
Installation Order in Automatic Fabrication of
Reinforcement Rebar Cages

Johan Relefors1, Mahdi Momeni2, Lars Pettersson3, Alessandro V. Papadopoulos2, and Thomas Nolte2

1Solving Robotics Sweden AB, Västerås, Sweden
2Mälardalen University, Västerås, Sweden

3Skanska Sweden AB, Stockholm, Sweden

Abstract—Despite the significant development of automation
in the manufacturing industry, the construction industry has
not yet comparably gained much from automated processes.
Fabrication of reinforcement rebar cages is one good example
where automation has a limited application. Several challenges
have to be tackled to introduce and take advantage of the auto-
matic fabrication of reinforcement rebar cages. One important
challenge is how and in what order the rebars should be installed
one after another so that the fabrication of a reinforcement rebar
cage is feasible. In this paper, we present our ongoing work
towards proposing a method that gives a solution to finding the
installation order of rebars.

I. INTRODUCTION

The manufacturing industry has gained a lot of benefits
through employment and the application of automation and
robots in their production lines. The majority of the robots
are used in the automotive, electronics, and metal machinery
industries1. While the interest in employment and application
of robots in the manufacturing industry is increasing on a daily
basis, the construction industry has not yet witnessed major
applications of robots to automate construction. Even though
there are initiatives towards automation in construction domain
both in research [1]–[5], and in industry, e.g., Built robotics2,
MX3D3, IronBot or TyBot4, the overall trend has not yet been
properly reflected in the construction industry. One reason for
the lack of reflection could be the difference(s) between the
construction industry and the manufacturing industry which
makes the employment of robots in the construction industry,
which are perhaps expected to be on-site, a challenging task.
One key difference between the construction industry and
manufacturing industry is that construction projects are known
to be one of a kind. As a matter of fact, automated solu-
tions require special and careful considerations. A particular
example, which is also of interest in this research, would be
the fabrication of reinforcement rebar cages which is done
manually even to this date. In addition to the required time,
such manual work is often strenuous which can also happen
under hazardous and harsh conditions, which in return is

This work was supported by the Knowledge Foundation with the Automa-
tion Region Research Academy (ARRAY) and SBUF.

1https://ifr.org/
2https://www.builtrobotics.com/
3https://mx3d.com/
4https://www.constructionrobots.com/

also reflected in a high risk for work accidents. The above-
mentioned, as well as other issues, create a huge potential
need for utilizing automation techniques in the construction
industry, with a promise for increased safety and efficiency,
as well as reduced costs.

In this work, we address the automated fabrication of
reinforcement rebar cages. In particular, we consider proposing
a solution for the problem of finding an installation order by
which the rebars can be placed one after another so that the
rebar cage is eventually fabricated.

II. PROBLEM STATEMENT AND MISSION

The overall idea of the robotic fabrication of reinforcement
rebar cages, including simulation, a proof-of-concept installa-
tion, and a description of some of the challenges ahead, was
introduced in [1]. The idea is to automate the pre-fabrication of
rebar cages. Upon completion, each rebar cage is transported
to its final position before pouring concrete. Importantly in the
context of this work, rebar cages are often one of a kind

Part of automating the generation of programs for the
fabrication of rebar cages is to automate the process of finding
an installation order for the rebars in a given rebar cage. There
is also another important related part which is to answer the
question of whether there exists a valid installation order for a
given rebar cage. A fast method for either finding or showing
the existence of an installation order would be most helpful
when designing rebar cages. In this paper, we focus on our
ongoing work on the question of finding an installation order.
Or stated differently, the problem we wish to solve is:

Problem. Given a 3D model of a reinforcement rebar cage,
find an order in which the rebars should be installed in order
to produce the rebar cage using the setup described in [1].

When examining this problem we are working under the
following assumptions:

Assumption 1. The rebars are rigid enough, i.e., they do not
deflect or twist because of their weight.

Assumption 2. The rebars are not deformed during the
process before/after the cut and bend machine, i.e., their
theoretical geometry is the same as their actual geometry.

