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Abstract

The increased complexity in today’s state-of-the-art computer systems make
them hard to analyse, test, and debug. Moreover, the advances in hardware
technology give system designers enormous possibilities to explore hardware
as a means to implement performance demanding functionality. We see exam-
ples of this trend in novel microprocessors, and Systems-on-Chip, that com-
prise reconfigurable logic allowing for hardware/software co-design. To suc-
ceed in developing computer systems based on these premises, it is paramount
to have efficient design tools and methods.

An important aspect in the development process is observability, i.e., the
ability to observe the system’s behaviour at various levels of detail. These ob-
servations are required for many applications: when looking for design errors,
during debugging, during performance assessments and fine-tuning of algo-
rithms, for extraction of design data, and a lot more. In real-time systems, and
computers that allow for concurrent process execution, the observability must
be obtained without compromising the system’s functional and timing behav-
iour.

In this thesis we propose a monitoring system that can be used for non-
intrusive run-time observations of real-time and concurrent computer systems.
The monitoring system, designated Multipurpose/Multiprocessor Application
Monitor (MAMon), is based on a hardware probe unit (IPU) which is integrated
with the observed system’s hardware. The IPU collects process-level events
from a hardware Real-Time Kernel (RTK), without perturbing the system, and
transfers the events to an external computer for analysis, debugging, and visu-
alisation. Moreover, the MAMon concept also features hybrid monitoring for
collection of more fine-grained information, such as program instructions and
data flows.

We describe MAMon’s architecture, the implementation of two hardware
prototypes, and validation of the prototypes in different case-studies. The main
conclusion is that process level events can be traced non-intrusively by inte-
grating the IPU with a hardware RTK. Furthermore, the IPU’s small footprint
makes it attractive for SoC designs, as it provides increased system observabil-
ity at a low hardware cost.
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Chapter 1

Introduction

As human beings we strive for comfort and easy living. Therefore we build
advanced devices and machines that can automate hard duties. As humans we
need to communicate with each other and we need to be entertained. Therefore
we build telecommunication systems, television, home cinema, and computer
games. To discover far places and meet other people we need to travel. There-
fore we build automobiles, ships and air craft. In almost each of these inven-
tions by the modern human we can find computer systems, that is, intelligent
pieces of electronics that do what we program them to do. Thus, our everyday
lives are becoming increasingly more dependant on these systems, and we take
for granted that they work properly and safely.

As a concrete example, take for instance the features of a modern car. Fig-
ure 1.1 illustrates features that typically utilize a computer, for example, the
engine control computer that optimize performance and fuel combustion, the
computer that detects collisions and activate the airbags in the event of a crash,
the computer that regulates the interior climate based on passenger preferences
and exterior climate conditions, the computer that controls the braking system
for maximum efficiency, and more. In fact, a modern car may contain up to a
100 computer systems that together orchestrate all these features.

3
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Figure 1.1: Example of features of a modern car

This thesis is about methods for observing the behaviour of a computer
system. These observations are necessary for a number of reasons, includ-
ing the need for testing and optimisation during the development of computer
systems. The thesis proposes a concept for carrying out certain types of obser-
vations without disturbing the natural behaviour of the observed computer, for
reasons which will be discussed in the following chapters.

In Section 1.1 we will present the overall motivations for this work, and in
Section 1.2 we outline the thesis contents.

1.1 Motivation
Today’s computer-based products are complex and require extensive efforts to
design and test. They are complex because they comprise many components,
complex software and hardware, and features a lot of functionality. This is a
trend which is clearly seen in the consumer electronics market, and in state-of-
the-art industrial systems. The development of these products tends to be as
challenging as it is increasingly time-consuming, expensive, and error-prone.
Therefore, the developers need to cut down the development time and improve
quality, which in turn, demands better tools and development methodologies.

One important aspect in the development process isobservability, i.e., the
ability to observe the system’s behaviour at various abstraction levels in the
design. These observations are required for many reasons, for instance, when
looking for design errors, during debugging, during optimisation of algorithms,
for extraction of design data, and a lot more. Observability is however not an
issue restricted to development purposes only, it may also be necessary after
the deployment of products as well, e.g., for error recovery, for surveillance
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issues, for collection of statistical measurements (e.g. concerning the use of a
product), etc.

We characterize the quality of observability as:good(or high) if the system
allows for detailed and accurate analysis of all of its components, andpoor (or
low) if the system is obstructive and hard to analyse confidently.

In essence, this thesis is motivated by the needs from industry in seeking
better observability for complex computer systems based on state-of-the-art
hardware and software architectures.

1.2 Thesis Outline
The thesis is divided into two parts, where the first part (part I) gives an in-
troduction to the research area, describes the research problems, presents the
thesis contributions, conclusions, etc. More specifically: Chapter 2 lays the
background which the subsequent discussions will proceed from. Chapter 3
presents the problems we have focused on. In Chapter 4 we present the main
contributions of this work. Chapter 5 summarises the papers included in the
second part of the thesis. In Chapter 6 we present relevant related work. Chap-
ter 7 presents the thesis conclusions, and in Chapter 8 we give some directions
on future work.

In the second part (part II) of the thesis we have appended the included
papers, Paper A - C.

Finally, in the appendix we have enclosed a Swedish-registered patent that
constitutes one of our contributions (described in Chapter 4).





Chapter 2

Background

This chapter presents the basic concepts used in the thesis. The concepts and
their related terms will be assumed to be familiar to the reader in the discus-
sions throughout the thesis.

2.1 Embedded and Real-Time Systems
An embedded systemis typically a product which includes a computing sys-
tem. The product is said to "embed" the computing system inside. Embedded
system do not necessarily look like computers, however it is typical that em-
bedded systems interact with their environment. For instance, a mobile phone
is regarded an embedded system: it reacts on incoming calls, user input, cell
roaming, etc. A talking doll is another example, since the doll might express
a message based on which part of its body, or button, has been pushed, or if it
gives a response to a playing child’s voice.

