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Abstract. Autonomous vehicles are expected to be able to avoid static
and dynamic obstacles automatically, along their way. However, most of
the collision-avoidance functionality is not formally verified, which hin-
ders ensuring such systems’ safety. In this paper, we introduce formal
definitions of the vehicle’s movement and trajectory, based on hybrid
transition systems. Since formally verifying hybrid systems algorithmi-
cally is undecidable, we reduce the verification of nonlinear vehicle behav-
ior to verifying discrete-time vehicle behavior overapproximations. Using
this result, we propose a generic approach to formally verify autonomous
vehicles with nonlinear behavior against reach-avoid requirements. The
approach provides a Uppaal timed-automata model of vehicle behav-
ior, and uses Uppaal STRATEGO for verifying the model with user-
programmed libraries of collision-avoidance algorithms. Our experiments
show the approach’s effectiveness in discovering bugs in a state-of-the-art
version of a selected collision-avoidance algorithm, as well as in proving
the absence of bugs in the algorithm’s improved version.

1 Introduction

Autonomous vehicles (AV), such as driverless cars and robots, are becoming in-
creasingly promising, hence prompting a wide interest in industry and academia.
Safety of vehicle operations is the most important concern, requiring these sys-
tems to move and act without colliding with static or dynamic objects (obstacles)
in the environment, such as big rocks, humans, and other mobile machines. Algo-
rithms like A* [21], Rapidly-exploring Random Tree (RRT) [17], and Theta* [5]
are able to navigate the AV towards reaching their destinations, while avoiding
static obstacles along the way. However, when encountering dynamic obstacles
that could appear and move arbitrarily in the environment, these algorithms are
not enough for collision avoidance, and have to be complemented by algorithms
such as those based on dipole flow fields [23] or dynamic window approach [10],
which are capable of circumventing dynamic obstacles.

Although many collision-avoidance algorithms are being proposed in recent
years, few of them have been formally verified, despite the fact that formal ver-
ification is a very important tool for discovering problems in the early stage of
algorithm design. In this paper, we consider two main challenges that can turn
formal verification of AV models and their algorithms into a daunting task: (i)
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nonlinearity of the vehicle kinematics, and (ii) complexity and uncertainty of the
environment where AV move. On the one hand, ordinary differential equations
are used to describe the continuous dynamics and kinematics of the often non-
linear vehicles. The trajectories formed by these vehicle models are consequently
nonlinear, which is the nonlinearity that we consider throughout the paper. On
the other hand, discrete decisions made by the vehicles’ control systems influence
the movement of vehicles. In the model-checking world, verification of these so-
called nonlinear hybrid systems that combine nonlinear continuous kinematics
and discrete control is undecidable [13, 15]. In addition, AV that aim at tracking
initially planned paths are inevitably diverted by their tracking errors caused by
the inaccuracy of their sensors and actuators, and the disturbance from the com-
plex environment. Dynamic obstacles are unpredictable before AV sense them.
All these reasons render exhaustive model checking of models of nonlinear ve-
hicles that move in an environment containing static obstacles and uncertain
dynamic obstacles an unsolved problem.

In this paper, we solve this problem by addressing challenges (i) and (ii).
First, we introduce safe zones of the trajectories formed by controllable nonlinear
AV models, which overcomes challenge (i), as follows. If an AV’s tracking error
has a Lyapunov function, it is called controllable in this paper, and its deviation
from the reference path is bounded [8]. The boundaries of tracking errors form
the safe zone of the AV, assuming the reference path as the axis. As long as the
dynamic obstacles do not intrude into these zones, the vehicles are guaranteed
to be safe. Based on this observation, we reduce the verification of controllable
AV’s nonlinear trajectories to the verification of its piece-wise-continuous (PWC)
reference trajectories, and further to the verification of discrete-time models of
trajectories. The various vehicle dynamics and kinematics, together with the
uncertain tracking errors are all subsumed by the safe zones, so the undecidable
verification problem is simplified to a decidable one, without losing completeness.

Next, we solve challenge (ii) by leveraging the nondeterminism of timed au-
tomata in Uppaal STRATEGO [6]. The initialization and movement of dynamic
obstacles are modeled as timed automata, in which their positions etc. are non-
deterministically initialized and updated. In this way, the vehicle model satisfies
the liveness property only when it is able to reach the destination, and the
invariance property if there is no collision happening under any circumstance.
When multiple dynamic obstacles are involved, the state space of the model
becomes large and the verification becomes computationally expensive or even
unsolvable. Consequently, we also propose a way of reducing the state space by
splitting the verification into multiple tractable phases.

Note that, our approach is orthogonal to the methods of controller synthesis
(e.g., [7, 9]). The latter targets the construction of motion plans that avoid static
and dynamic obstacles, whereas our method can be used to verify the correct-
ness of these methods, regardless of the path-planning and collision-avoidance
algorithms considered. To summarize, our main contributions are:

1. A proven transformation of the verification of nonlinear vehicle trajectories
to the verification of PWC trajectories and discrete-time trajectories.
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2. A generic verification approach for model checking reach-avoid requirements
of AV equipped with different collision-avoidance algorithms (Section 4).

3. An implementation of the approach in Uppaal STRATEGO, and a demon-
stration showing the ability of the approach to discover bugs in a state-of-
the-art collision-avoidance algorithm, and to prove the absence of bugs in an
improved version of the same algorithm (Section 5).

