
Journal of

Actuator Networks
Sensor and

Article

SCATTER: Service Placement in Real-Time Fog-Assisted
IoT Networks

Fariba Khosroabadi 1,*,†, Faranak Fotouhi-Ghazvini 1,† and Hossein Fotouhi 2,*

����������
�������

Citation: Khosroabadi, F.;

Fotouhi-Ghazvini, F.; Fotouhi, H.

SCATTER: Service Placement in

Real-Time Fog-Assisted IoT

Networks. J. Sens. Actuator Netw.

2021, 10, 26. https://doi.org/

10.3390/jsan10020026

Academic Editor: Igor Bisio

Received: 3 February 2021

Accepted: 31 March 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering and IT, University of Qom, Qom 3716146611, Iran; f-fotouhi@qom.ac.ir
2 School of Innovation, Design and Engineering, Mälardalen University, 721 23 Västerås, Sweden
* Correspondence: f.khosroabadi@stu.qom.ac.ir (F.K.); hossein.fotouhi@mdh.se (H.F.)
† These authors contributed equally to this work.

Abstract: Internet of Things (IoT) networks dependent on cloud services usually fail in supporting
real-time applications as there is no response time guarantees. The fog computing paradigm has
been used to alleviate this problem by executing tasks at the edge of the network, where it is possible
to provide time bounds. One of the challenging topics in a fog-assisted architecture is to task
placement on edge devices in order to obtain a good performance. The process of task mapping
into computational devices is known as Service Placement Problem (SPP). In this paper, we present
a heuristic algorithm to solve SPP, dubbed as clustering of fog devices and requirement-sensitive
service first (SCATTER). We provide simulations using iFogSim toolkit and experimental evaluations
using real hardware to verify the feasibility of the SCATTER algorithm by considering a smart
home application. We compared the SCATTER with two existing works: edge-ward and cloud-only
approaches, in terms of Quality of Service (QoS) metrics. Our experimental results have demonstrated
that SCATTER approach has better performance compared with the edge-ward and cloud-only, 42.1%
and 60.2% less application response times, 22% and 27.8% less network usage, 45% and 65.7% less
average application loop delays, and 2.33% and 3.2% less energy consumption.

Keywords: cloud computing; fog computing; internet of things; quality of service; service placement;
smart home

1. Introduction

Internet of Things (IoT) is one of the most popular topics in information and commu-
nication technology. So far, there has been a lot of efforts to implement and adapt IoT to
the traditional Internet technologies. The purpose of IoT is to identify things and devices
(IoT devices) connected to the Internet and reduce the human role in the management and
control process. Furthermore, IoT is extending the power of the Internet over computers
to a wide range of things, digital machines, animals, and people [1] so that this paradigm
allows for a new type of interaction between things-humans and things-things.

Due to the existence of large number of IoT devices, huge amount of data is generated,
which require processing and storage that eventually causes heavy traffic load on the
network. Additionally, IoT devices have limitations in terms of computational resources,
storage, battery power, and bandwidth (BW); thus, exploiting complex algorithms on such
devices is impossible. Many of these limitations can be solved using the Cloud of Things
(CoT) technology [2–4]. Cloud of Things refers to the integration of Internet of Things with
Cloud Computing, which is a high-performance cloud-based IoT application platform, and
allows to remotely monitor, manage and control the IoT-enabled devices.

The combination of the cloud and IoT technologies provides the opportunity of
enhancing network performance by offloading the processing to the cloud and achieve
better resource utilization. In most of the CoT models, application services are transferred
to the cloud data centers to execute and store [5]. One of the drawbacks of these models is
getting high and unpredictable delays. Cloud data centers usually reside in a multi-hop

J. Sens. Actuator Netw. 2021, 10, 26. https://doi.org/10.3390/jsan10020026 https://www.mdpi.com/journal/jsan

https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-5590-0784
https://doi.org/10.3390/jsan10020026
https://doi.org/10.3390/jsan10020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jsan10020026
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/2224-2708/10/2/26?type=check_update&version=2

J. Sens. Actuator Netw. 2021, 10, 26 2 of 23

distance, causing delays and sometimes unbounded response time. The situation is even
worse when employing mobile IoT devices.

Many IoT applications are classified as delay-sensitive application, e.g., smart home,
health monitoring and factory automation; meaning that it is of paramount importance to
guarantee delays in the system. In smart home, IoT devices are used for monitoring and
controlling of different devices and appliances. Smart homes can cooperate in managing en-
ergy utilization in the building, enhancing security and improving healthcare applications.
Some of the smart home applications are considered as emergency and delay sensitive.
For example, fire events, healthcare systems, and intruder detection are considered as
emergency scenarios. Relying on cloud services to provide processing algorithms for IoT
networks will cause critical consequences to time sensitive applications. By increasing
the number of IoT devices in the future, the communication medium will become even
more congested, creating more collision, packet losses and delays. Thus, remote cloud data
centers cannot adequately handle latency-sensitive requirements, location awareness, and
high mobility [6–8].

Hence, to provide the requirements time sensitive IoT applications, Cisco has in-
troduced a new paradigm, called fog computing. The term “fog” means cloud close to
the ground, so fog computing provides processing, computing, communication, storage,
networking functions, and control of tasks in the network edge and closer to the IoT and
end-user devices, where data and tasks are generated [9–13]. The meaning of the closeness
is the hierarchical level of the computational devices that host and execute the application
services [14].

In fog computing systems, any resource with computational power, storage, and
networking capabilities is called a fog device/fog node. In fog computing, the fog nodes
are geographically distributed, and operate as a bridge between end-user devices and the
cloud [9].The heterogeneous resources, such as smartphones, personal computers, laptops,
access points, and cloudlets, are known as fog devices [15]. The fog computing extends the
cloud computing, and it has many advantages. For instance, (i) the fog computing executes
applications closer to end-user and IoT devices, (ii) it improves latency, response time, and
cloud workload for real-time applications [16], (iii) it increases network scalability, and (iv)
it supports mobility in devices [11,17,18].

Fog computing platform still has a long way to go, and it is in the infancy stage.
Despite all the mentioned achievements, fog computing is faced with new challenges that
require more research and attention [19,20]. The placement of services is an optimization
problem in fog computing. Based on this optimization problem, services should be place
on computational resources close to end-user more efficiently. We refer to this problem as
the Service Placement Problem (SPP) [21]. The service placement may require transferring
application tasks from a fog device to another at a high-level or same level.

The main motivation for this research are as follow: (i) implementing an approach
using a real test-bed for use in smart systems, such as smart homes and health care
systems, where system response time in reaction to a specific event is critical, (ii) efficient
management of computing resources in the network in response to the demands of IoT
devices, by introducing a fog-assisted cloud architecture, (iii) reducing communication
delay and execute services faster by placement of services at the edge of the network and
closer to IoT devices, and (iv) covering up some of the weaknesses of past works, such
as linking fog nodes on a same level, to make the most of using from the fog layer, and
using experimental data to evaluate algorithm results, and approximating algorithm results
to reality.

In this paper, we propose a different fog enabled cloud-based service placement
approach for a smart home applications. We optimize the utilization of resources, serving
delay-sensitive applications, and task execution according to application requirements,
e.g., computing, storage, and BW demands. Our policy considers and optimizes various
parameters, including response time, network usage, average application loop delays, and
energy consumption. The proposed model is validated in a real environment for smart

J. Sens. Actuator Netw. 2021, 10, 26 3 of 23

home application. For evaluation, we integrated the proposed approach into the iFogSim
simulator [5] and compared our proposed model (SCATTER (clustering of fog devices and
requirement-sensitive service first)) with two existing works, edge-ward and cloud-only
proposed in Reference [5].

The main contributions of our work are: (i) introducing a hierarchical fog-cloud
architecture for optimization of SPP in which fog nodes are clustered as multiple groups
and highlighting horizontal scalability of the fog, so that it improves the maximum use
of computing resources in fog layer, (ii) implementing a request handler mechanism on
the iFogSim simulation environment using real-data obtained from a test-bed to validate
the results obtained from the implementation of the algorithm in the real data framework
and increases the reliability of the algorithm and its possibility of implementation in the
real world, (iii) a comparison against two existing works to show proposed approach
improves Quality of Service (QoS) parameters in terms of application response time,
network usage, average application loop delays, and energy consumption, and (iv) design
and implementation of an approach to manage computing resources in the network more
effectively in response to the demands of different IoT devices to improve the execution
speed of real-time applications and prevent traffic flow on one fog node by clustering fog
nodes and balancing the network load on different fog nodes.