A real-time systemis a system that interacts with its environment in a timely
constrained manner. The real-time system must produce results within speci-
fied time limits. A computation result (or actuation) must be delivered neither
too late, nor too early. The criticality of violated timing constraints, ormissed
execution deadlines, classifies real-time systems intohardor softreal-time sys-
tems [But97]. Timing failures in a hard real-time system are considered haz-
ardous and very critical and should never be allowed. Examples on hard real-
time requirements can be found in automotive and avionic systems, medical
equipment, military systems, energy and nuclear plant control systems. On the
contrary, the requirements in soft real-time systems are not so critical and may

7



8 Chapter 2. Background

tolerate timing constraint violations, either by discarding the produced results
or by allowing a degraded quality. Soft real-time requirements can be found
in telecommunication systems, audio and video applications, streaming media,
airline reservation systems, etc.

A typical real-time system (see Figure 2.1) consists of a controlling subsys-
tem (the computer), and the controlled subsystem (the physical environment).
The interactions between the two subsystems can be described by three main
operations:

• Sampling

• Processing

• Responding

The computer subsystem continuously samples data from the physical en-
vironment. Sampled data is then immediately processed by the computer sub-
system, and a proper response is sent to the physical environment. All three
operations must be performed within the required timing constraints. For ex-
ample, it is imperative that an air bag control system in an automobile responds
within set timing constraints in the event of a crash. The response must neither
be too late (being non-effective), or too early (risking hazardous manoeuvring
of the car).

 
Controlled 

Object 

Sensors Actuators 

 
Control System 

Figure 2.1: A real-time system
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2.1.1 Concurrency, Tasks, and Processes

The real-time computing software is in its simplest form implemented as one
big program loop. Typically, such programs can be found inProgrammable
Logic Controllers(PLCs) which are used to control relatively simple (indus-
trial) applications [NSMT+00]. PLC programs are often realised as loops that
include instructions to read input data (e.g. from sensors), perform logical
processing on the input, and write out data (e.g. to actuators or relays).

When the controlled environment is more complex, the real-time software
may need to be divided into severaltasks. A task, also calledthread, is an in-
dependent sequence of program instructions which may execute concurrently
with other tasks (multitasking) on the same real-time computer. Tasks execute
under the control of aReal-Time Operating System(see below) which also
manages the computer resources (processor and memory), inter-task commu-
nication, synchronisation, and I/O. Tasks normally share the memory space –
both instructions and data – with other tasks. The shared memory is typically
also used for communication and synchronisation with other tasks.

A softwareprocessis a special case of a task which have an own protected
memory space, i.e. it does not share memory with other processes. The process
may be seen as a standalone program acting as though it owns the computer
for itself. Moreover, a process may internally be represented by one or more
concurrent tasks that share execution within the process. Memory-protection
between processes is usually implemented using a hardwarememory manage-
ment unit(MMU) which checks accesses to privileged memory. Whenever
processes needs to communicate (Inter-Process Communication), messages
must be passed via the RTOS (usingmessage-passing) which normally hides
copying of message data between processes’ memory space.

From now on the termstaskandprocesswill be used interchangeably in
the text, unless they are explicitly distinguished.

2.1.2 Real-Time Operating Systems

A Real-Time Operating System(RTOS) is an operating system specially in-
tended for real-time systems, that allows easier design, execution, and main-
tenance of real-time systems and applications. The use of an RTOS simplifies
the design process by providing the developer with a uniform programming
interface to the underlying computer hardware. In this way, the developer may
focus on designing the application rather than bothering about the details and
structure of the computer hardware. The main responsibility of an RTOS dur-
ing run-time is to manage the available computing resources so that application
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tasks may share, and synchronise their use of, these resources in a way that
timeliness is ensured. Timeliness is ensured byscheduling(see Section 2.1.3),
which is the main technique used to guarantee availability of resources at the
right time to the tasks.

Another responsibility of an RTOS is the management of communication
between processes, and synchronisation of resource utilisation. A process that
wants to communicate a message to another process usually does this by in-
vocating a system-call to the RTOS which then takes care of data copying and
notification of message arrival to the addressed process(es). In the case of
resource synchronisation, the RTOS typically administrates certain data struc-
tures (mailboxes, queues, mutexes, semaphores, etc. [Lab02]) that organises
process admission to the shared resources.

2.1.3 Real-Time Kernel

The core of an RTOS is theReal-Time Kernel(RTK). This component man-
ages the scheduling of process execution on the available CPU-resources in the
system. In single-processor systems the processes willtime-sharethe same
processor, and in a multiprocessor system the processes will be distributed
over the processors. The time-shared execution follows ascheduling scheme
which is tailored to fit the design requirements. For instance, one scheduling
scheme is that every process should get equal time shares for execution. An-
other scheme may be that processes execute based on theirpriority, i.e., the
process with highest priority is allowed to execute before processes with lower
priorities. There are also schemes that follow execution schedules that are de-
fined pre-run-time, so-calledstatic schedules, which contains activation times
(absoluteor relative time) for each process [Liu00]. The RTK may also be
responsible for the scheduling of other resources than the CPU [Lab02].

A typical RTK is implemented in software as part of the RTOS. There exist
however implementations of the RTK in hardware [Lin92, AFLS96, MRS+90,
NUI+95] (described also in the included papers of Part II). The main bene-
fit with hardware-implemented RTKs is that they execute in parallel with the
CPU(s) in the system, i.e. like aco-processor, which results in a performance
acceleration of the RTOS’ operation in some type of systems [Fur00].

2.2 Multiprocessor and Distributed Systems
Over the past years we have seen a trend towards parallel computing as opposed
to single processor systems. There are several reasons for this trend, including



2.2 Multiprocessor and Distributed Systems 11

the following:

• Physical speed limit – Processor manufacturing is facing physical limits
such as line-widths on silicon, limit in speed of light (high frequencies),
signal quality, etc.

• Special purpose processing – In some systems it is better to partition and
distribute a computation over a set of special purpose processors, rather
than using one general-purpose processor. For example, a 3D graphics
computation is best done using an array processor and a DSP rather than
using a general CPU.

• Fault tolerance and availability – By increasing the number of processing
elements, computer systems can be made more fault-tolerant in the event
of failures.

• The Internet – There is no doubt that the Internet has greatly contributed
to the demand for higher performance and throughput in communication
applications. Large database systems are today a big market for multi-
processing.