Assumption 3. While lifting rebars out of the cage, two
movements are allowed for the rebar: a straight line on



Fig. 1. Gantry robot systems

a horizontal plane or along the vertical axis. Horizontal
movements could be parallel to either the x- or y-axis of the
reference frame while the vertical movement is parallel to the
z-axis of the reference frame.

The aim of this paper is then to outline our ongoing efforts
and intention to tackle the problem of how to automatically
generate an ordering of rebars which enables the robots to
fabricate a cage by mounting and tying the rebars of different
types, such as “A”, “B”, and “C”-bars, one after another.
The installation order must allow for collision-free paths and
the cage needs to be stable throughout the entire installation
process, as well as when moving the rebar cage to its final
location.

The problem of finding a valid installation order is a
task planning problem. The input to the problem is then an
unordered set of rebars Rin = {A,B,C, . . .} where each rebar
has geometric information of shape, position, and orientation
associated with it. The desired output is an ordered set Rout

giving the installation order of all the rebars in Rin together
with additional generated information on where to grip the
rebars and where to tie the rebars into the already installed
rebars. Note that we are not currently looking for an ordering
which is optimal under some criteria, but rather an ordering
which is feasible.

Another way of looking at the problem is to assign each
rebar to a node in a graph. And letting the directed edges
in the graph correspond to an ordering relation. Any edge in
the graph might then be allowed or not allowed. This view
highlights an interesting feature of the problem which is that
the same edge can be allowed or not allowed depending on
which of the nodes have already been visited. As an example, a
rebar A might be blocking rebar B but rebar C might not block
either of them. In this case, the ordering CAB is not allowed
while the ordering BCA is allowed. Note that both orderings
contain the sub-ordering CA which would correspond to an
edge in the graph. This edge is allowed if B has already been
placed but otherwise it is not allowed. This means that it is
not possible to simply map the edges of the graph and then
find a way through the graph.

From the discussion in the previous paragraph, we conclude

that in order to solve the ordering problem we need the ability
to determine whether a given state of the cage allows for a par-
ticular rebar to be installed. Given that rebars {A,B,C, . . .}
have been placed, rebars {a, b, c, . . .} have yet to be placed,
and we want to determine whether rebar a can be placed we
need to determine the function

f(A,B,C, . . . , a, b, c, . . . , a) =

{
true if a can be placed,
false otherwise.

(1)

One method for determining the output of f for installing
a rebar in a given situation is to try to compute a path for
the rebar, and then check that the rebar is not blocking the
installation of any other rebars which are yet to be installed.
However, producing a path is time-consuming and, in a case
where there are many rebars to install, the combinatorics of
the problem will lead to many evaluations of f .

The naive method described above will most likely not be
fast enough for use in the process of designing rebar cages.
Reducing the time that it takes to compute f , or reducing the
number of times that f needs to be computed, are two ways
of speeding up the computation of a valid installation order.
In this paper, we propose two methods that we are working
on evaluating.

III. METHODOLOGY

In the ideal case, f only needs to be evaluated as many
times as there are rebars in the cage, completely removing
the combinatorial aspect of the problem. To find such an
algorithm, we would need to formulate precedence constraints
on which rebars could potentially be installed in a partially
assembled cage. Note that for a given partially assembled
cage, there could be many rebars that are possible to install,
introducing some arbitrariness in the installation order.

If an algorithm that never needs to evaluate f to false is not
found, the number of evaluations of f should be minimized.
In this section, we briefly investigate how to compute an
installation order by starting with no rebars installed, and
moving forward until completion, as well as starting from a
fully built cage, and disassembling it until no rebar is present,
and using the reversed disassembly order. Furthermore, since
it is most likely that f will sometimes evaluate to false, we
should aim for computing f in a way that terminates early
in the process when a rebar cannot be installed. Therefore,
before turning to the ideas for rebar installation order, we first
briefly look at computing f and how these ideas can help in
reducing the combinatorial nature of the problem.

