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ABSTRACT There has been tremendous growth in the Internet of Things (IoT) technologies, and many
new applications have emerged. However, cascading failure as one of the major issues in such constrained
networks have been neglected. In this paper, we apply an effective clustering approach dubbed as REFIT to
enhance network topology robustness via nodes’ residual energy. The REFIT protocol divides the network
processes into two stages, (i) set-up state and (ii) steady state. The Cluster Head (CH) selection method
determines the supreme set of CHs that balances load distribution. The routing method is developed with
the modified Particle Swarm Optimization (PSO) algorithm and the objective function to find the supreme
set of Relay Nodes (RNs). These complete methods are combined into a set-up state to construct an optimal
routing tree that links these CHs to the sink via RNs. In steady state, we model the routing tree to Conditional
DirectedAcyclic Graph (C-DAG) infrastructure that leads to shortcut routes. Simulation results onMATLAB
Simulink have demonstrated that compared with the state-of-the-art works, REFIT can significantly promote
network robustness against cascading failure.

INDEX TERMS IoT, cascading failure, robustness, clustering, particle swarm optimization, fault tolerance.

I. INTRODUCTION
Internet of Things (IoT) has become a platform for
advanced solutions to the challenges of modern emerging
technologies [1]–[3]. Wireless Sensor Network (WSN) is a
distributed communication system [4], which is considered
as a core component of the IoT network that has been widely
exploited inmany application domains including smart power
grid [5], autonomous vehicles [6], disaster management [7],
healthcare systems [8], etc. Wireless sensors gather environ-
mental data autonomously and send them to a destination.
In practical IoT networks, due to the low cost of hardware,
sensor nodes generally have a bounded capacity [9], [10].
If the traffic load of the sensors exceeds their buffer capacity,
the probability of their failure due to the buffer overflow
increases [11]. When a failure occurs in one node, the other
nodes will have to choose new routes to transmit data, so it is
common to change the current routing paths. The re-routing
process for redistribution load may cause some other nodes to
fail due to the excessive traffic. This process may continue in
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the network, and the failure cycle can be expanded throughout
the network [12]–[16]. This failure is considered as one of
the essential items affecting the robustness of IoT networks,
which is called cascading failure [17]–[19].

One of the obvious examples of cascading failure is the
blackout in Indian power grids in 2012, when three regional
grids collapsed, affecting over 400 million people [20].
A microgrid as an instance of a power grid is vulnerable
to abnormalities due to small inherent inertia. Consequently,
the stability of microgrids becomes a challenge after dis-
rupting power systems. Thus, microgrids must be more reli-
able and more adaptive to load redistribution of the power
grid [5], [20]. In other applications, the risk of smart city
security increases by disrupting important infrastructure and
damaging public trust. Most importantly, breakdowns in
interconnected data-driven services can lead to system inef-
ficiencies in a cascading manner [21]. In smart factories,
information network components are vulnerable to attack and
error due to numerous connections. Complex dependencies
on physical devices and information networks complicates
the detection of threats. These threats can cause cascading
damage to the smart network of the factory [22].
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In this work, we are focusing on microgrid applications
as one of the most critical IoT applications that could be
affected by cascading failure [23]. In general, IoT network is
a proper solution for microgrid applications in order to man-
age energy and traffic load, especially when microgrids are
equipped with renewable sources of energy [17], [18], [23].
These resources are usually located in harsh environments
and complex places. Nodes in microgrid may fail due to
several reasons, such as invader attack, hardware failure, and
termination of energy [7], [24], [25]. Considering the cause of
cascading failure, network traffic will meet certain challenges
such as segmentation or paralyzation [13]. Moreover, there
are still relatively few studies on how to optimize network
topology against cascading failure [18].

In this paper, we consider combination of the clustering
method with the Particle Swarm Optimization (PSO) algo-
rithm for energy-efficient routing in IoT-based WSNs [7],
[26]. The clustering method is the most common technique
in controlling the energy restriction of nodes. This method
divides the whole network into specific groups called clus-
ters, in each cluster a leader called Cluster Head (CH) is
selected to collect data from nodes in its cluster, known
as Cluster Members (CMs), and transfer the data to the
sink [9], [27]. CH selection is an NP-hard optimization
problem [26]. PSO as an evolutionary algorithm with the
help of multi-objective function seeks to find near-optimal
solutions for CH selection [27]. In most studies, various
objectives have been considered in CH selection, which
is the key notice to the optimal trade-off between these
factors [26]–[28]. However, the above-mentioned works
have not paid attention to optimizing the hierarchical struc-
ture of clustering methods in improving the network resis-
tance against cascading failure, which we try to utilize this
energy-efficient topology to promote the network robustness.

We propose REFIT (Robustness Enhancement against cas-
cading Failure in IoT networks), a fault tolerance mechanism
to minimize the effect of cascading failure in IoT networks.
On this basis, REFIT divides the network operations into two
phases, (i) set-up state and (ii) steady-state. For clustering,
we integrate important parameters affecting fitness function
due to the supreme set of CH selection which includes energy,
distance, delay, coverage, and node degree parameters. For
routing, in a muli-hop communication, we apply the PSO
algorithm as proven to be a promising optimization approach
that causes clusters to follow multi-hop communication to
reduce power consumption. Available energy in CHs, number
of shortest paths and cluster size are three important factors
that are integrated into the PSO fitness function. The cluster-
ing and routing are combined into a set-up state to construct
an optimal routing tree that links these CHs to the sink. In the
steady-state, we reduce the effect of cascading failure on the
routing tree. In this phase, we first model the routing tree
into Conditional Directed Acyclic Graph (C-DAG) infras-
tructure [29], and then propose a fault-tolerance mechanism
by selecting effective paths based on the maximum resid-
ual energy. Finally, we simulate and evaluate the proposed

method under the robustness and performance metrics in
MATLAB Simulink. Extensive simulation results demon-
strate that the proposed REFIT protocol not only maximizes
the network lifetime of IoT applications but also effectively
promote network robustness in the face of cascading failure.

The key contributions of this work are summarized as
follows:
• Devised a fault tolerance mechanism for IoT networks
to reduce the effect of cascading failure.

• Proposed a centralized CH selection to characterize the
best set of CHs.

• Designed a novel multi-hop multi-objective evolution-
ary algorithm for routing tree construction to character-
ize the best set of RNs.

• Modeled C-DAG infrastructure for routing tree to
enhance the topology robustness.

• Conducted extensive experiments to verify the correct-
ness of the proposed algorithms and models.

The rest of the paper is arranged as follows. Related works
are discussed in Section 2. The problem statement for IoT
application is discussed in Section 3. Our proposed approach
against cascading failure is presented in Section 4. The exper-
imental results and discussions are presented in Section 5.
Finally, we conclude the paper in Section 6.

II. RELATED WORK
With the increasing number of IoT-connected devices
and consequently, additional network topology complex-
ity, cascading failure has become more evident in IoT
applications [17]. In this section, we first look into some of
the related works in the failure effect in IoT networks, and
then we specifically elaborate some of the solutions in the
power grid domain as it is our targeting application domain
in this paper.

A. RELATED WORKS ON IoT FAILURE EFFECTS
Fu et al. [18] designed a sink-oriented cascading model for
WSNs based on a memetic algorithm to increase the robust-
ness of network topology, which is so-called MA-TOSCA.
In addition, this work achieved a stronger topological
structure to spend less time than existing algorithms.
In MA-TOSCA, modularity and clustering features have a
positive effect on network robustness compared to the aver-
age shortest path length. Bao et al. [14] investigated load
entropy that can be a measure of network heterogeneity in
load distribution. This work claimed that load entropy can
be optimized as an indicator to control and defend cascading
failures inmany complex real-life networks. Fu andYang [17]
proposed a realistic multi-sink-oriented cascade model
for WSNs. The authors focused on the resistance of the net-
work topology against node-link attacks. However, they also
discussed that node attacks will cause more fragile failures
than link attacks.