Preliminaries. In this paper, we denote a vector x by x⃗, the module of x⃗ by ∣∣x⃗∣∣,
and multiplications between two scalars, and between a vector and a scalar by
“×”. Timed Automata is a widely-used formalism for modeling real-time systems
[4]. The Uppaal model checker [16] uses an extension of the timed-automata lan-
guage with a number of features such as constants, data variables, arithmetic op-
erations, arrays, broadcast channels, urgent and committed locations. Properties
that can be checked by Uppaal are formalized in a simplified timed computation
tree logic (TCTL) [3], which basically contains a decidable subset of computation
tree logic (CTL) plus clock constraints. A branch of Uppaal, named Uppaal
STRATEGO [6], supports calling external C-code functions written in libraries.
This new feature enables us to treat the user-designed collision-avoidance algo-
rithm as a black box in our model.

The remainder of the paper is organized as follows. In Section 2, we introduce
the systems to be verified. In Section 3, we concretely define the movement and
trajectories of AV and prove two theorems of transforming the verification of
nonlinear vehicle trajectories to the verification of PWC trajectories and discrete-
time trajectories. A detailed description of the verification approach and tool
support is presented in Section 4, followed by experiments in Section 5. We
compare our study to related work in Section 6, and conclude the paper in
Section 7.

2 Problem Description

Vehicles that are capable to calculate paths to their destinations, which avoid
collision with any obstacles in the environment, and follow them without human
intervention, are called autonomous vehicles (AV). As depicted in Fig. 1, when
the environment contains only static obstacles whose positions are already known
by the AV, paths are calculated by the path planner inside the controller of the
AV. Path planners are usually equipped with path-planning algorithms, e.g.,

Fig. 1. The architecture of the controller of autonomous vehicles. The collision-
avoidance module does not exist if the environment only contains static obstacles.

Theta* [5] or RRT [17], which explore the map (M) to find a path that avoids
the static obstacles and reaches the destination. The reference controller (gr) uses
the output of the path planner and generates a trajectory of the state variables
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of the system, e.g., position and linear velocity of the vehicle, as a reference (ξr)
for the tracking controller to follow. The tracking controller aims to produce
an input to the vehicle to drive it to track the reference trajectory. The real
trajectory (ξg) follows the reference path (ξr) with some tracking errors.

Since the dynamics and kinematics of a real AV are nonlinear, and tracking
errors between the actual trajectory and reference trajectory exist inevitably,
path planners do not guarantee the safety of AV driving. Moreover, formally
verifying if the actual trajectories ever hit the static obstacles is an undecidable
problem, due to the model-checking of nonlinear hybrid systems being unde-
cidable [15]. Overapproximation is a method of linearizing the vehicle model,
to facilitate verification. Fan et al. [8] propose a method that proves that, as
long as the dynamics of tracking errors has a Lyapunov function, the tracking
errors are bounded by a piece-wise constant value, which depends on the initial
tracking error and the number of segments of the reference trajectory. Fig. 2
shows an example of a reference trajectory and the boundary of tracking errors.
Consequently, as long as the safe regions of AV (green color) do not overlap with
the grey areas, the actual trajectory is guaranteed to be safe.

Fig. 2. The reference trajec-
tory is solid black lines, and
the actual trajectory is vio-
let dotted lines. The initial
area is blue and the goal
area is yellow. The boundaries
of tracking errors are green.
Static obstacles are grey [8].

Due to this result, one can reduce the prob-
lem of verifying whether the actual trajectory (ξg)
ever overlaps with obstacles, to a simplified prob-
lem of verifying whether the distance between the
reference trajectory (ξr) and the obstacles is larger
than the respective boundary of tracking error on
each segment of ξr. In other words, the verification
of nonlinear vehicle trajectories is reduced to the
verification of their piece-wise-continuous reference
trajectories. Although much simplified, the prob-
lem is still undecidable as long as the piece-wise-
continuous trajectories are non-linear [8]. More-
over, when dynamic obstacles appear, the verifi-

cation becomes intractable, because dynamic obstacles cannot be known com-
pletely before the AV encounters them. The controller must be additionally
equipped with a collision-avoidance module that perceives the environment pe-
riodically, via sensors. Fig. 1 shows such a controller. The path planner still
calculates a path that avoids known static obstacles and goes to the destina-
tion. The path serves as input to the collision-avoidance module as a sequence
of waypoints (positions of turning directions, denoted as W ), as well as the in-
formation of the map (M) and dynamic obstacles (od). The command controller
should meet the following two requirements, which are the focus of verification
in this paper:

– Collision avoidance (invariance property): always circumventing the static
and dynamic obstacles;

– Destination reaching (liveness property): always eventually reaching the goal
area.
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3 Definitions and Verification Reduction Theorems

In this section, we introduce the definitions of the important concepts used in this
paper and the collision-avoidance verification theorems that eventually reduce
the nonlinear trajectory verification to discrete-time trajectory verification. We
denote AV and dynamic obstacles collectively by the term agents.

First, let us establish an overall view of the different types of models that
are used in this section. So far, we have stated that model-checking liveness
properties (e.g., destination reaching) and invariance properties (e.g., collision
avoidance) of nonlinear hybrid systems is undecidable. Note that hybrid sys-
tems are described by syntactic models with an underlying semantics defined
as hybrid transition systems (HTS), used in the following definitions. As de-

Fig. 3. Overall description of models and their decidability

picted in Fig. 3, the continuous trajectories of agents are modeled as HTS. By
incorporating the tracking errors of agents, the continuous trajectories are sim-
plified into piece-wise-continuous (PWC) trajectories. However, the verification
of PWC trajectories is still undecidable, so we transform the PWC trajectories
into discrete-time trajectories, whose verification is decidable. Furthermore, the
two-step transformation from continuous trajectories to discrete-time trajecto-
ries is proved to preserve the liveness and invariance properties that we want to
verify (Theorem 1 and Theorem 2).

3.1 Definitions of Maps, Agent States, and Trajectories

In this section, we first define the agent states and the map where agents move.
Next, we define the command controllers and agent-state trajectories.

