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Abstract— Trajectory tracking for an autonomous bicycle is
considered in this paper. The trajectory tracking controller is
designed using a Model Predictive Controller with constraints
on the lean, steer, and heading angle as well as the position
coordinates of the bicycle. The output from the trajectory
tracking controller is the desired lean angle and forward
velocity. Furthermore, a PID controller is designed to follow
the desired lean angle, while maintaining balance, by actuation
of the handlebar. The proposed control strategy is evaluated in
numerous simulations where a realistic nonlinear model of the
bicycle is traversing a go-kart track and a short track with
narrow curves. The Hausdorff distance and Mean Squared
Error are considered as measurements of the performance.
The results show that the bicycle successfully can track desired
trajectories at varying velocities.

I. INTRODUCTION

The bicycle, with its slim structure of two inline wheels
and a frame, is statically unstable but with proper actu-
ation, it can be made stable [1]. A human can learn to
balance and control a bicycle from an early age by using
the principle of steering into the fall of the bicycle. This
simple principle has also been replicated in autonomous self-
balancing bicycles [2]. However, a cyclist does not only
balance a bicycle but does in general also follow a path
to a destination. A self-balancing bicycle, which also could
navigate on its own could potentially be used in several
applications, e.g., for message delivery service or bike-
sharing [3]. Furthermore, autonomous road vehicles, such
as cars and trucks, struggle to correctly detect and classify
Vulnerable Road Users (VRU), such as cyclists, as discussed
by Fairley [4]. Thus, a fully autonomous bicycle could be
used on the test tracks to aid the evaluation process and
improve the VRU detection and emergency braking system
of other road vehicles. It is crucial that the evaluation of test
tracks is conducted in realistic environments, with realistic
behaviour of the VRU. An autonomous bicycle, which can
navigate and balance will resemble a cyclist to a larger degree
compared to the current bicycle targets which are mounted
on a sledge and pulled in front of, or beside the car1.

Motion planning and path tracking are important com-
ponents for autonomous vehicles, and they have been ex-
tensively explored in the area of mobile robotics and au-
tonomous cars [5]. However, the application of such tech-
niques cannot be applied as an off-the-shelves solution to
riderless bicycles, as some manoeuvres may make the bicycle
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fall. For example, path trackers for cars typically use the
steering angle to manipulate the heading [6], while in the
case of a bicycle that uses steer actuation to maintain balance,
the desired steering angle could potentially interfere with its
balance and cause a fall. Instead, a desired lean angle is
commonly used to alter the heading of the bicycle, which in
extension controls the steering angle by using the principle
of steering into the fall [7], [8].

In this paper, we present a cascaded control architecture
to (i) balance the autonomous bike, and (ii) track the desired
trajectory. The inner controller is in charge of balancing the
bicycle, and it is designed as a robust PID control loop.
The outer controller, is in charge of the trajectory tracking
task, controlling the desired lean-angle of the bicycle to
adjust its heading, and it is designed as a Model Predictive
Controller (MPC). The system is evaluated through co-
simulation between Adams2 and Matlab, where noise in the
lean angle measurements and disturbance on the steering
system are included.

The rest of this paper is organized as follows. In Section II
the related work is presented. The bicycle model is derived in
Section III followed by Section IV where the control design
is discussed. Section V presents the results and the paper is
concluded in Section VI which also includes future research.

II. RELATED WORK

The path tracking problem for bicycles has received some
attention in previous research. However, most previous bi-
cycle research focuses on the modelling and balance of un-
manned bicycles. In this section, the modelling is discussed
first, then previously proposed solutions to the path tracking
problem are discussed.