A. Computing f

At least for now, the only way that we can guarantee that a
rebar can be installed is to compute paths for placing and tying
the rebar in the cage. However, many ways of determining
when a rebar cannot be installed exist.

When computing the installation path we start with the
rebar in its position in the cage and try to remove it with the
constraint that the rebar should be possible to remove using a



simple set of movements, see Assumption 3. This means that
one way of figuring out whether a rebar can be installed or
not is to check whether the simple movements are enough for
removing the rebar from the cage. Below we list a few ways
that installation of a rebar can fail:

• The rebar cannot be removed using simple movements of
Assumption 3.

• The rebar is blocking the path of the remaining yet-to-
be-installed rebars in an unavoidable obstacle.

• There are not enough valid grip locations on the rebar
(considering only the tools and not the gantry robot
systems).

• There are too few available tie points for the cage to
remain stable after placing and tying the rebar (again
considering only tools and not the gantry robot systems).

• The grip positions cannot be reached by the gantry robot
systems.

• The tie positions cannot be reached by the gantry robot
systems.

These ways of failing are computationally less expensive
to check than the computation of a path (they are actually
necessary when computing a path). This means that negative
evaluations of f can terminate faster than positive ones.

Another way to speed up the computation of f is to save
and keep track of the evaluations of f as well as the reasons
for failures as a reference in future evaluations. For example, if
a certain rebar cannot be installed in the cage because it needs
additional support, we note which rebars could provide support
for the rebar and don’t consider the rebar for installation again
until enough support is added.

B. Pre-computing parts of f

Valid installation orders can be found by removing the
invalid ones. The preceding discussion on computing f hints at
ways of removing some invalid orders by creating precedence
constraints from the different ways f evaluates to false.

Precedence constraints can for example be based on which
rebars are tied together. Starting from the rebars in the bottom
of the cage, only rebars that tie into these can be considered
possible to install. Then, one can consider the cage after those
rebars have been added, and see which rebars can be installed
then. Another way of incorporating constraints from tying is
to loop through all rebars in the cage and establish for each
rebar, which other rebars are necessary for stability. Similar
things can be done by checking which other rebars are in the
way of a specific rebar when trying to remove that rebar.

Precedence constraints created in this way amount to a
partial pre-computation of f . The pre-computation is used for
reducing the combinatorial complexity of the problem. This
can be useful as long as the pre-computation itself does not
give a large combinatorial factor and the evaluation of the part
f that is considered is fast enough.

C. Proposed Solutions

Ignoring precedence constraints for the moment and looking
at ways to create an installation order, we find two ways of

thinking. One is starting with no cage and adding rebars, one
by one. The other is starting from the final state of the cage
and removing rebars one by one and finally reversing the
uninstallation order to get an installation order. We call these
methods the forward and backward methods, respectively.

1) Forward: In the forward method the general idea is to
look at the cage and identify which rebars tie into the cage in
a stable way given the cage’s current state. Among the rebars
we then start by trying to install the rebar with the tie points
with the lowest “Z-”coordinate. In cases where this does not
fully determine the order, we start with the rebar which is
closest to the origin which we take to be in one of the corners
of the cage5. This has to be done in a way that makes sure
that the rebar does not block the installation of any other yet-
to-be-installed rebars.

2) Backward: In the backward method, we start from the
final state of the cage and identify rebars that can be removed
to find an uninstallation order. Choosing which rebar to try
to uninstall is not as clear as choosing which rebar to try to
install in the forward method. It has to be a rebar that can be
removed without compromising the stability of the rest of the
cage. Possibly choosing one with the fewest tie points into the
cage or some similar metric. While the uninstallation of a rebar
is done, it should not affect the uninstallation of subsequent
rebars. However, uninstalling a rebar might remove support
for other rebars which could render the cage in a state where
no rebar can be removed without affecting the stability of the
cage.

