
From UMLModeling to UPPAAL Model checking of 5G Dynamic
Service Orchestration

Ashalatha Kunnappilly
Mälardalen University
Västerås, Sweden

ashalatha.kunnappilly@mdh.se

Peter Backeman
Mälardalen University
Västerås, Sweden

peter.backeman@mdh.se

Cristina Seceleanu
Mälardalen University
Västerås, Sweden

cristina.seceleanu@mdh.se

ABSTRACT
The new 5G technology has the ability to create logical communica-
tion networks, called network slices, which are specifically carved
to serve particular application domains. Due to the mix of appli-
cations criticality, it becomes crucial to verify if the applications’
service level agreements are met, especially for the mission-critical
scenarios, before the system is up and running. In this paper, we
propose a novel framework for modeling and verifying 5G orches-
tration of dynamic services, which considers simultaneous access of
network slices, admission of new requests to slices, virtual network
function scheduling, and routing. Due to the dynamic nature of
the problem such verification becomes a challenging issue. By com-
bining the benefits of modeling in user-friendly UML, with model
checking using UPPAAL, our framework helps to address the issue
by enabling both modeling and formal verification at design stage.
We demonstrate our approach on a case study that involves: (i) a
mission-critical 5G-assisted robot surgery e-health application, ac-
complished by using a health slice that is simultaneously accessed
by various health professionals using a 5G-enabled camera, and
(ii) a less critical video streaming application using a video slice,
accessed via various 5G-enabled mobile phones, within the same
area as the robotic application. By employing our approach, one
can verify that the critical health application meets its timeliness
requirements, but also that all slices are eventually served in the
system.
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1 INTRODUCTION
The fifth generation of wireless technology, 5G, has the potential
to support a variety of applications with different requirements, be
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they low latency, high bandwidth or increased number of connec-
tions. This is ensured via its ability to create end-to-end network
slices, tailored to support respective application requirements [13].
A 5G network slice is composed of several virtual network functions
(VNFs) that are chained in order to meet the application’s function-
ality. Most often, VNFs have constraints on CPU, RAM, storage,
which need to be met by the servers that host them. In addition,
servers are connected via links, hence chaining VNFs incurs ad-
ditional resource overhead in terms of link bandwidth and delay.
Adding to the complexity, VNFs can be shared between slices that
are requested simultaneously by various 5G user equipment. To
analyze if a 5G network slice instance can effectively serve its appli-
cations, one needs to ensure that the respective VNFs are allocated,
scheduled, and routed according to the current network scenario.
This is referred to as dynamic 5G service orchestration. For in-
stance, when applications of different criticality share the same
network resources one needs to ensure that all slices, especially the
mission-critical ones, facilitate meeting application requirements.

Although much research has been devoted to solving the 5G ser-
vice orchestration problem by providing optimal VNF allocation and
routing schemes [12, 17], there is a lack of endeavors that provide
modeling and formal verification frameworks that can analyze such
schemes early in the design stage, to provide guarantees of the in-
tended system behavior. In this paper, we propose such a modeling
and formal analysis frameworkwhich combines user-friendly UML-
based modeling [8] with mathematical assurance via exhaustive
model checking in UPPAAL [11]. This work builds on our previous
results [10], the so-called UML5G-SO framework, that allows one
to model and analyze VNF allocation and routing, assuming static
worst-case scenarios. In this paper, we augment the UML5G-SO
framework to support dynamic system behavior stemming from
dynamic slice requests from different user equipment (UE), as well
as scheduling, link utilization, etc.Our contribution includes the
following: (i) extending the UML5G-SO profile with stereotypes
to model UE and the controllers for handling and monitoring the
dynamic requests, (ii) defining the behavioral view of a system built
based on our profile in terms of restricted UML statechart patterns
(see 5.3), (iii) defining pattern-based timed automata semantics
for the restricted statechart patterns, to be able to model-check
UML5G-SO behaviors with UPPAAL [11], and (iv) implementing
tool support for the automatic generation of UPPAAL models from
restricted state charts. To demonstrate our approach, we consider a
case study of simultaneous access of shared network resources by
two applications of different criticality.

The rest of the paper is organized as follows. Sec. 2 details the
problem statement and our case study. In Sec. 3, we overview the
preliminaries of UML 2.0 modeling, timed automata and UPPAAL
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model checker. Our methodology is explained in Sec. 4. In Sec. 5,
we present our extended UML5G-SO profile in UML 2.0 allowing
UML modeling of dynamic service orchestration in 5G systems.
Sec. 6 presents the formal semantics of the UML model in terms
of UPPAAL timed automata. Thereafter, in Sec. 7, we present our
G5tool that allows the automated verification of system require-
ments, as well as the verification results using the UPPAAL model
checker applied on the case study, followed by a brief discussion of
the gained insights. We compare our contribution to related work
in Sec. 8, before providing the concluding remarks and directions
of future work, in Sec. 9.

