
1

Model-based Automation of Test Script Generation
Across Product Variants: a Railway Perspective

Alessio Bucaioni∗, Fabio Di Silvestro†, Inderjeet Singh†, Mehrdad Saadatmand‡, Henry Muccini§, Thorvaldur
Jochumsson†

∗ alessio.bucaioni@mdh.se, Mälardalen University, Västerås, Sweden
† fabio.di silvestro1@rail.bombardier.com, inderjeet.singh@rail.bombardier.com,

thorvaldur.jochumsson1@rail.bombardier.com, Bombardier Transportation, Västerås, Sweden
‡ mehrdad.saadatmand@ri.se, Research Institutes of Sweden, Västerås, Sweden § henry.muccini@univaq.it,

University of L’Aquila, L’Aquila, Italy

Abstract—In this work, we report on our experience in
defining and applying a model-based approach for the automatic
generation of test scripts for product variants in software product
lines. The proposed approach is the result of an effort leveraging
the experiences and results from the technology transfer activities
with our industrial partner Bombardier Transportation. The
proposed approach employs metamodelling and model transfor-
mations for representing different testing artefacts and making
their generation automatic. We demonstrate the industrial ap-
plicability and efficiency of the proposed approach using the
Bombardier Transportation Aventra software product line. We
observe that the proposed approach mitigates the development
effort, time consumption and consistency drawbacks typical of
traditional strategies.

I. INTRODUCTION

Among others, the railway sector has witnessed an in-
creased demand for customised software-intensive systems for
addressing market needs, regional standards, certifications as
well as software and hardware requirements. To meet this
increased customisation demand, Bombardier Transportation
(BT) has been shifting towards Software Product Line (SPL)
Engineering (SPLE) [1].

A SPL is a set of software-intensive systems, which share a
common, managed set of features that are developed starting
from a common set of core artefacts [2], e.g., requirements, test
cases, etc. Traditionally, SPLE makes use of two development
processes: the domain engineering and application engineering
processes. The domain engineering process focuses on the
creation of the SPL platform through the identification of
common and variable features and the development of domain
artefacts realising such features. The application engineering
process focuses on the derivation of individual systems based
on the SPL platform identified in the domain engineering pro-
cess [2]. The main benefit of using SPLs is that all the artefacts
can be systematically organised and reused [3] translating in
lower cost, shorter time to market and increased quality than
the development of multiple and independent systems [1].
Despite the adoption of the SPLE has brought several benefits
to BT, it has also introduced new challenges to testing. Within
BT, each train is customised and its software system is highly-
coupled to the underlying electrical system and hardware. This
means that technical artefacts, e.g., test scripts, designed for
common features of the SPL need to account for the different
hardware configurations of the products in the family and can
not be directly reused throughout the SPL. To clarify this
challenge, let us consider the case of the BT Aventra SPL.

A. A Real-world Scenario From The Railway Domain

The BT Aventra SPL consists of five electric unit trains
for passengers transportation specifically designed for the
British Market: the London Overground (LOT), the East
Anglia (EAA), the South Western (SWR), the West Midlands
(WML) and the Center-to-Coast (C2C)1. All the trains in the
Aventra SPL share a large number of features, from basic,
(e.g., driver cabin activation, doors activation, etc.) to more
advanced ones (e.g., safety-related, train re-configurations,
etc.). The Traction/Brake Control feature (TBC) is one of
such features and is responsible for transmitting the driver
inputs to the brake and propulsion systems by operating on
the train communication channels, which are called signals.
Despite the TBC control logic is the same for all the trains in
the SPL, the signals on which it operates are different due to
the different train architectures. Such heterogeneity of signals
represents a major challenge for testing phases where different
test scripts accounting for different signals need to be created
(in fact, the behaviour of the TBC does not vary among the
different trains). To tackle this challenge, BT has adopted the
so-called opportunistic reuse of test artefacts strategy for the
testing of SPLs [4]. This strategy requires test scripts to be
developed for one train only and replicated for the remaining
ones. Each replica is manually modified so to account for
differences. However, the opportunistic reuse of test artefacts
strategy carries several drawbacks, including the following.
• Development effort: manually modifying software arte-

facts is not only undesirable but often unfeasible for
industrial SPLs.

• Error proneness: manual changes are more likely to
introduce errors; besides, replicating artefacts across the
SPL may propagate them.

• Consistency: manual changes make difficult to keep arte-
facts consistent as changes to the original artefact need
to be explicitly propagated to the replicas.

B. Paper contribution

In this paper, we report on our experience in tackling the
above challenge of developing test scripts stemming from
common SPL features and accounting for product differences
in the railway domain. To this end, together with our industrial
partner BT, we define a light-weight model based approach.
The approach uses metamodels, Domain-specific Languages

1More details on the Aventra SPL are provided in Section III.

2

(DSLs) and model transformations for the automatic genera-
tion of test scripts from abstract test case descriptions2. The
main building blocks of our proposed approach are:
• a domain-independent metamodel for the functional3 rep-

resentation of SPL common features,
• a domain-independent metamodel for the representation

of individual trains, train features and signals,
• a domain-independent weaving metamodel for mapping

individual train signals to features inputs and outputs,
• a DSL for the specification of test cases, and
• a model to text transformation for the automatic genera-

tion of executable test scripts.
We use the BT Aventra SPL for evaluating the applicability
and efficacy of the proposed approach. We evaluate the ap-
plicability of the proposed approach in industrial settings and
its efficiency in generating executable test scripts which are
equivalent to those created manually using the opportunistic
reuse of testing artefacts strategy. We discuss the industrial rel-
evance of our approach together with experts from the Aventra
integration team using the model for assessing the industrial
relevance of technology transfers introduced by Ivarsson et
al. [6]. We conclude that the approach mitigates the devel-
opment effort, error proneness and consistency drawbacks of
the opportunistic reuse of testing artefacts strategy already
for SPL containing 3 products and 2 features. The model
transformation contributes to lower the effort required for the
creation of test scripts and, together with the metamodels,
reduces the possibility of introducing and propagating errors,
and keeps the artefacts consistent.