A. Modelling

The dynamic stability of bicycles has been researched
for over a century, with Whipple and his work on bicycle
stability dated back to 1899 as one of the first contributions
to the topic [9]. To use the Whipple model, a set of 25
parameters needs to be measured from the bicycle, which can
be time-consuming and sometimes difficult to obtain accurate
measures. A simplified dynamic model was presented in
the work of Getz, where the mainframe of the bicycle was
modelled as a point-mass [10], [11]. In comparison to the
Whipple model, this model requires only 4 parameters to
be measured. Extending Getz work, Yi et al. presented a
similar bicycle model [12], [13]. However, an important
difference between the models is that the model proposed
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by Getz assumes that the steering axis is vertical, while
the model by Yi et al. allows for a tilted steering axis,
providing a positive trail to the bicycle. This extension offers
a more realistic model of a bicycle as most bicycles possess
a positive trail, even though it is not necessary for the
self-stabilisation of a bicycle [14]. Yi used the model to
develop a nonlinear control for path tracking and balance of
a motorcycle in simulations [12]. The model has also been
used for developing balance controllers for bicycles in both
the work of He et al. [15] and Zhang et al. [16], as well as
for bicycle localisation in the work of Miah et al. [17].

B. Path tracking

In order to solve the path tracking problem, Dao and
Chen [8] used a multi-loop control. To control their bicycle
model, a sliding mode controller was used for lean angle
tracking and a fuzzy logic controller with gain scheduling
and integral controller constituted the path tracking con-
troller in the outer loop. The results are promising as small
tracking errors are achieved, however, a discussion regarding
discretization and sampling times of the system is lacking.
This is an important topic if the transition from simulation
to experiments is to be made, and requires a discrete-time
algorithm. The path tracking problem was also addressed
in the work of Baquero-Suárez et al. [7], where an Ac-
tive Disturbance Rejection Controller (ADRC) was designed
from the linearised equations of the Whipple model [18] to
balance the bicycle. A control law was also established which
relates the lean angle of the bicycle to its yaw angle, and the
controller was extended with path tracking capabilities. A
reference lean angle other than zero was fed to the outer
loop of the controller which enables the bicycle to track
the desired heading. Baquero-Suárez path tracker showed
promising results in simulation where a forward velocity of
1.5m/s was considered when evaluated on both a straight
path and a circular path with a radius of 15m. In this paper,
higher forward velocities are considered as well as narrow
curves.

A way to address the path tracking problem, which has
proven successful for both mobile robots and autonomous
vehicles is the MPC [5]. A desired property of the MPC is the
possibility to incorporate constraints on the states and control
signals of the system while tracking a reference by looking
ahead. By recursively minimising a cost function over a
finite time horizon an optimal control signal is computed.
However, there is an important trade-off. Typically, the larger
the time horizon, the higher the accuracy, but so is the
execution time. An MCP were used by Frezza et al. [19]
as a path tracking controller for a motorcycle. To evaluate
the controller, a multi-body simulation environment was used
and the obtained results showed good tracking accuracy.
Clearly, the proposed controller produces satisfactory results
when used on a high-speed motorcycle, but unfortunately,
it was never evaluated for a lower speed range typical for
a bicycle. Also, the sampling and execution times were not
considered in their work. Path planning and path tracking as
well as obstacle detection and avoidance for an autonomous

bicycle were presented in the work by Zhao et al. [20].
The path planning algorithm considered a global linear path
between two points and re-plans the path using four phases
if an obstacle is detected by the onboard Lidar. To balance
the bicycle, the controller presented in [15] was used. The
simulation and experimental results are impressive, however,
the details of the path tracking algorithm are not disclosed
as well as any details of sampling and execution time of the
different systems.

In this paper, we propose an MPC controller to address
the path tracking problem for a riderless bicycle. Instead of
considering low velocities and wide curves as in [7], we are
using operating velocities typical for a bicycle. Moreover, the
reference path includes both wide and narrow curves as well
as straights. Many of the previous path tracking controllers
are only considered in simulation and the transition to an
experimental setup, including sampling and execution times
is not discussed [19], [8]. In this paper, different sampling
times are considered for the inner and outer control loop
when controlling the nonlinear bicycle model in simulation.

