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Abstract—In this paper, we report on a case study in an indus-
trial setting where code is generated from models, and, for var-
ious reasons, that generated code is then manually modified. To
enhance the maintainability of both models and code, consistency
between them is imperative. A first step towards establishing that
consistency is to identify the manual changes that were made
to the code after it was generated and deployed. Identifying
the delta is not straightforward and requires pre-processing
of the artifacts. The main mechanics driving our solution are
higher-order transformations, which make the implementation
scalable and robust to small changes in the modeling language.
We describe the specific industrial setting of the problem, as
well as the experiences and lessons learned from developing,
implementing, and validating our solution together with our
industrial partner.

Index Terms—Model-based development, round-trip engineer-
ing, higher-order transformations, domain-specific modeling lan-
guages, industrial case study.

I. INTRODUCTION

There, but what about back again? This question summa-
rizes the context of the problem studied in this paper. We study
a setting where currently, code is generated from a model, and
then for various reasons that code is manually modified. Those
code changes are currently not propagated back to the model,
causing the model and code to be inconsistent. Nevertheless,
for the maintainability of the model and code, both need to
be synchronized. Hence, the context of this work is how to
go back again, from the code to the model. We study the first
part of this challenge, to identify the manual changes that have
been made to generated code deployed on PLCs.

The context of this study is a concrete model-based de-
velopment (MBD) setting at a company operating in the
industrial automation domain. Our work is part of an industry-
academia collaboration in Software Center1, which involves
5 universities and 15 companies working together to accelerate
the adoption of novel approaches to Software Engineering. The
remainder of this paper reports on our collaboration with this
company and hence is specific to this concrete setting.

MBD can refer to many forms of software development,
but the common denominator is that they all involve mod-

1https://www.software-center.se

els as core development artifacts [1]. In one of its forms,
MBD brings the benefit of complete code generation from
models. In a one-way code generation process, changes to the
model have the consequence of the code being re-generated,
overwriting the existing one. There have been relaxations of
this principle to preserve manual changes to generated code
in future generations: notably, protecting regions to prevent
them being overwritten when code is re-generated is done in
(among others) the Epsilon Generation Language [2]. More
interestingly, code generation can be part of a round-trip
process, where not only code is generated from a model, but
also changes to that code are reflected in the model to keep
them consistent.

Model-code synchronization in the context of round-trip
engineering is a classic MBD problem [3]. Moreover, specifi-
cally in the industrial automation domain, back-propagation
of manual code changes to the model has been identified
as an open research problem [4]. Generated code can be
modified for several reasons, for example, to be completed (in
case of generated skeleton code), to be fixed after code-level
verification, or to be optimized (in cases where performance is
crucial). We consider another option, where the generated code
is modified to customize the software for managing variants
of the deployment domain. We study a setting in the industrial
automation domain where modifications are made to generated
code after it has been deployed on target PLC devices. In this
setting, consistency between the model and generated code is
lost and should be restored to improve the maintainability of
the software as well as the management of different software
variants.

A first step to restoring that consistency is identifying what
manual changes were made to the generated and deployed
code. It turns out to require a significant pre-processing of code
files to allow their comparison. We provide a generic solution
for this process based on higher-order transformations.

The remainder of this paper is organized as follows. We
provide a detailed description of the industrial setting and
the studied problem in Section II. We then discuss works
related to the problem domain in Section III. The developed
approach and implementation are then described in Section IV
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and Section V respectively. Experiences from evaluating the
approach in the industrial setting are included in Section VI.
A discussion of modeling lessons learned is included in
Section VII before the paper is concluded in Section VIII.

II. EXPERIENCED PROBLEM

Overall research goal:
• Our overall goal is to identify the manual changes

made to the generated code after deployment;
• The context of this change identification is to

eventually enable a model-code round-trip in the
studied industrial setting;

• To justify further investment in automating back-
propagation, a proof-of-concept is required for the
identification of changes made to deployed code.

We study an instance of the model-code round-trip problem
in an industrial setting. The current round-trip consists of
four steps: (i) creating (or changing) a model, (ii) generating
code from the model and deploying it on target devices, (iii)
making changes to the generated code, and (iv) reflecting
those changes in the model. In our setting, the first three steps
were in place, i.e. a model is created, code is automatically
generated from the model, the code is deployed on PLCs, and
then the code is manually changed. The fourth step is also
in place, but it is done manually and is therefore very labor-
intensive and error-prone. Therefore, we focus on providing
automated support for reflecting code changes to the model,
thereby synchronizing model and code.

Back-propagation of code changes to the model can be
separated into two phases, first identifying the code changes
and then reflecting those changes in the model too. In our
setting, significant engineering effort is required for the second
phase, and therefore, it is important to first study the feasibility
of the first phase. Therefore, we limit our scope in this first
step to providing engineers with an overview of changes
between the manually changed code and the model, thereby
facilitating the (for now) manual back-propagation of these
changes and later allowing for this back-propagation to be
further automated.

A. Industrial setting

Motivation summary:
• Engineers model the desired behavior using a

DSML in an in-house tool;
• Code generated from the model is complemented

with libraries to create executable programs;
• These executable programs are deployed on PLCs;
• After deployment, on-site engineers may customize

code to support particular product variants;
• To improve the software’s maintainability, code and

model must be synchronized;
• To do so, we provide a way to compare manual

changes to generated code with the model.