Zhong et al. [16] developed a generic method for exam-
ining network endurance with cascading overload failure
in WSNs. In this paper, endurance refers to the duration
time for the traffic load to touch a critical point with
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a cascading failure. They also concluded that endurance is
strongly dependent on the intensity of the cascading and
disturbance. Moreover, the network endurance increases uni-
formly for uniform primary load distribution while for other
types of load distributions, it shows more complex resistance
behaviors. Yin et al. [25] modeled a fault-tolerance mech-
anism based on overloaded cascading failures in free-scale
WSNs based on load and capacity. This work studied the
relationship between variable load and cascading failure in
a scale-free network. It concluded that when the load is more
than a critical point, a random point failure in scale-free
topology leads the entire network to collapse.

B. RELATED WORKS ON CASCADING FAILURE IN POWER
GRIDS
Zhang et al. [20] considered new theories of stability in power
grid systems. This study, which was inspired after India’s
major blackouts, states that if the load adjustable parameter
grows, the probability of large cascading failure is more than
a small or medium cascade failure. Adnan et al. [5] analyzed
the cascading failure model in smart power grid. This work
focused on reducing the uncertainty of the power grid due to
the penetration of renewable energies. Although they provide
optimal load balance with increasing transient stability in
topology, the impact on power network is still unpredictable.
In this study, a probabilistic analysis has been performed to
prevent the spread of excessive cascade failures from one
group to another group. Shuvro et al. [30] utilized a machine
learning approach in power grid application to predict the
cascading failure problems. They classified cascading failure
in three main classes of (i) large, (ii) small, and (iii) no cas-
cades. In this study, the authors also used linear regression to
predict the quantity of missed transmission channels and the
amount of load reduction. Adnan et al. [31] implemented an
algorithm against cascading failure without loss occurrence
on a standard IEEE-30 bus system for power networks. This
study is based on fuzzy logic and uses vehicles to grid tech-
nology. It employs a mathematical mixture to identify criti-
cal points in heuristically and energy-based process. In this
paper, to increase computational velocity, a network operator
by a self-broadcast graph holds only vulnerable nodes.

Dui et al. [32] examined a multi-strategy evolutionary
game-based cascading model for scale-free networks. Due to
the game strategy, they analyzed the corresponding network
against cascading failure by removing the failure nodes. Their
ternary strategy, which is based on various law enforcement,
demonstrates that with small network collaborators, network
robustness will be improved. Zhai et al. [33] developed a
mathematical model to calculate the worst case cascading
failure in power grids. They also used iterative algorithms
to explore worst-case outline. One of the main advantages
of this formulation is the ability to identify disruptive turbu-
lence. Wu et al. [13] proposed a sequential recovery method
against cascading failure in complex networks that consid-
ers both the performance mechanisms of complex carry-
ing networks and the possible cascading failures during the

recovery manner. This study considers the only recovery
after a major blackout in grids. Moreover, they utilized new
graph-based recovery tools to identify critical points that by
examining them sequentially, they would improve the recov-
ery process.

To the best of our knowledge, existing works on cascad-
ing failure do not take into account the residual energy of
non-failure nodes. Using this parameter, we return links to
nodes with maximum residual energy that reduce the effect
of the traffic overload. Furthermore, the relationship between
network topology and node energy problem is still rarely
investigated, which is a challenge for optimizing the robust-
ness of cascading failure.

III. PROBLEM STATEMENT
Assuming that the real IoT network is made up of a set
of nodes and a sink to collect the measured data, meaning
that the ending hop of the routing protocol reaches the sink
node [2], [3], [7]. Relay nodes may fail due to any reason
when transmitting the collected data to the sink [7], [34]. This
effect can be seen in Figure 1 when node Y fails, the routing
traffic load is distributed on node X. Meanwhile, node X
is also failed due to the traffic load of node Z. As shown
in Figure 1, after a while, many network communication links
are failed. This action is known as cascading failure, which
leads to network segmentation [13], [17]–[19]. In [17], [20],
the authors have modeled cascading failure where the main
reason for network shutdown is the overloaded traffic. The
load indicates the amount of current traffic that can be trans-
ferred by nodes. To estimate the traffic load, we assume that
the Shortest Path (SP) algorithm is applied if the packets need
to be re-transmit between two nodes in the network. Hence,
the load on node i at time τ (`i(τ )) is the total number of
SPs crossing via node i. To describe the real load propagation
of WSNs, the design model of this metric is as follows:

`i(τ ) =

(∑
j∈9,k∈9∗

�i,j,k (τ )/�j,k (τ )

N

)σ
(1)

Here, parameter σ is the load-coefficient (σ ≥ 0), �i,j,k (τ )
is the total number of shortest paths from node j to node k
by passing via node i at time τ . Similarly, �j,k (τ ) is the total
number of shortest paths from node j to node k at time τ ,
9 is the set of nodes from N sensor nodes and 9∗ is the set
of sink nodes, which in this work we have one sink node.
Accordingly, the capacity can be defined as the maximum
load maintained by a node. The traffic load on nodes in a
network may vary over time. If these changes increment and
overpass the capacity, a particular node will be prone to a
malfunction. As a result, more nodes may be failed during
load redistribution [11], [16], [32]. The Capacity formula is
expressed as

CN = (1+ δ)`N (0) = (1+ δ)

N∑
i=1
`i(0)

N
(2)
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FIGURE 1. Cascading failure propagation process: a) normal state of the application without any node failure; b) the situation where
node Y fails, the routing traffic load is converted to node X; c) the situation where Node X also fails due to the excessive traffic reaching
from node Z. Thus this could lead to network collapse.

FIGURE 2. Our IoT-microgrid structure with renewable energy resources.

Here, N is the total number of nodes starting from a node
with index i = 1, and `N (0) means that we assume the
capacity of a node with its initial load (`(0)). Capacity (C) in
Equation 2 states that any small changes in overload-
coefficient (δ ≥ 0) which leads to a change of traffic load
will bring the violation of capacity. In our IoT application,
a microgrid is an autonomous system that can control and
manage itself [23]. Sometimes in an energy microgrid, con-
sumers receive heat energy for heating and cooling in addition
to electricity. One of the basic characteristics of microgrids is
that they can work in two modes: (i) connected to a network
or (ii) an island (separate from the network) [35]. When con-
nected to the grid, the microgrid exchanges electrical energy
with the grid. It can be seen in Figure 2, IoT-microgrid appli-
cation with renewable energy resources is utilized in different
levels. Microgrid resources may be depleted for reasons such
as attackers, hardware failure, and power outages [5]. This
failure, however small, may lead to the collapse of the entire
network [20]. Further, Microgrids are vulnerable to abnor-
malities due to small inherent inertia. Therefore, the stability
of microgrids becomes a challenge after disrupting power
systems [10], [23].

Based on the discussions in the previous two
sections, we conclude the following two problem
declarations:

• How to provide an energy-efficient forwarding data to
sink over cascading failure?

• How to develop a multi-hop communication in con-
strained networks such as microgrids for a more robust
topology against cascading failure?

IV. REFIT APPROACH
In this section, we propose our load-balancing and
energy-efficient routing method with respect to cascading
failures (REFIT). This method divides the network opera-
tions into two stages, (i) set-up state and (ii) steady state.
These stages are performed in series until the network life-
time ends. The set-up state itself includes three steps of:
(i) bootstrapping, (ii) clustering, and (iii) routing. Figure 3
shows the stages of the proposed protocol. In fact, we address
the issues of how to forward energy-efficient data in the set-up
state and to develop a more robust topology against cascading
failure in the steady state.