2 PROBLEM DESCRIPTION
This paper aims at providing a modeling and formal analysis frame-
work for the dynamic 5G service orchestration problem. Concretely,
the framework allows a 5G engineer to model an existing service
orchestration solution (that is, VNF allocation and routing) of a
network slice, and formally verify if the solution meets its applica-
tion requirements, under various dynamic behaviors assumed as
follows:

• Dynamic network load: We produce a dynamic network load
by using a set of 5G user equipment (UE) that can request a
network slice at any point of time.

• Dynamic VNF scheduling: We assume that every host exe-
cutes VNFs (when required) according to a given scheduling
policy. The execution time of a VNF is within its best-case
and worst-case execution time bounds.

• Dynamic link utilization: Instead of assuming that link band-
width is always reserved for a particular slice, we cater for
its dynamic usage, that is, consumption of the respective
link bandwidth when used, followed by a subsequent release
after its use.

Consider an example of an overlay network consisting of virtual
machines (hosts) deployed on edge/cloud servers. We assume that
this overlay network is powered by 5G, which supports a variety
of applications via end-to-end network slices. A slice consists of
a number of virtual network functions (VNFs) interconnected via
a VNF Forwarding Graph (VNFFG), assumed a sequence – VNF
Forwarding Sequence – in this paper. A virtual network function
(VNF) is defined as a software implementation of a network func-
tion, which can be easily deployed on virtual resources such as
virtual machines [12]. We also assume that the hosts communicate
via virtual links, which incurs overheads in terms of bandwidth
capacity and latency. In order for the overlay network to serve vari-
ous applications of different requirements, the network slices’ VNFs
need to: (i) be allocated on hosts, respecting the latter’s processing,
memory, and storage capabilities, and (ii) be routed such that the
respective VNF chaining is achieved. In our previous work [10],
we have already proposed a UML profile called UML5G-SO, and
associated static OCL-based analysis of 5G service orchestration
solutions, that is, checking whether a given VNF allocation and
routing of a slice at a particular point of time meets the application’s
Quality of Service (QoS) requirements. However, our analysis has
considered only static worst-case scenarios, that is, we assume that
the system is serving the maximum number of user requests under
a maximum load. This is not realistic if one considers the actual

varying network load that requires utilizing hosts and links in a
dynamic manner.

We assume that each slice has a certain allocation and routing
defined (or generated) when the system starts its operation. Our
aim is to analyze if the given allocation and routing can meet the
application’s QoS, considering dynamic behaviors as described
above.

To address this, we provide a modeling and formal verification
framework that combines UML-basedmodeling and UPPAALmodel
checking to analyze 5G-SO systems. To begin with, we present a
case study that we model and verify within our framework.

2.1 Case study
As a running example, we consider two applications, namely a robot-
assisted surgery application, and a video-streaming application,
accessing a health slice and a video slice, respectively, within the
same small cell (i.e., bandwidth resources are consumed from the
same cell tower). The applications access their respective slices
via their 5G user equipment (UE). In our case study, a 5G camera
accesses an instance of the health slice, and a mobile phone accesses
an instance of the video slice. We consider that health slices have a
higher priority over video slices.

We assume that we have three UE accessing the health slice
and two UE accessing the video slice simultaneously, via their slice
instances. The case study is depicted in Fig. 1. The slice instances are
made of their respective VNF instances. For example, health-slice
instances consist of VNF sequence v1-v2, where v1 is an instance
of VNF A and v2 is an instance of VNF B. Similarly, a video-slice
instance is a VNF sequence v1-v3-v4-v5, where v1, v3, v4, v5 are of
category VNF A, VNF B, VNF C, and VNF B, respectively (the slices
share some VNFs). The overlay network comprises four virtual
hosts onto which the VNFs are allocated. For instance, as shown in
Fig. 1, we consider that v1 and v3 are allocated to Host 1. The hosts
are connected via virtual links as shown in Fig. 1 (e.g., Host 1 and
Host 2 are connected via L1). However, not all hosts have a one-to-
one link connectivity established, for instance, there is no direct
link between Host 1 and Host 3. Hence, any routing scheme that
needs to travel from Host1 to Host3 must use the path consisting
of links <L1, L2>, or the alternative path <L4, L3>.

For the robotic surgery application established via the health
slice, low latency and high bandwidth requirements are of great
concern. In comparison, the video streaming application using the
video slice has high bandwidth requirements, but not so critical la-
tency constraints. Some of the application requirements that would
be interesting to verify are listed below:
Req1: For all possible scenarios, the end-to-end latency require-
ments of the health/video slices are met, respectively.
Req2: For all possible scenarios, the end-to-end bandwidth require-
ments of the health/video slices are met, respectively.
Req3: All the instantiated slices in the system are eventually served.

3 PRELIMINARIES
In this section, we introduce the types of UML diagrams that we
use in this paper, as well as briefly overview timed automata and
the UPPAAL model checker.
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Figure 1: Case study

3.1 UML
The Unified Modeling Language (UML) [8] is a modeling language
that helps a designer to express structural and behavioral artifacts
of complex systems. In order to capture the essentials of a 5G-
SO system, we have to specify its structure and behavior, which
we accomplish using our UML5G-SO profile. A profile diagram is
one of the simplest ways by which one can extend existing UML
models, by defining stereotypes, tagged values and constraints for
capturing domain-specific concepts. For a deeper understanding of
UML profiles, we refer the reader to relevant literature [8, 9].