C. Structure of the paper

The remainder of this paper is organised as follows. Sec-
tion II describes the proposed approach in terms of its com-
ponents and steps. Section III presents the application of
the approach on the BT Aventra SPL. Section IV discusses
its applicability, efficiency and industrial relevance. Besides,
in this section an assessment of the development effort of
the proposed approach is also provided. Section V describes
potential threats to validity and related mitigation strategies.
Section VI presents related work, and Section VII concludes
the paper with final remarks and possible future work.

II. A MODEL-BASED APPROACH FOR THE AUTOMATIC
GENERATION OF TEST SCRIPTS

In this section, we describe how the approach supports the
generation of individual test scripts stemming from common
SPL features and accounting for train differences. Figure 1
provides an overview of the proposed approach in terms of
its main components and steps. In particular, the proposed
approach includes the following components:
• SPL metamodel (SPLmm). SPLmm is a metamodel for

defining SPL platform features.

2In this paper, we use the term abstract test case to refer to a generic
description of the test to be performed. We use the term test script to refer to
a concrete set of instructions or short program implementing the test case. In
the remainder of this paper, we refer to abstract test case simply as test case.

3In this paper, we borrow the concept of functional abstraction level
defined in [5] for architectural frameworks.

• Products metamodel (Pmm). Pmm is a metamodel for
designing individual trains in terms of their features and
signals.

• Weaving metamodel (Wmm). Wmm is a metamodel for
linking features and signals in Pmm to those in SPLmm.

• Test case DSL (TcDSL). TcDSL is a DSL for the speci-
fication of abstract test cases for features in SPLmm.

• Test Script generation Transformation (TsT). TsT is a
model to text transformation for the automatic generation
of executable test scripts from test cases described using
TcDSL.

A typical execution of the approach involves five steps. These
can be grouped into two conceptual phases, as follows. Steps
1 to 3 belong to the definition phase (red box in the upper
half of Figure 1), while steps 4 and 5 belong to the execution
phase (grey box in the lower half of Figure 1). The steps in
the definition phase are preparatory for those in the execution
phase and need to be executed only once per SPL or whenever
a change in the SPL occurs. It should be noted that, in the case
the information captured from SPLm, W and P are already
formalised using other artefacts or notations, tasks 1 to 3 can
be skipped.
• Step 1. In this step, marked as a black circled 1 in Fig-

ure 1, engineers are required to create a model capturing
the SPL platform features (SPL platform model (SPLm)
in Figure 1). This is done by using the SPLmm. The goal
of this step is to provide a functional representation of
the common SPL features.

• Step 2. This step, marked as a black circled 2 in Figure 1,
requires engineers to create a model capturing individual
trains belonging to the SPL and their signals (Products
model (P) in Figure 1) to describe possible differences
among SPL products. This is done by using the Pmm.

• Step 3. The goal of this step, marked as a black circled 3
in Figure 1, is to relate features and signals of individual
trains to the shared ones. To this end, engineers are
required to create a weaving model (Weaving model (W)
in Figure 1) linking elements of P to elements of SPLm.
This is done by using the Wmm.

• Step 4. In this step, marked as a black circled 4 in
Figure 1, test engineers are required to create test cases
(Test case (Tc) in Figure 1) describing the checks to
be performed on the common SPL functionalities as
captured by the SPLm. This is done by using the TcDSL.

• Step 5. The last step, marked as a black circled 5 in Fig-
ure 1, is the execution of TsT for the automatic generation
of executable test scripts from the test cases specified
in Tc. For each train in the SPL, TsT i) translates the
abstract checks specified in Tc into a concrete set of
instructions and ii) replaces the features input and output
with the train signals, using the information in W.

In the remainder of this section, we provide a detailed de-
scription of the enabling artefacts of the proposed approach,
which can be accessed at https://github.com/fabiodisilv/
Model-Based Test Generator SPL . The approach execution
on the BT Aventra SPL is presented in Section III.

A. SPL metamodel
SPLmm allows for the representation of the SPL features.

We have developed SPLmm as an Ecore model within the

3

SPL platform
metamodel (SPLmm)

SPL platform model
(SPLm)

conforms to

Products
metamodel (Pmm)

Products model (P)

conforms to

Weaving
metamodel (Wmm)

Weaving model (W)

conforms to

left right

1 23

Test case DSL
(TcDSL)

Test case (Tc)

4

conforms to Test script generation
transformation (TsT)

5

source

Test script (Ts)

target

Test script (Ts)

Test script (Ts)

A

Fig. 1: Proposed approach.

Eclipse Modelling Framework (EMF)4. Figure 2 provides for a
class diagram representation of SPLmm. The root metaclass is

Fig. 2: Class diagram representation of SPLmm.

Family, which acts as a container and has two attributes: name
and description. Family contains one or more GenericFunction
metaclasses, which specify common features of the SPL. A
GenericFunction class has two attributes namely name and de-
scription and contains one or more GenericStep metaclasses.
GenericStep metaclasses represent the input and output of
the feature and have one attribute, name. Accordingly, a
GenericStep metaclass can be specialised into a GenericInput
or a GenericOutput metaclass.