Definition 1 (Map). A map is a 4-tupleM =< X ,Ou,I,G >, where (i) X ∈ Rd
is the moving space, with d ∈ {2,3} being the dimension of the map, (ii) Ou ⊆ X
is the unsafe area, (iii) I ⊆ X is the initial area of AV, and (iv) G ⊆ X is the
goal area where the AV aims to go.

An example of a map is illustrated in Fig. 2.

Definition 2 (Agent State). Given a map M =< X ,Ou,I,G >, an agent
state is a 5-tuple S =< p⃗, v⃗, a⃗, θ, ω >, where (i) p⃗ ∈ X is the position vector, (ii)
v⃗ is the linear velocity vector, ∣∣v⃗∣∣ ∈ [0, Vmax] ⊂ R≥0, (iii) a⃗ is the acceleration
vector, ∣∣a⃗∣∣ ∈ [Amin,Amax] ⊂ R, (iv) θ ∈ [−π,π] ⊂ R is the heading, and (v)
ω ∈ [Ωmin,Ωmax] ⊂ R is the rotational velocity.
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The agent states are states of AV and dynamic obstacles. Some elements in the
tuple of agent states S evolve continuously and some are assumed to change
instantaneously. We define the trajectories of the evolution of the agent states
in Definition 4. Before that, we first define the controller of AV, where dynamic
obstacles (Od) are instances of agent states S, as follows:

Definition 3 (Controller). Given a map M, and a set of dynamic obstacles
Od, we define a command controller of AV as a 3-tuple C =< pl, ca,Λ >, where
(i) pl ∶ M Ð→ W is a path-planning function, W ⊆ X is a set of waypoints,
(ii) ca ∶ M ×W × Od Ð→ Λ is a collision-avoidance function, and (iii) Λ =
{ACC ,BRK ,TR+,TR−,STR} is a set of commands.

The commands are signals sent from the controllers to the actuators of the
AV: ACC means acceleration, BRK means brake, TR+ and TR− mean turning
counter-clockwise and clockwise, respectively, and STR means moving straightly
at a constant speed. An example of the AV’s controller architecture is shown in
Fig. 1. When an AV starts to move, the transitions of its agent states form
a trajectory, in which its position, linear velocity, and heading evolve contin-
uously according to corresponding dynamic functions, whereas its acceleration
and rotational velocity change discretely based on the commands.

Definition 4 (Continuous Trajectory). Given an AV, whose command con-
troller is C =< pl, ca,Λ >, we define its movement by a hybrid transition system
< S, s0,Σ,X,→>, where S is a set of states, s0 is the initial state, Σ ⊆ Λ is
the alphabet, X = Xd ∪Xc is a set of variables combining discrete variables in
Xd and continuous variables in Xc, and → is a set of transitions defined by the
following rules, with kinematic functions of the AV denoted by f :

– Delayed transitions: < p⃗, v⃗, a⃗, θ, ω > ∆tÐ→< p⃗′, v⃗′, a⃗′, θ′, ω′ >, where t ∈ Xc, p⃗
′ =

p⃗+ ∫
u
l v⃗dt, v⃗

′ = v⃗ + ∫
u
l a⃗dt, a⃗

′ = a⃗, θ′ = θ + ∫
u
l ωdt, ω

′ = ω, l ∈ R≥0 and u ∈ R>0
are the upper and lower time bounds, respectively, and ∆t = u − l;

– Instantaneous transitions: < p⃗, v⃗, a⃗, θ, ω > cmdÐÐ→< p⃗′, v⃗′, a⃗′, θ′, ω′ >, where p⃗′ = p⃗,
v⃗′ = v⃗, a⃗′ = ca(a⃗, cmd), θ′ = θ, ω′ = ca(ω, cmd), cmd ∈ Σ.

A run of the transition system defined above over a duration U is a trajectory
of agent states, also described by the function ξ ∶ [0, U] → S. Henceforth, we
name the agent-state trajectory as trajectory for brevity, and denote ξ(t) as a
point of ξ at time t, the projection of ξ on a dimension of an agent-state as
ξ↓dimension, e.g., positions on a trajectory are ξ↓p⃗. The continuous variables of
actual trajectories of agents are generated by their nonlinear kinematic functions,
yet these variables are piece-wise-continuous (PWC) in reference trajectories (see
Figure 2). More specific, a reference trajectory ξr is a sequence of concatenated
trajectory segments ξr,1 ⌢ ... ⌢ ξr,k. The concatenating points {p⃗i}ki=0 are the
waypoints calculated by path-planners, where the discontinuity of the vehicle’s
heading θ happens. Therefore, the definition of agent movement on a reference
trajectory changes as follows:

Definition 5 (Reference Trajectory). Let us assume an AV, whose com-
mand controller is C =< pl, ca,Λ >, and a PWC trajectory ξr of the AV, which
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is a sequence of trajectories ξr,1 ⌢ ... ⌢ ξr,k concatenated by a set of waypoints

{P⃗i}ki=0. Then, the AV’s movement along the reference trajectory is a hybrid
transition system similar to that of Definition 4, and its transitions are defined
by the following rules:

– Delayed transitions on ξr↓p⃗ /⊆ {P⃗i}ki=0: < p⃗, v⃗, a⃗, θ, ω > ∆tÐ→< p⃗′, v⃗′, a⃗′, θ′, ω′ >,
where p⃗′ = p⃗ + (v⃗ + a⃗×∆t

2
) ×∆t, v⃗′ = v⃗ + a⃗ ×∆t, a⃗′ = a⃗, θ′ = θ, ω′ = 0;

– Instantaneous transitions: < p⃗, v⃗, a⃗, θ, ω > cmdÐÐ→< p⃗′, v⃗′, a⃗′, θ′, ω′ >, where p⃗′ = p⃗,

v⃗′ = v⃗, a⃗′ = ca(a⃗, cmd), θ′ = {arctangent(P⃗i, P⃗i+1), if p⃗ ∈ {P⃗i}k−1i=0 ,
θ, if p⃗ /∈ {P⃗i}k−1i=0