The rest of the paper is organized as follows. In Section 2, we overview the state-of-
the-art works in the area of service placement. We present the system model in Section 3,
describe the proposed architecture in the fog computing framework, and formulate the
SPP. In Section 4, the proposed heuristic solutions are detailed. Section 5 describes the case
study and experimental setup. We implement policy in a simulator and evaluate results in
Section 6. Finally, Section 7 presents conclusions and future work.

2. Related Works

In this section, we review the related works that deal with the SPP in the fog computing
platform. Research into IoT applications in fog-cloud computing exists with various
unsolved research challenges [18], such as mobility of fog nodes, heterogeneous fog nodes,
high scalability environment, improving the QoS requirements, and so on. The solutions
have been defined for environments, such as smart homes, smart cities, healthcare, or
mobile micro-cloud. The existing works try to solve the SPP and optimize it by highlighting
one or more challenges. But this does not mean that researchers do not consider the other
challenges and aspects of the SPP. Rather, in all existing works, several challenges are
considered in designing and implementing the proposed solution, but more emphasis
is placed on one challenge and solving the problem through it. So these challenges are
completely related and interconnected and we need to investigate related works in these
topics, because all of them exist in the real world together and affect each other. In each
work, according to the available computing facilities and resources, some of them are
emphasized more. We describe some of existing works for solving the SPP in the fog
computing platforms with focusing on improving the QoS requirements and high scalibility.

In many application domains with stringent requirements, cloud computing in unable
to provide QoS requirements. Hence, to achieve this goal, authors in Reference [22] have
formulated an Integer Nonlinear Programming and introduced two greedy algorithms
that must run periodically. The results of their experiments were validated based on real-
world traffic traces and a Discrete Time Markov Chain (DTMC-based) traffic generator.
In Reference [23], the authors have presented an energy management approach that has
been implemented as a service over the fog computing platform. In Reference [24], the
authors solved the SPP using the classification and regression tree algorithm in mobile fog
computing to minimize response time and power consumption. In this model, the power
consumption of mobile devices were compared to WiFi’s power consumption, which
was eventually offloaded if needed. A framework called FogFrame was implemented
in Reference [25] that defines the necessary communication constructions for retaining
execution of applications tasks in the fog layer. Evaluating their approach allows them to

J. Sens. Actuator Netw. 2021, 10, 26 4 of 23

navigate experiments that show how the framework performs service placement, deploy-
ment, and execution. Most research about fog-cloud computing uses a default case study
of a simulator in your implementations and evaluations. In Reference [18], the authors pro-
posed a framework for resource management in fog-cloud based environments, which was
validated via the deployment of a smart home case study. The authors in Reference [5] de-
scribed two case studies and demonstrated effectiveness of iFogSim for evaluating resource
management techniques including cloud-only and edge-ward approaches for application
service placement. In cloud-only, processing services are transmitted to the cloud data
center and in edge-ward services push towards fog devices when enough resources are
available. Some research works for solving SPP employ optimization techniques [26,27],
such as greedy, heuristics, ILP, and genetic algorithms. In Reference [21], the authors con-
sider SPP for IoT applications over fog resources as an optimization problem and proposed
a problem resolution heuristic using the genetic algorithm. In this work, fog devices are
considered in fog colonies. The fog colonies act as edge-based computing networks that
are composed of a set of fog cells connected to fog devices at a high-level, where they can
work autonomously. They improved application response time and the cost of service
execution. An algorithm is investigated in Reference [28] based on simultaneous wireless
information and power transfer technology. They have used an offloading policy based on
the Lyapunov optimization for minimization of delay. The mobility of fog nodes and end-
user devices is an issue that has attracted many research works [29–31]. In Reference [32],
the authors proposed a solution for the task placement problem for two IoT applications
in a dynamic fog computing environment. In this work, the mobility of fog nodes and
end-user devices are considered, and the problem has been formulated as an ILP, which
was solved using IBM ILOG CPLEX Optimization (CPLEX) optimizer [33]. Although when
the number of services and fog nodes increases, solving the SPP is complicated—ILP is an
NP-hardness (Non-deterministic Polynomial-time hardness) problem. In Reference [24], a
weighted cost model and application placement technique based on the Memetic algorithm
was proposed, due to the heterogeneity of applications and devices to minimize the exe-
cution time and energy consumption. In Reference [3], the authors proposed a multi-tier
architecture for IoT service provisioning based on context-aware information, such as
location, resource consumption of services, and application response times. The authors in
Reference [14] proposed a decentralized heuristic placement algorithm for micro-services-
based IoT applications that was evaluated in the iFogSim simulator. In this work, the fog
layer was considered as clusters, where each cluster has a controller node. According to the
experimental results, this solution minimizes latency and network usage. Reference [34]
has presented a resource placement method for fog-based IoT systems to reduce their
latency and energy consumption. The main idea of this work is to use the idle processing
capacity of fog nodes in each zone through the maximal placement of services on these
nodes. Similarly, in Reference [35], an energy-aware allocation strategy is proposed for SPP,
so that it improves the energy consumption and the delay application in comparison with
edge-ward allocation and cloud-only policies.

Some of the related works have employed commercial tools, such as Amazon Web
Service (AWS) and Google Cloud Drive, to deploy various applications in the cloud.
These tools provide cloud services from several data centers and available zones located
in different parts of the world. AWS was created in order to develop an organized set of
APIs, products, and services for the customers, and Google Cloud Drive is a program that
revolves around offering tools, resources, and training in order to fulfill the IT business
necessities [36]. In Reference [37], a location-aware online game to which users are con-
nected from different geographic locations is presented to highlight the feasibility of fog
computing. Multiple game clients that were in close proximity to the edge node established
connection with the edge server to play the game. In this work, the game server was hosted
in an Amazon data center on a t2.micro virtual machine, so that service players could be
offloaded onto the edge nodes located closer to the players to improve quality of service.
They found that the average response time for a user and the volume of traffic between the

J. Sens. Actuator Netw. 2021, 10, 26 5 of 23

edge and the cloud server are improved compared to the cloud-only model. Reference [38]
has addressed the data protection and the performance issues by proposing a region-based
trust-aware model for trust translation among fog nodes of regions, and introducing a
fog-based privacy-aware for access control at fog nodes. It keeps track of changes of data
location among regions periodically by using a Location Register Database, as well as
an enhanced verification procedure. It implements the Location Register Database at the
cloud for synchronizing among Location Register Databases at fog nodes. Specifically, The
AWS was used to provide resources and the Location Register Database as global location
database. There are some limitation with AWS and Google Cloud Drive. One weaknesses
with AWS and Google Cloud Drive is their limited resources due to the geographical
location of IoT devices. So, where IoT devices are located can determine just how many
cloud resources will have access to. There are several other limiting issues, such as (i) lack
of knowledge due to the confidentiality in their implementations, (ii) expensive technical
support, and (iii) lack of proper execution of the services due to the technical faults.

In reality, the number of IoT devices is enormous and scattered. Thus, some of the
related works focus on high scalability in the fog environment. In Reference [39], the
authors presented a task orchestration platform on a large scale that focuses on the role
of edge computing to enable the self-capabilities of IoT. They also proposed a task or-
chestration algorithm that is based on a fuzzy decision tree. It leverages reinforcement
learning, which allows it to adapt to unpredictable environmental changes. The evaluation
of their proposed algorithm is done by PureEdgeSim [40] simulator. In Reference [41], a
self-similarity-based load balancing mechanism for large-scale fog computing was pro-
posed. They also presented an adaptive threshold policy, which accurately defines the load
threshold on each fog node. In the real world, an integrated fog-cloud network consists of
heterogeneous fog nodes that vary in terms of computational and storage resources. Some
fog nodes have additional resources for sharing with their neighboring nodes [42]. Hence,
to tackle the heterogeneity problem, authors in Reference [43] proposed a paired offloading
of multiple tasks policy in heterogeneous fog networks, in which multiple IoT devices,
multiple fog servers, and multiple cloud servers are available, so that their algorithm
optimizes the execution time and energy consumption. The simulation results showed
that their algorithm could offer the near-optimal performance at two orders of magnitude
lower complexity and higher efficiency, comparing to a centralized optimal algorithm for
computation offloading. In Reference [44], a generic three-layer fog computing network
architecture is proposed for solving SPP. Thus, a large number of user equipment are in
the user layer, which have the mobility and require large amount of computation resource.
Fog layer also consists of a large scale of fog computing nodes, which are widely deployed
among the users. In their approach, the mobility and task offloading are modeled as a
MINLP (Mixed-Integer Nonlinear Programming) problem. This work is divided into two
parts: (i) task offloading and (ii) resource allocation. For task offloading, a coefficient-based
fog node selection algorithm was proposed, and for solving the computation resource
allocation problem, a distributed resource optimization algorithm based on the genetic
algorithm has been implemented. The authors in Reference [27] proposed a deep reinforce-
ment learning to solve the offloading problem of multiple service nodes for the cluster and
multiple dependencies for mobile tasks in large-scale heterogeneous mobile edge comput-
ing. The simulation results show that their offloading strategy has better performance in
energy consumption, load balancing, latency and average execution time.