We worked in close collaboration with a global food and
packaging company in the industrial automation domain. We
describe a typical setting encountered in their development
of software for parts of packaging systems. In our setting,
models are created in a custom domain-specific modeling
language (DSML) to design programs for programmable logic
controllers (PLCs). The PLC code is IEC61131 [5]. The
DSML is developed in C# and is tightly integrated with an
in-house tool, which is used to create the models and also
includes functionality to generate PLC code from these mod-
els. Models describe, e.g., the behavior of control modules.
Several different PLC types can be targeted using a single
model, using different code generation logic for each targeted
PLC type. Although different models exist for different factory
layouts, the unique characteristics of each factory may (and
typically do) require on-site modifications to the PLC code.
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Fig. 1. Overview of industrial setting.

Figure 1 schematically shows the industrial setting under
study. Models are defined in the in-house tool and code is gen-
erated from them. The generated code 1 does not constitute
a complete executable program. Instead, it is supplemented
during deployment with data types and standard routines,
packed in common libraries to enable their re-use. Together,
the generated code and library code form programs that are
executed on targeted PLCs. In Figure 1, we show two examples
of PLCs, of potentially many PLCs of a few different types.
After deployment, on-site engineers may modify programs
directly on the PLCs, to customize programs for the specifics



of a particular factory. The running programs can be obtained
by exporting them from the PLCs, yielding exported files 2
and 3 . From now on, throughout the remainder of the paper,
we consider the example of the modified file 2 , since it
illustrates the workflow of interest: generating code, deploying
it on the PLC, and modifying it. We study how to identify the
manual changes made in 2 .

It is natural to wonder why the generated code is being
modified at all instead of the model being modified and the
code regenerated from it. The current company process is
to customize the systems on-demand, on-site, by engineers
directly on the PLCs, who do not have access to the models.
The engineers devising the general models do not have the re-
quired knowledge about the on-site characteristics that require
tweaks to the generated code. Conversely, on-site engineers do
not have access to the model to make the required changes.
Moreover, this approach is aiming not only to be used in future
settings but also to perform this differencing approach for
many systems currently operating in the field, and to which
already manual changes were made. Our approach needs to
integrate with this way of working.

To summarize, we classify the setting according to the
three-dimensional taxonomy for bidirectional transformation
by Diksin et al [6]. The overall setting can be classified as
organizational asymmetric, since we are interested in propagat-
ing changes only in one direction, from the code to the model.
In the current way of working, there is in total a single round-
trip. The model is created, the code is generated, the code
is modified, and then the model is updated to be an accurate
view of the code. The code is a refinement of the model, the
code contains at least all the information that is also in the
model (and more, since it is supplemented with libraries and
code generation artifacts). Hence, there is an info-asymmetry
between the model and code. Finally, the approach requires
incrementality, since we do not want to recreate a model from
scratch after changes to the code but instead want to propagate
the code changes to the model.

B. Identifying code changes

In our setting, changes are being made to the generated
and deployed code to customize the programs for specific
purposes. Such changes include, e.g., adding instructions,
renaming parameters, and configuring different values for
control modules. Changes to sequence logic, parameters, and
control modules in the PLC are the most relevant for back-
propagation, but we do not distinguish in our approach be-
tween them. Synchronizing code and model after these types
of changes is not trivial, for the following main reasons.

a) Differencing is challenging: We must first identify
what code changes have been made. A first challenge is
that directly calculating the difference between the model in
the in-house tool and changed code ( 2 in Figure 1) is not
possible due to their different syntax. To address the syntax
misalignment, an intermediate format can be chosen, where
the changed code 2 is compared to the unchanged (generated)
code 1 . Both these artifacts are XML files, albeit conforming

to different XML schemas (metamodels). Hence, comparing
these files is still not an easy task.

Consider an unmodified exported code file 3 from a PLC.
During code generation and deployment, the original 1 is
supplemented with additional information from the common
libraries, and any other changes induced by the PLC export.
Hence, the code file 3 eventually contains more information
than what was in the model, and a diff between 1 and 3
would be non-empty, even though we did not make any manual
modifications to the code. A comparison of file sizes (a line-
based comparison is rather meaningless given the completely
different structure of the files) shows that the PLC export can
be up to 2.5 times as large as the non-deployed generated code
(2.6MB vs 6.4MB). In terms of XML nodes, the difference is,
the PLC export file contains about 2.8 times as many nodes
(21283 vs 59551). So, comparing 1 and 3 directly does not
make sense since they are conforming to different metamodels.
Moreover, 3 does not even contain the manual changes made
to the PLC code, as present in 2 , yet. Hence, to obtain a
meaningful difference between the generated code 1 and
the exported code 2 or 3 , we must first prepare the files
such that both sides of the comparison are conforming to the
same XSD schema. Specifically, the exported files must be
filtered to avoid marking irrelevant information as manually
made changes.

We target an approach that allows comparison of 1 ,
generated code, and 2 , code exported from the PLC,
such that this comparison reveals only the manually
made modifications to the generated code.

b) Code-level and model-level must be bridged: A sec-
ond challenge is that, once differences are identified at the
code level, they must be lifted to the model level. This is
especially challenging due to the freedom of changes in the
code. Essentially, any change can be made in the generated
code, but not all changes may have sensible ways to be
reflected in the model, such as a re-ordering of instructions in
generated code, or added instructions to code imported from
the common libraries. In general, only those code changes that
are directly related to model elements can be propagated back
to the model.