After distributing nodes in the network, all sensor nodes
start the bootstrapping process. This part involves two pro-
cesses. The first process is Neighbor Discovery (ND), where
each sensor broadcasts a beacon frame consisting its iden-
tification (ID) and position. After the ND process, each
sensor node knows its neighboring sensors. In the second
process of the bootstrapping, the local data of each sensor
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FIGURE 3. Overall schema of REFIT.

is transmitted to the sink by a Hello packet. Each sensor
receiving a Hello packet behaves in the same manner. Then,
the sink node executes the set-up state including clustering
and routing methods in which it utilizes the data it delivers
about the Area Of Interest (AOI). The sink node with the help
of a centralized CH selection procedure constructs clusters.
The modified PSO-based routing algorithm characterizes the
relay node (RN) of each node (next-hop) towards the sink.
After terminating the set-up state, the sink node broadcasts
its outcomes by a controlled-flooding scheme, which makes
each sensor not transmit a packet if it has already transmit-
ted. Next, all the sensor nodes experience the steady-state,
which is composed of multiple rounds. In each round, data
transmission to the sink by RNs is intelligently implemented
to balance network traffic load against cascading failure.
The pseudo-code of the overall proposed protocol is given
in Algorithm 1.

Algorithm 1 Overall Proposed Protocol
1: procedure REFIT( )
2: Initialization
3: for each iteration i do
4: Bootstrapping
5: CH Selection (Nodes, Net_info) F

Section IV-B1
6: Cluster formation (CHs, Nodes) F

Section IV-B2
7: Routing (Clusters, Net_info) F Using

Algorithm 2
8: Broadcasting (CHs, RNs, Routing Tree)
9: for each round j do F Section IV-C
10: Steady State(i,j) F Using Algorithm 3
11: end for
12: end for
13: end procedure

After developing energy model, we describe the proposed
clustering and routing algorithms in the next two subsections.
Next, the steady state will be explained.

A. ENERGY MODEL
The current state of energy models in IoT networks is
configured with the Heinzelman model [36]. This model
indicates the energy consumption on the basis of sent bit

length (L) and the distance of transmitter and receiver node in
Equations 3–4. In addition, this model states that if the trans-
mission distance (d) of Equation 3 is more than the threshold
distance of Equation 5, energy is consumed fourfold, other-
wise doubled. The features of antenna amplifiers are given
by εamp and εefs, where εamp represents the energy loss for
the multi-path model (Power dissipation d4) and εefs is the
energy model of free space (Power dissipation d2). Also,
Eelec indicates the energy utilized to activate the circuit of the
transmitter and receiver.

ETx(L, d) =

 L. (Eelec )+ L.
(
εefs · d2

)
, if d ≤ d0

L. (Eelec )+ L.
(
εamp · d4

)
, if d > d0

(3)

ERx = L.(Eelec) (4)

d0 =
(
εefs/εamp

)1/2 (5)

In our application, we need to have proper energy assess-
ments based on the number of hops leading to the sink.
The multi-hop routing delivers packets hop by hop from the
source node to the destination. In cascade failure scenario,
if a next hope of a route fails, selecting a successor link will
be a critical decision as it should optimizes network traffic
congestion. It is not trivial to simply calculate the amount of
energy for transmitting a specific packet size from a source
node to a destination. Consecutive calculations at this level
and increasing the number of hops will cause our network
to be inefficient in terms of energy and cost. In this section,
we improve the radio-energy model [36] based on our own
scenario. Since the proposed method is centralized and the
sink knows the position of the nodes, wemodel the problem in
the worst-case scenario by formulating the energy consump-
tion for the longest path. After selecting the longest path,
which will be described in the steady-state phase, if we set the
maximum number of hops in the longest path and the distance
between nodes in multi-path network –C and D parameters
respectively– then the predicted amount of required energy
of transmitting and receiving packets from a node to the sink
for L bit data is computed as follows:

ETXnew =
C∑
c=1

(L.(Eelec)+ L.(ε.D)) (6)
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Subject to: ∀c ∈ C if (Cos t_Edge(c) ≤ d0) → ε.D =
εefs.d2 else εamp.d4.

ERXnew =
C∑
c=1

(L.(Eelec)) (7)

Thus, the total energy consumption of the network will be
represented as follows:

ETotal = 2
C∑
c=1

L.(Eelec)+
C∑
c=1

L.(ε.D) (8)

If we model this energy from collecting data by CHs, and
transmit it to the sink, we will obtain the following formulas:

ECH_agg = Z .L.(Edata_agg) (9)

ETotal_CH = ECH_agg + ETotal (10)

where Z is the number of packets, Edata_agg is the energy
consumed in data aggregation of 1-bit data, and ETotal_CH is
the total energy of network from a CH to the sink, assuming
the computation of data aggregation energy by CH.

B. CENTRALIZED PSO-BASED MULTI-HOP CLUSTERING
AND ROUTING
This section addressed the proposed CH selection and rout-
ing protocol. The sink through the fitness function evaluates
the quality of the solutions in the set-up state (CHs and
RNs selection). The fitness function formula is the union
of different efficiency factors that are combined to denote
the maximum or minimum quality of a performance goal.
Further, Multi-Criteria Decision Making (MCDM) formulas
are one of the best tools for decision making [7]. In this paper,
we employ the Adaptive Weighted Sum (AWS) approach
to solve the multi-objective optimization problem (MOP)
of clustering and routing [26], [27] which is expressed as
Equation 11. The AWS method converted the MOP problem
into a single optimization mathematical problem (SOMP)
provided that all parameters have the same domain.

min
N∑
i=1

αi.fi (11)

Here, fi : �→ Rn, i ∈ �, αi ≥ 0, and
N∑
i=1
αi = 1.

In general, the sub-objectives defined in the MOP formula
are inconsistent. In such cases, related works indicate that
there will be Pareto optimal solution. Under the convexity
assumption, the solution of fitness function is Pareto optimal
(if αi > 0, ∀i = 1, 2, . . . , N ) ) [37]. However, such a
combination of these different parameters to SOMP formula
has been successfully tested, including [7], [27].

1) CH SELECTION
In general, CH is selected based on a number of parameters;
including latency, power and distance. However, the proposed
method is utilized for fault-tolerance, and thus to increase

efficiency, coverage and degree of a node as two additional
parameters are considered in the FP formula. Therefore, The
proposed method not only maximizes the energy-efficiency
for IoT systems, but also uniformly distributes CHs in the
network to improve lifespan. In this paper, the sink selects
CHs by considering different parameters together as shown
in the Equations 12–14.

FF1 = Power f (1/Coveragef )+ Power f (1/Degreef ) (12)

FF2 = α(1/Distancef )+ (1− β)FF1 (13)

FF3 = α(FF2)+ (1− α)(1/Latencyf ) (14)

Here, coefficients α and β are stationary values. Power
and latency are factors that the sink can compute quickly for
each node. Distance factor can also be achieved based on the
Euclidean distance between nodes as shown in Equation 15.

Distance(i, j) =
√
(xi − xj)2 + (yi − yj)2 (15)

Now, the set of nodes with the lowest latency, the highest
energy and the density are selected as the candidate CHs.
To recovery fault, the two parameters (coverage, degree)
make the best set of candidate CHs as the output of
Equations 12–14, where these parameter are interpreted by
using the following equations:
Node Degree: This parameter as shown in Equation 16

represents the number of sensor nodes accessible from a CH.
It has been previously utilized for load balancing in
CH selection [14].