In order to model 5G case studies using a UML profile, one should
be able to represent both structural and behavioral views of the
specific scenarios of the case study, using the profile. In this work,
we use UML class diagrams and object diagrams to represent the
system’s structure, and UML statecharts to represents the system’s
behavior. While the former are quite straightforward, we will pro-
vide a brief explanation of statecharts as they are central to this
work.

UML Statecharts. UML statecharts (or UML state-machine dia-
grams) depict behavior via states and transitions between states..
While each state simply has a name, a transition includes a trigger,
a guard, and an action. The triggers are usually events, and the
response actions become the effects on the transitions. The guard
is a Boolean expression that has to evaluate to true in order for
the transition to be fired. The UML syntax for a state transition is
Ev(parameters)[G]/A. In this paper, we chose UML statecharts for
their effectiveness of capturing the behavior of individual classes
(identified as our system’s components) by states, transitions, and
transition triggers.
In our work, we consider only two kinds of UML events, time events
and call events [8]. We define a time event (Tm) via the keyword
“after”, followed by an expression that encodes the time value. We
model call events (Cl) as synchronization events that are unicast

Sa Sb
rcvTrigger(vnfId)

after(execTime)
S1

rcvUEreq(Slice)/QueueVNF(), 
sendTrigger(vnfId)

||

Figure 2: Parallel Composition of UML Statecharts

to other statecharts. The unicast communication offers handshake
synchronization between two statecharts, and is blocking, that is,
the synchronization takes place only if both sender and receiver are
ready to traverse their edges [20]. In addition, we consider that stat-
echarts can be composed in parallel, by defining their interactions
via Cl events [20].

Example 3.1. In Figure 2, we show an example of two statecharts
that synchronize when executing in parallel. The initial one is the
controller statechart that has a state S1 waiting for a user equip-
ment (UE) request. On receiving the call event, rcvUEReq(Slice), it
queues the respective VNFs to be executed in the host, and generates
another call event (action), sendTriддer (vnf Id), which is unicast
to the host statechart. In state Sa, the host statechart is ready to syn-
chronize and receives the event rcvTriддer (vnf Id), moving to state
Sb, where it executes the respective VNF and moves back to state
Sa, when triggered via a time event, modeled by af ter (execTime).

3.2 Timed Automata and UPPAAL
A Timed Automaton (TA), as used in the model-checker UPPAAL
[11], is defined as a tuple, ⟨L, l0,V ,C,A,E, I ⟩, where: L is the set
of finite locations, l0 is the initial location, V is the set of data
variables, C is the set of clocks, A = Σ ∪ τ is the set of actions,
where Σ is the finite set of synchronizing actions(c! denotes the
send action, and c? the receiving action) partitioned into inputs
and outputs, Σ = Σi ∪ Σo, and τ < Σ denotes internal or empty
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actions without synchronization, E ⊆ L × B(C,V ) ×A × 2C × L is
the set of edges, where B(C,V ) is the set of guards over C and V ,
that is, conjunctive formulas of clock constraints (B(C)), of the form
x ▷◁ n or x − y ▷◁ n, where x ,y ∈ C , n ∈ N, ▷◁ ∈ {<, ≤,=, ≥, >},
and non-clock constraints over V (B(V )), and I : L −→ Bdc (C) is a
function that assigns invariants to locations, where Bdc (C) ⊆ B(C)
is the set of downward-closed clock constraints with ▷◁ ∈ {<, ≤,=}.
Invariants bound the time that can be spent in locations, hence
ensuring progress of TA’s execution. An edge from location l to
location l ′ is denoted by l

д,a,r
−−−−→ l , where д is the guard of the edge,

a is an update action, and r is the clock reset set, that is, the clocks
that are set to 0 over the edge. A location can be marked as urgent
(marked with anU ) or committed (marked with aC) indicating that
the time cannot progress in such locations. The latter is a more
restrictive, indicating that the next edge to be traversed needs to
start from a committed location.

The semantics of TA is a labeled transition system. The states
of the labeled transition system are pairs (l ,u), where l ∈ L is the
current location, and u ∈ RC

≥0 is the clock valuation in location l .
The initial state is denoted by (l0,u0), where ∀x ∈ C, u0(x) = 0. Let
u ⊨ д denote the clock value u that satisfies guard д. We use u + d
to denote the time elapse where all the clock values have increased
by d , for d ∈ R≥0. There are two kinds of transitions:

(i) Delay transitions: < l ,u >
d
−→< l ,u + d > if u ⊨ I (l) and

(u + d ′) ⊨ I (l), for 0 ≤ d ′ ≤ d , and
(ii) Action transitions: < l ,u >

a
−→< l ′,u ′ > if l

д,a,r
−−−−→ l ′,a ∈

Σ,u ⊨ д, clock valuationu ′ in the target state (l ′,u ′) is derived from
u by resetting all clocks in the reset set r of the edge, such that
u ′ ⊨ I (l ′).