III. BICYCLE MODEL

To model the bicycle, the point-mass model presented in
the work of Yi et al. [13] is used. The model assumes the
bicycle to ride on a horizontal plane, where the interaction
between the wheels and the ground is point contacts and
the geometry and thickness of the wheels are neglected.
Furthermore, the mass of the rear frame is considered as
a point mass, and non-holonomic constraints are imposed
resulting in vx = v and vy = 0. There are three coordinate
systems associated with the model, the navigation frame
N (X,Y, Z) fixed on the ground plane, the wheelbase frame
W(x, y, z) associated with the line between the point C1

and C2 and the last frame is attached to the rear frame of
the bicycle R(xR, yR, zR), as shown in Fig. 1. The lean
angle, ϕ(t), and steering angle, δ(t), are positive following
the right-hand rule.

The projected steering angle β(t), i.e, the steering angle
at the horizontal plane, can be obtained as:

tan(β(t)) =
tan(δ(t)) sin(λ)

cos(ϕ(t))
, (1)
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Fig. 1. A bicycle riding on a flat horizontal plane.



where λ is the caster angle. Consider a bicycle riding on a
path with radius R, then the curvature σ(t) is:

σ(t) =
b

R(t)
= tan(β(t)) (2)

with b representing the wheelbase. The small angle approx-
imation for the steer angle δ and lean angle ϕ yields:

σ(t) ≈ δ(t) sin(λ), (3)

and the respective curvature rate of change:

ωσ(t) = σ̇(t) ≈ δ̇(t) sin(λ). (4)

The lateral dynamics of the bicycle on the plane can be
formulated as:

ẋ = v(t) cos(ψ(t))

ẏ = v(t) sin(ψ(t))

ψ̇(t) =
σ(t)v(t)

b
=

tan(δ(t)) sin(λ)

b cos(ϕ(t))
v(t).

(5)

The roll dynamics of the bicycle can be expressed as:

h2ϕ̈(t)m = gm
(
h sin

(
ϕ(t)

)
+
ca

b
sin(λ)σ(t) cos

(
ϕ(t)

))
−(

1− h

b
σ(t) sin

(
ϕ(t)

)) h

b
σ(t) cos

(
ϕ(t)

)
v2(t)m

− ahm

b
cos
(
ϕ(t)

)(
σ(t)v̇(t)− v(t)ωσ(t)

)
.

(6)
Here, the mass, m, cancels out and using the relationships
in Eq. (1) and Eq. (2) the roll dynamics can be simplified
as:

h2ϕ̈(t) = g

(
h sin

(
ϕ(t)

)
+
cap2

b
tan

(
δ(t)

))
−(

1− hp

b
tan

(
δ(t)

)
tan

(
ϕ(t)

)) hp

b
tan

(
δ(t)

)
v(t)2

− ahp

b
tan

(
δ(t)

)
v̇(t)− ah

b
cos
(
ϕ(t)

)
v(t)ωσ(t).

(7)
where p = sin(λ). To linearise the model, we apply the
small angles approximation, and a constant velocity (v̇ = 0)
obtaining:

h2ϕ̈(t) = g

(
hϕ(t) +

cap2

b
δ(t)

)
−(

1− hp

b
δ(t)ϕ(t)

)
hp

b
δ(t)v2 − ahp

b
vδ̇(t)

(8)

Finally, we linearise at the equilibrium point ϕ̄(t) = 0,
δ̄(t) = 0 and ¯̇

δ(t) = 0 using first order Taylor expansion
and the linearised roll dynamics becomes

ϕ̈(t) =
g

h
ϕ(t) +

gcap2

bh2
δ(t)− p

bh
v2δ(t)− ap

bh
vδ̇(t). (9)

Eq. (9) can be rewritten in state-space form, with the input
uϕ = δ̇, output yϕ = ϕ, and the state xϕ = [ϕ̇, ϕ, δ]> as:

Aϕ =

0 g
h

p
bh ( gcaph − v2)

1 0 0
0 0 0

 , Bϕ =

−apbhv0
1


Cϕ =

[
0 1 0

]
, Dϕ =

[
0
]
.

(10)

TABLE I
PARAMETERS OF THE INSTRUMENTED BICYCLE.