B. Products metamodel

Pmm allows for representing individual products of the SPL
along with their differences. We have developed Pmm as an
Ecore model within EMF and Figure 3 provides for its class
diagram representation. Similarly to SPLmm, the Pmm root
metaclass is Family. Family has two attributes, name and
description, and contains one or more Product metaclasses.
A Product metaclass specifies a train belonging to the SPL
and has one attribute, name. A Product metaclass refers to
one or more ProductSpecificFunction metaclasses, which are
used to represent train specific versions of common features. A

4https://www.eclipse.org/modeling/emf/

Fig. 3: Class diagram representation of Pmm.

ProductSpecificFunction metaclass has one attribute and refers
to one or more ProductSpecificStep and one or more Product.
A ProductSpecificStep metaclass might be specialised into
ProductSpecificInput and ProductSpecificOutput. Besides, a
ProductSpecificStep metaclass might refer to a Signal and
a System metaclass, where Signals metaclasses represent
concrete trains signals.

C. Weaving metamodel

Wmm allows for specifying links between elements of P
and elements of SPLm. The information captured using Wmm
is used from TsT to generate executable test scripts. We
have developed Wmm as an Ecore model within EMF and
Figure 4 provides for its class diagram representation. The root
metaclass is Weaving, which has two attributes, name and de-
scription and contains one or more FunctionLink metaclasses.
FunctionLink metaclasses type one ProductSpecificFunction
to one GenericFunction and contain a list of InputLink and
OutputLink metaclasses. The former is used to type Product-

4

Fig. 4: Class diagram representation of Wmm.

SpecificInput to GenericInput elements while the latter for
typing ProductSpecificOutput to GenericOutput elements.

D. Test case DSL

TcDSL is a language for the definition of abstract test cases.
Within the proposed approach, TcDSL is used for writing test
cases for SPL common features.

1 TestSuite: (testCases+=TestCase)* (productTestCases+=
ProductTestCase)*;

2
3 TestCase: ’TestCase’ name=ID ’checks’ genericFunction=ID

productException+=ProductException* ’{’ (steps+=Step)* ’}’;
4
5 ProductException: ’except’ ’Product’ productName=ID;
6
7 Step: Set | Check | Force | Unforce;
8
9 Set: ’Set’ ’Signal’ genericSignal=Signal ’to’ value=Value

productValueExceptions+=ProductValueException*;
10
11 Check: ’Check’ ’Signal’ genericSignal=Signal ’to’ value=Value

productValueExceptions+=ProductValueException* ’timeout’
timeout=Timeout;

12
13 Signal: name=ID;
14
15 Value: name=ValueType;
16
17 Timeout: name=INT;

Listing 1: Excerpt of TcDSL.

We have developed TcDSL using the Xtext programming lan-
guages development framework5. Listing 1 shows an excerpt
of the TcDSL definition describing its main concepts. TcDSL
allows for the definition of test cases by specifying the test
case name and the common feature to test (line 3 of Listing 1)
as modelled in SPLm. The body of a test case is composed
of a list of operations interacting with the feature inputs and

5https://www.eclipse.org/Xtext/

outputs. These operations are Set, Force, Unforce and Check
(line 9 of Listing 1). Lines 11 to 13 of Listing 1 show
the behaviour of the Set and Check operations, respectively.
The Set operation is responsible to specify the value of an
input or output, while the Check operation is responsible for
controlling their value within a given timeout. It might happen
that a test case or some of its operations do not apply to a
given train of the SPL. In this case, TcDSL allows for adding
exceptions as shown by lines 11 and 13 of Listing 1. Listing 2
shows an example of test cases defined using TcDSL namely
Check OpenDoor and Check OpenDoor Exception. Both test
cases refer to the common feature OpenDoor responsible
for operating train doors. Check OpenDoor performs two
operations being a set and a check. The set operation specifies
the values of DoorLocked to False, while the check operation
tests that Doorstate is set to OPEN within a timeout of
5000 milliseconds. Check OpenDoor Exception defines an
exception on the Check OpenDoor test case for product A
(line 5 of Listing 2).

1TestCase Check OpenDoor checks OpenDoor{
2Set Signal DoorLocked to False
3Check Signal DoorState to OPEN timeout 5000}
4
5TestCase Check OpenDoor Exception checks OpenDoor except

Product product A{
6Set Signal DoorLocked to False (Exception Product product A to 1)
7...}

Listing 2: Examples of test cases for the OpenDoor common

functionality specified using TcDSL.

1[file (’TestSuite’ .concat(aProduct.name.concat(’.cs’)),false ,’UTF−8’)]
2[for (aTestCase : TestCase | aTestSuite.testCases /]
3...
4public void [aTestCase.name /](){
5[for(aStep : Step | aTestCase.steps)]
6...
7[/for]}

Listing 3: Excerpt of TsT transformation.

E. Test script generation transformation
TsT is the automation mechanism for the generation of

executable test scripts from test cases defined using TcDSL.
Formally, TsT can be described with the following function:

TsT < SPLm,P,W, Tc >→ n× Ts

TsT takes as inputs the model of the SPL SPLm, the model
P representing a number n of individual products of the SPL,
the weaving model W and the test case Tc specified using
TcDSL. Starting from these inputs, TsT produces one test
script Ts for each of the n products modelled using P . TsT
consists of the following main mapping rules:
• P2Ts creates a test script for each product in the SPL.
• Tc2Method creates a method in the test script for each

specified test case.
• Operation2Statement creates a statement in the test script

method for each operation in the test case.

5

• Signal2Parameter: translates each input/output of a test
case operation into a signal. Besides, it marks the signal
as the parameter of the test script statement.