Some of the limitations of existing works are: (i) following the traditional hier-
archical structure of fog-cloud, not making optimal use of the computing resources
available in the fog layer and executing more services on cloud data centers, which
increases the user response time [5,23,24,26,44], (ii) using hypothetical data instead
of experimental data and, thus, uncertainty about the feasibility of implementing the
algorithm in the real world [5,14,24,26,27,34,40,41,43,45], (iii) modeling the problem as
an ILP and the complexity of problem solving when increasing the number of services
and fog nodes on a large scale [21,22,32,44], (iv) ignoring priority for the applications

J. Sens. Actuator Netw. 2021, 10, 26 6 of 23

and demands of services [5,14,18,21–23,25–27,34,35,40,43], (v) ignoring mobility of
fog nodes [3,14,18,21–23,25,26,35,41,43,45], and (vi) improving only two or three QoS
metrics [14,23,25,43]. In the proposed algorithm, we have tried to overcome some of
these limitations.

For the sake of clarity, the characteristics of the state-of-the-art works have been
summarized in Table 1 by indicating performance metrics and features. The performance
metrics of these works are classified as energy consumption, average applications loop
delays, application response times, network usage, and cost of execution. The SPP is
summarized according to the features considered, such as mobility of users and fog nodes,
the IoT scope, the architecture of the fog layer, used data type for evaluation that can be
real data obtained a case study or dataset, and non-real. In the SCATTER, all performance
metrics are considered, and the scope of the system is to provide a general IoT system
while the fog layer architecture is clustering and employs real data for evaluation.

Table 1. Summary of the related works for Service Placement Problem (SPP) in fog-cloud environments.

Refs

Objective/Performance Metrics Features

Energy Delay Response
Time

Network
Usage Cost Mobility Scope a Architecture b Used

Data c

[22] n y n n y n C H R
[23] y y n n y n I H R
[24] y n y n y n G C N
[25] n y y n n n G H R
[21] n y y n y n G H N
[28] y y y n y n G C R
[32] n y y n n y C C R
[44] y y n n n y G H N
[42] n y n n y n G H N
[43] y y n n y n G H N
[3] y y y n y n C C R

[14] n y n y n n G C N
[46] n y n y n n G H N
[18] y y y y n n G H R
[39] y y n n n y G H N
[41] n y n n n n C C N

SCATTER y y y y y n G C R
a Scope of system: G general IoT systems; I industrial IoT systems; C crowdsensing apps, b Fog Layer Architecture: C clustering; H
hierarchical, c Used Data for Evaluation: R real data; N non-real data.

3. The System Modeling and Problem Formulation

This section presents the proposed policy for fog-assisted cloud-based service place-
ment in a smart home application. In this work, we have assumed that each application has
several services that can be deployed, upgraded, and executed independently. Each service
has the resource requirement, including terms of CPU (Central Processing Unit), RAM
(Random Access Memory), and BW (Band Width).

Besides, the Sense-Process-Actuate model [5] is used for IoT applications. According
to this model, the sensors and IoT devices collect raw data from the environment, and then
sensing tasks are created. The sensing task calls the client task. The resulting task execution
is stored in the actuating task and displayed to the end-user. All of the applications have a
sensing task and an actuating task that is deployed into fog cells. The rest of the services are
processing services, placed, and executed on fog devices and cloud data centers based on
service placement policy. The proposed architecture and formulation of SPP are discussed
in detail within the following subsections.

J. Sens. Actuator Netw. 2021, 10, 26 7 of 23

3.1. Proposed Architecture for the SCATTER (System Model)

In fog computing, computation, storage, and networking resources are provided using
fog devices, such as cell phones, proxy servers, routers, and access points. These devices
are often heterogeneous and geographically located in different regions. In this work,
as shown in Figure 1, a hierarchical architecture consisting of three layers is considered.
The fog layer is located between the IoT devices and the cloud data centers.

IoT Devices

Fog Layer

Cloud Layer

cl
us

te
r 1

cl
us

te
r 2

Fog Level 2

Fog Level 1

Fog Level 3

Figure 1. Proposed system architecture including 3 layers of Internet of Things (IoT), fog, and the
cloud, while encompassing 3 fog levels.

In the fog layer, fog devices are located in a hierarchical level. Fog devices that
are located in lower levels, have less computing, storage and networking capabilities.
When moving from lower levels to higher levels, computing and storage capacity, as well
as the communication delay of the devices, increase.

In traditional fog computing architectures, fog devices with the same level have no
connection link to each other, and, if a fog device fails to run a service, it sends the service
to a higher level or to the cloud, which increases latency. In our proposed architecture,
each fog device, in addition to being connected to a higher level fog device, can also
have connection links with other fog devices at the same level. Communication delay
between two fog nodes of the same level is less than two fog nodes with two different
levels. To better control the network and prevent high load density on a particular fog
node, we cluster the devices in the fog layer. A set of fog devices with the same level form
a cluster. A fog node can be placed in several clusters. In this work, it is assumed that each
fog device, at a particular time, belongs to only one cluster. To organize and coordinate fog
nodes in a cluster, we consider a head for each cluster called Fog Orchestrator node (FON).
After entering the cluster, all services are first sent to the FON, and the FON decides which
node to run the service based on its computational demands. If the computing resources
in the fog layer cannot meet the demand of a service, the current service is sent to the
highest layer (the cloud data centers), where the delay between the fog layer and the cloud
is very high. In the following, the three layers considered in the proposed architecture are
examined in more detail.

Moreover, we have considered that tasks have different computing demands as users
may request different types of computing tasks. When tasks are offloaded to the fog
nodes, they may introduce different computing demands, where these demands are not
determined manually. Thus, we used a random function in the SCATTER implementation.
In this way, the computing demands of each task in terms of RAM, CPU, and BW are
selected randomly, and we have no involvement in selecting the values.

J. Sens. Actuator Netw. 2021, 10, 26 8 of 23

3.1.1. IoT Devices

The IoT devices are geographically distributed in different locations and include
end-user devices, home appliances, wireless sensors, and actuators. These devices send
services toward higher layer for processing and execution. In IoT devices, the sensors sense
the environment and send requests to the gateways for processing and filtering, and the
actuators provide the results of service execution for users.

3.1.2. Fog Layer

The fog layer is the middle layer and is divided into two sub-layers:

1. The fog cells (e.g., end devices, smartphones, wearable devices, tablets) [21].
2. The fog nodes (e.g., routers, switches, access points).

Fog cells represent virtual resources in IoT devices connected to sensors and actuators.
These virtual resources are used for deploying and executing arbitrary IoT services.

The fog cells are virtual resources located at the lowest level of the fog layer and have
less processing and storage capacity than fog devices. These virtual resources are used for
deploying and executing of sensing and actuating services. Fog nodes are fog cells that
implement processing services and act as access points for them. Fog nodes can contain
several levels. At each level, several fog nodes are partitioned into multiple clusters. Based
on the service placement algorithm, FON in each cluster decides which services should be
deployed on fog nodes. Two fog nodes are in the same cluster if they satisfy the following
conditions: (i) having same parent node in the hierarchical structure and (ii) having a
connection link delay between two fog devices below a certain threshold (explained in
Section 4).

3.1.3. Cloud Layer

The cloud layer is at the highest level of the hierarchical architecture, where cloud
data centers are located there for providing more computing power than the fog devices.
When the processing services require more computing resources than the fog layer’s
support, they are sent to the cloud data centers for deployment. If services are executed in
the cloud, due to the significant distance and connection link delay between the end-user
devices and cloud, the delay between services and then applications response time will
increases.

3.2. Problem Statement

Consider a fog cluster with a FON, n fog nodes, and m fog cells. In each cluster, Fk de-
notes FON in the k-th cluster, R f d = { f dk

1, f dk
2 f dk

3 . . . , f dk
n} signifies the set of fog devices,

where f dk
i is the i-th fog device in the k-th cluster, and R f c = { f ck

1 f ck
2 f ck

3 , . . . f ck
m }

denotes the set of fog cells, where f ck
i is the i-th fog cell in the k-th cluster. We also consider

the closest neighbor cluster for the current cluster and use the notation N for neighbor
FON and the notation C for the cloud.

