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Abstract—Many real-time applications have functional be-
haviour that requires variability in timing properties at run-
time. The elastic task model provides a convenient mechanism
to specify and encapsulate such variability and enables the
modification of an application’s periods during run-time to
keep the application schedulable. Additionally, reservation-based
scheduling techniques were proposed for the same purpose of
taming unpredictability of timing variations, but with a different
solution, i.e., by providing the spatial and temporal isolation for
executing independent applications on the same hardware.

In this paper, we combine the two approaches by proposing a
two-level adaptive scheduling framework which is based on the
elastic task model and the compositional framework based on the
periodic resource model. The proposed framework minimises the
number of requests for bandwidth adaption at the reservation
(system) level and primarily enables schedulability by accounting
for the application’s elasticity by adjusting the periods. The
motivation for this design choice is to rather localise the effect
of the modifications within the application, without necessarily
affecting all the applications at the system level compared to
the changes made at the application level. The evaluation results
show that the local application changes may often be enough to
solve the problem of variability, significantly reducing the number
of bandwidth adjustments, and therefore reducing the potential
negative impact on all the applications of a system.

Index Terms—real-time, elastic task model, reservations, hier-
archical scheduling.

I. INTRODUCTION
Many industrial real-time systems such as robot controllers

have real-time requirements that are flexible to variability
in execution times of the tasks, and the frequency of the
task invocations[1]. For instance, Simon et al. [2] provided
a feedback-based scheduling algorithm for computed torque
control of an industrial arm, where the frequency of the dy-
namic compensation tasks, such as that of gravity and Coriolis
compensation, was regularly adapted to meet both the control
objectives as well as the schedulability of the system tasks.
Buttazzo et al. [3] proposed the elastic task model to capture
such dynamic behaviour of the tasks where the schedulability
of the system is managed by adapting the frequencies of
the tasks. Recently, modern system architectures based on
fog and cloud computing concepts have been proposed to
improve the performance of robots [4], [5]. A key idea behind
such architectures is to exploit the improved computation

capabilities offered by the processors by executing independent
applications on the same hardware, e.g., running multiple
instances of the robot controller software to control different
robots on the same processor. Since the execution of inde-
pendent applications requires temporal and spatial isolation,
the concepts of virtualization and hierarchical scheduling,
based on reservations, provide the necessary infrastructure to
enable such a requirement. While there exist many solutions
to schedule adaptive tasks of independent applications in a
hierarchical scheduling approach [6], [7], [8], [9], most of them
focus on modifying the reservation parameters according to
the application demands, rather than adapting the application
behaviour to a fixed reservation bandwidth. A disadvantage
of modifying the reservation parameters according to the
application demands is that the performance of another inde-
pendent application co-executing on the same processor may
be unnecessarily affected. By making the applications adapt to
a fixed reservation bandwidth, we can limit the impact on other
applications running on the same processor. However, there
may be instances where the local adaptation of the application
can fail, e.g., due to insufficient bandwidth, compelling a band-
width modification. Therefore, to meet the aforementioned
requirements, we propose a two-layered adaptive approach to
schedule applications specified according to the elastic task
model within the compositional real-time framework based on
the periodic resource model [10]. Concretely, we address the
following questions:
Q1 Given an application with elastic tasks, what is a feasible

bandwidth reservation according to the periodic resource
model?

Q2 Given a fixed bandwidth reservation according to the
periodic resource model, how can the elastic application
adapt its frequencies to remain schedulable?

Q3 Given an elastic application, can a schedulable reservation
be found if the application requests for a modified band-
width reservation?
We address Q1 by assuming that an application specifies

initial desired frequencies for each of its tasks and then uses
those values to identify a feasible bandwidth. We address Q2
by modifying the application task frequencies whenever there
is an overload or an application’s task requests a different
frequency such that the application satisfies the schedulability
conditions under the periodic resource model. We address Q3978-1-7281-2989-1/21/$31.00 ©2021 IEEE



by checking if the system-level schedulability is satisfied for
the modified bandwidth reservation.