TsT accounts for the exceptions defined using the TcDSL by
skipping the products specified for the exceptions. We have
implemented TsT using a template-based technology called
Acceleo6. Listing 3 shows an excerpt of TsT implementing
part of the P2Ts (line 1) and Tc2Method (line 4) rules.
Acceleo allows the definition of a model transformation as
a mix of static and dynamic elements. Static elements are
expressed in the syntax of the target programming language
and will not be changed at transformation time. As test scripts
in BT are written in C#, TsT uses static elements from
the C# programming language. Dynamic elements represent
placeholders, which will be replaced with elements from the
source/target models at transformation time. Listing 3 shows
an example of static elements from C# in line 4.

III. THE AVENTRA FAMILY: A USE CASE FROM THE
RAILWAY DOMAIN

In this section, we demonstrate the industrial applicability
of the proposed approach using the BT Aventra SPL. As
described in Section I, the Aventra SPL is a family of multiple
electric unit trains for passengers transportation specifically
designed for the British market. The Aventra SPL consists of
five kinds of electric trains called LOT, EAA, SWR, WML
and C2C. The trains belonging to the Aventra SPL share
a considerable number of features. In Section I, we have
introduced one such features called TBC, which is responsible
for transmitting the driver inputs to the brake and propulsion
system. When we have started the work on the case study, the
smoke tests for the Aventra SPL have already identified 18
features shared among all the trains. For the sake of brevity,
in the remainder of this section we focus only on two common
features (TBC and Activate Cabin) and three trains (LOT,
EAA and SWR). However, the interested reader can access
the full implementation of the BT Aventra SPL at https:
//github.com/fabiodisilv/Model-Based Test Generator SPL.

Fig. 5: Model of the Aventra SPL common features and their
steps.

6https://www.eclipse.org/acceleo/overview.html

According to the proposed approach, the first step is
to capture the SPL features and their generic steps, using
SPLmm. Figure 5 shows a tree-based representation of the
excerpt of the model describing the Activate Cabin and
TBC features (named as Function ActivateCab and Func-
tion TBC Response in the figure) along with their generic
steps (named as. e.g., Input MASTER HW11 INPUT1, Input
TBC Demand Level Validity 1, etc., in the figure).

Fig. 6: Model of the trains in the Aventra SPL, their features,
steps and signals.

The second step of the proposed approach is modelling
of the trains in the SPL in terms of their train spe-
cific implementation of the features, steps and signals, us-
ing Pmm. Figure 6 shows a tree-based representation of
the excerpt of the model describing the EAA, LOT and
SWR trains (named as Product EAA, Product LOT and
Product SWR in the figure) along with their train spe-
cific implementation of the features (named as, e.g., Prod-
uct Specific Function ActivateCab EAA, Product Specific
Function TBC Response EAA, etc., in the figure). Besides,
Figure 6 shows some of the train specific steps for such
features (named as e.g., Product Specific Input SYS1.EAA-
SWR-DEM LEV VALID 1-EAA-SWR, Product Specific In-
put SYS1.EAA-SWR-DEM LEV 1-EAA-SWR, etc., in the
figure) along with some of their signals (named as e.g., Signal
EAA-SWR-DEM LEV VALID 1-EAA-SWR, Signal EAA-
SWR-DEM LEV 1-EAA-SWR, etc., in the figure)7. Here
we can see how Pmm allows capturing train differences.
For instance, Figure 7 shows that ActivateCab EAA and
ActivateCab LOT use four inputs and four outputs, while
ActivateCab SWR uses two inputs and four outputs. Besides,
the inputs and outputs used by ActivateCab EAA differ from
those used by ActivateCab LOT, as shown in Figure 7a and
Figure 7b.

The next step is the linking of the train specific
implementations of the SPL features, steps and signals,
defined in the previous step, to the generic ones,
defined in the first step. Figure 8 shows some excerpts
of the model describing this linking. In particular,
Figure 8a shows two Function Link elements typing
Product Specific ActivateCab EAA, Product Specific

7For the sake of brevity, we omit all the steps, signals, linking information
and test scripts for all the trains and features. The interested reader can access
the complete implementation at https://github.com/fabiodisilv/Model-Based
Test Generator SPL

6

(a) Inputs and Outputs of ActivateCab EAA

(b) Inputs and Outputs of ActivateCab LOT

(c) Inputs and Outputs of ActivateCab SWR

Fig. 7: Model of the train specific implementations of the
ActivateCab feature.

ActivateCab LOT and Product Specific ActivateCab SWR
to Function ActivateCab (Figure 8b) and Product Specific
TBC Response EAA, Product Specific TBC Response LOT
and Product Specific TBC Response SWR to Function
TBC Response (Figure 8c), respectively7. Figure 8d
shows an example of steps linking where the train
specific inputs Product Specific Input SYS.EAA-SWR-
HW11 SIGNALS95 INPUT1-EAA-SWR and Product
Specific Input SYS.LOT-HW11 SIGNALS92 INPUT1-
LOT of ActivateCab EAA, ActivateCab LOT and
ActivateCab SWR (Figure 7) are typed to the generic input
Input MASTER HW11 INPUT1 of Function ActivateCab
(Figure 6). The fourth step is the specification of abstract test
cases for the generic features TBC Response and ActiveCab.
Listing 4 shows an abstract test case for ActivateCab
namely, Check ActivateCab, and two abstract test cases
for TBC Response, namely Check TBCResponse1 and
Check TBCResponse3. Check ActivateCab consists of two
force and four check operations. Check TBCResponse1

(a) Weaving model of the Activate Cabin and
TBC features.