Designing multiprocessor systems and applications is however not trivial,
and requires deep understanding of parallelism and problems related to con-
currency. When a program is partitioned into portions that are allowed to ex-
ecute in parallel, i.e. processes, it is usually necessary to communicate data
between them in order to fulfil a computation. This inter-process communi-
cation usually requires synchronisation of the involved parts. For instance, a
process Athat intends to read a message fromprocess Bmust be synchro-
nised with the availability of the message fromprocess B. The typical errors
in multiprocessor systems are particularly related to communication and syn-
chronisation [Gai86].

There are various meanings for what is to be considered a multiprocessor
system. Some texts depend their definition on the communication media be-
tween the processors, e.g. shared-memory, distributed memory, or communi-
cation over a network. Other texts rely the definition on the usage of a common
(global) clock. In the latter meaning, a system with different clocks (one for
each processor) is considered a distributed system. In this text the definition is;
if two or more processing elements are used in a computation of a program, it
is considered a multiprocessor system. Hence, we do not distinguish between
the terms multiprocessor and distributed systems.
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2.3 Testing, Debugging and Performance Analysis

2.3.1 Debugging and Testing

Debugging, as defined in the ANSI/IEEE standard glossary of software engi-
neering terms [MH89], is"the process of locating, analysing, and correcting
suspected faults". A fault is defined to be the direct cause of some error. Since
the occurrence of errors can have different reasons, they are usually not pre-
dictable, and therefore we must locate them usingdebuggers. A debugger is
a tool which helps the designer to examine suspected errors in a program, and
eventually also remedy the errors. The termcyclical debuggingis commonly
used to describe debugging as an iterative process, in which the debugger is
used to find and correct errors, over and over again, until no more errors can be
found.

Testing and debugging are similar activities with respect to finding errors.
However, testing is more of an automated process of exposing different input
to the system under test, and evaluating its results (output). The objective is to
find input data, or patterns of data, that cause erroneous results [SVS+88]. The
faults that are found during the testing process are then put under observation
in a debugger.

In real-time systems, errors may also occur in the time-domain. Real-time
systems are therefore harder to debug than non-real-time systems. The ability
to track down timing-related errors was largely an unexplored area until the
early 1980’s. Glass (in [Gla80]) reported a significant lack of effective tools in
the emergence of real-time systems development and referred to the problem as
the"lost world" of software testing and debugging. Today, various debugging
systems and methods have been developed in order to address timing-related
issues [TFC90a, JRR94, TSHP03].

2.3.2 Performance Analysis

While removal of errors is an important part of the design process, others are
implementation optimisation and fine-tuning of algorithms. To pursue such ac-
tivities the designer needs to analyse behaviour and performance of the devel-
oped system, its components and sub-components. Performance analysis is of
importance to find performance bottlenecks, and to extract design-parameters
such as execution times, response times, communication delays of various
kind, and so on. The extraction of design-parameters is for instance valuable
to task scheduling analysis and estimates for resource allocation.
In the next section we will describe how testing, debugging and performance
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analysis may be facilitated through the use ofmonitoring.

2.4 Monitoring

Monitoring is the process of gathering information about a system[TBHS96,
MH89]. We gather information which normally cannot be obtained by study-
ing the program code only. The collected information may be used for program
testing, debugging, task scheduling analysis, resource dimensioning, perfor-
mance analysis, fine-tuning and optimisation of algorithms. The applicability
of monitoring is wide, and so is the spectrum of available monitoring tech-
niques. In this section we give a general presentation of a monitor, and describe
different monitoring systems, the type of information collected by monitors,
and the problem-related issues with monitoring.

In essence, a monitor works in two steps:detection(or triggering) and
recording. The first operation refers to the process of detecting the object of
interest. This is usually performed by atrigger objectthat is inserted in the
system, which when executed, or gets activated, indicates an event of inter-
est for recording. The latter operation, recording, is the process of collecting
events and saving them in buffer memory, or communicate them to external
computer systems for the purpose of further analysis or debugging. An event is
a record of information which usually constitutes the object of interest together
with some additional meta data regarding that object (e.g. the time when the
object was recorded, the object’s source address, task/process ID, CPU node,
etc.). The type of monitored objects depend on the level of abstraction which
the user is interested in. Section 2.4.1 below describes different abstraction
levels that are associated with program execution. The trigger object may be
an instruction, or a function, that is inserted in the software. It may also be a
physical sensor, orprobe, connected with physical wires in the hardware, such
as CPU address, data, and control buses.

An important issue regarding the monitoring process is the amount ofex-
ecution interferencethat may be introduced in the observed system due to the
involved operations of a monitor. This execution interference, orperturbation,
is unwanted because it may alter the true behaviour of the observed system,
in particular such systems that are inherently timing-sensitive such as real-time
and distributed systems. We will return to this issue in the discussion onprobe-
effectsin Section 2.4.3.
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2.4.1 Monitoring Abstraction Levels

Software execution may be monitored at different levels of abstraction as the
information of interest is different in levels of detail. Higher-level information
refers to events such as inter-process communication and synchronisation. In
contrast, lower-level information refers to events such as the step-by-step exe-
cution trace of a process. The execution data collected at the process level in-
cludes the process state transitions, communication and synchronisation inter-
actions among the software processes, and the interaction between the software
processes and the external process. The execution data collected at the func-
tion level includes the interactions among the functions or procedures within a
process. The user can isolate faults within functions using the function-level
execution data. In this section, the different levels of abstraction in software
execution are identified.