, ω′ = 0

Intuitively, when an agent is moving along its reference trajectory (ξr), its head-
ing (ξr↓θ) remains unchanged before it arrives at a waypoint, which means the
rotational velocity (ξr↓ω) is irrelevant and remains 0. Therefore, the reference
trajectory is infeasible to be tracked exactly by the agents. Although the in-
tegration of ξr↓p⃗ and ξr↓v⃗ on delayed transitions is simplified to polynomial
functions, the nonlinearity of ξr↓p⃗ still renders undecidability. The trigonomet-
ric function in the definition also causes a computational difficulty when running
verification. In practice, we use linear speed vector (v⃗) to describe both the linear
speed and the orientation of the agent. The acceleration (ξr↓a⃗) changes instan-
taneously based on the commands from the command controller. Last but not
least, the trajectories of dynamic obstacles are similar to Definition 4, but with-
out a well-defined controller. On their instantaneous transitions, accelerations
and rotational velocities are changed arbitrarily within the valid ranges.

3.2 Collision-Avoidance Verification Reduction

We use ξr and ξg to denote the reference and actual trajectory of AV, respec-
tively, and ξo for the actual trajectories of dynamic obstacles.

Fig. 4. A dynamic obstacle is
at the red cross, while the cur-
rent position of AV on the refer-
ence path is the yellow dot. The
safety-critical area is dark green.

Let d(var1, var2) denote the distance be-
tween var1 and var2, e.g., d(p⃗i, ξj↓p⃗) is the
distance from position p⃗i to trajectory ξj↓p⃗,
and d(ξi↓p⃗,Ou) is the distance from trajectory
ξi↓p⃗ to static obstacles. For brevity, we omit
the projection when using this notation, i.e.,
d(p⃗i, ξj↓p⃗) = d(p⃗i, ξj). Let ξ(t1, t2) denote a seg-
ment of trajectory ξ between time points t1 and

t2. The problem of verifying if AV hit static obstacles Ou is relatively simple, as
Ou does not change. However, checking if AV hit moving obstacles is different
and much harder, because both trajectories are formed dynamically while the
agents are moving. Dynamic obstacles might meet an AV’s reference trajectory,
yet far enough from its current position(see Fig. 4). Therefore, we introduce the
concept of safety-critical segments:

Definition 6 (Safety-Critical Segment). Let C be the current time. Given
a trajectory ξ, a time span of length T ∈ R>0, we define a safety-critical segment
sc(ξ) of ξ, as ξ(C − T,C + T )1.

1 When C < T , sc(ξ) = ξ(0,C + T ).
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The length of time-span T , so that the safety-critical area covers the actual
current position of AV, can be delivered by design engineers with knowledge of
vehicle dynamics, so this is not within the scope of this paper. Now, instead of
checking if any part of the AV’s entire trajectory (ξg) overlaps with a moving
obstacle’s trajectory (ξo), we check if the safety-critical segments of these two
trajectories (sc(ξg) and sc(ξo)) overlap.

Definition 7 (Collision-Avoidance Verification). Given a map M =< X ,
Ou,I,G >, a nonlinear AV, whose actual continuous trajectory is ξg, and a set
of dynamic obstacles whose trajectories are in set Ξo, we say that the collision-
avoidance verification of the AV’s actual trajectory equates with verifying that
condition ξg↓p⃗ ∩ G ≠ ∅ ∧ ξg↓p⃗ ∩Ou = ∅ ∧ sc(ξg↓p⃗) ∩ sc(ξo↓p⃗) = ∅ holds, where
ξo ∈ Ξo.
Since model-checking ξg is undecidable, we prove next that its verification can
be reduced to one over the PWC trajectory ξr that ξg tracks.

Theorem 1 (Non-linearity to PWC). Assume the collision-avoidance veri-
fication condition of Definition 7, a position p⃗g ∈ G whose distance to the closest
boundary of G is B, and that the tracking errors of the AV have a Lyapunov
function. Then, it follows that if the condition ξr↓p⃗ ∩ {p⃗g} ≠ ∅ ∧ d(ξr,Ou) >
L ∧ d(sc(ξr), sc(ξo)) > L, with L ∈ R>0 and L ≤ B holds, then the collision-
avoidance condition of Definition 7 holds too.

Proof. Based on Lemmas 2 and 3 proven by Fan et al. [8], if the tracking errors of
the AV have a Lyapunov function, its ξg is bounded within a certain distance to
its ξr. Let the distance be L, then d(ξg, ξr) < L ≤ B. Hence, if ξr↓p⃗∩{p⃗g} ≠ ∅, then
ξg↓p⃗∩G ≠ ∅. Since d(ξr,Ou) > L > d(ξg, ξr) and d(sc(ξr), sc(ξo)) > L > d(ξg, ξr),
then ξg↓p⃗ ∩Ou = ∅ ∧ sc(ξg↓p⃗) ∩ sc(ξo↓p⃗) = ∅. ◻
Note that these two problems are not equivalent. When the actual trajectory
is not colliding with any obstacles, the distance from the reference trajectory
to the obstacles could be less than L. The method of calculating L is not the
concern of this paper. We refer the reader to literature [8] for details.