(b) Typing of Product Specific ActivateCab EAA, Prod-
uct Specific ActivateCab LOT and Product Specific Ac-
tivateCab SWT to Function ActivateCab

(c) Typing of textslProduct Specific
TBC Response EAA, Product Specific
TBC Response LOT and Product Specific
TBC Response SWR to Fucntion TBC Response

(d) Example of inputs linking

Fig. 8: Excerpts of the weaving model for the Aventra SPL

and Check TBCResponse3 consists of two force and two
check operations each. The last step is the generation
of executable test scripts using the TsT transformations
described in Section II. The execution of TsT produces three
C# files, one for each train in the Aventra SPL. Each of
these files contains the set of instructions implementing the
abstract test cases defined in the previous step. Listings 5
describes a portion of the generated C# file for the EAA train
containing the Check ActivateCab, Check TBCResponse1
and Check TBCResponse3 methods derived from the
corresponding abstract test cases reported in Listing 47. These
methods show how the linking information captured by the
model in Figure 8 is used for substituting the general steps
used in the abstract test cases with train specific signals.
For instance, the generic MASTER HW11 INPUT1 used
in the definition of the Check ActivateCab abstract test
case in Listing 4, is substituted with the EAA specific
signal EAA-SWR-HW11 SIGNAL95 INPUT1-EAA-SWR
in Listing 5 using the information captured by the model in
Figure 8d.

7

IV. DISCUSSION

The automatic generation of test scripts stemming from
common SPL features is one of the most prominent challenges
hampering the full-fledged adoption of SPLE withing BT.
In this paper, we propose a light-weight approach, which
tackles such a challenge using model-based techniques such
as metamodelling and automation by model transformation.
Metamodelling allows increasing abstraction and separation
of concerns. Besides, it enables automation by model trans-
formation. The proposed approach mitigates the drawbacks
of the opportunistic reuse of test artefact strategy, which are
development effort, error proneness and consistency. One may
argue that the number of development artefacts required for the
proposed approach is higher than the number of development
artefacts required for the opportunistic reuse of test artefact
strategy.

1 TestCase Check ActivateCab checks ActivateCab {
2 Force Signal MASTER HW11 INPUT1 to True
3 Force Signal MASTER HW31 INPUT1 to True
4 Check Signal MASTER SAFETY CAB TRAIN to 1 timeout 10000
5 Check Signal MASTER SAFETY CAB CONSIST to 1 timeout

10000
6 Check Signal SLAVE SAFETY CAB TRAIN to 4 timeout 10000
7 Check Signal SLAVE SAFETY CAB CONSIST to 3 timeout 10000

}
8
9 TestCase Check TBCResponse1 checks TBC Response {

10 Force Signal TBC Demand Level Validity 1 to true
11 Force Signal TBC Demand Level 1 to 100
12 Check Signal Master Tractive Braking Effort to −10 timeout 1000
13 Check Signal Slave Tractive Braking Effort to −10 timeout 1000 }
14
15 TestCase Check TBCResponse3 checks TBC Response except Project

SWR {
16 Force Signal TBC Demand Level Validity 3 to true
17 Force Signal TBC Demand Level 3 to 100
18 Check Signal Master Tractive Braking Effort to −10 timeout 1000
19 Check Signal Slave Tractive Braking Effort to −10 timeout 1000 }

Listing 4: Check ActivateCab, Check TBCResponse1 and

Check TBCResponse3 abstract test cases

While this concern might be valid, the results from our
evaluation suggest that this holds for small SPLs only. If
F is the number of features and P the number of products
in an SPL, then the number N of developed artefacts for
the proposed Nproposedapproach = 3 + F . Regardless of the
size of the SPL, the proposed approach requires to create
SPLm, W and P models. Besides these models, the proposed
approach requires the creation of a Ts model for each of
the F features contained in the SPL. If F is the number of
features and P the number of products in an SPL, then the
number N of developed artefacts for the opportunistic reuse
of test artefacts strategy is Nopportunisticresue = P × F as
the opportunistic reuse approach requires the creation of an
artefact for each feature of each product in the SPL. Figure 9
compares the graphs of these two functions where the blue
solid line represents Nproposedapproach while the red solid line
represents Nopportunisticresue. It is evident that initially, the
proposed approach requires a higher number of development

artefacts, which makes it less suitable for relatively small
SPLs. However, the initial higher effort becomes negligible
when the SPLs increase in size. In particular, Figure 9b and
Figure 9c show that the proposed approach requires a fewer
development artefacts for SPLs containing 3 products and 2
features or 5 products and 1 feature, already.

1//Generic function ActivateCab
2//Function to activate the cab
3public void Check ActivateCab(){
4//Force MASTER HW11 INPUT1 True
5SYS1[”EAA−SWR−HW11 SIGNAL95 INPUT1−EAA−SWR”].

Force(true);
6//Force MASTER HW31 INPUT1 True
7SYS1[”EAA−SWR−HW31 SIGNAL98 INPUT1−EAA−SWR”].