We provide the system model and discuss the necessary
background on elastic tasks and the periodic resource model
in Section II, followed by the proposed solution in Section III.
We present the evaluation of our approach in Section IV and
the related work in Section V. Finally, Section VI concludes
the paper.

II. PROPOSED SYSTEM MODEL
This section presents the system model of the two-level

compositional scheduling framework for uniprocessor systems.
At the application level, we consider a real-time application
specified according to the elastic task model with implicit
deadlines(See Section. II-A). We assume that each application
provides a local scheduler, based on either fixed-priority
preemptive scheduling implementing Rate Monotonic (RM)
priority assignment or dynamic-priority preemptive scheduling
implementing the Earliest Deadline First (EDF) policy. At the
system level, we assume that the CPU resource is made avail-
able to each application according to the Periodic Resource
Model (PRM) [10](See Section. II-B).
A. The Basic Elastic Task Model
Buttazzo et al. [3], [11] proposed the elastic task model

for applications whose tasks can have an adaptive temporal
behaviour to address overload situations as well as requests
for starting new tasks or modifying the task periods. Under
this model, whenever there is an overload or a task requests a
new period, the utilization of the remaining tasks is adjusted
to keep the overall application’s utilization under an upper-
bound value for a given scheduling algorithm. For example,
if the application tasks are scheduled according to EDF, then
the application utilization bound is set to 1 and the utilization
values of the individual tasks are adjusted accordingly. While
the elastic task model can be applied to applications that have
computation time variability as well as period variability, in
this paper, we will only consider applications with period
variability.
Formally, we define an elastic application A as a set of

n elastic tasks �i = {Ci, Tmini , Tmaxi , T di , ei}, where Ci is the
Worst-Case Execution Time (WCET) of the task �i. T miniand T maxi specify the minimum and the maximum inter-arrival
time between consecutive jobs of �i. T di represents the desired
period of �i. The elastic co-efficient ei represents the flexibilityof �i to change. For instance, ei can be defined to be in the
range [0, 1], where ei = 0 indicates that the T mini = T di = T

max
iand that this task’s period cannot be modified, and ei = 1

indicates that the task’s period can be modified to take up
values upto its maximum period. We use Ti (without any
postscript) to indicate the current inter-arrival time of �i. Anexample of an elastic taskset is shown in the Table I. while
the task �1 can execute at its maximum period, the task �5 canonly execute at its desired period.
The utilization of a task �i is given by Ui = Ci

Ti
. Further, the

minimum and maximum utilization of each task is represented

TABLE I
AN ELASTIC TASK SET

Task ID WCET T mini T di T maxi ei
�1 4 40 120 240 1
�2 7 40 80 360 0.75
�3 10 240 240 480 0.5
�4 9 200 240 600 0.25
�5 8 40 40 40 0

by Umin
i = Ci

Tmaxi
and Umax

i = Ci
Tmini

respectively. At run-time,
the utilization of a task is kept as close as possible to a desired
utilization Ud

i = Ci
T di

. The desired application utilization is
given by Ud =

∑n
i=1 U

d
i . Similarly, the minimum and max-

imum application utilization is given by Umin =
∑n
i=1 U

min
iand Umax =

∑n
i=1 U

max
i . If a task requests for a change in its

current period, its desired utilization Ud
i is updated. An elastic

application is said to be schedulable if Ud ≤ U ub, where U ub is
the utilization upper-bound for a given scheduling algorithm. It
is assumed that the deadline is elastic-implicit. i.e., the relative
deadline of each job of an elastic task is equal to its current
period at runtime.