Another challenge with lifting identified changes to model-
level is related to interpreting the calculated delta between the
code files. Since we only have access to the result of code
generation and PLC exports (that are made once in a while),
any information on how the manual changes are made is not
available. Hence, instantaneous synchronization approaches
cannot be applied. Instead, we compare the code before
and after deployment to the PLC and possibly undergone
modifications. Consequently, there is no way to distinguish
between e.g. a rename and a deletion-addition of an element.
Nevertheless, at the model level, this distinction can be very
relevant.

Moreover, several changes spread throughout the code might
be a single change on the model level. In a general case, it



is very challenging to group the changes on the code level to
represent meaningful changes at the model level. In our setting,
what can at most be obtained from the code is a fully qualified
path to each changed model element and the change that was
made to it. Therefore, we approach this issue by considering
such atomic code-level changes and mapping them each to
changes at the model level, thereby accepting that we may
miss more meaningful changes at the model level.

C. Motivation for automation

In our setting, the described back-propagation is currently
done manually. It takes a considerable effort to first identify
the changes in the code and then to implement them in the
model. Furthermore, this effort needs to be repeated for each
of several dozens of projects, and this number is expected
to only grow in the future (since old projects must still be
maintained). Automation of the back-propagation work would
thus save a significant amount of manual effort.

III. RELATED WORK

A. Various synchronization approaches

Famously, FUJABA provides a model-code-model round-
trip between UML and Java [7]. Also, further work has
provided an approach for the generation of IEC61131 code
from UML [8]. However, our work focuses not on UML but
rather on a round-trip between models in a DSML, integrated
with an in-house tool at the company.

We are establishing a reverse engineering process from
code to model. Several approaches have been created for
similar purposes, such as template-based reverse engineering
approaches [9]. Crucially, in our setting the code changes are
freely performed, they are not necessarily limited to specific
portions of the code, or particular modification actions.

In their position paper, Sendall and Küster remark already
that round-trip engineering is fundamentally about ensuring
consistency between the model and code, rather than just
transforming one artifact into the other [10]. In our case, we
in particular aim to synchronize model and code by bringing
changes from the code level to the model level. Given the
industrial setting, this synchronization is rather sporadic, and
hence continuous synchronization is not applicable. Instead,
we consider on-demand propagation of these changes, similar
to Antkiewicz and Czarnecki, who propose a category of
DSMLs that can intrinsically provide model round-trip support
due to essentially backward and forward model transforma-
tions [11]. As we will see in Section IV, our main effort is
not so much in transforming the code to the model, but rather
in cleaning the code such that it can be compared.

Giese and Wagner noted the similarity between model
synchronization and inconsistency resolution and utilize triple
graph grammars for establishing bidirectional transformations
in a model synchronization setting [12]. In our synchronization
approach, we aim to only consider the delta (changed part
of the code) for back-propagation, rather than instantiating a
complete (new) model from the code. We aim to reflect manual
code changes in the model so that later the code generated

from that model again contains those manual changes. This is
a different concept from preserving manual code changes upon
model evolutions and next code generations, as in e.g. [13].
The way of working is hence to first complete the round-
trip and then possibly make changes to the model before re-
deploying the code.

As we will discuss in Section IV, we base our approach
on higher-order model transformations implemented in XSLT.
Two other approaches using XSLT are created are mentioned
in an overview paper of usages of higher-order model trans-
formations [14]. Most approaches in that paper (from 2009)
are based on the ATL transformation language.

Other research has focused on reverse engineering for
related efforts. For example, Fleurey et al. [15] migrate a
legacy codebase to a new language. Later, MoDisco was
developed as a more general framework for that type of
reverse engineering [16]. There are many efforts related to
obtaining diagrams from code, e.g. reverse engineering a UML
model from Java code. Such approaches have been adopted
into commercial tools now too, e.g. IBM Rational Rhapsody
and Softeam Modelio provide reverse engineering and model-
code consistency features respectively. As we have discussed,
the application domain of our work requires us to devise a
different approach than these available ones.

B. Industrial case studies

The synchronization of manual changes to the generated
code with the input model has been rarely addressed in the
industrial automation domain and generation of IEC 61131-3
code [4]. Consistency management scenarios like ours have
been studied in other domains too, many of them UML-
based [17].

Several of these studies are related to inter-model consis-
tency management, often utilizing triple-graph grammars to
express bidirectional transformations between models [18].
Another study focuses on preserving extra-functional proper-
ties in model-code round-trips and evaluates the approach in
an industrial setting [19]. Typically different industrial settings
require a different focus of the round-trip approach. Ciccozzi
et al. report on lessons learned in a round-trip setting with
the focus of improving models and regenerating optimized
code based on code execution monitoring [20]. In our setting,
the focus of the round-trip is on restoring the consistency
between the model and executed code. Similar challenges can
be noted in metamodel-model co-evolution scenarios. Durisic
et al. perform an industrial case study of an evolving domain-
specific metamodel and its impact on related development
artifacts [21].