Force(true);
8//Check MASTER SAFETY CAB TRAIN 1
9SYS1[”SAFETY CONTROL CAB TRAIN”].WaitForSignal(1,

10000);
10//Check MASTER SAFETY CAB CONSIST 1
11SYS1[”SAFETY CONTROL CAB CONSIST”].WaitForSignal(1,

10000);
12//Check SLAVE SAFETY CAB TRAIN 4
13SYS2[”SAFETY CONTROL CAB TRAIN”].WaitForSignal(4,

10000);
14//Check SLAVE SAFETY CAB CONSIST 3
15SYS2[”SAFETY CONTROL CAB CONSIST”].WaitForSignal(3,

10000); }
16//Generic function TBC Response
17//Forward input reference from TBC to brake and propulsion during

normal conditions
18public void Check TBCResponse1(){
19//Force TBC Demand Level Validity 1 true
20SYS1[”EAA−SWR−DEM LEV VALID 1−EAA−SWR”].Force(

true);
21//Force TBC Demand Level 1 100
22SYS1[”EAA−SWR−DEM LEV 1−EAA−SWR”].Force(100);
23//Check Master Tractive Braking Effort −10
24SYS1[”TB EFFORT”].WaitForSignal(−10, 1000);
25//Check Slave Tractive Braking Effort −10
26SYS2[”TB EFFORT”].WaitForSignal(−10, 1000); }
27//Generic function TBC Response
28//Forward input reference from TBC to brake and propulsion during

normal conditions
29public void Check TBCResponse3(){
30//Force TBC Demand Level Validity 3 true
31SYS2[”EAA−DEM LEV VALID 3−EAA”].Force(true);
32//Force TBC Demand Level 3 100
33SYS2[”EAA−DEM LEV 3−EAA”].Force(100);
34//Check Master Tractive Braking Effort −10
35SYS1[”TB EFFORT”].WaitForSignal(−10, 1000);
36//Check Slave Tractive Braking Effort −10
37SYS2[”TB EFFORT”].WaitForSignal(−10, 1000); }

Listing 5: Generated C# file containing the test scripts for EAA

Previous studies report that industrial SPLs typically consist of
tens of products and hundreds of features [7] [8]. While this is
a valid concern, it is not straightforward to practically measure

8

the required development time as this might depend on several
factors, which are hard to control, such as, e.g., proficiency
of developers with different technologies. However, we are
planning to investigate this aspect in future work. With the
proposed approach, error proneness is mitigated by construc-
tion as test scripts are always generated automatically starting
from the abstract test cases. Similarly, consistency is achieved
by construction as changes in the SPL features, products
or abstract test cases would lead to a new generation of
executable test scripts. Another concern might be that the mere
comparison of the number of development artefacts might be
inaccurate as it does not take into account the complexity and
size of the artefacts as well as their development time.

In the previous section, we have demonstrated the appli-
cability of the proposed approach on the Aventra SPL. In
particular, we have shown how the proposed approach can
automatically generate test scripts stemming from common
SPL features and accounting for product differences. To show
the efficiency of the proposed approach, we have compared
the generated test scripts to those written manually using the
difflib Python module [9]. Prior to this research, the test scripts
where created manually as described in Section I. The results
from the similarity checks are as follows:
• EAA artefacts: 67% sequences’ similarity
• LOT artefacts: 67% sequences’ similarity
• SWR artefacts: 68% sequences’ similarity

It is important to note that the differences between the scripts
are due to the comments injected in the generated test scripts
(e.g., lines 1 and 2 in Listings 5). We use comments in the
generated test scripts as a way for increasing understandability
and maintainability of the code. For integrity and security
reasons, we cannot release all the handcrafted and generated
test scripts. However, the interested reader can find examples
of these at https://github.com/fabiodisilv/Model-Based Test
Generator SPL, which can be used for running the similarity
check.

We have used expert surveys for assessing the industrial
relevance of the proposed approach. The surveys contains
five questions and draws on the model for assessing the
industrial relevance of technology transfers introduced by
Ivarsson et al. [6]. The model focuses on four aspects being
subjects, context, scale, and research method. The pool of
respondents included more than twenty practitioners from the
BT Aventra integration team. For the sake of space, we omit
the list of the questions, which can be found at https://github.
com/fabiodisilv/Model-Based Test Generator SPL. 100% of
respondents have found the subject and context of this research
to be industrially relevant. One respondent has remarked that
“domain knowledge contributes significantly in the evaluation
of a method, which generally lacks in students compared to
practitioners”. 90% of the respondents have evaluated the scale
and research method aspects of this research as industrially
relevant. A remark on the scale aspect states that “the func-
tions/features have inherently similar nature in the aspects
which are addressed in this research. So no negative bearing
can be foreseen on the method when scaling”. Overall, 60%
of the respondents have found the proposed approach highly
relevant, while 40% of the respondents found it relevant. A
final remark from a respondent has agreed “that the current
industrial testing approach is complex, error-prone and require

(a) Graph showing number of artefacts
for an SPL containing 2 products

(b) Graph showing number of artefacts
for an SPL containing 3 products

(c) Graph showing number of artefacts
for an SPL containing 5 products

Fig. 9: Graphs comparing the number of artefacts required
from the two approaches for SPLs containing 2,3 and 5
products
much development and maintenance effort. The work this
research provides an interesting alternative that is promising in
terms of test reusability and should, therefore, decrease cost.”

V. THREATS TO VALIDITY

We have defined, developed, and validated the proposed
approach following an adaptation of the research method-
ology introduced in [10]. Such a methodology focuses on
maximising the technology transfer between academia and
industry using an iterative process emphasising the evaluation
of the technology to be transferred. We have validated the
applicability and efficacy of the proposed approach using the
Aventra SPL use case from BT as discussed in Section III.

9

Besides, we have discussed the industrial relevance of the
approach using experts interviews as described in Section IV.
In the following, we discuss and classify potential threats to
validity as well as our mitigation strategies according to the
scheme proposed in [11].

Internal.To mitigate possible threats to internal validity in
the expert interviews, we have selected practitioners with
proven and extensive experiences in testing, MDE and railways
domains. We have made an effort to ask questions in a neutral
way so not to bias respondents with more positive answers in
favour of the proposed approach.