2.4.1.1 System Level

The system-level may be seen as the user’s, or the real-world, view of the com-
puter system. It abstracts away all implementation details and only provides
information that is relevant to the system’s user (or to the real-world process).
For instance, thepressof a button in a car’s instrument board, and theactiva-
tion/deactivationof the car’sTraction Control System(anti-spinning system)
feature, would be considered as system-level events (see Figure 2.2). This
level of information is normally useful for system-test engineers during the
final steps in the development process.
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Figure 2.2: Monitoring at the system level of abstraction
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2.4.1.2 Process and OS Level

To monitor program execution at the process level, we consider a process as
a black box which can be in of the three states:running, ready, or waiting.
A process changes its state depending on its currents state and the current
events in the system. These events include interactions among the processes
and the interactions between the software processes and the real world. The
events that directly affect the program execution at the process level are distin-
guished from those events that affect the execution at lower levels. Assigning
a value to a variable, arithmetic operations, and procedure calls, for instance,
are events that will not cause immediate state changes of the running process.
Inter-process communication and synchronisation are events that may change
a process’ running status and affect its execution behaviour. The following
events are typically considered as process level events:

• Process Creation

• Process Termination

• Process State Changes

• Process Synchronisation

• Inter-process Communication

• External Interrupts

• I/O Operations

2.4.1.3 Functional Level

The goal of monitoring program execution at the function level is to localise
faulty functions (or procedures) within a process. At this level of abstraction,
functions are the basic units of the program model. Each function is viewed as
a black box that interacts with others by calling them or being called by them
with a set of parameters as arguments. So the events of interest are function
calls and returns. The key values for these events are the parameters passed
between functions.

2.4.1.4 Instruction Level

The instructional level of abstraction refers to the step-by-step execution of
CPU-instructions. It is, from a software perspective, regarded as the lowest
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level of abstraction of a program for a modern CPU1. To monitor each exe-
cuted instruction is, however, a heavy duty on any monitor since it requires
at least the CPU-performance of the system being observed, and the collected
amounts of event traces are too huge to be of practical use. Instead, it is suffi-
cient enough to monitor just those instructions that affect the execution path of
a program, e.g. conditional branches, traps, exceptions, etc. Using this infor-
mation in combination with the software’s source, or object code, it is possible
to reconstruct the execution behaviour. For many programs2, such a method
reduces the amount of recorded data with several orders of magnitude.

2.4.2 Types of Monitoring Systems

Monitoring systems for software or system-level analysis are typically classi-
fied into three types: 1)software monitoring systems, 2) hardware monitoring
systems, and 3)hybrid monitoring systems. In the following we will describe
each type of system. Chapter 6 gives a more detailed presentation of monitor-
ing systems that relates to our work on hardware and hybrid monitoring.

2.4.2.1 Software Monitoring Systems

In this category of monitoring systems, only software is used to instrument,
record, and collect information about software execution. Software monitor-
ing systems offer the cheapest and most flexible solution where a common
technique is to insert instrumentation code at interesting points in the target
software. When the instrumentation code is executed the monitoring process
is triggered and information of interest is captured into trace buffers in target
system memory. The drawbacks of instrumentation is the utilisation of target
resources such as memory space and processor execution time.

Below is a more detailed description of a specific monitoring tool, called
StethoScope, which serves as an example on how a typical software monitor
operates.

StethoScope
StethoScope [Baw99] byReal-Time Innovations Inc.is a commercially avail-

1In earlier days an instruction was seen as a composition of sub-instructions, called microcode,
which together carried out the different operations that occur inside the CPU-core (e.g. memory
load/store operation, register shifts, ALU-operations and bit-tests, etc). Today however, micro-
coding is rarely done by software designers, though there exists application specific CPUs that
allows micro-coding.

2It is widely known that many programs spend (very roughly) 90% of their time in about 10of
their code; 10% of static instructions account for 90% of dynamic instructions.
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able tool for monitoring real-time systems. The monitoring process is claimed
to be non-intrusive since the sampling of the system is limited to only reading
variables from the application memory. Their definition of non-intrusive mon-
itoring means, however, that the application software does not require modifi-
cation.

StethoScope comprise a set of monitoring tasks on the target, and a GUI on
a host computer, see Figure 2.3. The monitoring tasks are compiled and linked
together with the application. During program execution, theSampler Task
periodically awakes and copies the currently monitored variables (denotedsig-
nals in the GUI) from their addresses in the application to theTarget Buffer.
Later theScopeLink daemoncopies the Target buffer to the GUI’sLive Buffer.
The user can at any time, via the StethoScope GUI, choose the signals (vari-
ables) that will be monitored, and change data collection parameters, for ex-
ample the rate at which data is collected. Such requests are handled by the
ScopeProbe daemonwhich in turn updates internal data structures that control
the monitoring process.

StethoScope 
GUI 

ScopeLink 

Sampler 
Task 

Application 
Under Test 

ScopeProbe 

Target Buffer 

HOST TARGET 

 

Figure 2.3: The components of StethoScope’s architecture (ref. [Stetho-
Scope1999])

The execution of the application is of course disturbed during the periodical
copying of memory. ScopeProbe’s Sampler task runs at the highest priority
and needs to interrupt the application to perform its copying function. Thus,
StethoScope’s monitoring process cannot be claimed to be non-intrusive in the
sense we have discussed in the previous section. However, StethoScope calls
this non-intrusive asynchronousmonitoring. It is asynchronous in the sense
that samples are taken at specific time intervals, i.e. they are not co-ordinated
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with the events in the program. For example, variables can be assigned values
several times (e.g. in a loop) between each invocation of the Sampler task.
This way of monitoring is also said to bediscontinuous. Another disadvantage
with StethoScope’s asynchronous monitoring is that it can only sample static
or global variables. Stack variables may be out of scope when the sampling
occurs.

In order to monitor stack variables, the StethoScope system offers a syn-
chronous monitoring model which, however, requires instrumented code. The
instrumented code has calls to StethoScope’s ScopeProbe API inserted at the
locations where synchronous sampling is required. A call to the API function
ScopeCollectSignals()will force sampling to occur in the same scope (immedi-
ately). Thus, stack variables can be monitored. The advantages with synchro-
nous monitoring are precise control of sampling relative to program events and
consistent data, since the variables are always sampled at the same point in the
program.

2.4.2.2 Hardware Monitoring Systems

In this category of monitoring systems, only hardware (custom or general) is
used to perform detection, recording and collection of information regarding
the software. For this to work, the target system must lend itself for observa-
tions by external means (the monitoring hardware).

The primary objective of hardware monitoring is to avoid, or at least min-
imize, interference with the execution of the target system. A hardware moni-
toring system is typically separated from the target system, and thus, does not
use any of the target system’s resources. Execution of the target software is
monitored using passive hardware (or probes) connected to the system buses
and signals. In this manner, no instrumentation of the program code is neces-
sary. Hardware monitoring is especially useful for monitoring real-time and
distributed systems since changes in the program execution time are avoided.

