
using it. On the other hand, different number of failed test steps
were identified by the test scripts generated from faulty models
(as shown in Table III). However, number of generated test
steps were different in each test script due to random walks of
GW for the generation of test cases. We have also analysed the
combinations of inputs to evaluate the requirements coverage
of the generated test scripts. We observed that all test scripts
generated using correct version of the model contained at
least one combination for each requirement and provided
100% requirements coverage. It was also observed that one of
test scripts generated using the ‘change guard’ mutant model
missed the combination required to produce failed test steps.
Similarly, no failed test step(s) was identified in some of the
test scripts with ‘state missing’ mutant. It was attributed to
the missing Master state and GW made the FDCU ‘slave’
in initial steps while generating the test cases, hence provided
no combination that could produce failed test step.



Fig. 5. EFSM Model representing the Fire Detection System controlled by BT’s TCMS

In summary, the results show that when the faulty models
did not conform to requirements, TIGER-generated test scripts
had failed test steps on execution, with the exception of two
instances where GW did not generate the required failure-
triggering combinations. In comparison, the test scripts gen-
erated using the correct version of the model discovered no
fault in the SUT due to its conformance with requirements
specification as well as the implemented SUT.

TABLE II
COMPARISON BETWEEN TIGER-GENERATED TEST SCRIPTS USING

CORRECT MODEL AND MANUALLY-WRITTEN TEST SCRIPTS.

Test Generation
Source

No. of Test Steps
(Min-Max)

No. of Failed Test
Steps

Correct Model 264-514 0
Manually Written 24 0

V. DISCUSSION & VALIDITY THREATS

We have used three different mutation operators to evaluate
TIGER, however, we also tried with other mutation operators
discussed in [5]. These other mutation operators did not
result in any different behavior in our case. For example, we
induced some faults based on ‘arc missing’, ‘output missing’,
‘event missing’, ‘destination exchanged’ and ‘event exchange’
operators. But event and destination exchange had similar
affect on the model as output exchange. Similarly, output
missing, event missing and arc missing showed no affect on
the model, and induced faults based on these operators only
resulted in less input combinations with no failed test steps,
so we have neglected these operators in our study.

For a thorough evaluation of TIGER, a proper cost-benefit
analysis is required. Although, a large number of generated
test steps from TIGER yielded greater execution time than
manually written test steps, an added benefit may be is bet-
ter combinatorial coverage than manually-written test scripts.
However, a proper quantitative comparison with combinatorial
testing is left as an interesting future work, along with the
optimization to reduce the generation time and configuration
for use at a different level of simulation testing (application
level) for testing BT’s CPS.

One internal validity threat is regarding the correctness of
the model of the SUT. It took us several rounds of model-

ing to completely understand the requirements and the test
specifications to arrive at a correct model that was eventually
confirmed as correct by a BT test engineer. Other threats relate
to external validity and reliability such as human experience,
modelling notations and generator algorithms. We expect that
if a person with similar modelling and testing experience will
replicate this study using random walk and edge coverage
criterion of GW, similar results should be achieved. However,
different modelling notations and generator algorithms may
produce different results. Another issue is that the framework
is specifically designed for the CPS testing at BT, so it has
particularities that may not be applicable to other CPSs but still
be applicable to multiple projects inside BT. Nevertheless, the
description of the framework and the mapping procedure can
give clues to companies operating in similar domains to apply
MBT in practice. We may also want the mutation testing at
the model level to be supplemented with more low, code-level
mutations and then validate our framework. We did not have
access to code for this study but if it becomes a possibility,
this research direction is worth investigating.

VI. CONCLUSION

We have proposed a MBT framework, TIGER, focused on
the concretization of abstract test cases and generation of test
scripts for CPSs where embedded software plays an important
part. There are three main parts of TIGER: abstract test case
generator, test case concretizer and finally, test case generator.
We have evaluated TIGER in terms of fault detection by
inducing faults in the model representing the SUT and then
generating and executing the test scripts. The results show
that test scripts generated by TIGER are executable, contains
concrete test data and can be used to uncover interaction faults
at SiL simulation level. The test scripts generated through
the correct model did not result in any failed execution step,
confirming the correct generation and execution, ensuring
conformance to the requirements specifications and the im-
plemented SUT.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement Nos. 871319 & 957212.



TABLE III
COMPARISON BETWEEN TIGER-GENERATED TEST SCRIPTS USING CORRECT AND FAULTY MODELS. RED SHADE SHOWS FAILED TEST STEPS AND

GREEN SHOWS NO FAILURES DETECTED.

Test Generation # Test Generation 1 Test Generation 2 Test Generation 3 Test Generation 4 Test Generation 5
Test Generation
Source

Mutant Opera-
tors

No. of
Test
Steps

No of
Failed
Test
Steps

No. of
Test
Steps

No of
Failed
Test
Steps

No. of
Test
Steps

No of
Failed
Test
Steps

No. of
Test
Steps

No of
Failed
Test
Steps

No. of
Test
Steps

No of
Failed
Test
Steps

Faulty Model (1) Output Exchange 329 28 364 24 349 28 544 37 179 19
Faulty Model (2) Change Guard 624 6 239 0 133 1 514 2 254 4
Faulty Model (3) State Missing 270 1 399 1 187 3 248 0 365 2
Correct Model NA 264 0 454 0 514 0 294 0 299 0

REFERENCES

[1] R. V. Binder, B. Legeard, and A. Kramer, “Model-based testing: where
does it stand?” Comm. of the ACM, vol. 58, no. 2, pp. 52–56, 2015.