External. To produce a general solution, the proposed ap-
proach and its constituents have been defined by performing an
in-depth study of the state-of-the-art and -practice, as discussed
in Section VI. The expert interviews involved researchers
and practitioners from academia and industry with different
nationalities and levels of experience. Hence, we believe that
the results of interviews are agnostic of the country of origin
and level of experience of the participants. It is important to
note that validation on the Aventra SPL use case has been
carried out entirely at the Bombardier premises in Västerås.

Construct. In this work, we focus on the Aventra SPL
use case. Such a use case reflects real-world challenges as
experienced from BT. All the authors of this work have prior
and established experience in the fields of MDE, testing and
railway transportation, which has helped in ensuring construct
validity. The expert interviews have been opened by an infor-
mal discussion on the proposed approach and a questions and
answers session for mitigating the risks of misunderstandings.
Besides, it is worth to mention that all the authors have a
longstanding collaboration with the practitioners involved in
the study and this has resulted in insightful feedback char-
acterised by mutual trust. Conclusion. To mitigate potential
threats to conclusion validity, we have validated the proposed
approach on the Aventra SPL use case provided from our
business partner, BT. It is worth to mention that, the execution
of the proposed approach on the Aventra SPL has been driven
from the Aventra integration group, involving senior software
engineering with more than 10 years of experience in the
railway domain, so to avoid researchers bias. The validation
has shown that the proposed approach was able to generate
test scripts equivalent to those created manually using the
opportunistic reuse of test artefacts strategy.

VI. RELATED WORK

In this work, we discuss a model-based approach for test-
scripts generation in the context of software development
of complex industrial systems. In the past decades, several
approaches for test artefacts generation have been proposed.
Asaithambi and Jarzabek propose an approach known as the
generic adaptable test cases for SPLs [12]. Such an approach
aims at reducing the number of test cases needed for testing all
the products within a given family. To this end, test cases are
generated after analysing different assets of the SPL, including
already existing test cases. The analysis aims at spotting
and removing duplicated test cases. What is more, similar
test cases are generalised and grouped based on different
parameters. The main drawback of the work of Asaithambi
and Jarzabek is the lack of any practical application of such
an approach, which remains only theorised. Compared to our

solution, the approach of Asaithambi and Jarzabek mainly
differs in the test artefacts generation. In our approach, such
a task is completely automatic as it is entrusted to a model
transformation. Reuys et al. propose a model-based approach
to test case derivation in the system test of software product
lines [13]. The approach is known as Scenario based Test
case Derivation (ScenTED) and requires test artefacts for the
whole family to be designed for extensions so as to cover the
variability of each product. What is more, within ScenTED test
cases are automatically generated from system models such as
the Unified Modeling Language (UML) activity diagrams or
sequence diagrams. Similar to ScenTED, our approach gener-
ates test artefacts starting from a structured representation of
information families and products within families. However,
our approach does not rely on behavioural system models, but
on lightweight models. This makes our approach more flexible
and suited for those contexts where behavioural information
is not available. Lochau et al. illustrate an application of the
so-called delta-oriented testing technique, which is an incre-
mental testing technique relying on state machines describing
the products behaviours [14]. The approach first generates
test artefacts based on the state machines representing a
product. Later, it evolves the generated test artefacts based on
modifications calculated on the state machines. Dukaczewski
et al. present another delta-oriented testing technique, which
replaces state machines with textual requirements [14]. Similar
to the above delta-oriented testing techniques, the goal of our
approach is to enhance (automatic) test artefacts generation.
However, our proposed approach differs from the above-
mentioned ones as executable test scripts are generated for
each product starting from a single test case for the whole fam-
ily. Several approaches to test artefacts generation are based on
the use of the UML Testing Profile (UTP), which allows the
specification of tests for both static (structural) and dynamic
(behavioural) aspects of a software system [15], [16]. Bagnato
et al. describes an industrial application of UTP within the field
of future internet application [17]. The test definition through
UTP is carried out using a graphical representation, in contrast
with the textual representation provided by our approach.
Moreover, the use of UTP requires a MDE background since
the test specification is directly linked to UML model(s).
Even though we make use of MDE techniques, once set up,
our approach can be used without MDE knowledge as the
DSL ease the test-case definition due to its similarity to the
natural language. Iber et al. present another approach based on
UTP [15]. In this work, the authors build a textual domain-
specific language from which UTP models are automatically
generated using a model transformation. In turn, the generated
UML model(s) could be further transformed into test-scripts
using external transformations. Our approach is similar to the
one from Iber et al. as they both rely on DSLs and model
transformation. However, the main difference is that in our
approach executable test scripts are automatically generated
from a test case written using a DSL. UTP could be used for
the automatic generation of executable test scripts, too. In this
context, the work in [18] provides a two-step transformation
process, which generated Java executable test scripts from
UML 2.0 Testing Profile (U2TP). In particular, the U2TP is
first translated into TTCN-3 using a model transformation.
Then the TTCN-3 is translated into a Java skeleton which has