3) Precedence constraints: Turning to the precedence con-
straints, the idea is to try to capture the positive sides of
both types of algorithms. The natural order of installation and
certainty of support imposed by the forward method can be
captured as precedence constraints. These can hopefully be
merged with the certainty that installing a rebar does not block
the installation of another rebar. Looking at evaluations of f ,
the forward and backward method capture different aspects of
the evaluation.

IV. DISCUSSION

To generate the installation order, two methods have been
proposed in this paper. In the Backward method, the instal-
lation order is found by reversing the deconstruction process
while in the Forward method, the rebar cage is fabricated
straight away. The Forward method is inspired by how skilled
workers fabricate a cage.

In the Forward method, the general idea is to start with
no rebars installed and finding an installation order by placing
and tying rebars in a stable way. In the Backward method,
the idea is to start with the fully built cage and remove rebars
one by one from the cage without causing any instability, and
then reversing the order to get an installation order.

In the Forward method, the only rebars which can be
installed are the ones that tie into the already installed rebars.

5Moving the origin would produce different installation orders, which is
something we intend to try.



This limits the search space at any given state of the cage.
On the other hand, in the Backward method, we have not
found a simple way of limiting which rebars that are possible
to remove. This means that the Forward method has fewer
branching possibilities, thereby reducing the combinatorial
difficulty of the problem.

In the Forward method, installing a rebar could give a
situation where one of the yet-to-be-installed rebars cannot be
installed. To avoid blocking yet-to-be-installed rebars, checks
involving both the state of the cage and the yet-to-be-installed
rebars need to be performed. In the Backward method,
removing a rebar is most likely not going to hinder the removal
of other rebars in the cage. That means that the state of the
cage can be treated separately from the uninstalled rebars.

V. SUMMARY AND WORK-IN-PROGRESS

In this paper, we presented our ongoing work towards
automatic generation of the installation order for robotic
fabrication of rebar cages given a 3D CAD model of the rebar
cage. We defined a function, f which evaluates to true or
false depending on whether a given rebar can be installed
at a given position in a yet unfinished rebar cage. We then
defined and analyzed our problem using properties of f .

Using a few different ways in which f evaluates to false we
can derive precedence constraints among the rebars of a given
cage. The justification for focusing on the false evaluations
is that the needed computations are often much faster since
true evaluations require an actual path to be generated. This
partial evaluation of f reduces the combinatorial difficulty of
the problem.

We also briefly examined a forward and backward method
for computing an installation order and subsequently analyzed
the properties of the methods in terms of precedence con-
straints. In our ongoing work, we are working on developing
an algorithm that captures the positive sides of both the for-
ward and backward methods, by removing invalid orderings.
Part of our future work will include showing that our proposed
method(s) will find a solution for the installation order given
that such solution exists. We are also aiming to find an optimal
solution for the automatic generation of the installation order,
to minimize the required time as well as gantry-robot motion
to fabricate a cage.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the team at Robotdalen, both
current and previous members, especially Ingemar, Anders, and Erik.

REFERENCES

[1] J. Relefors, M. Momeni, L. Petterson, E. Hellström, A. Thunell, A. V.
Papadopoulos, and T. Nolte, “Towards automated installation of reinforce-
ment using industrial robots,” in 24th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), 2019, pp. 1595–1598.

[2] B. Dolinšek and J. Duhovnik, “Robotic assembly of rebar cages for beams
and columns,” Automation in Construction, vol. 8, no. 2, pp. 195–207,
1998.

[3] A. Mirjan, F. Augugliaro, R. D’Andrea, F. Gramazio, and M. Kohler,
Building a Bridge with Flying Robots. Springer, 2016.

[4] H. Ardiny, S. J. Witwicki, and F. Mondada, “Are autonomous mobile
robots able to take over construction? A Review,” Int. J. Robotics, vol. 4,
no. 3, pp. 10–21, 2015.

[5] R. Bogue, “What are the prospects for robots in the construction indus-
try?” Industrial Robot, vol. 45, no. 1, pp. 1–6, 2018.