Elastic Compression Algorithm: At runtime, if a task
exceeds its execution time or requests for a change in its
period, the application is made schedulable by modifying
the periods of the application’s tasks to accommodate the
new values and ensuring that the total utilization of the
application’s tasks is below the schedulable utilization bound.
This is done according to the original task compression
algorithm proposed by Buttazzo et al. [3] and is reproduced
here as Algorithm 1. It takes as input the elastic application
and the maximum schedulable utilization bound. It computes
the minimum utilization of the taskset and compares it to
the schedulable utilization bound. If the minimum utilization
of the elastic application exceeds the schedulable utilization
bound, it immediately exits and returns a failure. Otherwise, it
iterates through each task of the application and depending on
the elastic coefficients and the current period Ti of each task, it
separates the tasks into two disjoint sets Af and Av. The set Afcontains all the tasks whose utilization values are fixed, i.e.,
the tasks with elastic coefficients set to 0 and tasks executing
with their maximum period values. The set Av contains the
remaining tasks whose utilization can be varied. Further, Ufrepresents the sum of the utilization of the tasks in Af , while
Ev represents the sum of the elastic coefficients of tasks in Av.For each task in Av, its utilization value is scaled according
to the ratio of the elastic coefficient and the sum of all the
coefficients in Av (Line 21). A new task period Ti is then
assigned to the task. If the new task period exceeds the T maxivalue, it is set equal to T maxi . If this happens, the task �i isadded to the set Af and the process is repeated. The algorithm
returns a feasible taskset if either all the tasks have reached
their maximum period or if all the tasks’ periods have been
updated such that they are schedulable. We use this algorithm



as a part of our proposed solution (Section III).
Algorithm 1 Task_Compress()
1: function TASK_COMPRESS(A, U ub)
2: Ud =

∑n
i=1

Ci
T di

3: Umin =
∑n
i=1

Ci
Tmaxi

4: if U ub < Umin then
5: return Infeasible
6: end if
7: OK = 0
8: while OK= 0 do
9: Uf = 0
10: Ev = 0
11: for each �i in A do
12: if ei == 0 or Ti == T maxi then
13: Uf = Uf + Ui
14: else
15: Ev = Ev + ei
16: end if
17: end for
18: OK = 1
19: for each �i in Av do
20: if Ei > 0 and Ti < T maxi then
21: Ui = Ud

i − (U
d − U ub + Uf ) ∗

ei
Ev

22: Ti =
Ci
Ui23: if Ti > T maxi then

24: Ti == T maxi
25: OK = 0
26: end if
27: end if
28: end for
29: end while
30: return Feasible
31: end function

B. Periodic Resource Model
Lee et al. [10] proposed the compositional scheduling

framework based on the periodic resource model to support
the development of component-based hierarchical software
systems. In this framework, the computational resource is
described as a periodic resource model Γ(Θ,Π), where Θ is the
periodic resource allocation time and Π is the resource period.
Essentially, the periodic resource Γ provides an application A
with Θ time units of CPU time every Π time units. The worst
case resource supply of the periodic resource model is shown
in Fig. 1. The utilization of the resource supply is defined as
UΓ =

Θ
Π .

Generating the Resource Supply Parameters: we use
the method described in Section. 6 of [10] to generate the
resource supply parameters Θ and Π, such that an application
A, modeled as a set of n periodic tasks with implicit deadlines,
where each task modeled as �i = {Ci, Ti} is schedulable
(under EDF or RM scheduling policy). According to the

compositional framework, Given the smallest period of the
application, T min, the application is schedulable under RM
scheduling policy if the resource supply utilization satisfies
Eq. (1) (Eq. 23 in [10]).

UΓ,RM (k) =
UA

log
(

2k+2(1−UA)
k+2(1−UA

) , (1)

where,
k = max{k ∈ ℤ|(k + 1)Π − Θ < T min} (2)

Similarly, the application is schedulable under EDF schedul-
ing policy if the resource supply utilization satisfies Eq. (3)
(Eq. 21 in [10]).

UΓ,EDF (k) =
(k + 2).UA
k + 2(UA)

, (3)
where,

k = max{k ∈ ℤ|(k + 1)Π − Θ − kΘ
k + 2

< T min} (4)
Schedulable Utilization Bounds: Since the main goal of

the our solution is to minimize the modifications of the re-
source supply parameters once they have been defined, we rely
on the schedulable utilization bounds defined in the Section
5 of [10] to keep the application schedulable by changing the
application utilization rather than changing the resource supply
utilization. Accordingly, an application is schedulable under
RM policy, if the application utilization UA is less than or
equal to the utilization bound UBRM (n, Tmin) as defined in
Eq. (5) (Eq. 16 in [10]).