Degree =
K∑
k=1

|Member(CHk )| (16)

Here, K is the number of candidate CHs and |Member(CHk )|
is the number of cluster members in kth CH.
Coverage: This parameter as shown in Equation 17 elimi-

nates the non-CHs (non-clustered sensor nodes) and ensures
participation of the remaining sensor nodes in the clustering
process. Further, the nodes that have not joined any cluster
will consume high energy in transmitting data to the sink
node and thus it should be avoided [7], [26]. This parameter
minimizes the number of remaining nodes that are unable to
become part of any cluster. Thus, reducing the number of the
non-CHs enhances network coverage considerably.

Coverage =
N− K − Degree

Degree
(17)

After determining the sub-objective functions and forming
the linear formulation as single objective function, the sink
constructs clusters in a centralized method. The whole pro-
cess of CH selection is shown in Figure 4.

2) CLUSTER CONSTRUCTION SCHEMA
After CHs selection, the sink node broadcasts a message that
identifies the CH (ICH). The sensor node becomes CH with
the same ICH, and neighbors as CH members, depending on
the ICH, nodes will updates their values (Figure 4). There-
fore, the construction of clusters extends in the system until
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FIGURE 4. Flowchart of the proposed CH selection model.

each node reaches CH or cluster. Determining the optimal
affiliation of cluster members is expressed as follows: (i) If
the value of the neighboring node contains one CH, then join
to that cluster. (ii) If the value of the neighboring node is
higher than one CH, then join to CH which have maximum
residual energy. Finally each Cluster member transmits the
collected data to the CH using their TDMA slot. In TDMA,
idle nodes are allowed to cross the sleep threshold in order to
save energy [4], [9].

3) ROUTING TREE CONSTRUCTION SCHEMA
After cluster construction, initialization state by PSO starts
and many particles are defined as solution. It should be noted
that the particles are developed based on selected clusters.
However, PSO receives a limited number of sensor nodes as
the initial population. In addition, each solution is a set of a
number of nodes in the cluster. In PSO, particles are evaluated
by fitness functions and accordingly the best position value is
assessed. Then, the best global value is specified among all of
them. With the aim of these values, the position and velocity
of the particle are updated. All this process is repeated until
the termination status is reached. The output of this process
will be routing with the source of the CHs and destination
with the sink. Now the RNsmust be found by PSO to transmit
packets to sink hop by hop. The sub-objectives function to
determine the optimal paths leading to the sink are interpreted
as follows:
Available Energy in CHs: Fault inserts high traffic load

to the network that raises the nodes’ energy consumption.
Therefore, the remained energy of a node can be a good factor
to select RN [7]. The first fitness parameter that deals with
energy efficiency is given by Equation 18.

En =
K∑
k=1

Residual.Energy(CH k) (18)

Number of Shortest Paths: Not to violate the capacity
relation, it is necessary to control the network load. Therefore,
when the failure occurs, the CH with the shortest path should
send its information to the sink. The following normalized
equation represents the network efficiency:

Pa =
1

N (N − 1)

K∑
k=1

1
nsp (CH k)

(19)

In Equation 19, nsp(CH k ) is the number of shortest paths
from the CH to the sink. In fault acuteness situation, it is
assumed when one node is annihilated and its path is not
available. Thus, 0 ≤ nsp ≤ N − 1. It is evident that the
lower the number of short paths between CHs and sink is the
less robust the network becomes [20]. We use the Dijkstra’s
algorithm to detect the shortest path to access all nodes that
drive exponential time O(n2) [11]. The shortest-path tree
constructed can send data to the sink with a minimum number
of hops. This criterion can also be called the factor of distance
between CHs and sink.
Cluster Size: It is very important to keep the size of the

cluster in the desired amount to avoid unbalanced energy
consumption [27]. When the size of the cluster is large,
the energy consumption by that cluster will be high. The
third fitness parameter that deals with cluster size is given
by Equation 20.

Si =
C∑
c=1

NumberOfNodes(Clusterc) (20)

Here, C is the total number of clusters. Cluster size and
the shortest path criteria have a direct effect on load and
capacity factors (Equation 1–2), so that by effectively control-
ling them, the fault tolerance mechanism can be improved.
Finally, the fitness function for routing is estimated on the
basis of stated criteria as follows:

Frouting = α1 × En+ α2 × Pa+ (1− α1 − α2)× Si (21)

40774 VOLUME 9, 2021



M. Biabani et al.: REFIT: Robustness Enhancement Against Cascading Failure in IoT Networks

Here, α1 + α2 = 1 and also variables α1 and α2 are the
weight parameters in Equation 21 and they are assessed and
estimated during simulation based on AWS method. The fit-
ness function represented by Frouting in Equation 21 should be
minimized to bring the network performance to the optimum
value. The whole process of PSO applied in the proposed
work is presented in Algorithm 2, which is discussed as
follows:

Algorithm 2 The PSO-Based Multi-Hop Routing
Input: Clusters and Network information(ex. NoP)
Output: Optimal Routes

1: procedure MODIFIED PSO( )
2: Initialize Particles F Partition of set clusters with

obtained positions and random velocity
3: Define function Next-Hop()
4: Set Number of particles: i = 1 to NoP
5: for each particle i of NoP do
6: Evaluate fitness(particle(i)) F Using equation 21
7: p_best = particle(i)
8: end for
9: g_best = min[p_best of all particles] F minimum

best-set of p_bests
10: while maximum period or target objective is not

attained do
11: for each particle i of NoP do
12: update position particle(i) F Using

equation 22
13: update velocity particle(i) F Using

equation 23
14: if fitness(particle(i)) < fitness(p_best) then
15: p_best = particle(i)
16: end if
17: if fitness(particle(i)) < fitness(g_best) then
18: g_best = p_best
19: end if
20: end for
21: end while
22: Return Locating Next-Hop(g_bestparticle(i))
23: end procedure

Algorithm 2 starts with initializing the population size
as NoP and defines function Next_Hop() as the next hop
for data transfer. Algorithm 2 is interpreting the following
steps. Step 1, the number of particles is initialized. In step 2,
the fitness value for the particle(i) is computed and its value
is stored in p_best . In step 3, the global best value is com-
puted. In step 4 inside the loop, the velocity and position are
updated in equations 22–23 [26], [27] according to the fitness
values obtained in the previous steps. Furthermore, local
fitness (fitness(particle(i)) and global fitness (fitness(p_best))
are compared and the best value is selected as the global
best. Finally, Next_Hop() is determined by the fitness values
obtained in the previous steps. These steps are followed until

the termination criteria are reached.

Xi(τ + 1) = Xi(τ )+ Vi(τ + 1) (22)

Vi(τ + 1) = ωVi(τ )+ c1r1(p_best − Xi(τ ))

+ c2r2(g_best − Xi(τ )) (23)

C. STEADY STATE
After completing the set-up phase and broadcasting the con-
figuration information to all nodes, we run the steady-state,
which is executed at the sink. In IoT networks with multi-hop
communication, nodes may fail due to the application
state [30], [38]. In addition, nodes closer to the sink not
only send their data messages to the sink, but also relay data
messages from other nodes [27]. The occurrence of these
problems leads to network segmentation. Hence, the routing
algorithm must balance the energy consumption of nodes
to increase network lifespan. To achieve a routing algo-
rithm with energy-efficiency and energy-balanced, we select
a number of effective paths as alternative routes. These paths
change accordingly in each implementation of the algorithm.
In other words, the algorithm determines another subset of
links as effective paths in each execution. The sink node
determines the effective paths by considering Conditional
Directed Acyclic Graph (C-DAG) infrastructure with a for-
mal definition of the problem [29]. To reduce the effects of
cascading failure, the proposed method models the routing
tree as follows:

1) Converting the routing tree to the DAG, so that each
node of the tree is the vertex of DAG and each link
between the nodes of the tree is a directional edge
in DAG. If we reach the branch nodes, we label it
Conditional node, and thus C-DAG is made.