In general, the operation of monitoring hardware can be described by the
three steps (see Figure 2.4):event detection, event matching, andevent collec-
tion. In the first step, detection, the hardware monitor listens continuously on
the signals. In the second step, the signal samples are compared with a prede-
fined pattern which defines what to be considered as events. When a sample
matches an event-pattern, the process triggers the final step, collection, where
the sampled data is collected and saved. The saved samples may be stored lo-
cally in the monitoring hardware, or be transferred to a host computer system
where usually more storage capacity can be obtained.

Apart from the advantage of avoiding target interference, are the typical
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Figure 2.4: Hardware monitoring steps

precision and accuracy of hardware monitors. Since the sole duty of a hardware
monitor is to perform monitoring activities (usually at equal or higher system
speed than the target’s) the risks of loosing samples are minimized.

A disadvantage of hardware monitors is their dependency on the target’s
architecture. The hardware interfaces, and the interpretation of the monitored
data must be tailored for each target architecture it is to be used in. Thus, mon-
itoring solutions using hardware are more expensive than software alternatives.
Moreover, a hardware monitor may not be available for a particular target, or
takes time to customize, which may increase the costs further in terms of de-
layed development time.

Another problem with hardware is the integration and miniaturisation of
components and signals in today’s chips which renders difficulties in reach-
ing information of interest, e.g. cache-memory, internal registers and buses,
and other on-chip logic. To route all internal signals out from a chip may be
impossible because of limited pin counts.

In general, hardware monitoring is used to monitor either hardware de-
vices or software modules. Monitoring hardware devices can be useful in per-
formance analysis and finding bottlenecks in e.g. caches (accesses/misses),
memory latency, CPU execution time, I/O requests and responses, interrupt
latency, etc. Software is generally monitored for debugging purposes or to
examine bottlenecks, load-balancing (degree of parallelism in concurrent and
multiprocessor systems), and deadlocks.

2.4.2.3 Hybrid Monitoring Systems

Hybrid monitoring uses a combination of software and hardware monitoring
and is typically used to reduce the impact of software instrumentation alone.
A hardware monitor device is usually attached to the system in some way, e.g.
to a processor’s address/data bus, or on a network, and is made accessible for
instrumentation code that is inserted in the software. The instrumentation is
typically realised as code that extracts the information of interest, e.g. variable
data, function parameters, etc., which is then sent to the monitor hardware.
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For instance, if the monitor hardware has memory-mapped registers in the sys-
tem, the instrumentation would perform data store operations on the monitor’s
memory-addresses. The hardware then proceeds with event processing, fil-
tering, time-stamping, etc., and then communicates the collected events to an
external computer system. This latter part typically resembles the operation of
a pure hardware monitor. The insertion of instrumentation code also resembles
the technique used in a software monitoring system; i.e. it can either be done
manually by the programmer, automated by a monitoring control application
or by compiler directives.

2.4.3 The Probe Effect

Instrumentation of programs, also called "probing", is convenient because it
is a general method which technically is applicable in many systems. For
concurrent programs however, the delay that is introduced by the insertion of
additional instructions may alter the behaviour of the program. Theprobe-
effect, which originates fromHeisenberg’s Uncertainty Principle3 applied to
programs [Gai86, MH89], may result in that either a non-functioning concur-
rent program works with inserted delays, or a functioning program stops work-
ing when the inserted delays are removed. This can also be seen as a difference
between the behaviour of a system being tested and the same system not being
tested. Typical errors related to the probe-effect are synchronisation errors in
regions containing critical races for resources [Gai86].

Not only may concurrent programs suffer from the probe-effect, but also
real-time systems are concerned since they are inherently sensitive to timing
disturbances, especially if deadlines are set too tight (i.e. non or low-relaxed
worst-case execution times). Consequently, distributed/parallel real-time sys-
tems are most sensitive to probe-effects. This is one important reason why
testing and debugging (using monitoring) of real-time systems (particularly
distributed real-time systems) is so difficult [Tha99, TBHS96, MH89]. Hence,
probe-effects must be avoided in the development of real-time systems. There
are basically three approaches to eliminate the probe-effect:

• Leave the probes in the final system. In this approach the probes that have
been used during development are left in the final product. This way we

3Bugs that relate from probe-effects are in some texts referred to as "Heisenbugs" after the
Heisenberg Uncertainty Principle from physics. This principle state that the instrumentation used
to measure something, no matter how non-intrusive one may think it is, will always perturb the
object being measured and result in an inaccurate measurement.
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avoid behavioural changes due to removal of probes. The disadvantage
is of course that the final system may suffer from inferior performance.

• Include probe-delays in schedulability analysis. In real-time systems
design it is straightforward to include the probes in the execution time
of the program, i.e. dedicate resources (execution time, memory, etc) to
probes. However, this method does not guarantee the ordering of events,
it only provides enough execution time to compensate for the inserted
delays.

• Use non-intrusive hardware. Bus-snoopers and logic analysers are typi-
cal examples of passive hardware which do not interfere with the system.
Other techniques are the use of multi-port memories, reflective memory,
and use of special hardware. There are also hybrid monitoring systems
which utilise hardware support together with software instrumentation.
The disadvantage of this solution may be higher development and prod-
uct costs due to extra hardware.





Chapter 3

Problem Formulation

In the previous chapter we have discussed the necessity of observability of the
components of computer systems, during development and after deployment.
We will now describe our main research problems in terms of three central
questions that the thesis will provide answers to.

In our research group we are interested in exploiting the use of hardware
parallelism to improve performance, as well as the determinism, of RTOS func-
tions in real-time computers. As a result of this research we have developed
several hardware implementations of an RTK [AFLS96, LSF+98, LKF99],
with various features that range from simple priority-based task-scheduling for
single-processor systems, to support scheduling, IPC, and interrupt manage-
ment, for multiprocessor systems. In realising these systems we encountered
difficulties in tracking down bugs that appeared at run-time, mainly because
it was nearly impossible to determine if the bugs where located in the hard-
ware RTK, or in the software that made use of it. Moreover, for the same rea-
sons as when tracking bugs, it was not straightforward to analyse the system’s
performance and the possible execution speed-ups with hardware-acceleration.
These struggles led us to the formulation of the first question:

Question 1 (Q1). How can we observe, analyse, and visualize the run-time
behaviour of processes in single- and multiprocessor computer systems that
employ a hardware RTK?