UPPAAL. TheUPPAALmodel checker provides exhaustivemodel-
checking of TA models like the ones overviewed before. A real-time
system can be modeled as a network of TA (NTA) composed via
the parallel composition operator (“| |”), which allows an individual
automaton to carry out internal actions, while pairs of automata can
perform handshake synchronization. The locations of all automata,
together with the clock valuations, define the state of an NTA. The
properties to be verified by model checking on the resulting NTA
are specified in a decidable subset of (Timed) Computation Tree
Logic ((T)CTL) [5], and checked by the UPPAAL model checker.
UPPAAL supports verification of liveness and safety properties [11].
The queries that we verify in this paper are of the form: i) Reacha-
bility: E^p means that there exists a path where p is satisfied by at
least one state of the path, and (ii) Leads to: p ⇝ q, which means
that whenever p holds, q must hold thereafter, (iii) Invariance,
A□p, stating that p should be true in all reachable states for all
paths.

4 MODELING AND VERIFICATION
FRAMEWORK

In this section, we introduce our proposed framework for modeling
and formal analysis of dynamic 5G SO systems. First, we employ our
UML5G-SO profile to model the structure and behavior of various
5G-specific case-study scenarios, using UML diagrams, after which
we formally verify the latter using the UPPAAL model checker.
Our framework has two benefits: (1) a practitioner can use the

UML5G-SO 
Profile

(1) Create structural system 
represenation (Class Diagram)

(3) Create behavioural 
representation (Statecharts)  

 (4) Create UPPAAL TA templates 

(2) Instantiate class 
diagram using USE tool 

(Object Diagram)

Verify a particular SO solution

(5) Create TA network by 
instantiating the UPPAAL TA 

templates
(G^5 tool)

(7)Model checking

Requirements in 
Natural Language

5G case 
study

(6) Translate to 
TCTL formulas

(8) Verification Results

not satisfactory

satisafctory

All 
configurations 

verified?

Yes

No

End

Figure 3: Proposed Methodology

industrially-accepted UML tool to model the system without any
underlying knowledge of the formal TA modeling in UPPAAL, and
(2) the verification results obtained by employing UPPAAL provide
guarantees to the 5G SO model behavior.

Themethodology is illustrated in Fig. 3. Given a case study and its
requirements in natural language, we first employ our UML5G-SO
profile and create a class-diagram-based structural representation
of the case study scenarios. Some of the classes in the class diagram,
referred to as active classes, have behavior modeled by UML state-
charts. Next, to facilitate modeling, we define statechart patterns
and assign semantics to them in terms of UPPAAL TA, hence creat-
ing the corresponding UPPAAL TA templates that support creating
the formal model counterpart. Last, we formalize the requirements
of the case study as TCTL queries (see Sec. ??, Sec. 6). To verify
a particular 5G SO system, we first instantiate the class diagram,
yielding an object diagram, to create a run-time representation of
the system, for example by using a UML tool such as USE (UML
Specification Environment) [2]. Second, we instantiate the TA tem-
plates for each active object in the object diagram. Third, we employ
model checking, using UPPAAL, against the corresponding TCTL
queries. We also provide a tool, G5, which can execute the second
and third step automatically (see Sec. 7.1).

If the requirements aremet, we can verify another 5G SO solution,
until all the different configurations (VNF allocations and routing)
are verified. If some requirement is not met, we need to alter our
model and repeat the steps until the former behaves in the intended
manner.

5 UML MODELING OF DYNAMIC 5G SERVICE
ORCHESTRATION

In order to exemplify how the UML5G-SO profile can be used for
modeling 5G-specific scenarios, we detail the modeling of our case
study.

5.1 The Enhanced UML5G-SO Profile
The enhanced version of the UML5G-SO profile is shown in Fig. 4
(changes highlighted with colors and in bold). We define three
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maxMonitors: int 
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0..*monitors

Figure 4: The UML5G-SO Profile (Extended Version)

stereotypes as follows: (i) UserEquipment, extending UML Meta-
class::Component, models 5G user equipment (UE). The stereotype
has an attribute to specify its activation time (assumed periodic);
(ii) Request Handler, extending UML Metaclass::Component, takes
care of parallel UE requests and allows VNFs to be routed according
to their graph VNFForwardinдSequence; (iii) Monitor, extending
UML Metaclass::Class, monitors various served requests, and is used
to establish if the latter meet their requirements or not. We also
replace the execution time attribute of the previous VNF stereotype
with two attributes specifying best-case (BCET) and worst-case
execution time (WCET), respectively.

5.2 Case-study Modeling with Class Diagrams
The class diagram description of our case study is shown in Fig
5. We apply the stereotypes and add attributes and functions (as
highlighted in Fig. 5), accordingly. We do not add these at the profile
level as we acknowledge that our view of defining the system
behavior is not the sole way of describing it.