3.3 Discretization of Trajectories

Although the verification of nonlinear trajectories is simplified by Theorem 1,
model-checking PWC trajectories is still difficult. PWC trajectories are described
by hybrid systems, in which variables, e.g., p⃗ and v⃗, change continuously (specif-
ically, p⃗ is nonlinear), whereas variables, e.g., θ, a⃗ and ω, change instantaneously
(Definition 5). Unfortunately, the algorithmic verification of such model is un-
decidable [20]. To make the problem tractable, we discretize PWC trajectories
into a discrete-time model, where the movement of agents (including AV and
dynamic obstacles) is sampled synchronously:

Definition 8 (Discrete-Time Trajectory). Given a PWC trajectory named
ξr, whose concatenating points (waypoints) are {P⃗i}ki=0, a discretized trajec-
tory ξrd of ξr is a run of a corresponding discrete-time transition system <
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D,d0,Π,→>, where D is the set of states, d0 is the initial state, Π ⊆ Λ∪ {sync}
is the set of labels consisting of controller commands and a label for synchroniza-
tion with other discretized trajectories, and → is a transition relation, in which
the instantaneous transitions of θ, a⃗ and ω remain the same as defined in Defi-
nition 5, and the delayed transitions are sampled at the time points when ∆t = ε,
where ε ∈ R>0 is the granularity of sampling:

– if ∆t < ε, < p⃗, v⃗, a⃗, θ, ω > does not change,

– if ∆t = ε, < p⃗, v⃗, a⃗, θ, ω > ∆t,syncÐÐÐÐ→< p⃗′, v⃗′, a⃗′, θ′, ω′ >, where θ′ = θ,ω′ = ω, a⃗′ =

a⃗, v⃗′ = { v⃗ + a⃗ × ε, if ∣∣v⃗ + a⃗ × ε∣∣ < Vmax,
v⃗
∣∣v⃗∣∣ × Vmax, if ∣∣v⃗ + a⃗ × ε∣∣ ≥ Vmax , p⃗

′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

P⃗i, if p⃗ + (v⃗ + a⃗×ε
2

) × ε ≻ P⃗i,
p⃗ + (v⃗ + a⃗×ε

2
) × ε,

if p⃗ + (v⃗ + a⃗×ε
2

) × ε ≼ P⃗i
To denote if the position passes (resp., does not pass) the next waypoint, we
use the syntactic sugar ≻ (resp., ≼). The algorithm of judging this is given in
literature [12]. Intuitively, when the time interval ∆t is less than a small period
ε, the environment is not observed, so the trajectories of the agents are not
sampled; when ∆t reaches ε, the agent states are observed and sampled. When
an agent reaches or passes its target waypoint in the current period ε, it stops at
the waypoint until the next period comes when the new waypoint and heading
are updated by the instantaneous transitions.

Dynamic obstacles do not have pre-computed waypoints but appear and
move arbitrarily in the map. However, a reasonable obstacle would not change
its direction too frequently, e.g., every sampling period. We design dynamic
obstacles such that, initially, they choose their starting agent-states arbitrarily.
Then, they keep moving for N sampling periods before choosing a new agent-
state as a target. The straight path between the current and target positions is
a reference trajectory that the dynamic obstacle tracks in the next N periods,
and the tracking errors are also bounded.

The agents’ accelerations and rotational velocities are assumed to be changing
discretely in these definitions. If the assumption is violated in some applications,
one can discretize these two variables in the same way as in the discretization
of position and linear velocity. Next, we prove a theorem that reduces the veri-
fication of PWC reference trajectories to the one of discrete-time trajectories.

Theorem 2. (PWC to discrete-time trajectories). Assume a mapM =< X ,Ou,
I,G >, a set of trajectories Ξo formed by dynamic obstacles, with the maximum
linear velocity V , a reference trajectory ξr of an AV with concatenating points
{P⃗i}ki=0, whose safety-critical segment is sc(ξr), and synchronized and discretized
trajectories ξrd of ξr, and ξod of ξo ∈ Ξo with a granularity of sampling ε ≤ L

∣∣V ∣∣ ;
here, L = La +Lo, where La is the tracking-error boundary of the AV, and Lo is
the smallest tracking-error boundary among dynamic obstacles2. Then, if p⃗g ∈ G,
and ξrd↓p⃗ ∩ {p⃗g} ≠ ∅ ∧ d(ξrd,Ou) > L ∧ d(sc(ξod), sc(ξr)) > L, it follows that
ξr↓p⃗ ∩ {p⃗g} ≠ ∅ ∧ d(ξr,Ou) > L ∧ d(sc(ξo), sc(ξr)) > L.

2 When no dynamic obstacle is detected, Lo is zero.
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Proof. By substituting ∆t in the delay transitions of Definition 5 with ε, we can
see that ξrd(ε) is a sampling of the reference trajectory ξr(t) at the time points
when ∆t = ε. Hence, ξrd↓p⃗ ⊆ ξr↓p⃗. Therefore, if ξrd↓p⃗ ∩ {p⃗g} ≠ ∅, which means
ξrd can reach p⃗g, then ξr↓p⃗ ∩ {p⃗g} ≠ ∅ as well.

Based on Definition 8, waypoints {P⃗i}ki=0 ⊆ ξrd↓p⃗, where turning occurs.
Therefore, if ti and ti+1 are two consecutive sampling points of ξrd, the line seg-
ment connecting ti and ti+1 must be on ξr, denoted by ξrd(ti, ti+1). Therefore,
if d(Ou, ξrd(ti, ti+1)) > L3, then the concatenation of {ξrd(ti, ti+1)}n−1i=0 , which is
ξr, satisfies d(Ou, ξr) > L.

Fig. 5. The trajectory of a dynamic
obstacle is red. The reference trajec-
tory of AV is black. Dotted greens lines
are the boundaries of tracking errors.