IV. DEVELOPED APPROACH

In this section, we detail our method to identify differ-
ences between the generated code and the manually changed
deployed code ( 1 and 2 respectively in Figure 1). The
first subsection details the assumptions derived from our
industrial setting. The second subsection details the steps of



our approach. Our implementation and examples are included
in Section V.

A. Assumptions and starting points

In the setting, the modeling tool and code generator already
exist, both implemented in C#. Now, at a later time, it is
decided to investigate the possibilities of reflecting the manual
code changes in the models. To avoid duplicating the existing
code generation functionality, we decided to not aim for a
bidirectional transformation but instead focus on an approach
that can immediately be applied within the existing way of
working. While the eventual goal is to synchronize the model
and code, an important side-effect of this synchronization
should be for the company to get insight into what manual
changes have been performed, especially those changes that
were made a long time ago. Therefore, we do not aim to
instantiate the model from the code but instead will consider
an approach to identifying the changes by comparing the
generated and deployed code.

We aim for an approach that is as generic as possible within
the industrial setting as described in Section II. The approach
needs to work for various types of targeted PLCs and needs to
anticipate possible future evolution of the DSML. To preserve
the genericity, we avoid assumptions about the DSML as much
as possible. We do however base our approach on the syntac-
tical format of the generated code and exported programs, i.e.,
XML. This is a pragmatic choice and inspired the direction of
our implementation, but it is not necessary from a conceptual
point of view. As described later, the mechanism to allow
for comparisons of generated and manually changed code can
in principle be applied to code with other textual syntactical
representations.

To better classify the setting and type of solution, we refer
to the framework by Anjorin et al. [22]. Our application
scenario is initial-state-based, since we are comparing two
states of artifacts, we do not have a delta as input. Within
this scenario, we aim for a backward consistency restoration,
that can propagate the manual changes from the code back to
the model by first identifying the delta that was applied to the
code.

B. Proposed solution

The task at hand is to compare the generated code from
the model, and a version of this code exported from the
PLC, containing possible manual modifications. We aim to
identify the manual modifications and not any other differ-
ences between these artifacts introduced during the process
of code generation, deployment, and exporting of the files.
This means that before any comparison between these two
files, some filtering is required to ensure that we are indeed
comparing models conforming to the same metamodel, here,
the same XSD schema. Moreover, in addition to manual
modifications, there are other artifacts that are not relevant
for back-propagation because their source is from the code
generator or from libraries, this information should also be
filtered before comparison of the files.

A schematic overview of the mechanisms we employ to
achieve this filtering and comparison is shown in Figure 2. Our
overall plan consists of the three steps A, B, and C. Step A
(comprised of A 1 and A 2) and Step B (comprised of B1, B2,
and B3) prune from the generated code 1 and the manually
modified code 2 all those elements that are not relevant for
the differencing at the model level. For consistency, these 1
and 2 in Figure 2 correspond to 1 and 2 respectively as
in Figure 1. Step C compares the pruned files to identify the
differences between the two files, resulting in a delta ∆ . The
changes listed in this delta should be propagated back.
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Fig. 2. Overview of our approach for comparing generated code 1© and
manually changed code as exported from the PLC 2©, by first filtering 2© to
obtain 2′′© such that it conforms to the same XML schema as 1© and therefore
can be compared.

a) Steps A1 and A2: Prune common libraries: To express
the generated code 1 and the manually modified code 2
in the same form, the first step is to remove from 2 all
information added by the common libraries during loading of
the program onto the PLC.

In Step A1, we propose to utilize a first higher-order



transformation (HoT), i.e., a transformation that itself outputs
a transformation. The choice of an HoT for this step is based
on the flexible formats of 1 and 2 . The exact formats
can differ across different PLC types, and even for the same
PLC type, over time there can be different formats of 1 .
Therefore we did not want to assume too much about the
metamodels and instead rely on the model instances to derive
the required filtering mechanism. A survey on HoTs classifies
our type of HoT as transformation synthesis since we output a
model transformation and the input to the HoT is not a model
transformation [14].

HoT1 is applied on a file containing the common libraries in
the same XML format as encountered in the code files. Given
these inputs, a transformation can be created that keeps all
XML nodes except those occurring in the common libraries.
The result is a transformation, here referred to as pruner, p1.
Pruner p1 is used as input for Step A2, where it is applied on
2 , to obtain a first pruned version of this file, 2′ .

b) Steps B1, B2, and B3: Prune PLC-export: In addition
to pruning away information added by the common libraries,
pruning of PLC-export-specific elements is required for 2 .
As a general way of finding out what elements should be kept
and which should not, we base our pruner on the generated
code 1 . We reason that any element of interest to be back-
propagated to the model must at least be present in 1 . And
so, if any new type of element occurs in 2 , then that element
type may not be known in the model and should therefore
be pruned because it can not be back-propagated. There is a
small risk here that a small or incomplete program can not be
extended because it does not contain any of the to-be-added
types, but in practice, this does not happen. Any deployed code
on the PLC includes the complete set of types of elements as
known in the model. To summarize, we assert that all XML
elements that do not fit the schema of XML file 1 are not
interesting for back-propagation to the model.