Design parameters

Parameter Symbol Unit Value

CoG with respect to O (x) a [m] 0.473
CoG with respect to O (z) h [m] 0.515
Gravity g [m/s2] 9.820
Wheelbase b [m] 1.080
Mass m [kg] 23.720
Trail c [m] 0.087
Head angle λ [deg] 72.950

The relevant model parameters are obtained through mea-
surements on the instrumented bicycle in [21] and presented
in Table I. To model the steering dynamics, including the
steering motor and frictions, a step response matching is
performed. The instrumented bicycle in [21] is held in an
upright position with a steering angle of approximately 0
degrees, a reference angular velocity of 9deg/s is commanded
to the motor and the results are sampled and stored on the
motor controller. The step response is shown in Fig. 2 and
the matched response is represented by a state-space model
as:

Aδ̇ =
[
−100

]
, Bδ̇ =

[
100
]
,

Cδ̇ =
[
1
]
, Dδ̇ =

[
0
]
,

(11)

with the desired steering velocity, uδ = δ̇∗, as input and the
actual steering velocity, yδ = xδ = δ̇, serving as both the
output and the state. The state-space model resulting from
the series of the steer dynamics and the roll dynamics is:

Aδ̇ϕ =

[
Aδ̇ 0

BϕCδ̇ Aϕ

]
, Bδ̇ϕ =

[
Bδ̇

BϕDδ̇

]
,

Cδ̇ϕ =
[
DϕCδ̇ Cϕ

]
, Dδ̇ϕ =

[
DϕDδ̇

]
,

(12)

with the state vector xδ̇ϕ = [xδ̇,x
>
ϕ ]>, and the control input

uδ̇ϕ = δ̇∗ representing the desired steering velocity.

IV. CONTROL DESIGN

In this section, the PID controller in charge of balancing
the bicycle is derived first. The tuned PID controller is then
put in series with the roll dynamics and appended to the
lateral dynamics, and the complete model is used to design
an MPC for the outer loop.
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Fig. 2. Step response matching of the steering system. The matched
response is used in simulation to model the dynamics of the steering system.



A. Balance controller

To maintain the balance of a bicycle, the front fork is
steered in the same direction as the fall which will cause an
acceleration in the opposite direction and bring the bicycle
to an upright position again. In the case of uneven terrain,
side wind, or other disturbances the task of balance becomes
more challenging. Therefore, disturbance rejection is an
important property for the balancing controller and should
be emphasised in the control design.

Consider the system in Fig. 3 where R(s) is a real PID
controller in parallel form

R(s) = Kp +
Ki

s
+

KdN

1 + N
s

. (13)

In the figure, G(s) is the transfer function of the steering
dynamics in Eq. (11), and H(s) is the transfer function
associated with Eq. (9), with input δ̇ and output ϕ, and it
is equal to:

H(s) =
Φ(s)

∆̇(s)
=

(gcap2 − hpv2)− ahpvs
bh2s3 − bhgs

. (14)

The roll dynamics, including the actuation, can be therefore
expressed as the transfer function P (s) = G(s)H(s). As
illustrated in Fig. 3, a disturbance d, acting on the control
signal δ̇∗, and noise n on the lean angle measurements ϕ
are considered, and their effect should be minimized. The
reference lean angle is denoted ϕ∗ and the steering velocity
which affects H(s) is δ̇. The open-loop transfer function
from the load disturbance to the system output is Q(s) =

P (s)
1+R(s)P (s) .

The system with transfer function H(s) has three poles in
s = 0, and s = ±

√
g/h, and therefore it is unstable with

a pole in the right-half-plane. As a consequence, also the
system with transfer function P (s) = G(s)H(s) is unstable.
As such, several autotuning techniques cannot be applied for
the problem at hand [22]. Instead, the PID tuning problem,
for a forward velocity v = 14km/h, is formulated as a

R(s)

Balance control

G(s)

Steer dynamics

H(s)

Bicycle

ϕ∗ + δ̇∗ + δ̇ y

+ϕ

−

d

+

n
+

P (s)

Fig. 3. Balance controller R(s) and the linear model P (s).

nonlinear optimisation problem:

min
Kp,Ki,Kd, N

(ωdes
c − ωc)2 + w1

∫ ∞
0

tq(t)2dt+

+ w2

∫ ∞
0

t`(t)2dt

s.t. Kp,Ki,Kd ∈ [−200, 0],

N ∈ [10, 1000],

ωdes
c = 60rad/s.