10

to be completed manually. The authors argue that achieving a
fully automated generation is difficult, if not impossible, due
to the different levels of abstraction of system models and test
specifications. Another approach using UTP is AGEDIS by
Cavarra et al. [19]. The approach make use of UML system
models, e.g., class diagram, object diagram, etc., and a profile
defined by the authors. The key novelty of this strategy is the
possibility to create an additional model containing the test
directives. These directives are used to tune the test generator
to allow test engineers to perform an appropriate test selection
for budget, time and test campaign constraints. Our strategy
does not require such a tune as generic test-cases are directly
specified by test engineers. Test artefacts generation is also
presented in the approach by Tahat et al. [20]. To avoid
the complexity of UML systems models, such an approach
use requirements specified using the Specification Description
Language (SDL) as the starting point of the generation pro-
cess. In particular, the requirements written using SDL are
first gathered and then transformed into an Extended Finite
State Machines (EFSMs). In turn, EFSMs are transformed
into test cases. According to the authors, such an approach
can account for requirements changes without the need for re-
generating all the test cases. Similar to our approach, the work
of Tahat et al. uses a structured representation of products as
the base for the generation process. However, in our approach,
the test engineer is required to write a single test case from
which the test scripts are generated automatically based on the
information represented in the models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have tackled the challenge of automatically
generating test scripts from shared SPL features by introducing
a model-based approach using metamodelling and automation
by model transformation. We have leveraged the BT Aventra
SPL for demonstrating that the proposed approach is appli-
cable in industrial settings and it can generate executable
test scripts that are equivalent to those created manually. We
have discussed how the proposed approach mitigates the de-
velopment effort, error proneness and consistency drawbacks
of the opportunistic reuse of test artefacts strategy for SPLs
containing three products and two features. We have reported
the practitioners evaluation on the industrial relevance of the
proposed approach.

One line of future work encompasses the extension and
refinement of the involved metamodels and DSL to capture
interfaces and signals from different application domains.
Besides improving their expressiveness, this would positively
impact the usability of the proposed approach and different in-
dustries could use it without trade-offs or heavy modifications,
regardless of the application domain. Besides, we are working
of further extensions so as to enable the automatic generation
of different development artefacts rather than test scripts.
Another line of future work encompasses refinements to the
model-to-text transformation to support the generation of test
scripts in several target programming languages. Finally, we

are planning to evaluate the development complexity and the
time consumption of the proposed approach with respect to
the opportunistic reuse of test artefacts strategy.

ACKNOWLEDGMENT
REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van Der Linden, Software product line
engineering: foundations, principles and techniques. Springer Science
& Business Media, 2005.

[2] A. Metzger and K. Pohl, “Software product line engineering and
variability management: achievements and challenges,” in Future of
Software Engineering Proceedings, 2014.

[3] W. B. Frakes and K. Kang, “Software reuse research: status and future,”
IEEE Transactions on Software Engineering, 2005.

[4] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor, E. S.
de Almeida, and S. R. de Lemos Meira, “A systematic mapping study of
software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407 – 423, 2011.

[5] M. Broy, M. Gleirscher, P. Kluge, W. Krenzer, S. Merenda, and
D. Wild, “Automotive Architecture Framework: Towards a Holistic and
Standardised System Architecture Description,” Tech. Rep., 2009.

[6] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and
industrial relevance of technology evaluations,” Empirical Softw. Engg.,
vol. 16, no. 3, p. 365–395, Jun. 2011.

[7] J. Bosch, “Product-line architectures in industry: a case study,” in Pro-
ceedings of the 21st international conference on Software engineering,
1999.

[8] D. Nestor, L. O’Malley, A. Quigley, E. Sikora, and S. Thiel, “Visuali-
sation of variability in software product line engineering,” 2007.

[9] Python library, “difflib,” https://docs.python.org/3/library/difflib.html#
difflib.SequenceMatcher, accessed: 2020-10-05.

[10] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for
technology transfer in practice,” IEEE Software, 2006.

[11] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
2009.

[12] S. P. R. Asaithambi and S. Jarzabek, “Generic adaptable test cases for
software product line testing: Software product line,” in Proceedings of
the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity, 2012.

[13] A. Reuys, E. Kamsties, K. Pohl, and S. Reis, “Model-based system
testing of software product families,” in Advanced Information Systems
Engineering, 2005.

[14] M. Dukaczewski, I. Schaefer, R. Lachmann, and M. Lochau,
“Requirements-based delta-oriented spl testing,” in 2013 4th Interna-
tional Workshop on Product LinE Approaches in Software Engineering
(PLEASE), May 2013, pp. 49–52.

[15] J. Iber, N. Kajtazović, G. Macher, A. Höller, T. Rauter, and C. Kreiner,
“A textual domain-specific language based on the uml testing profile,”
in Model-Driven Engineering and Software Development, P. Desfray,
J. Filipe, S. Hammoudi, and L. F. Pires, Eds. Springer International
Publishing, 2015.

[16] I. Schieferdecker, Z. R. Dai, J. Grabowski, and A. Rennoch, “The uml
2.0 testing profile and its relation to ttcn-3,” in Testing of Communicating
Systems, D. Hogrefe and A. Wiles, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 79–94.

[17] A. Bagnato, A. Sadovykh, E. Brosse, and T. E. J. Vos, “The omg uml
testing profile in use–an industrial case study for the future internet
testing,” in 2013 17th European Conference on Software Maintenance
and Reengineering, 2013.

[18] J. Zander, Z. R. Dai, I. Schieferdecker, and G. Din, “From u2tp models
to executable tests with ttcn-3 - an approach to model driven testing -,”
in Testing of Communicating Systems, F. Khendek and R. Dssouli, Eds.
Springer Berlin Heidelberg, 2005.

[19] A. Cavarra, C. Crichton, J. Davies, A. Hartman, T. Jeron, and
L. Mounier, “Using uml for automatic test generation,” 01 2002.

[20] L. H. Tahat, B. Vaysburg, B. Korel, and A. J. Bader, “Requirement-based
automated black-box test generation,” in 25th Annual International
Computer Software and Applications Conference. COMPSAC 2001,
2001.