2) Each vertex in C-DAG has the worst amount of energy
required to handle packets. In fact, the residual energy
of a node in the routing tree is considered the Worst
Amount of Energy, known as WAE parameter.

3) If the formed C-DAG can be routed to the destination
by WAEs, then routing data reliably reaches the sink.

The advantage of this schema is that when the network
has a cascading failure, it can be switched to a more reli-
able link as the next-hop route with the priorities for send-
ing the packet [39], [40]. Inspired by the problem model,
a formal problem-solving approach emerges as a fault tol-
erance mechanism. The formed C-DAG with the following
Algorithm 3 will configure the robustness of network topol-
ogy with respect to cascading failure:

Algorithm 3 is interpreting the following steps based
on C-DAG. In the first step, it receives NULL for the
Threshold_isolated. This algorithm tries to save more nodes
as isolated with the Threshold_isolated parameter. In fact,
we consider two modes of overloaded and isolated for
vertices. Noted that this algorithm is repeated to Maxi-
mum_Round. In the second step, it enters a loop that checks
the next steps for each CH. In the routing phase, for each
CH, RNs and routing trees are identified. Here, it checks
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Algorithm 3 Pseudo Code of the Steady State Phase
Input: Formed C-DAG, Maximum_Round
Output: Find alternative links as new RNs

1: procedure GRAPH-BASED FAULT TOLERANT( )
2: Round←1
3: Threshold_isolated←NULL
4: if Maximum_Round<>Round then
5: ———– CHs side ———–
6: Randomly start from a CH
7: for each CH do
8: RNs← Locating Next-Hop(CH )
9: if RNs is not existed then
10: Isolate current CH
11: Broadcast(information)
12: go to line 5
13: end if
14: LP← Find_Longest_Path(C-DAG,CH ) F

This function is described in the next part of subsec-
tion IV-C1

15: if Restrictions for LP are satisfied then F

Using Equations 25–26
16: Threshold_isolated← bAverage ELPc
17: Broadcast(Threshold_isolated)
18: end if
19: ———– Vertices side ———–
20: if vertices received Threshold_isolated then
21: if Threshold_isolated≥ Eresidual then
22: Isolate those vertices
23: Broadcast(information)
24: Update RNs
25: end if
26: Do forwarding based on RNs
27: if Data is reached to sink then
28: Save links for current CH
29: end if
30: end if
31: end for
32: Round←Round + 1
33: end if
34: Return New set of RNs for each CH
35: end procedure

if there is an RN for CH. In the third step, we find the
longest path based on the topological order for that CH. This
longest path as LP includes vertices and edges. We apply
the constraints targeted in this paper to that path. If we are
satisfied, we broadcast the average LP energy as Thresh-
old_isolated. Vertices change or keep their state by receiving
this parameter. If their residual energy is higher than this
parameter, they will continue to transfer data. Otherwise, they
isolate themselves. However, if the data reaches the sink in the
next step, it returns the effective path as output for that CH.
After performing this algorithm, each CH, in addition to RNs

(from the set-up phase), may also have new RNs recom-
mended for efficient routing over cascading failure.

1) FORMAL DEFINITION
In a DAG Gi = (vi, ei), every vi is a sequential node
from routing tree. Arcs represent routing constraints between
nodes. C-DAG consists of two types of nodes including
normal node and conditional node (route branching) [29].
However, each vi saves a WAE parameter and updates it at
each execution of algorithm 3. The whole process of forming
a modeled graph is shown in Figures 5 (a) and (b).

The pair (v1, v2) in a DAG Gi = (vi, ei) is conditional
nodes if the following definitions are satisfied:

As shown in Figure 5 (c), assume there are exactly ζ egress
arcs from node v1 with this specification a1, a2, . . . , aζ and
ζ > 1. In that case, there are accurately ζ ingress arcs
into v2 in ei with this specification b1, b2, . . . , bζ . As shown
in Figure 5 (d), for each ξ member {1, 2, . . . , ζ }, if assume vξ
subset vi and eξ subset ei, then all nodes (exclude v2) are in
accessible paths from node a1. By definition, a1 is the only
source node of the DAG Gξ = (vξ , eξ ). Note that b1 the only
sink node of Gξ [29].
As given in the Algorithm 3, due to the efficiency, we solve

the problem in the worst-case scenario, so we demand to find
the longest path. The longest path LPi of a C-DAG node ni is
any source-sink path of route that achieves the longest length.
ELP also represents the energy required to accomplish this
path when the number of nodes is large enough. Hence, After
determining the longest path, ELP is the sum of the WAEs of
all its nodes:

ELP =
N∑
n=1

WAE(n) (24)

Here, n is the number of nodes in the path. Computing
Equation 24 is not trivial under normal status. Finding the
longest path, unlike finding the shortest path, is an NP-hard
problem. In this paper, we can be reduced to linear time with
the following steps:

1) Compute the topological sorting algorithm for C-DAG.
So that if there is an arc from u to v, uwill appear in the
order before v.

2) For each node vi of the C-DAG, in topological order,
calculate the length of LPi ending in vi by looking at
its ingress neighbors, and add WAE to the maximum
length listed for those neighbors. If vi has no ingress
neighbor, fixed the length of LPi ending at vi to WAE.

3) Eventually, LPi may be gaining starting from vi with
the maximum WAE marked, then frequently stepping
backward to its egress neighbor with the largest WAE
and reversing the order obtained in this process.

All these steps can be done in linear time complexityO(n).
Now, we have defined the mapping graph and know how to
measure the longest path, we can describe the level of the fault

40776 VOLUME 9, 2021



M. Biabani et al.: REFIT: Robustness Enhancement Against Cascading Failure in IoT Networks

FIGURE 5. a) Tree sample generated in the set-up stage; b) C-DAG sample modeled in the steady-state phase; c) Formal
definition of conditional pairs; d) A subset definition of conditional pairs.

tolerance mechanism with the following formulas.

feasible _restriction =

{
if ELP ≥ ETotal → feasible
o.w→ not feasible

(25)

According to the set-up state, paths were determined from
the CHs to the sink. If the condition of Equation 25 is met,
it means that in the worst-case scenario, there will be an
alternative path. Otherwise, Due to the application, the next-
hop of transmitting will be changed. If the next hop is busy,
the current vertex will be isolated. In other words, if we miss
the feasible_restriction, then at this round, the algorithm will
stop running and enter to next round based on execution prior-
ity for CHs. Suppose that the condition of Equation 25 is sat-
isfied, where it is necessary to check whether the data reliably
reaches the sink despite the interference in the paths or not.
The interference in the paths means that in order for packets
to reach the sink from different branches, some branches
may interfere [29]. If the maximum number of branches is
m parameter, then the reliable_restriction in Equation 26 can
be checked as follow:

reliable _restriction =

{
if Rubi ≥ Di→ reliable
o.w→ not reliable

(26)

Here, Di is the sum of minimum energy required for a node
to handle packets and Rubi is the upper-bound response energy
of path that reach to the sink as scheduling status is computed
as follow:

Ri = ELP + Interference(i) = ELP +
1
m
(Ii,i)+

∑
j 6=i Ii,j
m

(27)

Here, 1
m (Ii,i) is the intra-interference of path and

∑
j 6=i Ii,j
m is

the inter-interference of path. We must somehow eliminate
these interference or minimize their effect [29]. Based on this,
we have to compute the upper-bound of Ri as follow:

Ri ≤ Rubi = ELP +
1
m
(Wi − ELP) (28)

Here,Wi is defined as the workload of the graph so that nodes
that are never selected in the longest path are eliminated.
Thus, the branches leading to them are not counted. In that
case, by putting Ii,k (L) ≤ Wk (L) in Equation 27 and if the
type of scheduler is global fixed-priority (FP) with deadline
energy D, then the value can be obtained.