Therefore, we start a three-step process (B1, B2, B3) to prune
away the PLC-export-specific information from 2 . In Step B1,
we first infer the schema of the XML file 1 , which is exported
to an intermediate file S . In Step B2, we use a second HoT,
Hot2, and apply it on the Schema S . This HoT2 is designed to,
given an XML schema as input, output a transformation that
preserves all concepts as defined in that schema, and prunes
away all additional XML elements, tags, or attributes. The
result of Step B2 is a second pruner, Pruner P2, that removes
from any input XML all elements not fitting S . Step B3

consists of applying Pruner P2 to 2′ , to obtain 2′′ . The latter
is an XML document from which all additional information
related to code generation, PLC deployment, and PLC export
has been pruned away.

c) Step C: Compare and diff: Now, we have removed all
elements from 2 that were due to libraries and otherwise do
not conform to the schema s and have obtained 2′′ which
is in the same format as 1 (they conform to the same XSD
schema, allowing their comparison). When we compare these
two files 1 and 2′′ , we expect to detect only those changes

that were made manually to the deployed code.
This comparison is done on XML files and hence a line-

based comparison is inadequate. Merely a line-based diff could
highlight changes to children and attribute orders, inserted
comments, and other irrelevant syntactical changes that do not
change the semantics of each of the programs. To find changes
related to the semantic difference between the files, the applied
differencing mechanism must be able to ignore these irrelevant
changes, in other words, it should be XML-aware.

After the comparison, we export the detected differences in
two ways. The first is an HTML file providing a side-by-side
overview of the files, highlighting their differences. This file
is primarily useful for manual inspection of the result. The
second is an XML file defining the change operations as
applied on the XML elements, which is particularly useful as a
summary of the changes to be back-propagated. Furthermore,
the XML format of this file allows for it to be parsed and
interpreted by the in-house tool for eventual automation of the
back-propagation. The result of the comparison is indicated
as ∆ in Figure 2.

Approach summary:
• Comparing the two code files requires superfluous

information to be pruned from the deployed code;
• We provide an approach relying on higher-order

transformations that generate these pruners based
on the structure of the generated code, and of the
added libraries;

• Once in the same format, an XML-aware diff is
performed to find the differences between the code
files, which are the manual modifications made to
the generated code.

V. IMPLEMENTATION

In this section, we provide details on the implementation
of all the steps introduced in Section IV. Furthermore, we
highlight cases where the implementation deviates from the
proposed method.

All transformations are implemented in XSLT [23]. XSLT
is a language for the manipulation of XML documents. Since
XSLT is itself conforming to XML, the output of an XSLT
transformation can also be an XSLT transformation, hence it
can be used to create HoTs. Besides XSLT, the rest of the
implementation is done in C# to align with the codebase
already in place at the company. Furthermore, implement-
ing in C# allows the use of Microsoft System.Xml and
XmlDiffView libraries for the eventual comparison of the
pruned files. Finally, staying very close to the XML repre-
sentation allows us to deal with potentially not well-formed
files.

To illustrate the implementation in action, we run it on two
files, provided by the company, that correspond to 1 and 2
in Figure 2. The sizes of these files are 7.8MB and 8.8MB.



Before any pruning actions, 1 contains 68k XML nodes and
2 contains 88k XML nodes (29% more than 1 ).

a) Steps A1 and A2: Prune common libraries: We started
our implementation of the library pruner by creating an HoT.
The input to this HoT is an XML export of the library and
the output is a transformation that copies all nodes, except
for those that are in the library export, in an XML file. This
conceptually works fine for matching all library elements,
however, in practice, we noticed some shortcomings that
required manual modifications to the generated transformation.

The structure of the library pruner transformation is as
follows. For each type of element that should be pruned, we
create an xsl:template that ignores matching elements.
For example:
<x s l : t e m p l a t e match =” Pa th / To / F i l t e r e d / Element ” />

The result of applying this template is that all matched
elements are pruned because they are not copied to the output.

The opposite can also be applied, a template can match all
elements that should be kept and then in its body simply copy
those elements. For example:
<x s l : t e m p l a t e match =” Pa th / To / Kept / Element”>

<x s l : apply − t e m p l a t e s s e l e c t =”@* | node ( ) ”/>
</ x s l : t e m p l a t e>

Here, all matched elements are copied rather than pruned.
We incrementally improved the generated transformation

by identifying all elements that should be pruned. The im-
plementation thus deviates from the proposed method and
is less generic than we had hoped. A clear definition of
which elements are introduced during code generation and
PLC export could help in separating again the pruners, leading
to a more generic solution.

Examples of pruned elements are those starting with certain
prefixes, that indicate their origin from the shared libraries. In
addition, changes to elements that did not originate from the
libraries, but rather from exporting code from the PLC, are
not considered for back-propagation either. For example, we
pruned all trailing “.0” values from numbers. The third cate-
gory of elements was decided to be pruned after inspections of
early diffs revealed them as useless, such as empty descriptions
of elements.

A final interesting detail to mention is that, before running
the transformation described above, we run the identity trans-
formation on all XML files, to get rid of CDATA tags, which
do not contain any XML.

After Steps A1 and A2, the size of the PLC export file has
decreased from 88k XML nodes to 81k XML nodes. Still,
there are many nodes left to prune that are related to the PLC
export itself.

b) Steps B1, B2, and B3: Prune PLC-export: For Step B1,
we use InferSchema from System.Xml.Schema. If
the code is well-formed, the function returns a single XSD
containing the schema S of the XML file 1 . This schema
is then used as input for Step B2.