We model two categories of 5G UE, namely, a 5GCamera, and
a MobilePhone , which access the HospitalSlice and VideoSlice ,
respectively. The user equipment classes contain the attributes
ueId, sId andmaxReq, which are integer values that allow to specify
the UE’s id, the id of the slice it accesses, and the maximum number
of requests that limits the usage of the slice by the equipment. The
user equipment is also associated with an action of generating the
slice request event, evSliceReq, each time the UE gets activated peri-
odically, with a period specified by its activation time actTime . Sim-
ilarly, the VideoSlice and HospitalSlice classes are defined by ap-
plying the 5GNetworkSlice stereotype and adding an attribute for

the id. We also apply stereotypes on ReqControl ,MonitorReq and
VM . The ReqControl class is supplemented with an attribute for its
id, and a set of functions: initialise(), queueVNF (), consumeBW (),
releaseBW (), and calcLDelay(). When a UE requests a slice, the
initialise() function initializes itsVNFFSEq and its routing scheme
(Note: we assume that all VNFs are allocated). The ReqControl
also takes care of queuing the respective VNFs to their hosts via
the queueVNF () function. In order to consider the VNF dependen-
cies arising from the respective VNFFSeq of a slice, we model the
queue function such that only the VNFs that are ready to be ex-
ecuted at a point in time get queued at the corresponding host.
The functions consumeBW (), releaseBW (), calcLDelay() consume
the link bandwidth while routing through it, release it after its us-
age, and calculate the respective delays in routing across the links,
respectively. TheVM class has one attribute (id) and two functions,
scheduleVNF () and dequeueVNF (). The former function encodes
the scheduling algorithm, and dequeueVNF () is responsible for de-
queuing the VNF that is next to be executed. Once the class diagram
description of our system is formulated, we encode the behavior
of each active class by using a restricted form of UML statecharts.
The classes that possess behavior are marked with a circle in Fig. 5.

5.3 Restricted Statechart-based Behavioral
Description of our 5G-SO System

In this section, we discuss the behavioral description of our system
using UML statecharts restricted to fit our needs. We define the
restricted form of statecharts, as follows:

Definition 5.1. A restricted statechart (RSC) is a UML statechart
obeying the following restrictions:
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<<Host>>
VM

+hostId: Int

scheduleVNF()
dequeueVNF()

<<RequestHandler>>
ReqControl

+rcId: Int

initialise()
queueVNF()
consumeBW()
releaseBW()
calcLDelay()

<<Link>>
VirtualLink
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Path

+ links : Seq(Link)
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<<VNF>>
VNFA

+ vnfId: Int
+ bcet : Int
+ wcet: int
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<<VNFForwardingSequence>>
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<<5GNetworkSlice>>
VideoSlice
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+req: QoS
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+ vnfId: Int
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<<UserEquipment>>
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+actTime: Int
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+maxReq: Int

<<VNF>>
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+ vnfId: Int
+ bcet : Int
+ wcet: Int
+prio: Int

Figure 5: Class diagram representation of our case study (It inherits all relations and multiplicities in the profile)

• All states are simple (without any hierarchies), and without
any associated execution history.

• The states can either be the usual simple states of UML
statecharts, hereby called “active” states, or pseudostates
that represent the initial and final states, only.

• The transitions follow the usual UML syntax,
Ev(parameters)[G]/A, whereEv(parameters) are either UML
call events or time events, (Section 3), G are Boolean condi-
tions evaluated over system variables, andA include variable
assignments and other user-defined functions.

The transitions are triggered via call or time events, or as soon as
the guards evaluate to true. Moreover, the transitions from psue-
dostates to active states or vice-versa are considered instantaneous
if there are no specific events or guards triggering them. Different
statecharts synchronize via unicast or broadcast synchronizations.
The synchronization is defined via a parallel composition of the in-
dependent restricted statecharts. In addition, the statecharts follow
the run-to-completion execution semantics [6], that is, a statechart
completes processing each event before it can start processing the
next one. The statecharts in Fig. 6 are examples of restricted state-
charts, as they obey all restrictions in Def. 5.1 1

5.3.1 Parallel Composition of RSC(para). A 5G system comprises
a number of interacting components, each behaviorally defined by
an RSCpattern. Hence, to evaluate how a system is executed, we
must compose in parallel the involved RSCpatterns. Given a system
consisting of n RSC(para), we denote their parallel composition by:

RSC1(para1)| |RSC2(para2)| | . . . | |RSCn (paran)

1The restricted statecharts in Fig. 6, namely UE, RC, VM, MO, correspond to the active
classes UserEquipment, ReqControl, VM, MonitorReq, respectively.

The synchronization between the various statecharts is modeled via
the call events of the form EvName(parameter ) between a generat-
ing and a triggered component. A component can take a transition
generating an event if and only if there is another component that
can trigger a transition by the same event.