[2] A. Kramer and B. Legeard, Model-Based Testing Essentials. Wiley
Online Library, 2016.

[3] D. Xu, W. Xu, M. Kent, L. Thomas, and L. Wang, “An automated test
generation technique for software quality assurance,” IEEE Transactions
on Reliability, vol. 64, no. 1, pp. 247–268, 2014.

[4] A. C. Paiva, D. Maciel, and A. R. da Silva, “From requirements to
automated acceptance tests with the rsl language,” in Intl. Conf. on
Evaluation of Novel Approaches to SE. Springer, 2019.

[5] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong,
“Model-based mutation testing—approach and case studies,” Science of
Computer Programming, vol. 120, pp. 25–48, 2016.

[6] S. Mohacsi, M. Felderer, and A. Beer, “A case study on the efficiency
of model-based testing at the european space agency,” in 8th Intl. Conf.
on Software Testing, Verification and Validation. IEEE, 2015.

[7] J. Wang, X. Bai, L. Li, Z. Ji, and H. Ma, “A model-based framework for
cloud api testing,” in 41st Annual Computer Software and Applications
Conference, vol. 2. IEEE, 2017.

[8] R. Marinescu, M. Saadatmand, A. Bucaioni, C. Seceleanu, and P. Pet-
tersson, “A model-based testing framework for automotive embedded
systems,” in 40th EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, 2014.

[9] R. Anbunathan and A. Basu, “Automation framework for test script
generation for android mobile,” in 2nd IEEE Intl. Conf. on Recent Trends
in Electronics, Information & Communication Tech. IEEE, 2017.

[10] P. Gupta and P. Surve, “Model based approach to assist test case creation,
execution, and maintenance for test automation,” in 1st International
Workshop on End-to-End Test Script Engineering, 2011.

[11] J. L. de Moura, A. S. Charão, J. C. D. Lima, and B. de Oliveira Stein,
“Test case generation from BPMN models for automated testing of
web-based bpm applications,” in 17th International Conference on
Computational Science and Its Applications. IEEE, 2017.

[12] S. Bonfanti, A. Gargantini, and A. Mashkoor, “Generation of behavior-
driven development c++ tests from abstract state machine scenarios,” in
International Conference on Model and Data Engineering. Springer,
2018, pp. 146–152.

[13] J. Vanhecke, X. Devroey, and G. Perrouin, “Abscon: a test concretizer for
model-based testing,” in 2019 IEEE International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). IEEE,
2019, pp. 15–22.

[14] V. H. Fragal, A. Simao, A. T. Endo, and M. R. Mousavi, “Reducing the
concretization effort in fsm-based testing of software product lines,” in
2017 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 2017, pp. 329–336.

[15] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: A systematic review,”
in Proceedings of the 1st ACM International Workshop on Empirical
Assessment of Software Engineering Languages and Technologies: Held
in Conjunction with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) 2007. New York, NY, USA:
Association for Computing Machinery, 2007.

[16] M. Shafique and Y. Labiche, “A systematic review of state-based test
tools,” International Journal on Software Tools for Technology Transfer,
vol. 17, no. 1, pp. 59–76, 2015.

[17] M. Utting, B. Legeard, F. Bouquet, E. Fourneret, F. Peureux, and
A. Vernotte, “Chapter two - recent advances in model-based testing,”
ser. Advances in Computers, A. Memon, Ed. Elsevier, 2016, vol. 101,
pp. 53 – 120.

[18] R. Marinescu, C. Seceleanu, H. Le Guen, and P. Pettersson, “Chapter
three - a research overview of tool-supported model-based testing of
requirements-based designs,” ser. Advances in Computers, A. R. Hurson,
Ed. Elsevier, 2015, vol. 98, pp. 89 – 140.

[19] W. Li, F. Le Gall, and N. Spaseski, “A survey on model-based testing
tools for test case generation,” in Tools and Methods of Program
Analysis, V. Itsykson, A. Scedrov, and V. Zakharov, Eds. Cham:
Springer International Publishing, 2018, pp. 77–89.

[20] M. Utting and B. Legeard, Practical model-based testing: a tools
approach. Elsevier, 2010.

[21] M. N. Zafar, W. Afzal, E. P. Enoiu, A. Stratis, A. Arrieta, and G. Sagar-
dui, “Model-based testing in practice: An industrial case study using
GraphWalker,” in 14th Innovations in Software Engineering Conference
(formerly knownas India Software Engineering Conference). ACM,
2021.


	Introduction
	Related Work
	Proposed Framework
	Abstract Test Case Generator
	Format of Abstract Test Cases

	Test Case Concretizer
	Test Data Extractor
	Signals’ Information Extractor
	Mapping Rules

	Test Script Generator

	Experimental Evaluation
	SUT
	Modelling of SUT
	Fault Injection in EFSM Model
	Results
	Generation and Execution of Test Scripts
	Fault Injection Analysis


	Discussion & Validity Threats
	Conclusion
	References