Also for this purpose, we created an HoT; the aim is to
transform the XML file as exported from the PLC, such that

it conforms to the same XSD schema as the XML exported
from the in-house tool. The HoT creates an xsl:template
for each encountered element in the input schema S . As
an identifier to match these templates, it constructs the fully
qualified name (FQN) of each XML element in the schema. In
that way, there cannot be any accidental duplicate matches for
nodes with the same name in different places of the hierarchy.
Listing 1 shows a snippet of this pattern. The HoT also makes
sure to include all attributes, children nodes, and values.
<x s l : t e m p l a t e match =” xs : e l e m e n t”>

<!−− t h e ” a x s l ” t a g i s used t o o u t p u t an ” x s l ” tag ,
a l l o w i n g f o r t h e t r a n s f o r m a t i o n t o i t s e l f o u t p u t a
t r a n s f o r m a t i o n −−>

<a x s l : t e m p l a t e>
<!−− Th i s c r e a t e s a ” f u l l y q u a l i f i e d name” of a l l

a n c e s t o r xs : e l e m e n t names , s e p a r a t e d wi th ’ / ’ ,
f o l l o w e d by a ’ / ’ and t h e n t h e name of t h e
c u r r e n t node . −−>

<x s l : v a r i a b l e name=” a n c e s t o r s ” s e l e c t =” a n c e s t o r : : xs
: e l e m e n t ”/>

<!−− fqn w i l l c o n t a i n t h e a n c e s t o r names , s e p a r a t e d
by , and e nd in g wi th a ’ / ’ −−>

<x s l : v a r i a b l e name=” fqn”>
<x s l : f o r − e a c h s e l e c t =” $ a n c e s t o r s ”>

<x s l : v a l u e − o f s e l e c t =”@name”/> /<!−− Comment
p r e v e n t s l i n e b r e a k s i n o u t p u t −−>

</ x s l : f o r−each>
</ x s l : v a r i a b l e>
<!−− Appending t h e name of t h i s node i t s e l f t o

f i n a l i z e t h e match a t t r i b u t e −−>
<x s l : a t t r i b u t e name=” match”>

<x s l : v a l u e − o f s e l e c t =” $fqn”/><x s l : v a l u e − o f
s e l e c t =”@name”/>

</ x s l : a t t r i b u t e >

Listing 1. Snippet of HoT, creating xsl:template for each element in
input schema

The HoT is rather generic, but it is inspired by the structure
of the schemas present in our industrial setting. For example,
it assumes a single tree structure for each XML file. Further-
more, it copies the non-tag content between tags only if the
element does not contain any children. This assumption is
derived from studying several examples and may not hold in
the general case.

The overall implementation is very compact due to the
powerful expressions of HoTs. Less than one hundred lines
of XSL were needed to express the HoT implementing the
second pruner. Another powerful benefit of this HoT is that
it likely will not need to be updated when the DSML in the
in-house tool evolves.

After Steps B1, B2, and B3, are carried out, the size of the
PLC export file has decreased from 81k to 73k XML nodes.
Upon manual inspection, it became clear that more empty
nodes could still be pruned away. These were not pruned
in earlier runs of the Steps A1 and A2, because the nodes
were emptied during Step B3. Therefore, we extended our
implementation to prune this file further by applying again
the pruner from the Steps A1 and A2. The result is a further
reduction of the XML file from 73k to 68k XML nodes.

c) Step C: Compare and diff: In this step, we rely
on Microsoft’s XMLDiffView library. For calculating the
differences between the two XML files, we select various
options to ensure finding only relevant semantic changes
and exclude purely line-based changes. Notably, we ignore



Fig. 3. Side-by-side display of XML documents with highlighted differences.
Color legend: yellow indicates a change, red a deleted element, and green an
added element.

the order among children XML nodes. Note that in some
situations, the children’s order is relevant, for example in
the case of XML nodes representing rungs in ladder logic.
However, we also have a sequential numbering of those rungs
in our code, so we can rely on those for deriving the ordering
and ignore their actual order of appearance in the XML file.
We also ignore some other XML artifacts that are irrelevant
for our comparison, in particular comments, white spaces,
namespaces, and prefixes.

We create the output in two different formats, due to the
XMLDiffView library. The first is a side-by-side overview of
the compared XML files, in which changes are highlighted in
various colors to indicate the action that caused the difference
(change, add, delete, move). We added a style-sheet to the
generated HTML to enhance the viewing ease, see Figure 3
for an example snippet of the resulting difference view. Un-
derstandably, the engineers responsible for back-propagating
the changes typically prefer not to read XML, but to be
presented with a more human-readable list of the changed
elements. Such a list can be obtained by parsing the second
difference view created, which is an XML list containing only
the changed elements. A snippet of this view is shown in
Listing 2, depicting the file portion as in Figure 3. While the
size of the complete HTML file grows considerably (66.6MB)
due to it containing the entire program twice, together with
markup information, the XML list of changed elements is
smaller: 245KB. The total number of added XML nodes was
1k, whereas about 2.8k of XML nodes were changed. Note that
this difference view creates an added node for each added child
element. Hence, the example addition in Figure 3 is denoted as
four separate additions in the XML list, one for each attribute
and one for the Tag itself.