Example 5.2. The UML statechart-based behavioral model of our
5G-SOS is defined as the parallel composition of the component
RSC(para) of our system, and is represented as follows:

5GSOSUML = RSCU E1 | | . . . | |RSCU En | |RSCM01 | | . . . | |RSCM0n | |RSCRC1 | |

. . . | |RSCRCn | |RSCVM1 | | . . . | |RSCVMn
(1)

where RSCU E1...RSCU En are the respective instantiations of
RSCU E (para) for UE1...UEn in the system. Similarly, we define
instantiations of RSCMO (para), RSCRC (para) and RSCVM (para),
representing the UML statechart patterns defined for the active
classes corresponding to UserEquipment, MonitorReq, ReqControl,
and VirtualMachine, respectively.

An example of synchronization is shown in Fig. 6, where the
RSCU E generates the call event evSliceReq(sliceId) that is unicast
to RSCMO that synchronizes with RSCU E via parameter sliceId .

6 FORMAL SEMANTICS OF RSC PATTERNS
In order to formally verify properties of a 5G-SO system, we need to
assign formal semantics to the RSC model of component behavior,
corresponding to RSC informal semantics. We define the formal
semantics in terms of TA that behave according to the timed transi-
tion semantics overviewed in Sec. 3.2. For each restricted statechart
pattern (see Sec. ??), we have a corresponding TA pattern. The
resulting semantics of the system is defined as the network of all
TA obtained by instantiating the corresponding TA patterns.
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VM(hostId)

Idle Execute

[QueueNonEmpty]/
schedule(), dequeue(),
t=random(BCET,WCET)

WaitforVNFExecution WaitForLinkDelay

evVNFExeDone/checkRoute()

after(lDelay)/
releaseBW(), 
evQueue(vnfId)

CheckLinkAvailability

[IslinkBWavailable] 
/consumeBW(); 
calcLdelay();

[IsAllSiceVNFExecuted ]

      after(t)/evVNFExeDone

RC (rcId)

Idle evReq(mId)/initialise(), 
evQueue(vnfId)

after(actTime)[nReq<=maxReq]/
evSliceReq(sliceId),nReq++

SendReq

UE(ueId,sliceId,maxReq,actTime)

Idle

evSliceReq(sliceId)/
evReq(mId)

Wait
after(deadline)

Fail

MO(mId)

evQueue(vnfId)/queue(vnfId)

Idle

[nReq<=maxReq]/
evSliceReq(sliceId),nReq++

[nReq>maxReq]

Figure 6: Restricted statechart representation of the case study specific behavior

Function Purpose
initialise() Initializes the slice VNFSeq, VNF allocation and routing, upon receiving a particular slice request from the UE
queue(VNFId) Queues the VNF that are ready to be executed into the message queue of the VM where is it allocated
schedule() Sorts the VNFs in the queue according to priorities of the VNFs such that the head of the queue has the highest priority
dequeue() Removes the vnf that is executed from the message queue
calcLdelay() Calculates the sum of delays over all the links involved a particular path between consecutive vnfs in VNFSeq
consumeBW() The required bandwidth of a slice is consumed from the available link bandwidth
releaseBW() Once the slice has finished utilizing a link, the respective link bandwidth is released

Table 1: User-defined functions

after(5)[nReq<=1000]/
evSliceReq(1),nReq++

SendReq

5GCamera(1, 1,1000,5)

Idle

[nReq<=1000]/
evSliceReq(1),nReq++

[nReq>1000]

Figure 7: Example of an instantiated RSCU E

UPPAAL TA pattern. Using the definition of RSC(para) in Sec. ??,
and the definition of TA (see Sec. 3.2), we define a semantic encoding
of the RSC(para) components, respectively, in terms of TA(para).
Like RSC(para), a TA(para) is also defined as a reusable TA struc-
ture, for reccurring behavior, as follows:

TA(para) = ⟨Lp , l0p ,Vp ,Cp ,Ap ,Ep , Ip ⟩ : para,

where:
• para refers to the list of parameters that get instantiated
with values when the pattern is used,

• Lp =
n⋃
i=1

{Lai} ∪
n⋃
i=1

{Lc i} ∪
n⋃
i=1

{Le i} where Lai correspond

to Sa in RSC(para), Lc i is the set of committed locations
introduced to handle the simultaneous synchronizations in-
volving the trigger (evt ) and effect actions (evд ) occurring

in a transition, Le i is the set of error locations introduced to
capture the errors of message queue being full, not enough
request controllers or monitors to handle the request, and
deadline violation,

• l0p = Idle ,
• Vp is the set of variables defined in the corresponding
RSC(para), and other local variables that are used to model
the parameter passing (by making a local copy of the param-
eter passed), and other variables if needed to define the error
conditions that lead to Le i,

• Cp is the set of clock variables that measure the time elapsed
for the corresponding Evt ,

• Ap is defined as Async ∪Aass ∪Audf , where Async corre-
sponds to the synchronizing events in Evc and other urgent
synchronizations (execute?) defined to trigger a transition
as soon as the guard evaluates to true, Aass refers to the ac-
tions involving assignment of variables and updates of clocks,
Audf is the set of user-defined functions in RSC(para),