Each device has different computational and storage resources. Uk
F, Rk

F, and Bk
F are

used to indicate the total amount of CPU, RAM, and BW allocated to FON F in the k-th
cluster, respectively. Similarly, the number of resources allocated to other devices in the
network can be defined. The communication link delay between a particular fog cell f ck

i ,
and F is denoted by d f ck

i
. Analogously, d f dk

i
, dN , and dC denote the communication link

delay between F and fog device f dk
i in the same cluster, F and neighbor FON, F, and cloud,

respectively. Let the set of D = {F, R f d, R f c, N, C} consist of all computational resources.
Table 2 shows the notations and descriptions of terms used for service placement modeling.

Let A = {a1, a2, a3, . . . , a|A|} denote the set of applications that can be requested
by IoT devices. Each application ap ∈ A is composed of independent tasks, ap =
{τp,1, τp,2, τp,3, . . . , τp,n}, where application ap has n tasks, and τp,i is the i-th task of
application ap. Each task τp,i requires the number of resources, such as CPU, RAM, and
BW, that are denoted as Uτp,i , Rτp,i , and Bτp,i , respectively.

J. Sens. Actuator Netw. 2021, 10, 26 9 of 23

Table 2. Notations and description of terms in the proposed algorithm.

Parameter Notation Description

Fk FON in the k-th cluster
R f d The set of fog devices
f dk

i The i-th fog device in the k-th cluster
R f c The set of fog cells
f ck

i The i-th fog cell in the k-th cluster
N Neighbor FON
C Cloud

Uk
F The total amount of CPU allocated to FON in the k-th cluster

Computational Rk
F The total amount of RAM in FON in the k-th cluster.

Resources Bk
F The total amount of BW in FON in the k-th cluster

d f ck
i

The communication link delay between a particular fog cell

f ck
i and FON in the same cluster

d f dk
i

The communication link delay between fog device f dk
i and

FON in the same cluster
dN The communication link delay between neighbor FON and FON
dC The communication link delay between cloud and FON
D The set of all computational resources

Hτp,i The devices that can host task τp,i
A The set of applications that can be requested by IoT devices
ap An application
τp,i The i-th task of application ap
Uτp,i CPU demand of a task
Rτp,i RAM demand of a task
Bτp,i BW demand of a task

Applications Dap Application deadline
Rap The response time of ap

Req(ap, f) The number of tasks for application ap that device f can handle together
C f (ap) The computation capability of device f that can execute application ap

tinstalling
(
ap
)

The requirement times for downloading and installing of application ap
δ(i, j) The distance of computational requirements between two sequential tasks

3.3. Problem Formulation

Consider each application ap has a deadline Dap that determines by application users.
In ap, tasks must be placed on the resources in the set D for deployment. We assume that
sensing and actuating tasks are placed on fog cells, and processing tasks are transmitted
FON. Based on the task placement algorithm, FON will decide to transfer tasks on which
device in the set D.

Let the set Hτp,i include devices that can host task τp,i, where Hτp,i ⊆D. We consider

{xF
τp,i

x
f dk

j
τp,i , x f ck

h
τp,i , x

N

τp,i
, xC

τp,i
} ∈{ 0 , 1} , where, if task τp,i can be placed on fog device

f dk
j , therefore, x

f dk
j

τp,i = 1 , and, otherwise, x
f dk

j
τi = 0. Such notations can be defined for other

devices within the set D. Equation (1) shows a service τp,i can be deployed on only
one device.

xF
τp,i

+ x
f dk

j
τp,i + x f ck

h
τp,i + x

N

τp,i
+ xC

τp,i
= 1 , ∀τp,i. (1)

Each application ai that is delay-sensitive should follow Equation (2), where Rai is the
response time of ai, and Dai is the deadline of ai that determinate by application users.

Rai ≤ Dai , ∀ai ∈ A. (2)

J. Sens. Actuator Netw. 2021, 10, 26 10 of 23

The response time of ai is composed of three parts: (1) the communication link delays
between the end-user and the devices that tasks of application ai are placed on them,
(2) the delay of computation, and (3) the delay of application installation and deploy-
ment. Therefore, the response time of ai can be written as Equation (3). delaycommunication,
delaycomputation, and delaydeployment are the communication link delays, application compu-
tation delay, and application deployment delay, respectively.

Rai = delaycommunication(ai) + delaycomputation(ai) + delaydeployment ∀ai ∈ A. (3)

The communication link delays of application ai can be written as Equation (4), where
is a sum of communication link delays of placed tasks on a particular device.

delaycommunication(ai) =
ai

∑
τj

Hτj

∑
f

((
d f ck

m
× x f ck

h
τj

)
+

(
d f dk

n
× x f dk

n
τj

)
+
(

dN × xN
τj

)
+
(

dC × xC
τj

))
∀ai ∈ A, f ∈ Hτj , τj ∈ ai. (4)

Let Req(ai, f) is the number of tasks for application ai that device f can handle, where
ai ∈ A and f ∈ D. The computation delay can be calculated by considering the computation
capability of device f that can execute application ai, defined by C f (ai), and Req(ai, f) that
is given by Equation (5).

delaycomputation(ai) = Req(ai, f) × C f (ai) ∀ai ∈ A , f ∈ D. (5)

The deployment time of application ai is considered as download time of packages,
installation time of application, and time passed before each task is entirely placed on
a computational resource, defined by T. It can be formulated as Equation (6), where
tinstalling(ai) is requirement times for downloading and installing application ai.

delaydeployment(ai) = tinstalling(ai)×
ai

∑
τj

T

Hτj

∑
f

x f
τj

 ∀ai ∈ A, f ∈ Hτj , τj ∈ ai. (6)

We consider the dependency of tasks in an application as a directed acyclic graph
(DAG). In DAG, the vertices represent tasks, and edges represent data flows between
tasks [5]. To improve QoS metrics and reduce waiting time in queues for tasks, we can
cluster tasks according to expected CPU, expected storage space, and expected BW. In DAG,
both tasks are interdependent, and the requirements of a task are requirements for task
execution and requirements for transferring data via edges to the next task. Equation (7),
Equation (8), and Equation (9) show normalization of task requirements. The distance of
computational requirements between two sequential tasks, defined by δ(i, j), is calculated
using Equation (10), where two tasks τi and τj are exactly sequential, and application ak
has n tasks. After the calculation of distances between tasks, tasks are sorted based on
distances in ascending order. It means tasks that require fewer resources are deployed and
executed earlier.

U∗τk,j
=

Uτk,j

∑n
j=1 Uτk,j

(7)

R∗τk,j
=

Rτk,j

∑n
j=1 Rτk,j

(8)

B∗τk,j
=

Bτk,j

∑n
j=1 Bτk,j

(9)

J. Sens. Actuator Netw. 2021, 10, 26 11 of 23

δ(i, j) =

√(
U∗τk,i
−U∗τk,j

)2
+
(

R∗τk,i
− R∗τk,j

)2
+
(

B∗τk,i
− B∗τk,j

)2

∀ i, j ∈ N, 1 ≤ i < n , 1 < j ≤ n, i = j− 1. (10)

According to Equation (11), in latency-sensitive applications, most services must be
deployed in the fog layer as much as possible and maximize the number of placed services
in fog devices. In this paper, we propose a fog-Assisted Cloud-Based Service Placement
Algorithm (SCATTER) for smart home IoT devices addressing the challenges mentioned
above.

It is worth mentioning that the formulas and mathematical relations expressed
in Section 3.3 are matched in all solutions (SCATTER, edge-ward, and cloud-only).
The SCATTER approach, like edge-ward and cloud-only, is implemented in the iFogSim
simulator. We re-implemented all three algorithms with the same default parameters and
considered new evaluation criteria, such as application response time, delay communica-
tion, delay computation, delay deployment, and average application loop delays, in the
new implementation. So, the formulas are matched for three algorithms.

Maximize
n

∑
i=1

|Ai |

∑
j=1

(
m

∑
k=1

xF
τi
+ x

f dk
j

τi + x
f ck

j
τi + x

N

τi
+ xC

τi

)
. (11)

4. Proposed Solution (SCATTER)

To solve SPP in the fog-cloud environment, we propose an efficient heuristic place-
ment algorithm called clustering of fog devices and requirement-sensitive service first
(SCATTER). The main ideas behind the SCATTER algorithm are: (i) placement of latency-
critical applications as much as possible on the fog nodes that are closer to the user, (ii)
placement of tasks that have fewer demands earlier, (iii) clustering fog nodes as multiple
groups, and (iv) considering horizontal scalability for fog nodes.