UBRM (n, Tmin) = UΓ.n
[(

2k + 2(1 − UΓ)
k + 2(1 − UΓ)

)
1
n

− 1

]

, (5)

where
k = max{k ∈ ℤ|(k + 1)Π − Θ < T min}

Similarly, an application is schedulable under EDF policy,
if the application utilization UA is less than or equal to the
utilization bound UBEDF (T min) as defined in Eq. (6)(Eq. 13
in [10]).

UBEDF (T min) =
kUΓ

k + 2(1 − UΓ)
, (6)

where
k = max{k ∈ ℤ|(k + 1)Π − Θ − kΘ

k + 2
< T min}

III. PROPOSED SOLUTION
To schedule an elastic application in a hierarchical schedul-

ing framework based on the periodic resource model, we
propose a two-layered adaptive scheduling mechanism that
first attempts to adapt the utilization of the tasks at the
application level and if this adaptation fails, it attempts to
reallocate available spare resource capacity at the system level.
The different components of the proposed framework along
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Fig. 1. Resource supply of a Periodic Resource Model.

with the data flow between them are shown in Fig. 2. At
the application level, it consists of an independent application
defined according to the elastic task model, an elastic manager
that implements the task compression algorithm of Buttazzo
et al. [3]. and a local scheduler implementing either the RM
scheduling policy or the EDF scheduling policy. At the system
level, the Global Compositional Scheduling Resource (GCSR)
manager provides the necessary interface for communicating
with the different applications and the functional support for
serving requests of new bandwidth resource allocations from
the individual applications. The functional behaviour of the
GCSR manager is supported by the OS or the hypervisor
kernel. At the application level, whenever there is an overload
situation or an elastic task requests for a new period, the elastic
manager will try to modify and update the periods of the
rest of the tasks to keep the application schedulable using
the Algorithm 1. If the resource supply is insufficient for the
current demand, the elastic manager generates a new sufficient
resource supply interface and requests the GCSR manager for
updating the resource supply parameters. The GCSR manager
will accept the request and responds successfully(i.e., assign
new resource supply parameters) if the global system schedu-
lability is preserved with the updated parameters. The elastic
manager will then re-adjust the periods based on the updated
resource supply parameters.
A. Initial Desired Resource Supply

In the proposed framework, we first find the suitable re-
source supply Γ(Θ,Π) for the application A considering the
parameters �i(Ci, Ti). We choose as Ti, the desired periods
for each task. For example, in Table I, The values under
the column T di represent the initial desired periods of the
application tasks. We assume that such a taskset is feasible.
Next, depending on the scheduling algorithm, we find the
resource supply utilization bound necessary to keep the ap-
plication tasks schedulable according to Eq. (1) and Eq. (3).
While there exist fully polynomial time solutions to find
approximate bandwidth allocations for the periodic resource
model, e.g., [12], we use the approach proposed by Lee et

al. [10] in this paper. We assume that Γ(Θ,Π) is schedulable
at the system level. Note that if Γ(Θ,Π) is not schedulable at
the system level, then the application will have to modify its
initial desired periods or the resource supply of the other co-
running applications will have to be modified. In our approach,
we reject an application if the initial resource supply is not
schedulable.

B. Runtime Adaptation

Under worst-case conditions, the resource supply provided
according to PRM can result in a no supply interval of duration
2(Π − Θ) (see Fig. 1). Therefore, once the application is
executing, whenever a task requests for a new period T newi ,
we need to consider two different scenarios depending on the
value of T newi . If T newi is greater than the no supply duration,
we can adapt the tasks utilization at the application level
without changing the resource supply parameters. If T newi is
less than or equal to the no supply duration, we need to adapt
the resource supply at the system level.

a) Application level Adaptation: From Eq. (5) and
Eq. (6), it is easy to see that the utilization bound to keep
the application tasks schedulable remains constant as long as
T min remains unchanged. When the requested period T newiis greater than or equal to T min, it implies that the resource
supply parameters do not have to be changed since the current
T min remains unchanged. As a consequence, and based on
the sustainability property of the utilization tests [13], the
elastic manager can find a schedulable period reassignment by
ensuring that the modified application utilization Unew

A remains
below the schedulable utilization bound as shown in Eq. (7)
or Eq. (8). Note that the periodic supply resource utilization
UΓ remains constant under application level adaptation.