Assume Figure 6 is a sample of a routing tree produced
for microgrid application, where for CH1, new RN sets are
generated in Table 1 to deal with possible cascading failure
in Maximum Rounds. Suppose that in the set-up phase, set
RN [2, 3, 5, 7, sink] was selected for CH1. Further, feasible
and reliable constraints for CH1 were satisfied in the steady-
state. As shown in Table 1, based on the overloaded nodes,
REFIT generates possible effective paths as an alternative
set of RNs. Route branching, which occurs at conditional
nodes 2 and 5, indicates that sender node isolation is the
near-optimal process when there is no other path to reach
the sink. However, if the cascading failure does not affect
our predetermined path (before the RN set), we consider the
same path as the new RNs as the set-up phase generated
the best solution. The table 1 shows effective and intelligent
monitoring for all clusters so that in the event of failure,
the best approach with minimum cost and energy replaces
the current methods. All generated solutions for all CHs are
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FIGURE 6. Sample routing tree to show the steady state processes.

TABLE 1. The output table generated for Figure 6.

stored in the sink, and the sink broadcasts the best solutions
(alternative paths) based on the maximum residual energy of
all solutions for each CH.

V. EXPERIMENTAL SIMULATION
All simulations are performed in MATLAB. To evalu-
ate the proposed method, we use the randomly generated
Figure 7 (a) topology in a two-dimensional area with a size
100m × 100m. We have presented this topology with a 2-D
triangular plot to make the dimensions of the environment
covered by its nodes more tangible. The sink node is located
at the center of this topology.

The network is homogeneous and the nodes have a commu-
nication range of 20m and the same capacity. We repeated the
experiment for 20 times and in each experiment, we executed
the algorithm for 1000 iterations and reported the average
result. Table 2 shows the list of parameters used in the
simulation. Figure 7 (b) shows the load distribution based
on topology of Figure 7 (a). It is clearly observed that in
some areas, the traffic load is not uniformly distributed. The
unbalanced coverage seen in Figure 7 (b) pushes the traffic
flow, so there is a possibility of cascading failure at red
circular points where the degree of nodes increases.

In the following, we will first analyze the proposed
CH selection method and then evaluate the performance of
the proposed fault tolerance mechanism in the face of cas-
cading failure.

A. CH SELECTION ANALYSIS
In this section, we analyze the clustering approach used in this
paper. Figure 7 (c) shows the number of CHs selected for our
method based on different communication ranges (radius) of

TABLE 2. Simulation parameters.

nodes. If the communication radius of the nodes decreases,
then the number of CHs increases, which means the percent-
age of the number of nodes grows in each cluster. REFIT,
unlike other methods [7], [26], [27], does not consider the
number of CHs constant, which increases scalability for
network size. For REFIT, if the total transmission range is
between 96 and 100 meters, there will be about 4 to 5 CHs
for IoT applications.

To show the advantage of the proposed method, we use the
classical Leach method [36], Genetic algorithm (GA) [41],
and PSO [26] to compare the clustering section. GA and
PSO are known as representative of evolutionary algo-
rithms and optimize energy-efficiency and network topology.
Figure 7 (d) shows the distribution pattern of the clusters for
different approaches. As shown in Figure 7 (d), the overall
distribution of nodes in each cluster for different methods
states that REFIT experiences a uniform scattering pattern
because it has a lower average distribution of CMs than the
percentage increase in the number of CHs. However, this
uniform pattern prolongs the network lifetime.

Figure 8 indicates how the REFIT algorithm affects the
load distribution of each node in the network. Before apply-
ing REFIT (Figure 8 (a)), the network load is unbalanced,
in which the possibility of cascading failure is high, while
after applying REFIT (Figure 8 (b)), the network load for
each node is reduced and the load distribution is more bal-
anced. The set-up state helps to balance the network load
distribution and to optimize network topology by selecting
the best set CHs by the functions 12–14 and then selecting the
effective RNs using the modified PSO with the function 21.

B. NETWORK PERFORMANCE EVALUATION
In this section, after evaluating REFIT, we compare it
with MA-TOSCA [18], GA [41], and PSO [26] methods.
MA-TOSCA mentioned in the related works bene-
fits the memetic algorithm (from the ‘‘Selfish Gene’’
concept) [18]. This novel method utilizes a population-based
search approach to discover proper areas in the search space
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FIGURE 7. a) Network topology of our simulation experiments; b) Network load distributions based network topology; c) Number of selected
CHs for 100 nodes based on the radius; d) Distribution pattern of the clusters for different approaches.

FIGURE 8. Load distribution of 100 nodes before (a) and after (b) applying REFIT.

and specify the optimal local area through exploratory.
MA-TOSCA combines global and local optimal points,
which results in excellent performance [18]. REFIT, based
on the vacant energy of the nodes and the topology formed
by the clustering, will be more efficient than these methods.

1) ROBUSTNESS METRICS
We utilized the robustness metrics employed in [17]. In this
criterion, first, node i is randomly removed from the topology,
and then the number of sensor nodes that can have at least one
path to the sink is calculated. In fact, the number of endurance
nodes is recorded. Suppose the size of endurance nodes 8i

and N is the total number of sensor nodes in the network,
we can easily get that 0 ≤ 8i ≤ N − 1.

R =
∑

i∈9 8i

N (N − 1)
(29)

Normalized this metric is given between 0 and 1
in Equation 29.

Figure 9 (a) shows REFIT robustness with varying
load-coefficient (σ ) and overload-coefficient (δ). Obviously,
as the capacity of the nodes increases (δ), network robustness
improves. In contrast, as σ coefficient increases, Equation 29
(R) decreases exponentially. The concurrent effect of these
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FIGURE 9. Robustness Metrics: a) Network robustness of REFIT with varying δ and σ coefficients; b) Network robustness of REFIT
versus three reference algorithms; c) Comparison of failed nodes against diversity σ ; d) Comparison of failed nodes against diversity δ.

two coefficients on R is shown in Figure 9 (a). The capacity
threshold for sensor nodes that protect network topology
against cascading failure is overload-coefficient = [0.4, 0.6]
value. As shown in Figure 9 (a), if the two coefficients δ and σ
are [0.4, 0.6] and 0.5 respectively, R will reach its maximum
value, which means that any failure in the nodes will not
cause a cascading failure. However, when δ becomes larger
than capacity threshold ([0.4, 0.6]), σ changes ([0.5, 2]) do
not have a tangible effect on the R, thus the robust network
requires more resource capacity and cost.

Figure 9 (b) depicts network robustness versus three refer-
ence algorithms. From Figure 9 (b), we can clearly observe
that REFIT can obtain a more robust topology structure
than other methods. The routing tree constructed with PSO
and then modeled with C-DAG makes the REFIT method
about 8% better than MA-TOSCA per 1000 iterations of
network robustness metric. However, famous evolutionary
algorithms have lowered robust of the network topology.
Figures 9 (c) and (d) compare the total number of failed nodes
against variations in σ and δ, respectively. Here, the sum
of the number of isolated and overloaded nodes is assumed
to be failed nodes. In Figure 9 (c), suppose that when σ
changes, we consider overload-coefficient to be a constant
value (δ = 1). Clearly, as σ increases, the network load
becomes unbalanced and the ratio of the number of failed
nodes increases. According to Figure 9 (c), REFIT grows the
ratio of isolated to overloaded nodes by rising σ .