4.1. Service Placement

We consider application deadlines as a factor in choosing applications to be executed.
Each application that has fewer deadlines is selected to transmit its services to higher
layers earlier than other applications. After selecting the application, its services are sorted
according to demands in ascending order. Based on the assumed architecture, each IoT
device is connected to a fog cell, and the end-user transmits the task data to the FON for
processing. We assume that the sensing and actuating tasks are placed on the fog cells, and
the processing tasks are submitted to the FON in the corresponding cluster.

The pseudo-code of the proposed approach is presented in Algorithms 1–3. The
SCATTER approach considers latency-sensitive applications. In Algorithm 1, applications
are sorted in ascending order based on deadlines. Application ap has the shortest deadline,
so it is the first application whose services are selected to execute.

An application contains a set of interconnected services. Each service has demands
including CPU, RAM, and BW. The services are interconnected in a directional graph in
which the edges are the flow of data transmitted between the services. The data generated
as output by service τp,j is as input to service τp,j+1. To locate a service on a fog device, the
fog device must have the computing resources required by that service.

J. Sens. Actuator Netw. 2021, 10, 26 12 of 23

Algorithm 1 Service Placement Algorithm

Input: set of computational resources D, sets of Applications A, and sets of application
tasks

Output: Placing of tasks in the computational resources

function TaskPlacement (A)

1: Sort application list A based on deadline in ascending order

2: Map <task name, distance> TaskDistanceMap

3: for each application ap ∈ A do

4: for each processing task τp,j ∈ ap do

5: TaskDistanceMap.put (τp,j , distanceCompute (τp,j , τp,j+1))

6: end for each

7: Sort TaskDistanceMap based on distance in ascending order

8: FogDevicesList← clusteringNodes (D, F)

9: counter = 0 . counter is used to count the number of fog devices

10: while TaskDistanceMap.size() > 0 do

11: task← TaskDistanceMap.get(0) . The first member of TaskDistanceMap is in
task variable

12: while counter ≤ FogDevicesList.size() do

13: currentDev← FogDevicesList.get(counter) . The first Fog Device is in
currentDev

14: if Compare (currentDev , service) is True then

15: place service on currentDev

16: UcurrentDev ← UcurrentDev −Utask

17: RcurrentDev ← RcurrentDev − Rtask

18: BcurrentDev ← BcurrentDev − Btask

19: TaskDistanceMap.remove(0)

20: break

21: else counter ← counter + 1

22: end if

23: end while

24: if service is not placed then

25: place service on cloud

26: TaskDistanceMap.remove(0)

27: end if

28: end while

29: end for each

J. Sens. Actuator Netw. 2021, 10, 26 13 of 23

Algorithm 2 Compute distance of tasks

Input: Application a, Taskτ1, Taskτ2

Output: calculated distance between two tasks τ1 and τ2

function distanceCompute

1: Map < task name, distance > CurrentDistanceMap

2: for each edge in a.getEdge() do

3: if edge.get_source is equal to τ1 && edge.get_distination is equal to τ2 then

4: task_cpu← edge.get_Tuple_cpu + τ1.get_cpu()

5: task_storage← edge.get_Tuple_storage + τ1.get_storage()

6: task_bandwidth← edge.get_Tuple_bandwidth + τ1.get_bandwidth()

7: end if

8: end for each

9: calculate distance according to Equation (7)–(10)

10: CurrentDistanceMap.put (τ1 , distance)

11: return CurrentDistanceMap. distance

The demands of a service are: (i) the necessary demands to execute the service, and
(ii) the demands of the data flow that is transmitted from other services and Applied as
input to the service. In the SCATTER approach, the policy of executing an application is
to offload services that have lower demands first. After selecting application ap with the
least deadline, the demands of each of its services should be calculated. Then, the services
should be arranged in ascending order according to their demands, and services with
less demands should be offloaded sooner. In line 5 of Algorithm 1, in the distanceCompute
function (Algorithm 2), the demands of all services of Application ap are calculated in pairs.

Next, for maximum use of the fog layer and effective control of the fog nodes, they are
grouped into multiple clusters, which is done in Algorithm 3. The fog nodes in a cluster
have three features in common: (i) they are on the same level of the fog layer, (ii) the delay
between each node and the FON is less than threshold delay, (iii) the fog nodes can be
connected horizontally, and (iv) in hierarchical structure, the parent of all fog nodes in a
cluster is the same (line 3 of Algorithm 3). These four conditions prevent fog nodes that are
far apart from being in the same cluster. In fact, the goal of fog node clustering is to reduce
latency and execute services faster.

After clustering the fog nodes, application ap services are sent to the corresponding
FON cluster. FON examines the service demands that need to be implemented and selects
the most appropriate fog node to deploy. So, the service placed on the fog node and as
stated in lines 16–18 of Algorithm 1, the amount of computational service demands is
subtracted from the amount of computing resources available on the selected fog device.
If the fog nodes in the fog layer do not have sufficient computing resources to place a
service, the service is sent to the cloud data centers (lines 24–26 Algorithm 1). The stated
actions are repeated for all applications and continue until all application services are
executed.

J. Sens. Actuator Netw. 2021, 10, 26 14 of 23

Algorithm 3 Clustering of Nodes

Input: set of computational resources D, Fog Orchestrator Node F

Output: clustering of fog nodes

function clusteringFogNodes (FogNode F)

1: List < FogNodeId > clusteringList

2: for each FogDevice ∈ D do . say fog device fd

3: if (fd 6= F) && (delayBetween(F,fd) < Cluster_Threshold_Delay) && (fd.getLevel()
== F.getLevel()) && (fd.getParent() == F.getParent ()) then

4: clusteringList.add (F)

5: clusteringList.add (fd)

6: end if

7: end for each

8: return clusteringList

4.2. Time Complexity Analysis

The time complexity of our proposed algorithm consists of two parts: (i) the time com-
plexity of calculating the distance of services from each other and sorting them, and placement
request processing on fog devices that are handled in Algorithms 1 and 2, and (ii) the time
complexity of the clustering of fog devices covered in Algorithm 3.

If number of applications is A and each application consists of S services (services
represent vertices in the DAG model), and number of communication edges between
services is E, the time complexity of calculating the distance of services and sorting them is
equal to O(|A| × |S| × |E|). If number of clusters is C, and each fog node cluster consists
of F fog devices, the time complexity of placement request processing and comparing the
service demands with the available computing resources is equal to O(|S| × |C| × |F|). In
Algorithm 3, worst case time complexity of fog devices clustering is equal to O(|C| × |F|).

5. Performance Evaluation

We validate the SCATTER approach by a small test-bed representing a smart home
application domain. The application tasks in an IoT-based smart home are simulated in the
iFogSim simulator to place tasks in fog nodes according to SCATTER policy.

5.1. Case Study: IoT-Based Smart Home

In this work, we design and implement a smart home case study using multiple IoT
devices and sensors that are connected wirelessly to evaluate the SCATTER algorithm with
real data. The sensors transmit data to fog cells (here, we have used a smartphone as a
fog cell).

It is possible to consider various scenarios for the experiment. For example, during
the daytime, especially when no one is at home, according to predetermined instructions,
various events, such as turning off extra lights, covering the security system, turning on
the facade lights, turning off the electrical equipment, and reducing the activity level of the
engine room, can be executed with just one command. We consider a scenario consisting of
a home with two rooms (living room and bedroom), so that sensors are located in different
parts of the rooms.

J. Sens. Actuator Netw. 2021, 10, 26 15 of 23

In the implemented smart home, we have used a Raspberry Pi3 as FON, five sensors,
four Arduino boards, and nRF240L01 transceiver. The sensors are, for example, temperature
sensor (DHT11) to measure air temperature of the home, humidity sensor (YL69) to measure
air humidity of home, Ultrasonic sensor for control of entry and exit to the room, light sensor
for room lighting control, and motion sensor (PIR) for motion control. The temperature,
humidity, and Ultrasonic sensors are located in the living room, and light and motion
sensors are embedded in the bedroom.

The sensors are interconnected with each other wirelessly using the nRF24L01 transceiver
that enables ultra-low-power and high-performance communication with low-cost host micro-
controllers. Figure 2 depicts the interaction of the sensors and modules in the assumptive
smart home scenario. Figure 2a,b show sensors in the living room, and Figure 2c show
sensors in the bedroom. The communications between different parts of the system are
depicted in Figure 3. Details on communication between different components of the
system are provided below.

(a) (b) (c)
Figure 2. Illustration of different sensors in our smart home application: (a) Ultrasonic sensor, nRF24L01 transceiver, and
Arduino board, (b) temperature and humidity sensor, nRF24L01 transceiver, and Arduino board, and (c) motion sensor,
light sensor, nRF24L01 module, and Arduino board.