Unew
A ≤ UBEDF (T min) (7)

Unew
A ≤ UBRM (n, Tmin) (8)
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b) System Level Adaptation : At runtime, if a task
requests for a new period T newi that is less than T min, then
it is not guaranteed that the existing resource supply Γ can
provide sufficient CPU time for the application tasks to remain
schedulable. This is because the schedulable utilization bound
(for both EDF and RM scheduling policy) is a function of
the minimum period of the taskset and since we are now
reducing the minimum period, it may so happen that the
T newi will have its arrival and deadline in the no supply
interval of duration 2(Π − Θ) in the worst case (see Fig. 1).
Therefore, whenever a task makes a request of T newi less
than T min, the elastic manager will generate new resource
supply parameters and request the GCSR manager to update
the resource supply according to the new parameters so that
the application remains schedulable. If the GCSR manager
rejects the request, then the elastic manager will not be
able to satisfy the application request and it is then up to
the application to decide how it needs to proceed. If the
resource supply parameters are updated, the next request for a
period change will be handled based on the updated resource
supply parameters. While it is possible to apply the elastic
task compression algorithm at the system level to modify
the resource supply utilization to accommodate the requests
from the different applications, it requires modifications of
the resource supply of the co-running applications which in
turn can trigger application level modifications. To avoid this,
we require some spare capacity to be made available at the
system level so that it can be distributed among the different
applications whenever required. Although we do not propose
any particular method in this paper for the distribution of the
spare capacity, the methods in [14], [15] are particularly well
suited for the spare capacity distribution.

c) PRM Elastic Scheduler: We now discuss how the
elastic manager and the GCSR manager work together to
adapt the application as well as system resources to maintain
schedulability. The pseudo-code is presented in Algorithm 2.
The functional behaviour is split between the elastic manager
and the GCSR manager. The Elastic manager takes as input
the request for T newi and if T newi is greater than or equal to
the T min of the application, it uses the elastic compression

algorithm to find a feasible period reassignment. Before it
calls the task compression algorithm, it modifies the period
parameter of the task from T di to T newi . The task compression
algorithm then takes as input the updated taskset parameters
and the current resource supply utilization UΓ to adapt the
periods of the tasks to keep the application schedulable. If
T newi is less than T min of the application, it sets the T min
value equal to T newi . It then generates the new resource supply
parameters via the GET_RESOURCE_INTERFACE function.
This function takes as input the updated taskset parameters
and the value k satisfying Eq. (2) or Eq. (4). It then finds
the resource supply utilization bound according to Eq. (5)
or Eq. (6). It uses this value to find a solution according
to the approach given in [10]. The Elastic manager requests
the GCSR manager to modify its resource supply parameters
via the REQUEST_RESOURCE_UPDATE function. The GCSR
manager tries to allocate resources from the spare capacity
while maintaining system schedulability. It returns success if
the requested resource supply parameters can be accommo-
dated or returns failure along with the maximum resource
supply utilization that it can provide. In case of failure, it is
up to the application to decide on how to handle this failure.

IV. EVALUATION

We evaluate the performance of the proposed framework in
the context of EDF scheduling. To demonstrate the advantages
of the proposed method, we generated 900 random tasksets
with each taskset consisting of 10, 20 or 30 tasks. For each
taskset, we set the initial desired utilization equal to 0.25,
0.5, and 0.75. The utilization for each task was then was
derived using the algorithm proposed by Griffin et al. [16]. The
initial desired periods were chosen at random from a normal
distribution in the range [10,100]. The WCET values were set
as Ci = Ui ∗ Ti. The minimum and maximum periods for
each of the tasks were assigned as a function of the initial
desired period, i.e., to fix the minimum period, we subtracted
a random percentage in the range [10-50] from the desired
period. Similarly, for the maximum period, we added a random
percentage in the range [10-50] to the desired period. We
assigned random integer values from a normal distribution n
the range [0-10] as the elastic coefficients of the tasks. For
each taskset, we then derived a periodic resource interface for
the initial desired periods according to the algorithm in [10].
We set up the experiments according to the different con-

