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Abstract— In this paper, we develop and compare the per-
formance of different controllers for balancing an autonomous
bicycle. The evaluation is carried out both in simulation,
using two different models, and experimentally, on a bicycle
instrumented with only lightweight components, and leaving the
bicycle structure practically unchanged. Two PID controllers,
a Linear Quadratic Regulator (LQR), and a fuzzy controller
are developed and evaluated in simulations where both noise
and disturbances are induced in the models. The simulation
shows that the LQR controller has the best performance in the
simulation scenarios. Experimental results, on the other hand,
show that the PID controllers provide better performance when
balancing the instrumented bicycle.

I. INTRODUCTION

Modern vehicles, equipped with sensors for mapping the
surrounding environment and to detect and classify other
road users struggle when it comes to detection of bicy-
cles [1]. When the vehicle’s autonomous emergency braking
system is tested by the car safety performance assessment
program, EuroNCAP, a bicycle with a dummy on top is
placed on a moving platform1. The platform then moves in
a straight line in front or beside the vehicle being tested. A
riderless bicycle which is design to have a minimal impact
on its resemblance and can manoeuvre realistically would
improve the testing environment for autonomous vehicles.

The control of a bicycle motion is an interesting research
problem, that has been investigated for decades [2], with
several different variants [3]. Its configuration with two
inline wheels makes the bicycle a statically unstable system,
making the control of the bicycle dynamics a very interesting
control problem at low speeds [3]. A cyclist uses a combina-
tion of regulation on the forward speed, the steering angle,
and the lean angle to balance the bicycle. A similar approach
can also be used to control a driverless bicycle [3], [4].
However, direct control of the lean angle requires a flywheel,
an inverted pendulum or something similar to be mounted
on a bicycle and will, therefore, alter the appearance of the
bicycle to a large degree, as well its usability.

Different control approaches have been proposed in the
literature to design an autonomous bicycle, ranging from
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model-free to model-based [5], [2], from control-theoretic
to machine learning [6], [7]. Several such approaches are
evaluated in simulation, and the results strictly depend on the
level of accuracy of the bicycle model. Furthermore, aspects
like the computational complexity, the execution time, and
implementation issues are hardly discussed.

As a first step to develop a riderless bicycle which can
be used for testing of autonomous vehicles safety systems,
several control strategies which are commonly used in liter-
ature for controlling bicycles are investigated and compared
in this paper. The controllers are evaluated both in simula-
tion, and on an instrumented bicycle running on a bicycle
roller, to understand what is the more effective approach.
Their performance is assessed both in terms of the ability
of balancing the bicycle, and in terms of their execution
time on the embedded control platform. In particular, three
main control strategies are designed and compared: (i) a
Proportional Integral Derivative (PID) controller, (ii) a Linear
Quadratic Regulator (LQR), and (iii) a fuzzy controller.

II. RELATED WORK

In the past, several researchers focused on the design of
suitable bicycle dynamic models. The Whipple model [8]
is often utilised such as in the work by Baquero-Suárez
et al. [6] and Mejiard et al. [9]. The main drawback of
the Whipple model is that it uses steering and lean torque
as control variables which may be difficult to realise on a
real autonomous bicycle. Moreover, the instrumented bicycle
used in this paper has no direct regulation of the lean angle.
Another commonly used bicycle model is the point-mass
model, also known as the inverted pendulum model. For
example, Sharma et al. [10] utilised the point-mass model to
produce a fuzzy controller for stabilising a bicycle. Hauser et
al. [11] used the point-mass model to investigate trajectory
tracking for a motorcycle. The point-mass model only has
angular inputs and outputs, thus eliminating the problems
of dealing with torques. Both the point-mass model and the
Whipple model can be used for the control design, thanks to
their simplicity. However, more accurate models are needed
to validate the control design in simulation before going
to the implementation on the real bicycle. In this paper,
we model the bicycle using Adams2, a multibody dynamics
software, and a linear model based on the point mass model.