For ξo ∈ Ξo, similarly, ti and ti+1 are
two consecutive sampling points. As de-
picted in Fig. 5, ξo(ti, ti+1) and ξr(ti, ti+1)
are the segments of sc(ξo) and sc(ξr),
respectively. Assume d(sc(ξod), sc(ξr)) >
L, but d(sc(ξo), sc(ξr)) ≤ L, which
means d(ξod(ti), ξr(ti, ti+1)) > L and
d(ξod(ti+1), ξr(ti, ti+1)) > L,
but d(ξo(ti, ti+1), ξr(ti, ti+1)) ≤ L, then

ξo(ti, ti+1) and ξr(ti, ti+1) must be intersecting, and thus d(ξo(ti), ξo(ti+1)) > L
(see Fig. 5). Based on Definition 8, d(ξo(ti), ξo(ti+1)) = ∣∣(v⃗ + a⃗×ε

2
)× ε∣∣ ≤ ∣∣V ∣∣× ε.

Therefore, ∣∣V ∣∣ × ε > L, which contradicts the assumption ε ≤ L
∣∣V ∣∣ . Hence, if

d(sc(ξod), sc(ξr)) > L, then d(sc(ξo), sc(ξr)) > L. ◻
Based on Theorems 1 and 2, the reach-avoid verification of discretized tra-

jectories is sufficient to entail that of nonlinear trajectories. The reach-avoid
verification of discrete-time transition systems is decidable [13]. Therefore, the
undecidable problem of model-checking nonlinear trajectories of agents is suc-
cessfully simplified to a decidable one over discrete-time trajectories. In the next
section, we introduce our approach of verifying the discrete-time models.

4 Verification Approach and Tool Support

In our verification approach, we employ Uppaal Timed Automata (UTA) [16]
to build the discrete-time model of the agents, and Uppaal STRATEGO as the
model checker to execute the verification. The latest version of Uppaal STRAT-
EGO provides a function of calling external libraries. This function enables us
to design a model for verification without knowing the implementation details
of algorithms, hence modeling them as black boxes. Although Uppaal STRAT-
EGO is mainly designed for strategy synthesis of stochastic timed games, our
approach only leverages its function of exhaustive model checking. The semantics
of UTA is timed transition systems. When discretizing time in timed transition
systems, one gets discrete-time transition systems, which can be used to model
the discrete-time trajectory of agents (Definition 8). Our UTA templates are de-
signed to act only at the end of each sampling period simultaneously, so within

3 Computation of d(Ou, ξrd(ti, ti+1)) is in a more detailed version of this paper [12].
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the sampling periods, nothing happens but only time elapses. Therefore, the se-
mantics of our UTA templates is shown to be conservatively abstracted by the
discrete-time transition semantics, with the discretizing step being equal to the
sampling period of the discrete-time trajectories.

4.1 General Description of the Approach

Fig. 6 shows the workflow of the verification approach. The input of the ap-
proach is the parameters of the agents (i.e., AV and dynamic obstacles) and
their boundary of the tracking errors, as well as the environment (e.g., static
obstacles). In Step 1, users provide their nonlinear vehicle models, which are for

Fig. 6. The workflow of the verification approach

calculating the boundary of tracking errors. This module is the approach pro-
vided by Fan et al. [8], which is not the focus of this paper. We simply use the
output of this approach in our models for verification. In Step 2, users configure
the parameters of the approach, which are used for instantiating the UTA mod-
els. Parameters regulate the minimum and maximum values of the elements of
agent states, e.g., linear velocity. The detailed specification of the parameters is
in literature [12]. In Step 3, UTA templates of the discrete-time models are in-
stantiated into UTA models based on the configured parameters. Note that the
user-programmed collision-avoidance algorithm is embedded in the models as
executable libraries, e.g., Dynamic-Link Libraries (DLL) in Windows, or Shared
Object (SO) in Linux. After the instantiation of UTA, the model checker veri-
fies the model by traversing its state space, calling the external libraries when
necessary, and checking if the vehicle model avoids all obstacles and reaches the
destination under all circumstances. If the verification result is “true”, the al-
gorithm is guaranteed to be correct under the current parameter configuration;
otherwise, counter-examples are returned by the model checker for the users to
debug their algorithm or change the configuration of the parameters (Step 4).

4.2 Design of the UTA Templates and CTL Properties

There are four UTA templates that are well designed to be reusable. The figures
and the detailed description of the templates are in our technical report [12].
First, we overview the UTA templates:

– AV Parameter Template. Based on Definition 8, after being initialized,
the AV parameters (e.g., position, speed) either stay unchanged or update
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their values at the end of the sampling periods, simultaneously. Therefore, we
define this template for updating the AV parameters periodically. Instances
of this template are parameters of AV, hence, users can add their parameters
of AV simply by instantiating this template. The update of AV parameters
are synchronized by the controller template.

– AV Controller Template. The AV controller template mainly accom-
plishes three jobs: initializing the AV parameters; invoking the UTA of AV
parameters periodically; making decisions, such as turning at waypoints, or
calling the external function of collision avoidance when seeing an obstacle.

– Obstacle Initialization Template. As depicted by its name, this tem-
plate is responsible for initializing moving obstacles. For each parameter of
the obstacle (e.g., position, speed), the template traverses the range of its
value and nondeterministically chooses one to be the initial value of the pa-
rameter. Therefore, when running the exhaustive model checking in Uppaal
STRATEGO, all the values are enumerated and verified.

– Obstacle Movement Template. This template is for updating the ob-
stacle’s parameters periodically. At every end of the sampling period, the
AV controller UTA invokes the AV parameter UTA as well as the obsta-
cle movement UTA. In this way, sampling the AV and dynamic obstacles is
synchronized at the same moments. Note that this template updates the ac-
celeration and heading of the obstacle every N periods, N > 1. As aforemen-
tioned, reasonable obstacles do not change their direction and acceleration
too frequently.

The CTL properties that formalize the reach-avoid requirement are as following:

– Obstacle avoiding: A[]!collision, where collision is a Boolean vari-
able that is updated every sampling period. When the distances from the
safety-critical segment of AV to any of the obstacles in the map is less than
the boundaries of tracking errors, collision is turned to true, and remains
false elsewhere. Therefore, this query asks: for all execution paths, is collision
always avoided?