• Ep = Ee ∪Ea , where Ee refers to the set of edges defined by
−→ in RSC(para), populated with L in RSC(para) and other
guards defined over the clock variables along the transitions
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enabled with Evt ; Ea are the additional edges defined to
connect (Lai and Lc i) 2 and (Lai and Le i) 3,

• Ip is defined over the Lai that generates Evt .
As an example, we present the TA pattern,TAU E (para), depicted in
Fig. 8, which corresponds to RSCU E (para). TAU E (para) is defined
as follows:
TAU E (ueId, sId,maxReq, actT ) = ⟨Lue , l0ue , Vue , Cue , Aue , Eue , Iue ⟩ :

(ueId, sId,maxReq, actT ),

where:
• Lue = {Idle, Start , Select ,NoFreeMonitor ,NoFreeContr },
• l0ue = Idle ,
• Vue = {ueId, sId,maxReq,actT ,nReq, reqSId,avContrs,
avMonitors}, where ueId represents the id of the UE, and
sId represents the id of the slice it requests,maxReq is the
maximum number of slice requests that a UE can make,
nReq keeps track of the number of UE requests, ReqSId is a
variable that copies the sId to reflect the passing of sliceId
parameter in RSCU E , avContrs , and avMonitors , to capture
errors if there are not enough controllers or monitors to
handle the requests, respectively,

• Cue = {x} is the clock that models the activation time,
• Aue = {req?, execute?} ∪ {reqSId = sId,nReq + +,x = 0},
where A comprises the set of synchronization channels as-
sociated with generating a slice request (req!), and synchro-
nizing over an urgent channel, (execute?) the corresponding
variable assignments, and reset actions on clock x ,

• Eue = {Idle
execute?,nReq<=maxReq,x=0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Start , Start

x==actT
−−−−−−−−→ Select , Select

avContrs==0
−−−−−−−−−−−−→ NoFreeContr ;

Select
avMonitors==0
−−−−−−−−−−−−−−−→ NoFreeMonitor ; Select

r eq!,(avContrs>0&&avMonitors>0),nReq++,r eqSId=sId,x=0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Idle},
• Iue : Start −→ (x <= actT )

Following a similar approach, we generate TAVM (para),
TARC (para), andTAMO (para) patterns corresponding to theirRSC
counterparts, respectively.

The instantiation of TA(para) assigns the parameters in para
with actual values. Using “p = v” to denote the assignment of
parameter p with value v , we define the instantiated pattern as:
TAIi (para) ::= ⟨Lpi , L0pi , Vpi , Cpi , Api , Epi , Ipi ⟩ : (p1 = v1, p2 = v2, ...)

(2)

Example 6.1. Consider the TAU E pattern, introduced above. An
example of a parameter assignment is:

para = (ueID = 1, sId = 1,maxReq = 1000,actT = 5)

Parallel Composition of TA(para). Given a system consisting of n
TA(para), that is, TA1(para1),TA2(para2), . . . ,TAn(paran), their
parallel composition is denoted as:

NTA = TA1(para1)| |TA2(para2)| |...| |TAn (paran)

2If both the trigger and effect actions occur simultaneously in a transition, the latter
will be transformed to two edges with a committed location in between, in which the
former is synchronized with the trigger action and the latter is synchronized with the
effect action.
3The edge connecting La with Le is decorated with guards that evaluate to true when
meeting the error conditions.

Example 6.2. Assuming that we have n instantiations of each TA
pattern in our model, our 5G − SOSNTA is defined as a network of
timed automata composed via parallel composition of its constituent
TA models and represented as:

5G − SOSNTA = TAU E1 | | . . . | |TAU En | |TAMO1 | | . . . | |TAMOn | |

TARC1 | | . . . | |TARCn | |TAVM1 | | . . . | |TAVMn
(3)

7 EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of our profile.
We begin by describing the tool support developed to allow for the
automated verification of the requirements presented in Sec. 2 over
the instantiated systems of our case study (in the form of object
diagrams), followed by a short summary of our evaluation.

7.1 G5

As a proof-of-concept of how employing our profile allows for
automatic verification of object diagrams, we provide a tool, called
G5, which facilitates verifying the assertion that all deadlines are
met in a specific 5G-SO system. The tool is implemented in Python
and takes as input an object diagram, specified in the soil-format
(of the USE tool [2]) and verifies automatically that for all possible
scenarios all deadline requirements of slices are met. The overall
workflow is described in Algorithm 1.