Numerous control structures have been proposed to bal-
ance an autonomous bicycle. Tan et al. [5] developed a
reinforcement learning approach to teach a humanoid to

2https://www.mscsoftware.com/it/product/adams



balance a bicycle in simulation. Shafiekhani et al. [7] de-
veloped adaptive critic-based neuro-fuzzy controller to solve
the same problem. However, Meehan and Ruina [12] high-
lights that the complexity of designing complex nonlinear
controllers for balancing a bicycle is often not worth the
small performance benefits with respect to simpler control
strategies. In [12], an LQR is compared with an dynamic
programming optimal controller and the results shows that
the two controllers have almost identical basin of attraction
under reasonable constrained steer angles and rates.

In the work of Garcı́a et al. [13], an autonomous bicycle
is modelled and evaluated in several different scenarios,
including starting from a stationary conditions. Thanks to an
innovative design for a flywheel mounted on the bicycle to-
gether with steering control, the bicycle managed to balance
in a forward speed range between 0–6m/s. To control the
flywheel, an LQR controller is designed and to control the
steering torque an intuitive controller [14] is used. Though,
the 7.5kg flywheel peaks at around 500rpm which would
consume a lot of energy. Furthermore, according to He et
al. [15], methods involving direct regulation of the lean angle
usually struggle when it comes to the balance of regular size
bicycles, where the weight and velocity are often increased
compared to a small bicycle.

Alternatively, regulation of the steering angle can be used
to stabilise the bicycle. Such an approach was used in the
work of Tanaka and Murakami [16], where the lean angle
and lean rate were used in a PD controller to compute the
desired steering acceleration. Vatanshevanopakorn and Par-
nichkun [17] proposed an LQR optimised for a bicycle model
coupled with the dynamics of an electrical steering motor.
The simulation results presented show that the proposed LQR
controller structure was capable of stabilising the bicycle
with an initial lean angle and steering angle other than zero.
An LQR was also utilised in the work of Anjumol and Jisha
to control a second-degree bicycle model [18]. The results
obtained was compared with a posture controlled proposed
by Tanaka et al. [19], and concluded that the LQR performed
better than the posture controller in simulation.

In [15], three proportional gains are used in a feedforward
and feedback loop scheme to stabilise a bicycle in both
simulation and experiments. The control scheme utilises
measurements of both the lean angle and the lean angle rate
to compute a desired steering angle of the handlebar. The
bicycle used in experiments is equipped with two motors,
a few sensors, a battery, and a compactRIO which serves
as the main processing unit. The results of the experiments
are impressive, however, the bicycle is quite massive with a
weight of 52.5kg.

In this work, we conduct a comparative performance
evaluation of the main control approaches, designed for the
instrumented bicycle. The way the handlebar is controlled
depends on the motor and motor controller used, it can
either be by steering position [15], steering torque [6], or
steering velocity [12]. We control the steering position when
using the PID and the fuzzy controller and steering velocity
for the LQR to understand what can be more beneficial

for future autonomous bicycles. The bicycle is designed
with lightweight components and without altering the main
structure of a regular bicycle.

III. MODELING OF INSTRUMENTED BICYCLE

A. Experimental platform

The instrumented bicycle, illustrated in Fig. 1 is based
on a regular-sized electrical bicycle of a male model with
the propulsion motor in the rear wheel (#1). The 11.6Ah
and 36V battery is mounted on the frame of the bicycle
(#5). In the design process of the instrumented bicycle, care
has been taken into both the size and the weight of the
components to fit all extra components, such as IMU and
main processing unit, in a bicycle basket in the upcoming
iteration of the instrumented bicycle. A DCX32L Maxon
motor together with a gear hub and encoder are utilised to
control the handlebar through two cogwheels with a rubber
band in between (#4). To control the steering motor a Junus
motor controller is mounted on the side of the battery (#3)
where the steering velocity (δ̇), is the input signal. Power
distribution boards and the main processing unit, a National
Instruments roboRIO (#2), are attached to the centre of the
bicycle however on the opposite side of the one visualised in
Fig 1. To measure the speed of the bicycle, a Hall sensor is
used which measures the time between pulses of 12 evenly
distributed magnets around the rear wheel (#1). To sense the
lean angle a VectorNav VN-100 IMU is used and configured
to output the lean angle and the lean rate of the bicycle (#6).