Figure 3. The communication between the components and sensors.

J. Sens. Actuator Netw. 2021, 10, 26 16 of 23

5.1.1. Sensors to Arduino

The sensors cannot inherently transmit tasks. A microcontroller must be connected to
each sensor. We have used the Arduino microcontroller that is linked to each sensor via the
wire. Therefore, tasks will transmit from the sensor and Arduino to higher layers. In each
room, a set of sensors with Arduino boards are placed based on location of appliances, as
shown in Figure 2.

5.1.2. Arduino to nRF24L01

For wireless communication between different sensors, Arduino boards, and FON,
employing a transceiver module is necessary. We have used nRF240L wireless transceiver
that connects to the Arduino via wire and exchanges data between fog cells and fog nodes.
The nFR24L01 is a transceiver that is used in an open space and with lower baud that its
range can reach up to 100 m. It can send 1 to 25 bytes of raw data at the transmission rate
of 1 MB and connects to the Arduino through the SPI communication.

5.1.3. Raspberry Pi to nRF240L

Generally, fog nodes have more computing and storage power than fog cells. For the
FON, a more robust component is needed that is more powerful than Arduino. We used
Raspberry Pi board as FON because it has more computing and storage power; hence, all
tasks received from sensors are sent to it. A typical wireless communication module is
required to communicate between Arduino boards (connected to sensors) and Raspberry
Pi that we have used the nRF240L transceiver.

5.1.4. Raspberry Pi to Smartphone

At the beginning of the connection, an application installed in a smartphone transmits
a signal to Raspberry Pi (FON). This signal is sent wirelessly to receive the required data
from the smart home since the Raspberry Pi has a built-in WiFi module. Thus, smartphone
and Raspberry Pi communicate via Wi-Fi. We have stored some .php files in the Raspberry
Pi to create the local host and save and processed data.

5.2. SCATTER Implementation in iFogSim

We have implemented our proposed approach in the iFogSim simulator [5]. The fog
nodes are modeled according to architecture mentioned earlier in Figure 1. Figure 4 shows
the mapping of different smart home case study parts on the iFogSim simulator’s classes.
In sensor class in iFogSim, we defined IoT devices, sensors, actuators, edges, and their
properties. In the FogDevice class, we have described hardware features, architecture,
and connections in computational resources, such as fog devices, fog cells, and cloud. We
also consider a fog device as FON that has a database and a local host for storing the
processing tasks. The Controller class is responsible for the management of resources so
that it calculates QoS metrics results, such as network usage, cost of execution in the cloud,
the delay between services, and energy consumption of devices, during the simulation.

To evaluate the SCATTER algorithm, we consider five applications (proportional to
the number of sensors) with different deadlines that are specified by application users.
Table 3 depicts the type, name, and deadline of applications. The configuration of used
computational resources in the smart home, such as CPU, RAM, up-level BW, down-level
BW, and power, is shown in Table 4. After collecting measurements during a two-week
period, we have calculated latencies between various resources (from source to destination),
which are shown in Table 5.

J. Sens. Actuator Netw. 2021, 10, 26 17 of 23

Classesof iFogSimToolkit

Sensors FogDevice ControllerCommunication
Network

CloudLayer
nRF24L01
and
WiFi

Fog LayerIoTDevices

fog cell

Fogorchestratornode

Figure 4. The mapping of different parts of smart home use-case within the iFogSim environment.

Table 3. Application deadlines after a 2-week period experiment.

Application Type Application Name DAk (ms)

Security a0 1000
Motion a1 600
Light a2 4000
Temperature a3 8000
Humidity a4 5000

Table 4. Configuration of different computational devices.

Device Type CPU (MIPS) RAM (MB) BW to Up-Level (Gbps) BW to Down-Level (Gbps) POWER (W)

cloud 20,000 20,000 - 100 107.339
fog node 1000 2048 100 10 107.339
fog cell 250 256 0.15 0.002 107.339

Table 5. Description of network links for Smart Home.

Source Destination Latency (msec)

sensor/actuator fog cell 36
fog cell FON 124
FON neighbor FON 829
fog device/FON/ neighbor FON cloud 3241

To evaluate the performance of the proposed service placement algorithm, we com-
pared the SCATTER approach with two policies: (i) edge-ward and (ii) cloud-only imple-
mented in iFogSim. In the edge-ward approach, placement of the services is near the edge,
and, if the devices at the edge of the network do not have enough computational resources
to execute the services, searching for situation devices will be hierarchical. Higher-level
devices are checked in terms of computational resources to find the appropriate devices
for hosting the services. In the edge-ward approach, the priority of applications and tasks,
the horizontal connection between same level devices, and clustering fog nodes are not
considered, and only fog devices of level n and level n + 1 are communicated to each other.
In the cloud-only approach, the sensing and actuating services are placed in fog cells, and
processing services are executed in the cloud.

J. Sens. Actuator Netw. 2021, 10, 26 18 of 23

6. Evaluation Results

By execution of task placement approaches, we gain QoS metrics, such as application
response times, the execution time of simulation, network usage, average application loop
delays, and energy consumption. This section aims to show the performance of three
algorithms, i.e., SCATTER, edge-ward, and cloud-only, for solving the SPP.

There are some other related works that we were unable to include them in our
evaluations due to the lack of source codes and not being able to reproduce the algorithm
and results in iFogSim simulator. In Reference [34], the authors proposed a multi-fog based
architecture for reducing the latency and network usage. Their algorithm is compared with
the edge-ward approach, and the iFogSim simulator is used for evaluation. The simulation
results show that latency and network usage in their algorithm are 15% and 9% better
than edge-ward approach, while the SCATTER algorithm has improved the delay and
network usage parameters by 45% and 22% compared to the edge-ward policy. One of the
drawbacks of the algorithm introduced in Reference [34] is the use of traditional fog-cloud
hierarchical structure and the fog nodes at the same level have no connection links with each
other, which makes most services execute in the cloud, thus reducing algorithm efficiency.

The authors in Reference [35] proposed an energy-aware strategy in order to solve
SPP for healthcare systems, and compared their work with edge-ward and cloud-only
approaches. Their algorithm places the application services on a fog device that ensures a
minimum increment of energy consumption. The policy selects energy-efficient fog devices
more frequently than non-energy-efficient ones. The results show that their approach
reduces the energy consumed by 1.61% and 2.72% compared to the edge-ward and cloud-
only strategies, respectively. Moreover, it minimizes the delay, undercutting the edge-ward
and cloud-only strategies by 0.53% and 17.73%. But the network usage in their proposed
strategy is approximately equal to that of the edge-ward, while, in the SCATTER, we
improved the energy consumption by 2.33% and 3.2%, the delay by 45% and 65%, and the
network usage by 22% and 27.8% compared to the edge-ward and cloud-only approaches,
respectively. One of the limitations of this work is neglecting different demands of the
services. Therefore, only the CPU required for the services is considered. In addition to the
CPU, the services also need RAM, BW, and storage.

Ref. [21] proposed a genetic algorithm as a problem resolution heuristic, where its
results show that 9 out of 25 services are executed in the cloud. In other words, approxi-
mately 36% of services execute in the cloud, while, in the SCATTER, 15% (3 out of 20) of
the services execute in the cloud. This fact shows that SCATTER performs better in terms
of QoS parameters than the proposed algorithm in Reference [21]. One of limitations of
Reference [21] is that it does not prioritize applications and services. In addition, because
the SPP problem is solved as an ILP, it is very difficult to implement the algorithm on a
large scale.

6.1. Applications Response Times

In real-time applications, the response time must be less than the deadline. The
difference between application response time and deadline (D(ai)

− R(ai)
) determines

the performance of a service placement algorithm. In Table 6, the results of algorithms
performance based on D(ai)

− R(ai)
is shown. In addition, Figure 5 depicts the response

time of applications and the amount of application deadline violations in three policies.
The edge-ward scenario results in deadline violations for the application a2 at 8457 ms,
application a3 at 9501, and application a4 at 9240 ms. In the edge-ward, first, the tasks are
placed in the corresponding fog node connected to the current fog cell. If the fog node
is not able to host a task, it is transmitted to the cloud. Therefore, the response time of
applications that their tasks are placed in the cloud will be increased. In the cloud-only
scenario, the deadlines for all applications are violated in 7257, 6991, 8457, 9501, and
9240 ms. But, in the SCATTER algorithm, any application deadlines are not broken because
most tasks are placed in the fog layer instead of the cloud, which would result in a more
extensive communication delay. In the SCATTER algorithm, the average value of response

J. Sens. Actuator Netw. 2021, 10, 26 19 of 23

time is 42.1% and 60.21% less than edge-ward and cloud-only, respectively. In SCATTER,
only 3 out of 20 tasks are executed in the cloud, and the rest are placed in the fog layer. But,
in edge-ward policy, 6 out of 20 tasks are propagated to the cloud.