Note that in Q1 we focus only on the run-time behaviour, i.e. we are not
interested in observing a simulated model of the system. We also discard so-
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lutions that imply restricted, or lowered, execution speeds. This latter require-
ment rules out emulation systems and logic analysers, since they typically do
not allow for full execution speeds [Ref till ngn känd survey :)].

The following question is related to Q1 in that a solution to the observation
problem should not result in an altered behaviour of the system, or a change
of the system’s timing characteristics. The answer to this question is in fact
the same as providing a solution to Q1 without introducing probe-effects (see
Chapter 2). The question is justified because there exists attempts to utilise
software tasks (special monitor/debug tasks) that polls the hardware contents
of the RTK via its register interface. Hence, we formulate the second question
as follows:

Question 2 (Q2). Can we develop a solution to Q1 without perturbing the
functional behaviour and timing properties of the observed system?

The answers to Q1 and Q2 respectively are provided in Contribution A and B,
and partly through Contribution E (see Chapter 4).

While Q1 and Q2 only concerns observations at the process-level, i.e. such
information that would only require monitoring the hardware RTK, we still
need to address observations of the software at abstraction levels other than
just the process-level. For instance, how can we track a software process’
function-call hierarchy, or how to monitor data variables, or the execution of
a particular instruction? In certain cases it might also be necessary to sample
register contents in a CPU, an act which is not obvious without software in-
strumentation, or special hardware support in the CPU. Employing a hardware
monitor which passively listens to a CPU’s address and data buses may be inad-
equate, or even useless, if the CPU is equipped with an instruction and/or data
cache - which today is more or less typical rather than exceptional. Therefore,
with this background, it is motivated to formulate the following question:

Question 3(Q3). Is it possible to monitor software execution and data, at any
abstraction level, in a solution to both Q1 and Q2?

The answer to Q3 is also given in Contribution A and B, and Contributions C
and D respectively provides a validation of that answer.
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Contributions

In this chapter we will briefly describe the main contributions presented in this
thesis.

Contribution A: Concept of a Uniform Hardware/Software Monitor
Our central contribution is the concept of a monitoring system that can be ap-
plied for observations of a computer system’s hardware and software compo-
nents. This monitoring system, designatedMultipurpose/Multiprocessor Ap-
plication Monitor (MAMon), is based on an integrated hardware probe unit
(IPU) which is integrated with the observed system’s hardware. The IPU col-
lects events of interest in the system, and transfers them out of the system to
a dedicated computer where the events can be analysed without perturbing the
observed system’s behaviour. In the case where the observed system incorpo-
rates a hardware RTK component, the IPU may also be connected to that com-
ponent’s internal signals and data structures in order to extract process-level
information.

The main advantages with the MAMon concept are:

a) detection and collection of events occurs non-intrusively to the system,
or with a minimum of impact should the software require instrumenta-
tion for hybrid monitoring,

b) hardware and software events are monitored using the same device – i.e.
uniform monitoring is achieved – and are displayed and analysed using
the same monitor applications and tools, and

25
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c) the IPU may be implemented as an IP-component for integration in a
SoC, thus overcoming the difficulties related to probing obstructive hard-
ware.

In Paper A we introduce the MAMon concept from a verification of SoCs
perspective, and in Paper B the ideas are refined for more general applicability.
Paper B also describes the integration with the RTK in more detail, and gives
an overall architectural description of the monitoring system.

Contributions B through D presented below are validations of the MAMon
concept for various system configurations and applications. It should be men-
tioned that MAMon has been applied in a HW/SW co-simulation model of
a SoC comprising a CPU (an ISS-model of a PowerPC 60x), an RTK, and
the monitor’s IPU. However, this configuration is not documented or validated
thoroughly, hence, it is not listed as a contribution of its own.

Contribution B: A Monitor for a Multiprocessor System
The second contribution, presented in Paper B, is an implementation of MAMon
for a real-time multiprocessor based oncommercial-off-the-shelf(COTS) hard-
ware. This multiprocessor system is a research platform built for studies on
hardware-acceleration for RTOSs [LKF99, KL99]. Our aim is to build a monitor
that is able to observe the behaviour of multiprocessing software run by a
hardware-accelerated RTOS, i.e. a hardware RTK.

The implementation resulted in a hardware prototype based on a FPGA (a
Xilinx Virtex-1000) that is configured with the hardware RTK and the monitor’s
IPU. Using the monitor in combination with the RTK we are able to analyse
the software’s behaviour at the task-level, running on up to three CPUs. The
analysis is done with no intrusion on the system’s behaviour or timing. With
an addition of instrumentation of the software it is also possible to utilise the
monitor in a hybrid manner, with a cost perinstrumentation probereduced to
the time-length of a 32-bit bus write cycle (in this case a PCI-bus@33 MHz).

In Paper B we present the full details of the implementation, and describe
the tools we also developed to control the monitoring process and analyse col-
lected data (see Contribution E below).

Contribution C: A Monitor for a Single-Processor System
In another validation of our monitor we were interested in studying the per-
formance differences between a single-processor system running a hardware-
accelerated RTOS [Fur00] and a software-only RTOS, calledSW Symo[Riz01].
The idea was to compare the amount of idle execution time (i.e. when no tasks



27

are running) for the same software when run on each system, an experiment
which would reveal the execution overhead imposed by the RTOS. The exper-
iment involved adaptation of the hardware IPU – used in the multiprocessor
system in Contribution B – with the ability to detect currently executing tasks
managed by the SW Symo RTOS. The task id:s are extracted using instrumen-
tation of the SW Symo’s context-switch routine, so that the currently active
task’s id is written to a memory-mapped register in the IPU (i.e. an IPU soft-
ware probe register).

The experiment was part of a master thesis project, carried out by Al-Wandi
and Hessadi [AWH02], under supervision of the authour of this thesis. They
also designed two graphical interface tools that visualise CPU work load in
the studied systems; one tool to visualiselive CPU work load (i.e. CPU uti-
lization), and the other tool to showhistorical CPU load (see Contribution E
below). Due to their limited project time they managed, however, only to finish
the experiments with the SW Symo target system.