Conversely for Figures 9 (d), suppose that when δ changes,
we consider load-coefficient to be a constant value (σ = 1).
Figure 9 (d) depicts that for values of δ below the capacity
threshold, the ratio of the number of isolated nodes to over-
loaded is higher. Furthermore, when we cross the capacity
threshold and reach δ = 1, the ratio of overloaded nodes
becomes little, and even at δ = (0.8,1], no overloaded nodes
are reported on the REFIT network.

2) PERFORMANCE METRICS
In this section, REFIT is compared with three referencemeth-
ods based on performance metrics: mean residual energy,
clustering coefficient, and mean length of the shortest path.
On the other hand, these three metrics can be considered as
topological factors. As shown in Figure 10 (a), REFIT has a
higher mean residual energy than the other methods. Hence,
the network lifetime improves, and consequently, the dura-
tion of network resistance against failures also increases.
According to Figure 10 (a), REFIT about 22% better than
MA-TOSCA per 1000 iterations of mean residual energy
metric. We can clearly observe that PSO algorithm alone
consumes a lot of energy in the face of cascading failure,
while its modified version helps to the energy efficiency
of REFIT.

Figures 10 (b) and (c) depict clustering coefficient and
mean length of the shortest path for different methods against
cascading failure, respectively. Increasing gradually of

40780 VOLUME 9, 2021



M. Biabani et al.: REFIT: Robustness Enhancement Against Cascading Failure in IoT Networks

FIGURE 10. Performance Metrics: a) Mean residual energy of REFIT versus three reference algorithms; b) Clustering coefficient of REFIT
versus three reference algorithms; c) Mean length of the shortest path of REFIT versus three reference algorithms.

clustering coefficient and decreasing the mean length of the
shortest path proves the efficiency of REFIT. Statistically,
the REFIT method has increased the clustering coefficient
by about 36%, 51%, and 59% as compared to MA-TOSCA,
PSO, and GA algorithms, respectively. Also, Our method
decreased the mean length of the shortest path by about
23%, 34%, and 42% as compared to MA-TOSCA, PSO, and
GA algorithms, respectively. This means that improving the
topological parameters will enhance the network robustness
because both the local connections increase and data reaches
the sink with fewer hops. From Figure 10 (c), it can be
inferred that despite the cascading failure, short paths can
be utilized as crucial shortcuts, which our method effectively
benefits this factor.

VI. CONCLUSION
Using the PSO algorithm for clustering in IoT networks leads
to an increase in energy efficiency. But appearing cascading
failure will lead to a severe decline in network lifetime.
In this research, by a modified version of PSO, we were
able to reduce the effect of cascading failure in the network
topology. On this basis, the proposed method divides the
network operations into two phases, set-up state and steady-
state. In the set-up, the supreme set of CHs and their RNs
are generated, and then in the steady-state, the fault tolerance
mechanism promoted by modeling the routing tree to C-DAG
which generates shortcut nodes as effective paths. Through
extensive simulations, we prove that the proposed REFIT can

obtain a more robust topology structure than existing algo-
rithms. Moreover, REFIT provides a suitable infrastructure
for small and large-scale IoT applications such as microgrids
by not assuming a constant number of CHs and balanced
distribution of network load. In the future, we will focus more
on evaluating REFIT in multi-sink and mobile sink scenarios
against cascading failure.

REFERENCES
[1] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, and S. Guizani,

‘‘Internet-of-Things-based smart cities: Recent advances and challenges,’’
IEEE Commun. Mag., vol. 55, no. 9, pp. 16–24, 2017.

[2] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, ‘‘Internet of Things
applications: A systematic review,’’ Comput. Netw., vol. 148, pp. 241–261,
Jan. 2019.

[3] H. Fotouhi, M. Alves, M. Z. Zamalloa, and A. Koubaa, ‘‘Reliable and fast
hand-offs in low-power wireless networks,’’ IEEE Trans. Mobile Comput.,
vol. 13, no. 11, pp. 2620–2633, Nov. 2014.

[4] M. A. Araghizadeh, P. Teymoori, N. Yazdani, and S. Safari, ‘‘An efficient
medium access control protocol for WSN-UAV,’’ Ad Hoc Netw., vol. 52,
pp. 146–159, Dec. 2016.

[5] M. Adnan and M. Tariq, ‘‘Cascading overload failure analysis in renew-
able integrated power grids,’’ Rel. Eng. Syst. Saf., vol. 198, Jun. 2020,
Art. no. 106887.

[6] S. Chang, ‘‘An emergence alert broadcast based on cluster diversity
for autonomous vehicles in indoor environments,’’ IEEE Access, vol. 8,
pp. 84385–84395, 2020.

[7] M. Biabani, H. Fotouhi, and N. Yazdani, ‘‘An energy-efficient evolutionary
clustering technique for disaster management in IoT networks,’’ Sensors,
vol. 20, no. 9, p. 2647, May 2020.

[8] S. B. Baker, W. Xiang, and I. Atkinson, ‘‘Internet of Things for smart
healthcare: Technologies, challenges, and opportunities,’’ IEEE Access,
vol. 5, pp. 26521–26544, 2017.

VOLUME 9, 2021 40781



M. Biabani et al.: REFIT: Robustness Enhancement Against Cascading Failure in IoT Networks

[9] T. Han, L. Zhang, S. Pirbhulal, W. Wu, and V. H. C. de Albuquerque,
‘‘A novel cluster head selection technique for edge-computing based IoMT
systems,’’ Comput. Netw., vol. 158, pp. 114–122, Jul. 2019.

[10] N. Yao, X. Hao, D. Liu,W. Liu, and B. Chen, ‘‘Research on channel alloca-
tion game algorithm for improving robustness in WSN,’’ Phys. Commun.,
vol. 43, Dec. 2020, Art. no. 101230.

[11] Y.-C. Wang and K.-C. Chen, ‘‘Efficient path planning for a mobile sink to
reliably gather data from sensors with diverse sensing rates and limited
buffers,’’ IEEE Trans. Mobile Comput., vol. 18, no. 7, pp. 1527–1540,
Jul. 2019.

[12] W. Li, Y. Han, P. Wang, and H. Guan, ‘‘Invulnerability analysis of traffic
network in tourist attraction under unexpected emergency events based on
cascading failure,’’ IEEE Access, vol. 7, pp. 147383–147398, 2019.

[13] J. Wu, Z. Chen, Y. Zhang, Y. Xia, and X. Chen, ‘‘Sequential recovery
of complex networks suffering from cascading failure blackouts,’’ IEEE
Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2997–3007, Oct. 2020.

[14] Z. J. Bao, Y. J. Cao, L. J. Ding, Z. X. Han, and G. Z. Wang, ‘‘Dynamics of
load entropy during cascading failure propagation in scale-free networks,’’
Phys. Lett. A, vol. 372, no. 36, pp. 5778–5782, Sep. 2008.

[15] X. Fu, H. Yao, and Y. Yang, ‘‘Exploring the invulnerability of wireless sen-
sor networks against cascading failures,’’ Inf. Sci., vol. 491, pp. 289–305,
Jul. 2019.

[16] J. Zhong, H. Sanhedrai, F. Zhang, Y. Yang, S. Guo, S. Yang, and D. Li,
‘‘Network endurance against cascading overload failure,’’ Rel. Eng. Syst.
Saf., vol. 201, Sep. 2020, Art. no. 106916.

[17] X. Fu and Y. Yang, ‘‘Modeling and analysis of cascading node-link failures
in multi-sink wireless sensor networks,’’ Rel. Eng. Syst. Saf., vol. 197,
May 2020, Art. no. 106815.