Table 6. Algorithms performance comparison.

Algorithms
D(ai) − R(ai) (ms)

Network Usage (kb) Execution Time (ms)
a0 a1 a2 a3 a4

edge-ward 225 91 4460 −1500 −4240 2.73× 107 5720
cloud-only −6260 −6390 −4460 −1500 −4240 2.95× 107 4880
SCATTER 225 91 367 841 584 2.13× 107 5550

0

2000

4000

6000

8000

10,000

a0 a1 a2 a3 a4

R
es

p
o

n
se

 T
im

e
(m

s)

Applications

SCATTER edge-ward cloud-only deadLine

Figure 5. Response times of applications.

6.2. Network Usage

Each IoT application sends a request from the end-user device to higher layers for the
execution of tasks. The submitted requests have a total size in bytes and are transmitted to
a target device. The network usage of each request is related to the request’s overall size
and latency between the first device and the target device of the request. The total network
usage is calculated as the sum of the network usage of each request during the simulation
time. As shown in Table 6, total network usage in the SCATTER algorithm is 21.98% and
27.8% less than edge-ward and cloud-only policies.

6.3. Average Application Loop Delays

The application loop delay is delay time to execute the path of independent tasks in an
application. We analyzed the average loop delay for each application in three algorithms.
As shown in Figure 6, it is observable that SCATTER has a lower average delay in contrast
to both edge-ward and cloud-only. In cloud-only, all processing tasks are executed in cloud
data centers. Therefore, loop delays in all applications are more than other both policies.
In both edge-ward and SCATTER, the applications a0 and a1 are placed in the fog layer, and
their average loop delays are low. In edge-ward, applications a2, a3, and a4 are executed
in the cloud layer, and delays are increased. In SCATTER, only three tasks are placed in
the cloud, and the rest of the tasks are hosted in the fog layer; therefore, loop delays in
applications are lower than both edge-ward and cloud-only.

J. Sens. Actuator Netw. 2021, 10, 26 20 of 23

0

1000

2000

3000

4000

5000

6000

a0 a1 a2 a3 a4

D
el

ay
 (

m
s)

Applications

SCATTER edge-ward cloud-only

Figure 6. Average Applications Loop Delays.

6.4. Energy Consumption

Energy consumption is the sum of energy consumed by fog nodes, fog cells, and
the cloud for the task placement. Figure 7 depicts the total energy consumption for all
computational resources in edge-ward, cloud-only, and SCATTER algorithms. In three
algorithms, sensing and actuating tasks are placed in fog cells; therefore, energy consump-
tion in fog cells in three algorithms is the same value. In the SCATTER algorithm, the
fog devices’ energy consumption is more than in edge-ward and cloud-only algorithms,
because most processing tasks are executed in the fog layer. Although in edge-ward and
cloud-only approaches, the energy consumption in the cloud is more than the SCATTER
algorithm. Because most processing tasks are propagated in the cloud, the SCATTER algo-
rithm’s total energy consumption is 2.33% and 3.20% less than edge-ward and cloud-only
approaches, respectively.

2.50 2.50 2.50

2.14
1.07 0.83

12.05 13.52 13.91

0

2

4

6

8

10

12

14

16

18

20

SCATTER edge-ward cloud-only

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
M

J)

Algorithms

fog cells fog devices cloud

Figure 7. Energy consumption of devices in three algorithms.

7. Conclusions and Future Works

In this paper, we have proposed SCATTER algorithm based on integrated fog-cloud
environments to solve the SPP. In many application domains, it is mandatory to guarantee
time bounds to support real-time applications. It means that, if the response time of the

J. Sens. Actuator Netw. 2021, 10, 26 21 of 23

application exceeds a certain threshold, a failure will happen in the system. In the proposed
algorithm, we have focused on latency-sensitive applications and more processing tasks
are hosted by fog nodes. To achieve this goal, we clustered the fog nodes and considered
horizontal connections between fog nodes instead of traditional hierarchical architecture.
Our approach has been validated by a case study of smart home and evaluated in fog-cloud
computing environment using iFogSim toolkit. We compared the SCATTER algorithm
with two policies, which were previously built-in the simulator (edge-ward and cloud-
only) in terms of QoS metrics. Experimental results demonstrated that our approach
compared to edge-ward and cloud-only has 42.1% and 60.21% less response time, 21.98%
and 27.8% less network usage, 45.01% and 65.67% less loop delay, and 2.33% and 3.20%
less energy consumption.

We intend to expand the SCATTER algorithm and consider mobility of devices in the
network for our future work. In this work, we assumed that all devices have no movement,
while, in the real world, there is a high probability of employing mobile nodes. We are also
aiming to consider device battery lifetime in our future work. Each computational resource
consumes battery when it hosts and executes the tasks and even in the idle mode. If many
tasks are performed on a computational device, and the other computational device is idle
most of the time, then the first device may have a problem with the lack of battery and
even being shut down. Due to the lack of computational resources, we considered a small
scale experiment with a small number of fog devices for our tests. The networks in the
real-world have a more complex structure; thus, nodes may be distributed in a rather larger
area with heterogeneous network topology. In our future work, we intend to implement
an optimization algorithm for large number of fog nodes and services in a large-scale
environment.

Author Contributions: Conceptualization, F.F.-G. and H.F.; Data curation, F.K.; Methodology, F.K.
and F.F.-G.; Project administration, H.F.; Software, F.K.; Writing–original draft, F.K.; Writing–review &
editing, F.F.-G. and H.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Swedish Research Council (Vetenskapsrådet), through the
MobiFog starting grant, and by the Swedish Knowledge Foundation (KKS) through the FlexiHealth
Prospekt, and the EU Celtic_Next/Vinnova project, Health5G (Future eHealth powered by 5G).

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aazam, M.; Khan, I.; Alsaffar, A.A.; Huh, E.N. Cloud of Things: Integrating Internet of Things and cloud computing and the

issues involved. In Proceedings of the 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST),
Islamabad, Pakistan, 14–18 January 2014; pp. 414–419.

2. Nan, Y.; Li, W.; Bao, W.; Delicato, F.C.; Pires, P.F.; Zomaya, A.Y. Cost-effective processing for delay-sensitive applications in cloud
of things systems. In Proceedings of the 2016 IEEE 15th International Symposium on Network Computing and Applications
(NCA), Cambridge, MA, USA, 31 October–2 November 2016; pp. 162–169.

3. Tran, M.Q.; Nguyen, D.T.; Le, V.A.; Nguyen, D.H.; Pham, T.V. Task placement on fog computing made efficient for iot application
provision. Wirel. Commun. Mob. Comput. 2019, 2019, 6215454.

4. Ren, C.; Lyu, X.; Ni, W.; Tian, H.; Song, W.; Liu, R.P. Distributed Online Optimization of Fog Computing for Internet-of-Things
under Finite Device Buffers. IEEE Internet Things J. 2020, 7, 5434–5448.

5. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296.

6. Stojmenovic, I. Fog computing: A cloud to the ground support for smart things and machine-to-machine networks. In Proceedings
of the 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC), Southbank, VIC, Australia, 26–28
November 2014; pp. 117–122.

7. Yangui, S.; Ravindran, P.; Bibani, O.; Glitho, R.H.; Hadj-Alouane, N.B.; Morrow, M.J.; Polakos, P.A. A platform as-a-service for
hybrid cloud/fog environments. In Proceedings of the 2016 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), Rome, Italy, 13–15 June 2016; pp. 1–7.

J. Sens. Actuator Netw. 2021, 10, 26 22 of 23

8. Maleki, N.; Loni, M.; Daneshtalab, M.; Conti, M.; Fotouhi, H. Sofa: A spark-oriented fog architecture. In Proceedings of the
IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1,
pp. 2792–2799.

9. Mahmud, R.; Kotagiri, R.; Buyya, R. Fog computing: A taxonomy, survey and future directions. In Internet of Everything; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 103–130.

10. Mahmud, R.; Buyya, R. Modelling and simulation of fog and edge computing environments using iFogSim toolkit. In Fog and
Edge Computing: Principles and Paradigms; Wiley: Hoboken, NJ, USA, 2019; pp. 1–35.

11. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16.

12. Yi, S.; Qin, Z.; Li, Q. Security and privacy issues of fog computing: A survey. In Proceedings of the International Conference on
Wireless Algorithms, Systems, and Applications, Qufu, China, 10–12 August 2015; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 685–695.