(15)

with w1, w2 ∈ [0, 1] and w1 + w2 = 1. Here, the
desired crossover frequency is denoted ωdes

c and the crossover
frequency of the open-loop response is ωc. The function
q(t) is defined as the integrated mean squared value for the
load disturbance. Similarly, `(t) is the integrated squared
error for the closed-loop step response. To leverage the
influence of these performance measurements the weights,
w1 = 0.5, w2 = 0.5 are utilised.

The nonlinear optimisation problem in Eq. (15) is solved
by means of Particle Swarm Optimisation (PSO) [23] which
is an iterative search algorithm. PSO does not require the
optimisation problem to be differentiable and can search a
large space of candidate solutions to the problem, however, it
does not guarantee a globally optimal solution. A population
size, or swarm size, is chosen initially as well as the size of
the search space of possible solutions. Each particle in the
population is given a random position in the search space
and evaluate the cost function in Eq. (15) at their respective
position. The result of the evaluation generates a velocity
for the particle towards both its own best cost solution, but
also towards the global best cost solution. The speed of the
particle towards the local and global best solutions is a also
dependent on the stochastic local and global acceleration
coefficients, cL ∼ U(0, χϕ1) and cG ∼ U(0, χϕ2), where
ϕ1,2 is chosen as 2.05 and with κ = 1, χ is computed as:

χ =
2κ

|2− ϕ−
√

(ϕ2 − 4ϕ)|
. (16)

The algorithm stops after a termination criterion is met or the
maximum number of iterations, chosen as 1000, is reached.
The resulting PID parameters are shown in Table II.

The state-space matrices of the PID controller in (13) are
defined as:

AR =

[
−N 0

1 0

]
, BR =

[
1
0

]
,

CR =
[
Ki −KdN

2 KiN
]
, DR =

[
Kp +KdN

]
,
(17)

TABLE II
COMPUTED OPTIMAL PID PARAMETERS.

PID parameters
Parameter Value
Kp -82.6193
Ki -69.4433
Kd -22.4138
N 234.4655



where the state vector is xR = [e1, e2]>, the output y = δ̇∗,
and the input u = e with e = ϕ∗ − ϕ. Now, the open loop
system in Fig 3 can be written as:

AO =

[
AR 0(2×4)

Bδ̇ϕCR Aδ̇ϕ

]
BO =

[
BR

Bδ̇ϕDR

]
CO =

[
Dδ̇ϕCR Cδ̇ϕ

]
DO =

[
Dδ̇ϕDR

] (18)

and by closing the loop we obtain

AC = AO −BOCO

BC = BO

CC = CO

DC = DO.

(19)

The input to the closed loop system is uC = ϕ∗, the output
yC = ϕ, and the state vector xC = [e1, e2, δ̇, ϕ̇, ϕ, δ].

B. Path tracking

A cyclist who does not preview the path ahead would
struggle and ultimately could lose control and balance of the
bicycle. Instead, a cyclist typically looks ahead and plans
a path and by proper actuation of the handlebar, pedals,
and body movements the path can be tracked. The MPC is
an online optimal control algorithm that predicts the future
behaviour of the plant for a given prediction horizon Hp,
similar to how a cyclist tracks a path. Constraints on the
states, output and input variables are considered as well. If
the plant model and constraints are linear, the optimisation
problem becomes convex and thus an optimal solution can
be guaranteed. However, if the model does not successfully
approximate the plant to a satisfying degree, the output of the
MPC will be flawed. Thus, the results are highly dependent
on the model and the design parameters of the MPC.