While the HTML file is mostly useful for checking the
results focusing on human readability, the XML list is aimed at
future work on automating back propagation more. To lift the
identified code-level changes to the model-level is relevant for
manual inspection, but less so for automated back-propagation.
An automated solution benefits from the explicated hierarchy
in this difference view. It can translate the code changes one-
by-one into actions to be done at model level, using the
information provided by the full path to each node.

<PLCProgram SchemaRevis ion =” 1 . 0 ”
S o f t w a r e R e v i s i o n =” xd ChangeFrom ( ’ 2 0 . 0 1 ’ ) To ( ’ 3 2 . 0 1 ’ ) ”
TargetName=” Con t ro lModu le s ”
Targe tType =” Program ”
Targe tSubType =”RLL”
C o n t a i n s C o n t e x t =” t r u e ”

Owner=” xd ChangeFrom ( ’ In − house t o o l ’ ) To ( ’ a PLC ’ ) ”
E x p o r t D a t e =” xd ChangeFrom ( ’2021 −02 −01 04 : 4 2 : 4 2 ’ ) To ( ’Wed

Feb 03 15 : 3 2 : 2 0 2021 ’ ) ”
E x p o r t O p t i o n s =” xd ChangeFrom ( ’ R e f e r e n c e s D e c o r a t e d D a t a

C o n t e x t Dependenc ie s Al lP ro jDocTrans ’ ) To ( ’
R e f e r e n c e s NoRawData L5KData D e c o r a t e d D a t a C o n t e x t
Dependenc ie s F o r c e P r o t e c t e d E n c o d i n g Al lP ro jDocTrans
’ ) ”>

<C o n t r o l l e r Use=” C o n t e x t ”
Name=” xd ChangeFrom ( ’ PLCx ’ ) To ( ’ BasePLC ’ ) ”>
<Tags>

<xd = ’Add ( node ) ’ Tag DataType=”BOOL”
Name=” C01V60V56G6015 In FwdFbIO ”
TagType=” Base ” />

Listing 2. Snippet of XML file containing modified nodes, contains same
content as Figure 3

Implementation summary:
• Following our proposed approach, we constructed

higher-order transformations to generate pruners;
• To deal with specifics of the problem, we manually

customized one of the generated pruners;
• We perform an XML-aware diff and obtain two

views, one meant for human inspection and one
meant to be parsed by future tooling to automate
back-propagation.

VI. ITERATIVE VALIDATION

The collaboration on this research project was performed
in iterations, allowing for the required agility of adjusting the
solution to the real industrial needs. Hence, we have iteratively
improved our solution based on our experiences during the
development of the approach, its implementation, and testing.

To assess the precision and recall of the pruner with respect
to the required changes to be identified, manual checks were
performed by the industrial partner. We found that the HTML
difference view helped for this purpose, particularly after
introducing some small improvements such as limiting the
page width to the screen, to avoid horizontal scrolling. Future
enhancements of the human readability of the HTML view
include reducing the marked differences to the minimum
scope, marking e.g. not an entire text node as a difference,
but limiting the marking to only the specific characters that
are different. Moreover, a mini-map on the page will make it
is easier to navigate to highlighted differences.

The point of the iterative and manual validations is that we
need to be certain that both the precision (does the pruner
only filter out things that should be filtered out) and the
recall (does the pruner filter out everything that should be
filtered out) must be high for the approach to be eventually
useful for automated back-propagation. False positives may
not be possible to be propagated back to the model (you might
identify changes in the code that do not have a counterpart in
the model), but false negatives could be much more harmful
since the model is expected to be synchronized with the code



after back-propagation. If the identified changes missed some
manual changes, then these are not represented in the model
and therefore at risk of being lost. Our validation effort is
therefore aimed at iteratively including more pruning elements
and fine-tuning the pruner accordingly.

Each iteration of the implementation was followed by a test
run on a controlled data sample (i.e. a piece of code with pur-
posefully made changes). We have performed these iterations
until a predefined set of elements was pruned correctly (a set
of elements to be back-propagated was selected beforehand to
ensure a well-scoped proof-of-concept implementation).

In summary, the current version of the pruner removes all
required elements of this initial set and misses no changes
that had to be identified. The main challenge for the algorithm
is in calculating the differences. The XML-aware diff tooling
has difficulties in discerning between changes versus addition-
deletion of elements. In a general case, no diff algorithm can
distinguish these two cases, since they are equivalent when
looking at the before-state and the after-state of a file. In
our setting, this state-based approach is the best we can do,
since there is no record of the operations performed during the
manual code changes. For back-propagation to the model, we
focus on reflecting the differences in the model by considering
atomic code-level changes.

A. Performance evaluation

We tested our implementation on files that were provided by
the company and were qualified by them as “small examples”.
The size of these files is in the order of 200k lines of XML,
with file size 8.5MB. When two of these files are used as
input, the solution produces an overview of the differences
in the order of seconds. Since the approach is only executed
sporadically, the run-time is not that important as in cases
where models need to be synchronized continuously. The
resulting HTML overview file can grow rather large due to it
containing both input files and additional markup information.
In our tests, the resulting HTML file was 66MB, which modern
web browsers can load in a few seconds. Note that the resulting
HTML file is not the main artifact to be obtained from the
pruning step, it is merely meant as a means for manual
inspection of the result. Eventually, the much more condensed
XML list of changes will be used as input for the back-
propagation (either manually or automatically).