The roboRIO is equipped with both a dual-core ARM
Cortex-A9CPU and an Artix-7 FPGA and the code is written
using LabVIEW3. The FPGA is used for acquiring sensor
data and actuating the motors. To actuate the steering motor
using a steering position, a PD controller is implemented on
the FPGA which takes the error between the current steering
position δ and the desired one δ∗ and computes a steering
velocity fed to the bicycle δ̇ as presented in Fig. 2. The
parallel structured PD controller is tuned experimentally and
is executing at 600Hz with KP = 0.1, KD = 0.04, and a
filter time constant Tf = 0.8. The different balancing con-
trollers are realised on the CPU and execute at a frequency

3https://www.ni.com/sv-se/shop/labview.html

Fig. 1. Instrumented bicycle. (#1) Propulsion motor; (#2) NI roboRIO;
(#3) Motor controller; (#4) Steering motor; (#5) Battery; (#6) IMU.
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Fig. 2. Control structure of the instrumented bicycle where a PD controller
is used in an inner loop to control the steering position.

of 100Hz. The main geometrical features of the instrumented
bicycle are illustrated in Fig. 3 and given in Table I along
with constraints on the lean angle, lean rate, steering angle,
and steering rate.

TABLE I
PARAMETERS OF THE INSTRUMENTED BICYCLE.

Design parameters

Parameter Symbol Unit Value

CoG with respect to O (x) a [m] 0.473
CoG with respect to O (z) h [m] 0.515
Gravity g [m/s2] 9.820
Wheelbase b [m] 1.080
Mass m [kg] 23.720
Wheel radius r [m] 0.349
Trail c [m] 0.087
Head angle λ [deg] 72.950

Constraints

Lean angle ϕ [deg] ±2
Lean rate ϕ̇ [deg/s] 50
Steer angle δ [deg] ±15
Steer rate δ̇ [deg/s] 70

B. Linear model

The point-mass model [3] describe the dynamics of the
lean angle ϕ based on the steering angle δ and velocity δ̇
and is lineariased about the equilibrium of zero lean and steer
angle for Getz bicycle model [2]:

ϕ̈−mghϕ =
v

b
δ̇ +

mv2h

b
δ, (1)

where v is the forward velocity of the bicycle, and the
physical parameters are reported in Table I. The model
assumes zero head angle (λ = 0), constant velocity (v),

Fig. 3. Geometrical features of a bicycle, where a and h corresponds to
the measures horizontal and vertical measure of the CoG. The wheelbase is
denoted by b.
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Fig. 4. Step response matching of the steering system configured for
steering position (A), and steering velocity (B). The matched responses are
used in simulation to model the steering system including the motor and
friction.

massless wheels and front fork. Instead, the total mass of
the bicycle is lumped together forming a point mass m. The
transfer function from δ to ϕ is

G(s) =
Φ(s)

∆(s)
=
av

bh

s+ v
a

s2 − g
h

. (2)

However, as G(s) does not model friction or dynamics of the
steering setup including the steering position controller, G(s)
is put in series with another transfer function, H(s). To ob-
tain H(s), a step response is recorded from the instrumented
bicycle, see Fig. 4.A, and matched with a Second-Order Plus
Dead Time (SOPDT) transfer function

H(s) =
∆(s)

∆∗(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

e−ds, (3)

where ζ = 0.6, ωn = 33.9, and the time delay, d = 0.015.
During the step response, the bicycle is held in an upright
position with both wheels on the ground and the handlebar
pointing forward. The input to H(s) is the desired steering
angle, δ∗ and the output of H(s) is the actual steering angle
δ. The complete model, from δ∗ to ϕ, is obtained as P (s) =
H(s)G(s) and is discretize using the zero-order hold method
and a sample time Ts = 0.01 seconds.