Consider the bicycle riding on a horizontal plane, the
motion can be described by the lateral dynamics in Eq. (5),
and given small angle approximation and a constant velocity,
it can be written in state space form as:

AK =

 0 0 0
0 0 0
vc 0 0

 , BK =

pb vc 0
0 1
0 0


CK =

1 0 0
0 1 0
0 0 1

 , DK =
[
0
]
,

(20)

with the state vector x = [ψ, x, y]>, and the input u = [δ, v].
A model which includes both the motion of the bicycle, as
well as its roll dynamics, can be obtained by augmenting the
lateral dynamics in Eq. (20) to the closed loop dynamics in
Eq. (19). When augmenting the systems, the steering angle δ,
used for computing the heading ψ, can now be obtained from
the state vector instead. The state matrices of the complete
model are:

A =

[
AK 0(3×5) BK1

0(6×3) AC

]
, B =

[
BK2 0(3×1)

0(6×1) BC

]
,

C =
[
CK CC

]
, D =

[
0(4×2)] ,

(21)

where BK1 and BK2 corresponds to the first and second
column of the BK matrix respectively. The state vector is
x = [ψ, x, y, e1, e2, δ̇, ϕ̇, ϕ, δ]

>, the input u = [v, ϕ∗], and
the output y = [ψ, x, y, ϕ, δ]>.

Consider a reference trajectory Γ(t) =
[ψr(t), xr(t), yr(t)]

>. A new reference point on the
path is extracted at each sampling interval Ts = 0.1s, and
the Hp − 1 subsequent reference points are extracted which
enables the bicycle to look ahead Hp points. However, as
the linear model in Eq. (21) is linearsed at its equilibrium
state, i.e x = [0], the model will more accurately describe
the system close to the its equilibrium. Therefore, the
measured output is set to zero for all states, and instead the
difference in the bicycle frame, W , is used as the reference
output for the MPC with lean and steer angle set to zero.
The difference are computed as:

∆ψ = ψr − ψ (22)
∆x = cos(ψ −∆ψ)(xr − x) + sin(ψ −∆ψ)(yr − y)

∆y = − sin(ψ −∆ψ)(xr − x) + cos(ψ −∆ψ)(yr − y),

and the input reference to the MPC is r =
[∆ψ,∆x,∆y, 0, 0]>. The quadratic cost function, optimised
by the MPC, can now be formulated as:

min
uk

Hp∑
k=0

‖yk − rk‖2Q +

Hu∑
k=0

‖uk − urk‖2R + ‖∆uk‖2S

s.t. xk+1 = Axk + Buk,

yk = Cxk,

ymin ≤ yk ≤ ymax k = 0, . . . ,Hp,

umin ≤ uk ≤ umax,

∆umin ≤ ∆uk ≤ ∆umax

(23)
where Q, R, and S are positive semi-definite weighting
matrices penalizing the tracking error, control signals and
control moves respectively. The control horizon is denoted
Hu, ur = [v, 0]> is the control reference signal, u is the
control signal, y the output, and ∆u represents the control
move from one iteration to the next. The matrices A,B,C
are given by the state-space model in Eq. (21) discretized
using zero-order hold and a sampling time of Ts = 0.1s.
The design parameters for the MPC and their corresponding
values are presented in Table III. To estimate the states of
the model, a Kalman filter is utilised and integral terms are
used for estimating the output [24].

TABLE III
MPC PARAMETERS AND CONSTRAINTS.

Parameter Value Parameter Value

ymin −[π, 50, 50, π
6
, π
3

]> Q diag([5, 10, 5, 10, 0])

ymax [π, 0.1, 50, π
6
, π
3

]> R diag([0, 0])

umin [0.5v, −π
6

]> S diag([0.1, 0.1])