13. OpenFog Consortium Architecture Working Group. OpenFog reference architecture for fog computing. In OPFRA001; OpenFog
Consortium: Fremont, CA, USA, 2017; pp. 1–162.

14. Pallewatta, S.; Kostakos, V.; Buyya, R. Microservices-based IoT Application Placement within Heterogeneous and Resource
Constrained Fog Computing Environments. In Proceedings of the 12th IEEE/ACM International Conference on Utility and
Cloud Computing, Auckland, New Zealand, 2–5 December 2019; pp. 71–81.

15. He, J.; Wei, J.; Chen, K.; Tang, Z.; Zhou, Y.; Zhang, Y. Multitier fog computing with large-scale iot data analytics for smart cities.
IEEE Internet Things J. 2017, 5, 677–686.

16. Silva, R.; Silva, J.S.; Boavida, F. Opportunistic fog computing: Feasibility assessment and architectural proposal. In Proceedings
of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017;
pp. 510–516.

17. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J., Fog computing: A platform for internet of things and analytics. In Big Data and
Internet of Things: A Roadmap for Smart Environments; Springer: Berlin/Heidelberg, Germany, 2014; pp. 169–186.

18. Gill, S.S.; Garraghan, P.; Buyya, R. ROUTER: Fog enabled cloud based intelligent resource management approach for smart home
IoT devices. J. Syst. Softw. 2019, 154, 125–138.

19. Rahman, G.; Chuah, C.W. Fog computing, applications, security and challenges, review. Int. J. Eng. Technol. 2018, 7, 1615–1621.
20. Puthal, D.; Mohanty, S.P.; Bhavake, S.A.; Morgan, G.; Ranjan, R. Fog computing security challenges and future directions [energy

and security]. IEEE Consum. Electron. Mag. 2019, 8, 92–96.
21. Skarlat, O.; Nardelli, M.; Schulte, S.; Borkowski, M.; Leitner, P. Optimized IoT service placement in the fog. Serv. Oriented Comput.

Appl. 2017, 11, 427–443.
22. Yousefpour, A.; Patil, A.; Ishigaki, G.; Kim, I.; Wang, X.; Cankaya, H.C.; Zhang, Q.; Xie, W.; Jue, J.P. FogPlan: A lightweight

QoS-aware dynamic fog service provisioning framework. IEEE Internet Things J. 2019, 6, 5080–5096.
23. Al Faruque, M.A.; Vatanparvar, K. Energy management-as-a-service over fog computing platform. IEEE Internet Things J. 2015,

3, 161–169.
24. Rahbari, D.; Nickray, M. Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw. Appl.

2020, 13, 104–122.
25. Skarlat, O.; Karagiannis, V.; Rausch, T.; Bachmann, K.; Schulte, S. A framework for optimization, service placement, and runtime

operation in the fog. In Proceedings of the 2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC), Zurich, Switzerland, 17–20 December 2018; pp. 164–173.

26. Bala, M.I.; Chishti, M.A. Optimizing the Computational Offloading Decision in Cloud-Fog Environment. In Proceedings of the
2020 International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 13–14 February 2020;
pp. 1–5.

27. Lu, H.; Gu, C.; Luo, F.; Ding, W.; Liu, X. Optimization of lightweight task offloading strategy for mobile edge computing based
on deep reinforcement learning. Future Gener. Comput. Syst. 2020, 102, 847–861.

28. Cai, P.; Yang, F.; Wang, J.; Wu, X.; Yang, Y.; Luo, X. JOTE: Joint Offloading of Tasks and Energy in Fog-Enabled IoT Networks.
IEEE Internet Things J. 2020, 7, 3067–3082.

29. Wei, H.; Luo, H.; Sun, Y. Mobility-Aware Service Caching in Mobile Edge Computing for Internet of Things. Sensors 2020, 20, 610.
30. Misra, S.; Bera, S. Soft-VAN: Mobility-Aware Task Offloading in Software-Defined Vehicular Network. IEEE Trans. Veh. Technol.

2019, 69, 2071–2078.
31. Rejiba, Z.; Masip-Bruin, X.; Marin-Tordera, E. A user-centric mobility management scheme for high-density fog computing

deployments. In Proceedings of the 2019 28th International Conference on Computer Communication and Networks (ICCCN),
Valencia, Spain, 29 July–1 August 2019; pp. 1–8.

32. Mseddi, A.; Jaafar, W.; Elbiaze, H.; Ajib, W. Joint container placement and task provisioning in dynamic fog computing. IEEE
Internet Things J. 2019, 6, 10028–10040.

33. Optimizer, I. Available online: http://https://www.ibm.com/nl-en/analytics/cplex-optimizer (accessed on 17 February 2021).
34. Gavaber, M.D.; Rajabzadeh, A. MFP: An approach to delay and energy-efficient module placement in IoT applications based on

multi-fog. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 1–17.

http://https://www.ibm.com/nl-en/analytics/cplex-optimizer

J. Sens. Actuator Netw. 2021, 10, 26 23 of 23

35. Mahmoud, M.M.; Rodrigues, J.J.; Saleem, K.; Al-Muhtadi, J.; Kumar, N.; Korotaev, V. Towards energy-aware fog-enabled cloud of
things for healthcare. Comput. Electr. Eng. 2018, 67, 58–69.

36. Mirghani, S.; Hajjdiab, H. Comparison between Amazon S3 and Google Cloud Drive. In Proceedings of the 2017 2nd International
Conference on Communication and Information Systems, Wuhan, China, 7–9 November 2017; pp. 250–255.

37. Varghese, B.; Wang, N.; Nikolopoulos, D.S.; Buyya, R. Feasibility of fog computing. In Handbook of Integration of Cloud Computing,
Cyber Physical Systems and Internet of Things; Springer: Berlin/Heidelberg, Germany, 2020; pp. 127–146.

38. Dang, T.D.; Hoang, D. A data protection model for fog computing. In Proceedings of the 2017 Second International Conference
on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; pp. 32–38.

39. Mechalikh, C.; Taktak, H.; Moussa, F. A Scalable and Adaptive Tasks Orchestration Platform for IoT. In Proceedings of the 2019
15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019;
pp. 1557–1563.

40. Mechalikh, C.; Taktak, H.; Moussa, F. PureEdgeSim: A simulation toolkit for performance evaluation of cloud, fog, and pure edge
computing environments. In Proceedings of the 2019 International Conference on High Performance Computing & Simulation,
Dublin, Ireland, 15–19 July 2019; pp. 700–707.

41. Li, C.; Zhuang, H.; Wang, Q.; Zhou, X. SSLB: Self-similarity-based load balancing for large-scale fog computing. Arab. J. Sci. Eng.
2018, 43, 7487–7498.

42. Yang, Y.; Liu, Z.; Yang, X.; Wang, K.; Hong, X.; Ge, X. POMT: Paired offloading of multiple tasks in heterogeneous fog networks.
IEEE Internet Things J. 2019, 6, 8658–8669.

43. Goudarzi, M.; Wu, H.; Palaniswami, M.S.; Buyya, R. An application placement technique for concurrent iot applications in edge
and fog computing environments. IEEE Trans. Mob. Comput. 2020, 20, 1298–1311.

44. Wang, D.; Liu, Z.; Wang, X.; Lan, Y. Mobility-Aware Task Offloading and Migration Schemes in Fog Computing Networks. IEEE
Access 2019, 7, 43356–43368.

45. Yang, Y.; Luo, X.; Chu, X.; Zhou, M.T., Fog-Enabled Smart Home and User Behavior Recognition. In Fog-Enabled Intelligent IoT
Systems; Springer: Berlin/Heidelberg, Germany, 2020; pp. 185–210.

46. Guerrero, C.; Lera, I.; Juiz, C. A lightweight decentralized service placement policy for performance optimization in fog
computing. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 2435–2452.

	Introduction
	Related Works
	The System Modeling and Problem Formulation
	Proposed Architecture for the SCATTER (System Model)
	IoT Devices
	Fog Layer
	Cloud Layer

	Problem Statement
	Problem Formulation

	Proposed Solution (SCATTER)
	Service Placement
	Time Complexity Analysis

	Performance Evaluation
	Case Study: IoT-Based Smart Home
	Sensors to Arduino
	Arduino to nRF24L01
	Raspberry Pi to nRF240L
	Raspberry Pi to Smartphone

	SCATTER Implementation in iFogSim

	Evaluation Results
	Applications Response Times
	Network Usage
	Average Application Loop Delays
	Energy Consumption

	Conclusions and Future Works
	References