For control strategies, such as LQR, the point-mass model
given in (1) is utilised in its state-space representation, with:

A1(v) =

0 1 0
g
h 0 − v

2

bh
0 0 0

 , B1(v) =

 0
−avbh

1

 ,
C1 =

[
1 0 0
0 0 1

]
, D1 =

[
0
0

]
,

(4)

where, the state vector consists of x1 = [ϕ, ϕ̇, δ]>. Note that
the input, u1 = δ̇ represents the steering velocity, instead of
the desired steering position which is the input signal to the
model given by the transfer function P (s). When the LQR is
implemented on the instrumented bicycle, the PD controller
for steering position is bypassed, and the steering velocity is
fed directly to the motor controller.

To include the dynamics of the steering system, compa-
rable to the approach of the transfer function P (s), another
step response is matched. However, the reference is a steering
velocity instead of a steering position since the model in (4)
is using the steering velocity as its input. As a reference
angular velocity, 9deg/s is commanded to the DC motor
mounted on the instrumented bicycle. The Junus motor
controller, used for controlling the steering system, logs
the angular velocity data for post-processing. The result is
presented in Fig. 4.B.
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Fig. 5. Reference feedback control scheme for balancing a bicycle.

The matched step response in Fig. 4.B is converted to its
state-space, and its matrices are:
A2 =

[
−100

]
, B2 =

[
1
]
, C2 =

[
100
]
, D2 =

[
0
]
, (5)

with the state vector x2 = δ̇, and the control input u2 =
δ̇∗ representing the desired steering velocity. The two state
spaces in 4 and 5 are combined in series as:

A(v) =

[
A2 0

B1C2 A1

]
, B(v) =

[
B2

B1D2

]
,

C =
[
D1C2 C1

]
, D =

[
D1D2

]
.

(6)

The input signal is the desired steering velocity u = u2 = δ̇∗.

C. Nonlinear model

The instrumented bicycle was disassembled and each part
was measured, weighed, and designed in SolidWorks4. Both
the rear wheel motor and the steering motor are defined
as rotary motors in SolidWorks. The complete model is
then exported to Adams which is a multibody dynamics
simulation software that uses the Newton-Euler method to
obtain the equations of motion.

In Adams, the steering motor of the bicycle is defined as
either steering position or steering velocity depending on the
control structure used. Gravity and a contact surface between
the wheels and the ground are included as well. To model the
Columb friction force between the ground and the wheels,
the static and dynamic friction coefficients µs = 0.7 and
µd = 0.7 are used as well as a stiction transition velocity of
0.2m/s and a friction transition velocity of 1m/s.

IV. CONTROL STRATEGIES

The closed-loop system in Fig. 5 is used to design control
strategies for balancing the bicycle. The control signal u
depends on which model is used as explained in the previous
section. The reference signal is denoted with r, and the
controlled variable with y. A load disturbance d, which
intend to emulate a small physical side push of the bicycle is
included in simulations. Additionally, the measurement noise
n in the lean angle measurements is also considered.