umax [1.5v, π
6

]> Hu 4
∆umin −[0.2, π

3
]> Hp 10

∆umax [0.2, π
3

]>



V. RESULTS

To evaluate the proposed control system, two different
reference trajectories are considered. Instead of restricting
the path to a circular or straight path as in [7], or a sinusoidal
as in [8], a realistic path is considered in this paper. Using
OpenStreetMap a go-kart track3 is exported to the Driving
Scenario Designer in Matlab. This allows for a more realistic
behaviour of the bicycle since cyclists typically manoeuvre
both straights and curves. The z-coordinates of the track is
set to zero, i.e., the bicycle is riding on a flat horizontal
plane. The centerline of the track is extracted and used as
the reference path for the bicycle. The second reference
trajectory, which is much shorter than the go-kart track,
consists of a few narrow curves and is a more challenging
track. For both trajectories, six different nominal velocities:
10, 12, 14, 16, 18, and 20km/h are considered. On the short
track, the simulations are repeated ten times for each nominal
velocity. The model in Eq. (21) used for the MPC is updated
for each nominal velocity, however, the PID parameters
reported in Table II remains the same for all simulations.

To evaluate the performance of the proposed system, the
Mean Squared Error (MSE) is utilised and computed as:

MSE =

∑N
k=0(‖xbike

k − xref
k−1‖2)Ts

t
(24)

where xbike and xref are the x and y coordinates of the
bicycle and the reference trajectory respectively, Ts = 0.1s
is the sampling time, and t is the time it takes for the
bicycle to go from it start position to its goal position.
Since the reference trajectory xref should be ahead of the
bicycle, the previous reference point is considered, i.e., xref

k−1.
Moreover, to measure the maximum difference between the
reference trajectory and the bicycle trajectory, the Hausdorff
distance [25] is utilised. The Hausdorff distance can be used
to measure the similarity of two parametrised curves, A and
B, as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
,

(25)
where d(a, b) is the Euclidian distance between the points
a and b. On the short track, the standard deviation and the
mean of the ten repetitions for each nominal velocity are
computed.

A. Simulation setup

The ordinary-sized male bicycle in [21] was dismantled
and each component was weighed, measured, and designed
in SolidWorks4 and imported to Adams, a multibody dynam-
ics simulation software. In Adams, the steering motor and
the propulsion motor are defined as general point motions
around the steering and rear-wheel axis respectively. Fur-
thermore, the interaction between the wheels and the ground
is modelled as a Coulomb friction force with the dynamic

3https://www.openstreetmap.org/#map=18/59.47979/
17.82856

4https://www.solidworks.com/

Fig. 4. The instrumented bicycle designed in SolidWorks and imported to
Adams is used as the plant in the co-simulation between Adams and Matlab.

and static friction coefficients µd = µs = 0.7, a stiction
transition velocity of 0.2m/s, and friction transition velocity
of 1m/s. The bicycle, as visualised in Adams, is presented
in Fig. 4.

The nonlinear bicycle model is then exported as a plant
to Matlab Simulink, with the input u = [v, δ]> and the
output y = [ψ, x, y, v, δ, ϕ]>. The outer path tracking
loop has a sampling time of Ts,outer = 0.1s, while the
inner stabilisation loop is set up with the sampling time
Ts,inner = 0.01s. To simulate the bicycle riding on uneven
terrain, a disturbance d ∼ N (0rad/s, 0.7012rad/s) is acting
on the steering velocity input. Moreover, the lean angle
measurement noise is an additive white Gaussian noise
n ∼ N (0deg, 10(−3/2)

2

deg) and added to the lean angle
measurements as shown in Fig. 5. The variance of the noise is
estimated using the Inertial Measurement Unit (IMU) in [21]
placed on a flat surface. The data from the IMU is collected
over 30minutes and repeated three times.

B. Simulation results

The reference trajectory and the bicycle trajectory riding
on the go-kart track for each of the nominal velocities are
presented in Fig. 6. For the short track, the simulation is
repeated ten times for each nominal velocity. The mean and
standard deviation for the ten repetitions are presented in
Fig. 7 and in Fig. 8 for the MSE and Hausdorff distance
respectively. Note that at the nominal velocity of 18km/h
only one repetition completed the trajectory (highlighted with
a red asterisk in the figures). At 20km/h the bicycle fell over
before reaching the finish line in all ten repetitions. In Fig. 9

MPC R(s) G(s)
Adams
bicycle

Compute
difference

ϕ∗ + δ̇∗+ δ̇ y

+ϕ

−

n
+

d

+

yr∆

Γ
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Fig. 5. Simulation setup of the control system.
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velocity of 18km/h, only one out of ten repetitions reached the final position.
In the case of 20km/h the finish line was never reached in any of the ten
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the short track trajectory is presented for the nominal velocity
of 14km/h5. The variance, due to noise and disturbances,
between the ten repetitions is represented in blue, and the
reference path is highlighted in red.