Contribution D: A Hybrid Monitor for Cache Performance Analysis
In [Seb02a], Sebek used the hybrid monitoring feature of the monitor (de-
scribed in Contribution B) in order to analyse cache behaviour in a real-time
system. Sebek’s objective was to measure theexecution delaythat relates from
task pre-emption in a multitasking single-processor system [SG02, Seb02b].
Using the built-in performance monitors in a MPC750 CPU [Mot97], he was
able to construct software which reads cache-related performance properties,
and by using the monitor’s time-stamp function he also measured execution
times in order to determine thecache-related pre-emption delay(CRPD) as
well as thethreshold miss-ratiovalues for an instruction cache. Thus, his so-
lution to minimise software overhead was to write the cache-related data to
dedicatedsoftware probe registersin the IPU. The IPU collected the data, and
packaged it into "software probe" events which were time-stamped and sent
further to an external PC where the data was analysed.

Using our monitor, Sebek was able to measure very accurately, and analyse,
the CRPD in a real-time system.

Contribution E: A Framework for Monitoring Applications and Tools
To make use of the collected events from the monitor, e.g. for analysis and
visualisation purposes, we developed an application platform that enables easy
and rapid design of customised monitor tools (see Paper B and Paper C). This
platform, which is based on a modular design implemented using the JAVA
object-oriented language, provides support for communication with the IPU
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(i.e. hardware driver), a relational (SQL) database for structured and well-
defined storage/access of the collected events, and a GUI environment for user
interaction with the monitor and visualisation of collected events. Initially, the
platform constituted only a tool to graphically depict events collected from a
SoC comprising one CPU and a RTK (described in Paper A). In the following
work, presented in Paper B, the platform was developed to become a frame-
work with more general applicability.

The usability of the framework was validated also in the work by Al-
Wandi and Hessadi [AWH02] who implemented tools that visualise CPU work
load (see Contribution C). We have also extended the framework with support
for USB-communication with the IPU. This latter effort was carried out by
Andreas Malmquist [Mal04] under supervision of the author of this thesis.

In Paper C we give a more comprehensive documentation of the frame-
work, its components, and the tools it currently supports.

Contribution F: Patent
Our final contribution is a patent on the MAMon concept described in con-
tributions A through D. The patent, which currently is registered in Sweden
(patent noSE517917), was acquired byRealFast AB; a company specialised in
developing IP-components for the FPGA and SoC market. Their motivation
for acquiring and exploiting a patent based on our ideas shows an industrial
relevance, and an interest in our work. A valid and registered patent also gives
a proof of uniqueness since it has been reviewed by patent engineers and patent
registration authorities.

The patent application was authored in co-operation withAnn-Marie Reyier
at Bjerkéns Patentbyråin Västerås, Sweden. Mrs Reyier wrote the application
based on our documentation and pre-published papers. For reference, we have
included the patent description and its claims in Appendix A.
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Summary of Papers

5.1 Summary of Paper A
Mohammed El Shobaki and Lennart Lindh, A Hardware and Software Monitor
for High-Level System-on-Chip Verification, In proceedings of the IEEE Inter-
national Symposium on Quality Electronic Design, San Jose, CA, USA, March
2001.

Summary: The paper describes our concept of anon-chip hardware monitor
for uniform monitoring of hardware/software systems-on-chip (SoC). For hard-
ware analysis the monitor detects and collects events at the register-transfer
level (RTL), performing very much like a logic analyser. For software analysis
the monitor may be attached to processing elements in the SoC, e.g. to proces-
sor interconnects and buses, in order to extract software instructions and data.
In this latter sense the monitor works non-intrusively to the system, or with
a minimum of interference if the software is instrumented for hybrid monitor-
ing. In the paper we also relate to our previous work on hardware-implemented
Real-Time Kernels, and discuss how such an implementation may be integrated
with the monitor in order to extract process-level events without perturbing a
system’s functional, timing, and performance behaviour. This property is re-
quired especially when debugging and analysing SoCs used in real-time sys-
tems. We also motivate the use of the monitor in a top-down debugging strat-
egy where it can be employed in the early stages of verification and validation
at a system or process level, and later, at the hardware’s RTL whenever more
level of detail is requested. Finally, the paper describes the embryo to a full-
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featured monitoring application framework with support for monitor control,
event tracing, and visualisation of performance and data.

My contribution: The paper is written by me, under supervision of Lennart
Lindh.

5.2 Summary of Paper B
Mohammed El Shobaki, On-Chip Monitoring of Single- and Multiprocessor
Hardware Real-Time Operating Systems, In proceedings of the 8th Interna-
tional Conference on Real-Time Computing Systems and Applications (RTCSA),
Tokyo, Japan, March 2002.

Summary:The paper presents further developments to the concepts discussed
in Paper A, and describes a physical implementation of a prototype monitor
along with a much more developed version of the framework for monitoring
applications. The monitor hardware is realised in aprobe unit(IPU) that is
integrated with a hardware RTK in an FPGA-chip, which in turn is mounted on
a PCI-board in acommercial-off-the-shelfmultiprocessor system. In this setup
the RTK manages real-time process scheduling for up to three CPU-boards
hosting PowerPC 60x/75x processors. The monitor, which has probes tightly
coupled to the RTK’s data paths, logs all scheduling events in the RTK, as
well as its other features, e.g. inter-process communication events, semaphore
state transition events, external interrupts, etc. The logged events are time-
stamped and then transferred through a dedicated connection to an external
PC, where the events are stored in a relational database, ready to be accessed
by monitoring applications.

The software that access collected events, or controls the monitor, are im-
plemented as separate modules which are plugged into a GUI-platform devel-
oped using Java. The paper describes the architecture of this GUI-platform,
which we choose to call aframeworksince it is designed to be easily customis-
able and upgradeable.

Moreover, the paper demonstrates the use of the monitoring system and
presents some implementation data. The paper’s main conclusion is that it is
possible to non-interferingly observe the behaviour of software processes by
monitoring the hardware RTK.