A. PID controllers

Two PID controllers, tuned using different methods, are
used in this paper. Both PID controllers are designed using
the ideal form of a PID controller in discrete time

U(z) = KP

(
1 +KI · Ts

1

z − 1
+KD ·

1

Ts

z − 1

z

)
, (7)

4https://www.solidworks.com/

TABLE II
THE GAINS FOR THE TWO PID CONTROLLERS

PID gains
Gain LSPID ATPID

KP 2.514 3.167
KI 1.544 1.326
KD 0.074 0.069

with Ts = 0.01 seconds. The first PID controller – in the
following referred as LSPID – is tuned using a loop shaping
method explained in detail in the work by Andersson et
al. [20]. The general objectives of the loop shaping method is
to ensure good stability, tracking performance and robustness
to disturbances and uncertainties [21]. The control loop
objectives are formulated as the following constraints on the
loop transfer function frequency response:
• The target bandwidth is selected so that the open loop

system should cross the 0 dB mark once with a phase
margin of at least 30◦

• For disturbance rejection, the gain for the frequency
response of the open loop system below the target
bandwidth should be high

• To assure robustness of plant uncertainties, the gain for
the frequency response of the open loop system above
the target bandwidth should be low

The cost function J , is defined as:
J =w1(ωb − ωt)2

+w2

∫ π/Ts

ωb

20 log |K(jω)P (jω)|dω

−w3

∫ ωb

0

20 log |K(jω)P (jω)|dω, (8)

where ωt = 15rad/s is the target bandwidth and ωb is the
bandwidth of the loop transfer function defined as:

ωb = inf
ω
|K(jω)P (jω)| ≤ 1, (9)

and weights are chosen as w1 = 0.05, w2 = w3 = 5×10−4.
An alternative tuning of the PID controller, referred to as

ATPID, is performed using the Simulink PID tuner applied
on the linear model P (s). A cross-over frequency ωc =
15rad/s and phase margin φm = 60◦ were chosen in the
design process which results in a stable controller with a
rise time of 0.05s and settling time of 1.44s. The gains for
the respective PID controller are reported in Table II.

B. Linear quadratic regulator

The LQR [22] in discrete time, is set to minimise the cost
function:

J(u) =

∞∑
k=1

(x(k)>Qx(k) + u(k)>Ru(k)) (10)

where the Q and R are semi-definite positive matrices. The
state-feedback control law is given by:

u(k) = −Kx(k − 1) (11)
where K is computed as

K = (R + B>PB)−1B>PA (12)



TABLE III
THE FUZZY RULE SET WITH “And” LINGUISTIC INTERCEPTION TERM.

∆eϕ

eϕ NL NM NS Z PS PM PL

NL NL NL NM NM NS NS Z
NM NL NM NM NS NS Z PS
NS NM NM NS NS Z PS PS
Z NM NS NS Z PS PS PM
PS NS NS Z PS PS PM PM
PM NS Z PS PS PM PM PL
PL Z PS PS PM PM PL PL

and P is obtained by solving the discrete-time algebraic
Riccati equation:
P(k − 1) =−A>P(k)B(B>P(k)B + R)−1B>P(k)A

+ Q + A>P(k)A. (13)
The matrices A and B, the state vector x, and the input u are
given by the state-space model of the system (6), converted
to discrete time with a sampling time Ts = 0.01s. The
Q = diag(Qii) and R = diag(Qjj) matrices were chosen
according to Bryson’s Rule [23], as

Qii =
1

Max value of x2i
Rii =

1

Max value of u2i
(14)

with the constraints found in table I. Now, by utilising equa-
tion (12) the following state-feedback gain, K, is obtained:

K =
[
22.46 −37.35 −4.91 8.77

]>
. (15)

On the instrumented bicycle it is possible to access all
states except the steering velocity, which is estimated from
the steering position as:

δ̇(t) ≈ δ(t)− δ(t− Ts)
Ts

, Ts = 0.01s. (16)

C. Fuzzy controller

The fuzzy controller is inspired by the work of Abdol-
malaki [24] and modified using a trial and error approach.
The controller uses two inputs, the lean angle and the lean
angle difference, and computes the desired steering angle,
hence the linear model P (s) is utilised. The input and
output membership functions are shown in Fig. 6 where
NL, NM, NS, Z, PS, PM, PL are short for Negative Large,
Negative Medium, Negative Small, Zero, Positive Small,
Positive Medium, and Positive Large respectively. The fuzzy
rule set is defined in Table III, using the same abbreviations
as in Fig. 6. The columns represent the lean error eϕ and the
rows represent the lean error difference ∆eϕ. To represent
implication and the “And” operation, the product function is
utilised. The methods of aggregation and defuzzification are
represented by the sum and the centroid functions respec-
tively.