C. Discussion

The results in Fig. 6 clearly shows that the proposed
system is able to follow a trajectory in a real-life scenario at
varying velocities. An MSE of 4.6cm is the highest value
computed for the go-kart track and is obtained with the
nominal velocity of 20km/h as seen in Fig. 7. The Hausdorff
distances in Fig. 8 are all located at the narrow curves for all
velocities, which indicates that the tracking performance is
better for straights and wide curves. The Hausdorff distance
and the MSE both increase slightly at the higher velocities
of 18km/h and 20km/h. Since riding a bicycle at low speeds
demands higher steering actuation compared to riding the
same bicycle at higher speeds [26], the disturbance induced

5https://www.youtube.com/watch?v=Wq6SvOX7erA
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Fig. 8. The Hausdorff distance at respective velocity for the long go-kart
track is represented by the blue dots. Similarly, the red dots represent the
mean Hausdorff distance, with error bars indicating the standard deviation,
when riding on the short track with narrow curves. At the nominal velocity
of 18km/h, only one repetition completed the whole track and the Hausdorff
distance for this repetition is marked with the red asterisk. At 20km/h the
finish position was never reached.

in the input steering signal will also have a greater impact
on the performance at higher velocities

The short track in Fig. 9 is a more challenging track with
narrow s-curves and short straights compared to the go-kart
track in Fig. 6 or the tracks considered in [7], [12]. As a
result, both the MSE and the Hausdorff distance in Fig. 7
and Fig. 8 are increased compared to MSE and Hausdorff
distances at the go-kart track. For the short track, the velocity
plays an important role in path tracking performance. The
results up till 14km/h is consistent and with small variations,
this is also highlighted in Fig. 9 for 14km/h. However, at
higher velocities, the curves are too narrow and both the
mean and standard deviation of the MSE and the Hausdorff
distance at 16km/h is considerably higher compared to the
low velocities. Above 16km/h, all except one simulation (at
18km/h) failed due to the bicycle falling over. The majority
of falls takes place at the s-curve, either at the first curve
or at the beginning of the second curve. When recovering
the lean angle from the initial curve, the steering actuation
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Fig. 9. Simulations results for the co-simulation on the short track at the
nominal velocity of 14km/h. The simulations are repeated ten times and the
variance in bicycle path for these ten repetitions are highlighted in blue.



is too aggressive in the opposite direction which causes the
fall. One possible way to address this problem is with a
longer prediction and control horizon, however, this would
also increase the computational time. Introducing braking to
the bicycle also needs to be investigated.

VI. CONCLUSION

In this paper, an MPC is used to address the trajectory
tracking problem for an autonomous bicycle. A point-mass
model is used to model the bicycle, and the steering dynam-
ics is obtained through a step response matching procedure.
To balance the bicycle, a PID controller regulates the steering
velocity. The PID parameters are computed by formulating
the stabilisation of the bicycle as a nonlinear optimisation
problem, solved by means of PSO. The bicycle model and
the inner control loop are included in a prediction model, and
an MPC is formulated for trajectory tracking. The balancing
and path tracking capabilities of the autonomous bicycle are
demonstrated in numerous co-simulations between Matlab
and Adams where two different reference trajectories are
considered. The Mean Squared Error and the Hausdorff
distance is used to evaluate the path tracking performance.
The results show that the riderless bicycle successfully can
balance and follow both reference trajectories in a range
of velocities. For further evaluation of the system and to
obtain experimental results, the MPC will be considered
for implementation on an instrumented bicycle. However, a
prerequisite for path tracking performance is reliable local-
isation, thus the localisation problem of a bicycle needs to
be investigated first.
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