figurations of the number of tasks N and the total desired uti-
lization U , i.e., each configuration was defined as a pair(N,U).
For each configuration, 100 random tasksets were generated.
For each configuration and a random taskset, we requested
a change in the desired period 100 times. For each new
period request, we assigned the new period values chosen
from a uniform distribution within their defined period ranges.
For each configuration, we counted the number of times the
elastic manager was able to modify the utilization such that
the application remains schedulable. If the elastic manager
failed to find a feasible solution, it would adapt the interface



Algorithm 2 PRM Elastic Scheduler
1: function GET_PERIOD_INTERFACE(A, Tmin,k)
2: Unew

Γ ← FIND_UTILIZATION_BOUND(UA)
3: Γ(Θnew,Πnew)← FIND_SOLUTION(k,A, Unew

Γ )
4: success← REQUEST_RESOURCE_UPDATE(Γ(Θnew,Πnew))
5: if success == true then
6: return Γ(Θnew,Πnew), Unew

Γ
7: else
8: return Failure
9: end if
10: end function
11: function ELASTIC_MANAGER(T newi )
12: T di ← T newi
13: if T newi ≥ T min then
14: success← TASK_COMPRESS(A, UΓ)
15: if success ! = true then
16: ℎandleFailure()
17: end if
18: else
19: T min ← T newi
20: Interface← GET_PERIOD_INTERFACE(A, Tmin, k)
21: if Interface! = Failure then
22: success← TASK_COMPRESS(A, UΓ)
23: if success ! = true then
24: ℎandleFailure()
25: end if
26: else
27: ℎandleFailure()
28: end if
29: end if
30: return
31: end function

bandwidth1. The task requesting for a new period was chosen
at random for each of the new period request.

Fig. 3 shows the distribution of requests between the elastic
manager and the GCSR manager for 300 different configura-
tions with N equal to 10 and the total utilization set to 0.25,
0.5, and 0.75. We can observe that the elastic manager was
able to successfully handle a significantly large percentage of
the new period requests locally. For lower utilization values,
the percentage of requests handled locally was less than
the percentage for the higher utilization. Fig. 4 shows the
distribution of the requests between the elastic manager and
the GCSR manager for 300 configurations with N equal to
20 and the total utilization set to 0.25, 0.5, and 0.75. Similar
to the previous observations, the elastic manager was able to
successfully handle a large percentage of the requests locally,
while for lower utilization values, the percentage was less than
the percentage for higher utilization. For the remaining 300
configurations, we set N equal to 30 and the total utilization
was set to 0.25, 0.5, and 0.75. In this case, the elastic manager

1Note that for this evaluation we did not check for system schedulability
since a failure of system schedulability test could only mean that the
application’s resource demands were not feasible.

was able to successfully handle a higher percentage of requests
at lower utilization values when compared to higher utilization
tasksets. This is shown in Fig. 5. Here, even when compared
to the lower number of tasks with the same total utilization,
there are more requests for system-level bandwidth adaptation.
In another experiment, we modified the range of the min-

imum and maximum periods of the taskset from the initial
[10,50] percent values to [10,100] percent. When the differ-
ence between the initial desired period and the minimum and
maximum periods is increased, fewer requests were handled at
the application level compared to the system level. As shown
in Fig. 6, for the configuration of 10 tasks and utilization set
to 0.25, more than 70% of the requests are for bandwidth
adaptation when the difference between the minimum and
maximum periods was changed to [10,100] percent from [10-
50] percent. Another significant observation is that for certain
configurations and tasksets, all of the 100 new period requests
could either be handled locally by the elastic manager or
handled only at the system level by the GCSR manager. This
can be observed in Fig. 7. This indicates that the approach
based on setting the initial resource supply according to the
initial desired periods can have a considerable impact on the
number of requests that need bandwidth adaptations.