V. RESULTS

To evaluate the performance of the different controllers
in simulation the Integrated Squared Error (ISE) of the lean
angle and rejection of lean angle disturbances is used. For
the experimental results, the execution time of the controllers
on the platform is considered as well as their maximum
balancing time of the bicycle on a bicycle roller.
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Fig. 6. The fuzzy controllers membership functions, the first membership
function is the lean angle error eϕ and the second membership function
is the lean angle error difference ∆eϕ. The output membership function
presented in the bottom graph correlates to the desired steering angle δ∗.

A. Simulation setup

To evaluate the behaviour of the different controllers and
models in simulation, Mathworks Simulink5 is utilised. The
nonlinear model is exported from ADAMS and used in co-
simulation through Simulink where it is put in series with the
transfer functions of the step response matching to capture
the dynamics of the steering setup. Both the linear and
nonlinear models are set up in continuous time and the
controllers are using a sampling time Ts = 0.01s, to transfer
the data between the time domains rate transition blocks are
utilised. The forward speed during simulations on both the
linear and nonlinear model is set to 14km/h and reference
lean r of 0 degrees. In simulations, Gaussian noise is added
to the lean angle measurements with a standard deviation of
0.01◦. The noise is measured by placing the VN-100 on a flat
surface and collect the roll angle data for 30 minutes, this is
repeated 3 times. To simulate a gentle push on the bicycle, a
disturbance is induced in the lean angle measurements with
an amplitude of 1 degree and lasts for 0.25s. The disturbance
is activated after 5s. The constraints of the steering angle
and steering velocity presented in Table I are implemented
in simulation as saturation of the control signals.

B. Simulation results

The lean and steering angle of both the nonlinear and the
linear models are shown in Fig. 7. The grey area in the
subplots indicates where the disturbance in the lean angle
measurements is injected. In the nonlinear case, the bicycle
starts from zero and instantly accelerates up to 14km/h which

5https://se.mathworks.com/products/simulink.html
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Fig. 7. Results of the different control strategies when controlling the linear model (left) and the nonlinear model (right) in simulation.

TABLE IV
THE ISE VALUES FROM THE LEAN ANGLE ERROR IN SIMULATION

Integrated Squared Error (ISE) on lean angle
Nonlinear model Linear model

LSPID 83.79 30.25
ATPID 31.25 24.16
LQR 27.24 23.39
Fuzzy 71.47 88.55

makes the lean angle, and in extension the steering angle,
to deviate a bit from zero in the beginning. The Integrated
Square Error (ISE) are computed for the lean angle of the
bicycle and presented in Table IV.

The most consistent control structure in simulation is
the LQR which shows promising results for both models,
for the linear case, this is not surprising as the LQR is
optimised for that model. As the LQR behaves similarly
on both models this suggests that the linear model is a
good approximation of the more complex nonlinear model.
However, it is obvious from the results of the PID controllers
that the nonlinear model is more challenging to control
for this type of controller. Especially the LSPID which
has smaller gains struggles when it comes to disturbance
rejection of the nonlinear model, this is confirmed by the
ISE values for the LSPID. The ATPID, with a set of higher
gains, are performing much better on both models. The ISE
also verifies the consistency of the LQR and shows that the
Fuzzy controller struggles on both models.