Take-away message:
Our implementation correctly pruned the provided files
in an acceptable time. The exact identification of dif-
ferences remains a challenge for human inspection, but
not for automatic back-propagation.

VII. DISCUSSION

Our approach is guided by our industrial setting. When
starting from scratch, one might devise a completely different
approach to achieve back-propagation. We found that when
working in industrial settings, it is more important to devise
an approach that is aimed at improving a currently in place

state-of-practice, rather than describing a perfect solution for
a theoretical setting.

A. Is our solution generic?

We do not initially aim at generalizing the approach to other
industrial settings, even though that might be possible. Instead,
we consider how generic it is, in terms of its robustness
against changes in the DSML and internal libraries. The
robustness provided by our HoTs may be limited. In particular,
as elaborated in Section V, the implementation does depend
on the DSML definition, particularly because of the added
special cases in the pruner. Nevertheless, changes to the DSML
such as added or renamed attributes can be reflected with
minimal modifications to the current pruner implementation.
In contrast, larger changes to the DSML that change its
internal structure, e.g. newly introduced top-level nodes (think:
instructions, datatypes, etc.), would require changes to the
HoTs that generate the pruners.

Another argument to call our approach generic is that we
rely on the XML syntax for the programs, but not more.
This allows us to run the approach with very little input
and generate the pruners using higher-order transformations.
Furthermore, since we eventually diff also based on this
XML, we can be sure that the result is meaningful as long as
both XMLs conform to the same schema, which is ensured
by the pruners.

Take-away message:
Our approach is robust to small changes in the DSML
and libraries, due to the usage of higher-order transfor-
mations to generate the pruners.

B. Future work

In this paper, we have limited our scope to identifying the
differences between the generated and modified code, such
that these differences can be manually back-propagated to the
model. In future stages of this project, we will work towards
automatic back-propagation. This requires interfacing with the
existing in-house modeling tool to effectively automate the
back-propagation process. In its architecture, it intended to
cover only the code generation direction, not the other way
around. Given the possibly significant required engineering
effort for the modifications, it was important to start with a
proof-of-concept implementation of the part of the round-trip
presented in this paper. Our current results are being used
as input for an investigation into modifying the tooling for
allowing back-propagation.

For the back-propagation implementation, the first aspect to
consider is the need to group code-level changes into model-
level changes. For domain experts, it might be immediately
obvious that two nearby changes as belonging to the same
model element or not. Until now, we have approached this by
considering atomic changes for back-propagation. Specifically,
each identified change in the XML would be mapped to a



single change at the model level. The next step in the col-
laboration is to study the possibilities for a back-propagation
mechanism given the identified changes from the approach
presented in this paper.

Take-away message:
After seeing the developed proof-of-concept implemen-
tation for the comparison part of the round-trip, the
company will move on with the next stage of the project
and invest in the engineering effort required to allow
automatic back-propagation of the identified changes.

C. Modeling-related lessons learned

HoTs proved to be a very powerful means in this setting
to derive the needed transformations for pruning the input
files. Nevertheless, to deal with the specifics of the setting,
in the end, some customizations were needed for one of the
transformations.

Our approach would probably be different in a different
setting, but the type of research collaboration brings with it
the need to adapt to many practical issues. In particular, we
have in this paper considered a DSML and a model in that
language as expressed in the in-house tool. Moreover, we have
considered the code generator as a model transformation. In
practice, the borders between these artifacts are less strict. It
is for example not so easy to separately consider the DSML,
in-house tool, and code generator since they are all integrated
into the same application.

A final lesson learned was related to the effort of devising
a partial solution versus the expected effort of a complete
solution. Currently, we have implemented a solution that
presents the identified changes to the engineers. This is
the first step towards eventually establishing automated
back-propagation. Since the engineering effort involved in
this step is limited as compared to the complete automation
of back-propagation, it was a good first step to quickly bring
value to the company.

Take-away message:
Our approach is guided by the existing implementation,
in which the DSML and code generator are tightly
coupled in an existing in-house tool. Migrating in this
setting to allow for bidirectionality required consider-
able rework.

VIII. CONCLUSION

In this paper, we reported on our experiences towards
establishing round-trip engineering in an industrial setting. The
described approach builds on top of existing infrastructure in
place at the industrial partner and is, therefore, more about
migrating to the new solution rather than inventing a perfect
solution on a blank canvas. We have devised a general method,
then implemented a specific instance of it and shared some
experiences from using it in industry. Findings from applying

our method in an industrial setting indicate the usefulness and
usability of the approach. Our solution relies on higher-order
transformations, which are a powerful modeling concept. We
have however also encountered some challenges, in particular
related to instantiating the general method in our particular
industrial setting, leading to some modeling lessons learned.
In particular, it is important to realize that this problem can
be described as a modeling problem, but in practice involves
much less neatly separated artifacts and manipulations of those
artifacts.
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M. Witte, “https://doi.org/10.22152/programming-journal.org/2018/2/7
Description languages for consistency management scenarios based
on examples from the industry automation domain,” CoRR, vol.
abs/1803.10831, 2018. [Online]. Available: http://arxiv.org/abs/1803.
10831

[19] F. Ciccozzi, A. Cicchetti, and M. Sjödin, “https://doi.org/10.1016/
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