– Destination reaching: A<>controller.STOP, where STOP is a location in
UTA of AV’s controller. When controller goes to location STOP, it means
that the AV has reached the destination. Therefore, this query asks: for all
the execution paths of the model, does AV eventually reach the destination?

4.3 Reduction of the State Space of the UTA Model

To explore all the possible behaviors of dynamic obstacles, in the worst-case
scenario, we would have to explore the entire map, and enumerate all possible
values of linear speeds, rotational speeds, and headings of dynamic obstacles.
This generates a huge state space of the model that can be infeasible to check.
In this section, we introduce how to reduce the state space of the UTA model
without damaging the completeness of the verification.
Reduction of Initial Values of Parameters. Even though the dynamic ob-
stacles can appear at any positions in the map, some positions are too far away
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from the AV to be relevant at the current period, and some are too close to
the AV to be possible to be avoided. Hence, we categorize positions into three
classes, namely safety-critical area, closest area, and valid area. Fig. 7 depicts
these three kinds of areas. The safety-critical area is defined in Definition 6.

Fig. 7. The green arrow is the
reference path. The green circle
is the AV. The crosses are the dy-
namic obstacles, where red and
grey ones are invalid positions,
and the green cross is valid.

Positions from which the distance to the
safety-critical segment of the reference path is
shorter than or equal to V ×n× ε is called clos-
est area, where V is the velocity of the dynamic
obstacle, ε is the sampling period, and n ∈ N is
a coefficient whose value depends on the phys-
ical limitations of the AV. Obstacles appear-
ing within the closest area are impossible to be
avoided, so they should be excluded from the
valid initial positions. Similarly, positions from
which the distance to the safety-critical segment

is greater than V ×n× ε and less than or equal to V ×m× ε are called valid area,
where m ∈ N is a coefficient for calculating the detection period of sensors. Ob-
stacles outside this area cannot enter the safety-critical area within the current
detection period, so they should be excluded from the verification in this period.

Collision-avoidance algorithms can turn the AV to any angle, so any heading
of the dynamic obstacles can be dangerous. Hence, the initial value of heading
is within π to −π and cannot be reduced, and same for the linear velocity.
Phased Verification. Another way of handling large state spaces is to split the
verification into several phases, and in each phase, the state space is constrained
under a solvable level. For example, when the traveling time of AV is long, the
entire journey can be split into multiple sections. As long as the concatenating
states between consecutive phases are unchanged, the logic conjunction of verifi-
cation results of each phase implies the result throughout the entire verification.

5 Experimental Evaluation

The experiments are conducted on a server with Ubuntu 18.04, 48 CPU, and
256 GB memory. The verification is executed in Uppaal 4.1.20-stratego-74 [6].

5.1 The Collision-Avoidance Algorithm to be Verified

In the following experiments, we employ a state-of-the-art algorithm to demon-
strate the ability of our verification approach. The algorithm is based on dipole
flow fields [23], and calculates static flow fields for all objects in the map, and
dynamic dipole fields for moving objects. When the AV starts to move, the static
flow fields generate attractive forces along the reference path to draw the AV
to move towards the closest waypoint. When it encounters a dynamic obstacle,
dipole fields are generated dynamically and centered by these two moving ob-
jects. Magnetic moments are thus calculated in these dipole fields, which push

4 The models and external library: https://github.com/rgu01/FM2021.
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the moving objects away from each other. Therefore, the AV could possibly
deviate from its planned path when meeting dynamic obstacles, and thus, it
might encounter some static obstacles that are not taken into account by the
reference path. Static flow fields now generate repulsive forces surrounding these
static obstacles and push the AV away from them. Formulas for calculating these
fields and forces can be found in the literature [23]. This algorithm has not been
comprehensively verified considering all possible scenarios of dynamic obstacles.

5.2 Verification Results

In this study, we verify the model containing a C-code library that implements
this algorithm, by using our approach. We demonstrate how to find the potential
problems of this newly-designed algorithm by using counter-examples returned
from the approach, followed by verifying iteratively the improved version.
Experiment Design. We report in Table 1 several statistics relevant to the
obtained results. For each scenario S, we vary the following aspects relevant in
real scenarios: (i) WP representing the number of waypoints, (ii) TT that stands
for the travelling time of AV, (iii) DO, the number of dynamic obstacles, and
(iv) VA, the number of allowed velocities of dynamic obstacles. In scenarios S1

Table 1. Verification results of the improved version of the algorithm.

S
Environment Obstacles Avoiding Obstacles Reaching Destination
WP TT DO VA NOS CT Result NOS CT Result

S1 2 25 1 1 547,617 2.7 s true 545,505 5.5 s true

S2 6 25 1 1 411,747 1.8 s true 411,168 3.6 s true

S3 2 85 1 1 3,222,290 15.3 s true 3,217,767 31.8 true

S3.1 1 30 1 1 1,532,082 7.4 s true 1,527,811 15.7 s true

S3.2 1 30 1 1 1,183,792 5.5 s true 1,185,550 11.4 s true

S3.3 1 25 1 1 506,416 2.4 s true 504,406 4.7 s true

S4 2 15 1 3 12,317,809 1.0 mins true 12,498,924 2.1 mins true

S5 2 15 2 1 1,398,011 7.6 s false 226,896,902 43.2 mins true

and S2, we use one phase of verification and one allowed velocity, which means
that the dynamic obstacle can appear at any moment, always moving at the
highest speed throughout the verification. S3 is similar to S1 but it prolongs the
travelling time of the AV, and thus, the verification is split into three phases
(S3.1 - S3.3). In S4, the dynamic obstacle has three possible velocities, which
means its velocity has three initial values and changes arbitrarily during the
verification. S5 increases the number of dynamic obstacles to 2, which means
there could be at most 2 dynamic obstacles in the map at the same time. For
each scenario S, we report the number of states (NOS) and the computation
time (CT) needed to verify two requirements, namely obstacle avoiding and
destination reaching (see Section 4.2 for details). These two values are useful
indicators of our approach’s performance dealing with various scenarios. All the
dynamic obstacles are detected only when they get close to the AV, i.e., they
are not foreknown by the AV.
Problems Discovered by Counter-examples. Initially, the proposed collision-
avoidance algorithm could not pass the reach-avoid verification in any of these
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(a) Problematic scenario 1 (b) Problematic scenario 2