Input :Object diagram of 5G system
Output :Success if all deadlines are met
Instantiate TA template for each active object in system;
Create UPPAAL model with all templates;
Generate queries for UPPAAL model;
Use UPPAAL to check queries;
if ErrorQueueFull state can be reached then

Fail with "Queues too short"
else if NoFreeContr state can be reached then

Fail with "Not Enough Controllers"
else if Deadline query failed then

Fail with "Deadline violated"
else

Success
Algorithm 1:Workflow of the G5 tool

7.2 Verification Results
We exemplify the verification approach introduced previously, for
our case study described in Sec. 2, and verify whether application
requirements shown in Sec. 2 are met. We begin by instantiating
our TA patterns to model our case study. To model the user equip-
ment, we instantiate the TAU E (para) pattern to TAU E (1, 1, 5, 5),
TAU E (2, 1, 10, 3), TAU E (3, 1, 10, 100), TAU E (4, 2, 3, 2) and
TAU E (5, 2, 5, 100), of which the first three correspond to instances
of 5GCamera, and the rest to 5GMobile . We also instantiate the
TAVM (para) pattern to simulate our overlay network with four
VMs, namelyTAVM (1),TAVM (2),TAVM (3),TAVM (4). In order to
verify the model, we assume that the network has enough request
controllers and monitors to handle the requests from independent
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Figure 8: UPPAAL TA pattern for UE: TAU E

Req. Query Result Time (s) Mem. (kB)
R1 E^RC1.rq sat 0.001 7288

RC1.rq⇝
RC1.rqComplete sat 14094 3761180

R2 A□ not MO1.Fail sat 12499 7920432
R3 E^RC4.rq sat 0.001 7288

E^RC4.rqComplete sat 0.408 29388
Table 2: UPPAAL Verification Results

UE. However, having many such controllers and monitors is com-
putationally expensive, hence we consider only five instances of
each, hoping that they suffice.

We verify the generated model against the formalized require-
ments, using the UPPAAL model checker version 4.1.19 4. The
verification PC has an Intel Core i7, 2,6 GHz processor and 16 GB
2400 MHz DDR4 memory. The verification results are tabulated in
Table 2. Note that the bandwidth requirement is automatically met
upon satisfaction of the latency requirement, since we construct
the models in such a way that a UE can complete its request only
if the necessary bandwidth is available. We also check if all slice
requests are eventually served, that is, query R3 (corresponding to
Req3 in Sec. 2). We also add error locations to capture queues being
full, and insufficient request controllers or monitors available (e.g.,
see Fig. 8). In case the verification fails, the mechanism allows for
detecting if the model has reached any of the error locations.

From Table 2, one can see that the time taken for exhaustive
verification of certain queries is not promising, hence we acknowl-
edge that exhaustive model checking may not always be the best
solution at hand to verify big complex systems like a 5G-SOS, as it
suffers from state-space explosion. However, if one is able to model
and verify some critical part of the network and functionalities, it
provides guarantees over all possible system behaviors.

8 RELATEDWORK
Substantial work within the field of 5G service orchestration is
aimed at providing optimal VNF placement algorithms and routing
schemes [1, 3, 7, 16]. There is also interesting work that looks into
scheduling of VNFs [4], and slice chain reconfiguration [14]. How-
ever, not much effort has been invested in modeling and formal
analysis of such systems, which in turn would verify if a given VNF
placement, resource allocation, and routing meets the application
requirements. Nevertheless, there exists interesting work that con-
siders the description of VNFs and VNF chaining in isolation, to
analyze if application requirements are met, for instance, the Gym
4https://www.it.uu.se/research/group/darts/uppaal/download.shtml

framework [21] and the work by Peuster and Karl [19]. In contrast
to our work, these approaches model VNFs and their chaining at a
low level, without considering a system perspective, or 5G-specific
scenarios. Spinoso et al. [22] employ SMT solvers (e.g., Z3), to verify
VNFs and VNF chains against safety and reachability properties.
Although the approach is promising, the framework is strictly for-
mal, lacking the bridge to industrially-accepted modeling languages
such as UML. In addition, the authors do not consider the service-
orchestration problem and the QoS requirements that we study in
this paper. In another interesting work [15], Luque-Schempp et al.
investigate the use of various formal methods in the context of a 5G
network, focusing on Software Defined Networking and Network
Function Virtualization modeling and verification via selected for-
mal tools like theorem provers, model checkers, and SMT solvers,
at different level of network abstraction, without considering 5G
service orchestration. Unlike our approach, the framework does
not employ modeling techniques other than those of the formal
tools, which makes it less appealing to practitioners.

The use of UML to model 5G service orchestration is not inves-
tigated much in the literature. One recent work [18] models 5G
network slices, namely, resource driven, service driven, deployment
driven, using different UML diagrams. However the modeling is
not backed by formal analysis like the one presented in this paper.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we have proposed a framework to model and analyze
dynamic 5G service orchestration systems. Our solution combines
the features of user-friendly UMLmodeling with formal analysis us-
ing the UPPAAL model checker, and provides one with automated
support to model and formally verify the structure and behavior of
dynamic 5G SOS systems. Using our tool support requires knowl-
edge of UML as well as the UML5G profile, but no experience with
timed automata or model checking. This shows the power of complex
automatic reasoning tools when provided to a UML user.

In our current model, we have considered only system dynamic
behavior arising from simultaneous user requests, VNF sharing,
variable link and server utilization, etc. In the future, we would
like to consider other factors like host failures, which entails VNF
reallocation or rerouting of network traffic through an alternative
path. Another interesting direction for future work is to introduce
an automatic translation from (any) restricted state chart to a timed
automaton, allowing the specification of behavior to be changed at
the UML level.
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