[18] X. Fu, P. Pace, G. Aloi, L. Yang, and G. Fortino, ‘‘Topology optimization
against cascading failures on wireless sensor networks using a memetic
algorithm,’’ Comput. Netw., vol. 177, Aug. 2020, Art. no. 107327.

[19] C.-Y. Chen, Y. Zhao, J. Gao, and H. E. Stanley, ‘‘Nonlinear model of
cascade failure in weighted complex networks considering overloaded
edges,’’ Sci. Rep., vol. 10, no. 1, pp. 1–12, Dec. 2020.

[20] G. Zhang, Z. Li, B. Zhang, and W. A. Halang, ‘‘Understanding the cascad-
ing failures in Indian power grids with complex networks theory,’’ Phys.
A, Stat. Mech. Appl., vol. 392, no. 15, pp. 3273–3280, Aug. 2013.

[21] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
‘‘Internet of Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, Feb. 2014.

[22] P. Osterrieder, L. Budde, and T. Friedli, ‘‘The smart factory as a key
construct of industry 4.0: A systematic literature review,’’ Int. J. Prod.
Econ., vol. 221, Mar. 2020, Art. no. 107476.

[23] A. Kondoro, I. Ben Dhaou, H. Tenhunen, and N. Mvungi, ‘‘Real time per-
formance analysis of secure IoT protocols for microgrid communication,’’
Future Gener. Comput. Syst., vol. 116, pp. 1–12, Mar. 2021.

[24] W. Liao, S. Salinas, M. Li, P. Li, and K. A. Loparo, ‘‘Cascading failure
attacks in the power system: A stochastic game perspective,’’ IEEE Internet
Things J., vol. 4, no. 6, pp. 2247–2259, Dec. 2017.

[25] R.-R. Yin, B. Liu, H.-R. Liu, and Y.-Q. Li, ‘‘The critical load of scale-free
fault-tolerant topology in wireless sensor networks for cascading failures,’’
Phys. A, Stat. Mech. Appl., vol. 409, pp. 8–16, Sep. 2014.

[26] R. S. Y. Elhabyan and M. C. E. Yagoub, ‘‘Two-tier particle swarm opti-
mization protocol for clustering and routing in wireless sensor network,’’
J. Netw. Comput. Appl., vol. 52, pp. 116–128, Jun. 2015.

[27] B. M. Sahoo, T. Amgoth, and H. M. Pandey, ‘‘Particle swarm optimization
based energy efficient clustering and sink mobility in heterogeneous wire-
less sensor network,’’ Ad Hoc Netw., vol. 106, Sep. 2020, Art. no. 102237.

[28] P. Maheshwari, A. K. Sharma, and K. Verma, ‘‘Energy efficient clus-
ter based routing protocol for WSN using butterfly optimization algo-
rithm and ant colony optimization,’’ Ad Hoc Netw., vol. 110, Jan. 2021,
Art. no. 102317.

[29] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, ‘‘Response-time analysis of conditional DAG tasks in
multiprocessor systems,’’ in Proc. 27th Euromicro Conf. Real-Time Syst.,
Jul. 2015, pp. 211–221.

[30] R. A. Shuvro, P. Das,M.M.Hayat, andM. Talukder, ‘‘Predicting cascading
failures in power grids using machine learning algorithms,’’ in Proc. North
Amer. Power Symp. (NAPS), Oct. 2019, pp. 1–6.

[31] M. Adnan, M. Ali, A. Basalamah, and M. Tariq, ‘‘Preventing cascading
failure through fuzzy co-operative control mechanism using V2G,’’ IEEE
Access, vol. 7, pp. 142607–142622, 2019.

[32] H. Dui, X. Meng, H. Xiao, and J. Guo, ‘‘Analysis of the cascading failure
for scale-free networks based on a multi-strategy evolutionary game,’’ Rel.
Eng. Syst. Saf., vol. 199, Jul. 2020, Art. no. 106919.

[33] C. Zhai, H. Zhang, G. Xiao, and T.-C. Pan, ‘‘An optimal control approach to
identify the worst-case cascading failures in power systems,’’ IEEE Trans.
Control Netw. Syst., vol. 7, no. 2, pp. 956–966, Jun. 2020.

[34] J. Sakhnini, H. Karimipour, A. Dehghantanha, R. M. Parizi, and
G. Srivastava, ‘‘Security aspects of Internet of Things aided smart grids:
A bibliometric survey,’’ Internet Things, Sep. 2019, Art. no. 100111.

[35] N. M. Tabatabaei, E. Kabalci, and N. Bizon, Microgrid Architectures,
Control and Protection Methods. Cham, Switzerland: Springer, 2019.

[36] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
‘‘An application-specific protocol architecture for wireless microsensor
networks,’’ IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 660–670,
Oct. 2002.

[37] G. Armano and M. R. Farmani, ‘‘Multiobjective clustering analysis using
particle swarm optimization,’’ Expert Syst. Appl., vol. 55, pp. 184–193,
Aug. 2016.

[38] K. M. Lhaksmana, Y. Murakami, and T. Ishida, ‘‘Cascading failure toler-
ance in large-scale service networks,’’ in Proc. IEEE Int. Conf. Services
Comput., Jun. 2015, pp. 1–8.

[39] J.-W. Lin, P. R. Chelliah, M.-C. Hsu, and J.-X. Hou, ‘‘Efficient fault-
tolerant routing in IoT wireless sensor networks based on bipartite-flow
graph modeling,’’ IEEE Access, vol. 7, pp. 14022–14034, 2019.

[40] Z. Wang, H. Chen, Q. Cao, H. Qi, and Z. Wang, ‘‘Fault tolerant barrier
coverage for wireless sensor networks,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2014, pp. 1869–1877.

[41] T. Wang, G. Zhang, X. Yang, and A. Vajdi, ‘‘Genetic algorithm for energy-
efficient clustering and routing inwireless sensor networks,’’ J. Syst. Softw.,
vol. 146, pp. 196–214, Dec. 2018.

MORTEZA BIABANI received the B.S. and M.S.
degrees in computer engineering from the Uni-
versity of Tabriz, Tabriz, Iran, in 2015 and 2017,
respectively. He is currently pursuing the Ph.D.
degree with the School of Electrical and Com-
puter Engineering, University of Tehran. He is also
working as a Researcher with the Router Labo-
ratory, University of Tehran. He received several
distinguished student awards from the University
of Tabriz. His current research interests include the

Internet of Things and wireless sensor networks.

NASSER YAZDANI received the B.S. degree in
computer engineering from the Sharif Univer-
sity of Technology, Tehran, Iran, and the Ph.D.
degree in computer science and engineering from
Case Western Reserve University, Cleveland, OH,
USA. For few years, he worked with the Iran
Telecommunication Research Center (ITRC), as a
Consultant, a Researcher, and a Developer. Then,
he worked with different companies and research
institutes in USA. In September 2000, he joined

the ECE Department, University of Tehran, Tehran. He initiated different
research projects and labs in high speed networking and systems. He is
currently a Full Professor with the School of Electrical and Computer Engi-
neering, University of Tehran. His research interests include networking,
packet switching, access methods, operating systems, and database systems.

HOSSEIN FOTOUHI received the B.S. degree
in electrical engineering in 2004, the M.S.
degree in communication network engineer-
ing from University Putra Malaysia, in 2009,
and the Ph.D. degree from the University of
Porto, in April 2015. He is currently an Assis-
tant Professor with the School of Innovation,
Design, and Engineering, Mälardalen University.
His research interests include the Internet of
Things, sensor networks, wireless communication,
and Fog computing.

40782 VOLUME 9, 2021