Fig. 8. Problematic scenarios discovered by counter-examples. AV’s discretized tra-
jectory is blue dots. The dynamic obstacle’s discretized trajectory is red dots. AV’s
reference path is the green line. For differentiation, positions that are too close but
belong to different time points are represented by small and large dots in scenario 2.
An and Om indicate the AV and obstacle, respectively, n and m are time points.

scenarios, and we have discovered several problematic scenarios by analyzing the
counter-examples returned from our approach:
Problematic scenario 1. When there is only one dynamic obstacle whose
maximum velocity is less than the maximum velocity of AV, the dipole flow fields
generated by the algorithm sometimes draw the AV to the obstacle instead of
pushing the obstacle away from it, until their distance is too short (see Fig. 8(a)).
This happens because the magnetic moments could push or draw the moving
objects. Here, we improve the algorithm by simply turning the direction of the
magnetic moments before the AV and the dynamic obstacle get too close.
Problematic scenario 2. When the dynamic obstacle and AV move directly
towards each other, the dipole fields can only generate magnetic moments on the
line of their moving directions, which drive the AV to its opposite direction but
on the same line. When the dynamic obstacle keeps moving towards the same
direction, the AV can only move backwards until its distance is longer than a
certain value and turns 180○ towards its next waypoint, which soon lets the
AV get close to the dynamic obstacle again and turn backward (see Fig. 8(b)).
According to the counter-examples, this scenario keeps happening iteratively
until the AV stops at the boundary of the map, and is hit by the dynamic obstacle
eventually. This is the so-called “livelock” scenario that was also discovered by
Gu et al. [11]. To overcome this, we force the AV to turn slightly when its heading
is opposite to a dynamic obstacle’s heading.
Experimental Results. Although the improved algorithm passes the verifica-
tion in S1-S4, our results suggest that it still cannot satisfy the obstacle-avoiding
requirement in the last scenarios (S5) that contain more than one dynamic ob-
stacle (see Table 1). Note that the destination-reaching property is still satisfied
in S5, because the vehicle models are not designed to stop when a collision hap-
pens. The rationale of this design is that collisions do not necessarily stop a car
from continuing moving. We want to see if the dipole-flow field algorithm can
draw the vehicle to its destination anyway when it deviates from the planned
paths. Counter-examples are found relatively fast in S5, even though it is more
complicated than other scenarios. We leave the further improvement of the al-
gorithm to deal with multiple agents as a future work. The experiments have
demonstrated the approach’s ability of discovering problems in the early stage
of designing collision-avoidance algorithms, and proving the absence of errors in
some scenarios for the improved version of the algorithm.
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6 Related Work

Mitsch et al. [18] propose a method to verify safety properties of robots. Their
method is based on hybrid system models and differential dynamic logic for
theorem proving in KeYMaera. Abhishek et al. [1, 2] also use KeYMaera for
collision-avoidance verification. Their models consider the realistic geometrical
shapes of vehicles, as well as the combination of maneuvers and braking. Heß
et al. [14] propose a method to verify an autonomous robotic system during
its operation, in order to cope with changing environments. Our work differs
from the above studies in the following aspects: we prove that the reach-avoid
verification of nonlinear vehicle models can be simplified to a decidable problem
of verifying discrete-time models. In addition, our approach provides counter-
examples that are useful to improve the algorithms.

Shokri-Manninen et al. [22] have proposed maritime games as a special case of
Stochastic Priced Timed Games and modelled the autonomous navigation using
Uppaal STRATEGO. Their models do not consider the nonlinear kinematics
of the vessels, and the options of maneuvers for collision-avoidance are limited.
O’Kelly et al. [19] have developed a verification tool, called APEX, and have
investigated the combined action of a behavioral planner and state lattice-based
motion planner to guarantee a safe vehicle trajectory. In contrast, our approach
provides users a generic interface to verify their specific vehicle models equipped
with their own collision-avoidance functions. This feature is beneficial to finding
bugs in the early stage of designing new algorithms, or employing modified ones.

Although our work relies on the theorems proposed by Fan et al. [8], our work
is orthogonal to theirs, that is, their work can be used for the initial construction
of reference paths that avoid static obstacles, and our method can be used to
verify the dynamic collision-avoidance function of moving obstacles.

7 Conclusion and Future Work

In this paper, we propose a verification approach to formally verify reach-avoid
requirements of autonomous vehicles, assuming nonlinear trajectories of move-
ment. We overcome the difficulty of verifying nonlinear hybrid vehicle trajectories
by transforming the latter into discrete-time trajectories whose verification we
prove sufficient to guarantee meeting the requirements of the original nonlinear
ones. Moreover, we engage tool support (i.e., Uppaal STRATEGO) that pro-
vides users a generic interface to configure and verify their own vehicle models
equipped with different collision-avoidance algorithms. We show the abilities of
our verification method by model checking a state-of-the-art collision-avoidance
algorithm based on dipole flow fields, which discovers bugs not detectable by
simulation or testing.

Some interesting directions of future work include: (i) exploring ways of han-
dling complex vehicle models that represent more detailed kinematic features,
and (ii) statistical verification of the cases where the distances between dynamic
obstacles and AV are smaller than the tracking-error boundaries but collisions
do not necessarily occur.
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