0.25 0.5 0.75
0

20

40

60

80

100

Taskset utilisation

Per
cen

tag
eo

fr
equ

est
s

Elastic Manager GCSR Manager
Fig. 3. Percentage of requests handled by Elastic and GCSR manager for
taskset size 10.

V. RELATED WORK
The concept of elastic tasks was introduced by Buttazzo

et al. [3] to model applications whose computational demands
can occasionally exceed the available capacity by allowing the
application to modify the demand by changing the frequency
of its jobs through an elastic coefficient. This was extended
to address resource sharing within the elastic task model
in [11]. Chantem et al. [17], [18] reformulated the problem as
a quadratic optimization problem and showed that the original
elastic tasks compression algorithm was indeed a solution to
solving a quadratic problem. Tian et al. [19] extended the
modified problem to include a "Quality-of-Control" metric as
a part of the objective function of the quadratic optimization
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Fig. 5. Percentage of requests handled by Elastic and GCSR manager for
taskset size 30.

problem. More recently, Orr et al. [20], [21] provided algo-
rithms to schedule sequential elastic tasks on multiprocessor
systems and further extended the concept of the elastic task
to federated DAG-based parallel task systems in [22], [23].
Beccari et al. [24], [25] provided alternative algorithms to
schedule similar applications by expressing the task period
ranges in a linear programming formulation.

Hierarchical scheduling of applications was encapsulated
in a compositional real-time scheduling framework by Lee
et al. [10]. In this framework, the computational demand of
an application was abstracted with a single demand interface
as a pair of capacity and period and the resource supply
server was abstracted as a periodic resource model where
each server was guaranteed a reserved capacity Θ every Π
time units. Easwaran et al. [26] extended the periodic resource
model to include the deadline parameter, where each server
was guaranteed a reserved capacity Θ within D time units,
in every time interval Π. Dewan et al. [27], [12] provided
algorithms to find an approximate allocation of bandwidth for
a set of periodic and sporadic tasks under the periodic resource
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Fig. 6. Percentage of requests handled by Elastic and GCSR manager for
different intervals between the minimum and the maximum periods.

Fig. 7. Requests handled by Elastic and GCSR Manager for 100 tasksets of
a single configuration (20,0.25).

model. Khalilzad et al. [6] proposed an adaptive hierarchical
scheduling model to accommodate the adaptive behaviour of
the periodic and sporadic tasks by changing the bandwidth
allocation. In contrast, this paper assumes that a bandwidth
allocated for a server under the periodic resource model
remains constant and that the workload within the server can
be adapted according to the elastic task model. However, if
the elastic assignment fails, a request for a new bandwidth
allocation will be made. We note that the proposed solution
does not take into account possible bandwidth reclamation or
mixed-criticality-based approaches to assign new bandwidths
if no schedulable allocation can be made. Instead, we leave it
to the individual application to handle such failures.

VI. CONCLUSION
Many real-time applications designed to accommodate their

behaviour at run-time depend upon user configuration or the
physical environment in which they operate. Further, for open
real-time systems, the applications can be developed indepen-
dently and can be run on the same hardware. To accommodate
such adaptive behaviour and minimize the impact of an
individual application’s variability in its timing and resource



demands, we proposed a two-level scheduling framework
based on the periodic resource model and the elastic task
model. We provided a mechanism based on the utilization
tests to enable the execution of the elastic applications in
a compositional real-time system. Further, by combining the
application-level adaptation along with the system-level band-
width modifications, we have shown that a large percentage
of task modifications can be handled by the framework at the
application level. If the local adaptation fails, the system-level
reallocation provides an additional mechanism to support the
scheduling of elastic applications. However, for some cases,
if both the levels fail to find a schedulable modification,
it is up to the application to handle such failures. Overall,
our combined approach improves the number of application-
level variations that can be handled without affecting the
property of independence of other co-running applications of
the same processor. In future work, we intend to investigate
techniques related to mixed-criticality and compositional real-
time systems to reallocate resources at the system level.
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