C. Experimental setup

In experiments, the instrumented bicycle is placed on a
bicycle roller and reference lean of 0 degrees is used for all
controllers6. The reason for choosing a bicycle roller is due
to space limitations and weather conditions. At startup, the
handlebar is pointing approximately forward and the bicycle
is held by an operator in an upright position. After the
bicycle has accelerated up to 14km/h, the operator releases
the bicycle and the logging of data begins. In case the
operator touches the bicycle, the remaining data does not
qualify as self stabilising of the bicycle, which is indicated by

6A footage of one experiment is available at this link: https://
youtu.be/9owSiGU-Z0o

TABLE V
EXECUTION TIME OF THE DIFFERENT CONTROL STRATEGIES

Execution time
Controller Mean [µs] Standard deviation [µs]
PID 8.24 4.78
LQR 9.97 3.96
Fuzzy 582.37 54.50

the grey areas in Fig. 8. There were no disturbance injected
in the lean angle measurements in the experiments, mainly
due to the experimental setup using a bicycle roller.

D. Experimental results

The outcome of the experiments conducted on the roller
is presented in Fig. 8. All four controllers manage to balance
the bicycle. However, due to the narrow bicycle roller, the
instrumented bicycle tends to go out of bounds and an
operator needs to assist the bicycle to keep it on the roller.
The Fuzzy controller manages to balance the bicycle, but
with large oscillations in the lean angle which makes it
drift off the roller after 10 seconds. Perhaps with a better
tuned fuzzy system, the bicycle balancing could be improved.
However, the long execution time of the fuzzy system makes
it a weak candidate compared to LQR and PID on a real-
time embedded system. The two PIDs and the LQR manages
to stabilise and keep the bicycle on the roller for over 40
seconds, with the LQR performing slightly worse than the
PID’s. A reason for this might be caused by the estimation of
the steering velocity, which could be improved by a Kalman
filter. The results also suggest that in experiments, it is more
beneficial to use the steering position as the control signal
compared to the steering velocity.

The LSPID, which did not show the most promising
results in simulation, produced the best results in experi-
ments, indicating that the nonlinear validation model could
be improved in future work. The most consistent controllers,
when considering both experiment and simulation, are the
ATPID and LQR.

To evaluate the execution time of the different control
structures they are implemented on the roboRIO platform.
Random numbers in the range [−15, 15]deg are used as
inputs to the controllers and the mean execution time and
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standard deviation of 10 000 loops are calculated for each
controller. Table V shows the obtained averages for the three
classes of controllers. Both the PID and the LQR show
an execution time of few micro-seconds, while the Fuzzy
controller has an execution time in the order of hundreds
of micro-seconds. Even though, all the controllers manage
to complete the respective control laws within the sampling
period (Ts = 0.01s), it is preferable to use the PID or the
LQR controllers since it can allow additional functionalities
to be implemented on the same computing platform, such as
the motion planning, localization algorithms, and so on.

VI. CONCLUSION AND FUTURE WORK

To improve the evaluation process of vehicles ability to
detect and classify bicycles, a driverless instrumented bicycle
is designed with components which could fit into the bicycle
frame or be hidden away in a bicycle basket. To evaluate
and compare different control algorithms for stabilising the
system, two different models are developed. The instru-
mented bicycle senses the lean angle and adjusts the steering
angle to maintain balance. For the purpose of controlling
the handlebar, two different tuned PID controllers, an LQR
and a Fuzzy controller are evaluated and implemented in
both simulations and on the instrumented bicycle. In the
simulation, the controllers are compared both on a linear and
a nonlinear model and a disturbance is induced in the lean
angle measurements to evaluate the robustness of the four
controllers. The outcome from the conducted experiments
shows promising results when using the PID controllers or
LQR, which all manages to keep the bicycle balanced for
over 40 seconds on a narrow roller.

To maintain the silhouette of a bicycle, the next iteration
of the instrumented bicycle should focus on embedding the
components into the bicycle frame. Since the LQR and PID
controller with the set of higher gains shows consistent
results in simulation and experiments these controllers should
be considered for balancing the bicycle in future work where
path following will be addressed.
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