My contribution: I’m the sole author of the paper.
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5.3 Summary of Paper C
Mohammed El Shobaki and Jeroen Heijmans, MAMon - A Multipurpose Ap-
plication Monitor, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-121/2004-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University, Västerås,
Sweden, September 2004.

Summary: This report describes the architecture and integral components of
the Multipurpose Application Monitor (MAMon). The IPU’s signal interface
is described and we explain how the interface conforms to intregation with
a hardware RTK and the communication port to an external host computer.
The report also provide a programmer guide for the monitoring application
framework, as well as a user manual for the currently implemented monitoring
tools within the framework. The report is mainly intented as a reference guide
for working with MAMon at a user’s level.

My contribution: I compiled this paper based on several documents, partly
written by me and partly by my co-author, Mr Heijmans. Mr Heijmans con-
tributed to the implementation of MAMon’s host software, an effort which he
conducted in a special student project under my supervision.





Chapter 6

Related Work

This chapter presents academic research and industrial practice that relate to
our work. We will first give an overview of the related work, then present some
of the surveyed systems more in detail, and give a discussion on their rela-
tion to our contributions. For more extensive surveys on monitoring systems
see [TBHS96] and [Sch94].

First, we must emphasize that MAMon is primarily a process-level monitor for
systems employing a hardware RTK, and secondary it is a multipurpose hybrid
monitor in that it can also be used to record software-generated events. These
two features may be combined in an embodiment of the monitor, but may also
be used separately. For simplicity we differentiate between the two features
in the following discussions. Section 6.1 presents related work on monitoring
RTKs, Section 6.2 describe work on hardware-only monitoring systems, and
Section 6.3 presents work on hybrid monitoring systems. Finally, in Section 6.4
we relate our contributions to on-chip techniques that has emerged with the
developments towards hardware/software co-design and systems-on-chip.

6.1 Monitoring Real-Time Kernels
To our knowledge, our research on monitoring hardware-implemented RTKs is
unique. We believe this is mainly due to limited research efforts on hardware
RTKs. However, for software-implemented RTKs there exists a number of pro-
posed systems. For a few examples see [TKM89, TFC90a, Win04, Men98b]
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The ARTS monitor
In [TKM89], Tokuda et al. presents a research prototype on a real-time monitor
developed for the ARTS distributed operating system. The proposed monitor
requires support from ARTS kernel such as notification of process’ state-changes,
e.g. process creation, waking-up from a blocked state, being scheduled, etc.
The events collected from the target system are sent to a remote host for dis-
play of the execution history.

The "Imitating" Monitor
The work by Tsai et al. in [TFC90b, TFC90a] presents a more generic real-
time hardware monitor which is suitable for observations at various abstraction
levels, including theprocess-level. This monitor is realised as a separate com-
puter system that is attached to the buses of the computer under observation,
and utilise bus-snooping in order to reflect the observed system’s state onto the
monitoring system. Thus, the monitorimitatesthe execution at the observed
system. We discuss this monitor further in the next section.

Xpert Profiler
Xpert Profilerby Mentor Graphics [Men98b] is a typical commercially avail-
able tool for profiling, measurement, and evaluation of software written for the
VRTX RTOS [Men98a]. Xpert Profiler relies on software-instrumentation that
may be automatically inserted in the RTOS kernel whenever task-switching
activities are to be monitored. The monitoring process is controlled by a pro-
gram on separate host computer (see Figure 6.1), where the recorded data is
also visualised and processed. On the target side, the application is linked with
the libraries (proflib.oandproflib_vrtxsa/vrtx32.o) containing service-routines
that can be called (either by the RTK or the application) at the instances where
samples are requested. The sample buffer, which also resides on the target side,
contains the samples that are collected during a monitoring session.

Discussion: The main difference between MAMon and the above described
systems is the notification of events which for the surveyed systems (except
the Imitating monitor) require instrumentation of the software RTKs, while in
MAMon the kernel-events are sampled directly from a hardware RTK. In case
of the ARTS monitor the intrusiveness due to the software instrumentation is
included in the schedulability analysis. The commercial monitors, like Xpert
Profiler [Men98b] and its equals, do not take any measures to eliminate exe-
cution interference or probe-effects.
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Figure 6.1: The components of Xpert Profiler [Men98b].

6.2 Hardware Monitoring Systems

The Bus-listener and The Imitating Monitor
Research prototypes on hardware-supported monitoring for single-processor
systems can be found in the work by Plattner [Pla84], and Tsai et al. [TFC90b].
Common techniques in these approaches are to employ bus-listeners to reflect
memory-accesses onto a separate memory system, and the use of imitating
processors, i.e. in order to perform intrusive monitoring on a (non-intrusively)
reflected system. For instance, Plattner’s monitor, calledbus listener, is at-
tached to the target processor’s buses in order to detect memory transactions
which then are reflected onto a separate memory designatedphantom memory.
From this memory it is then possible to examine the system’s state without in-
terfering with the observed system. Tsai et al.’s monitor is also attached to the
processor buses, however, the detected signal activities are used to synchro-
nise a separate computer node (with an own processor, memory system, and
I/O-devices). This computer node imitates the observed computer, and allows
for examination of the system state without interference with the monitored
system.

The Interrupt Priority Level Monitor
In [JC91], Baker and Crilly presents an architecture for monitoring interrupt
priority levels on an interrupt-driven processor. The monitor is used to exter-
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nally observe the interrupt levels at which the processor execute and the time
spent at each priority level in order to determine processor and service-routine
efficiency. The concept is proposed for a generic interrupt-driven microproces-
sor, and presumes that information on interrupt activities can be extracted off-
chip via the processor bus-interface.

Figure 6.2 shows an overview of the monitoring system for a generic target
processor called DUEL. The monitor hardware observes the DUEL processor
for interrupts, log events, and buffer event records. The SCSI bus is used for
host control of the monitor hardware, and for sending event records to the
host for post-analysis. The host system controls the monitor hardware, collects
event records, and reconstructs the event history for use with analysis tools.

PC  Ho st
M onitor

Ha rdw are

SCSI
Bus

DUEL
Processor

DUEL
Processor

Buses

Priority Event Monitor

Figure 6.2: Baker and Crilly’s Priority Event Monitor [JC91]

The Ted Monitor
In yet another related work, Liu and Parthasarathi [LP89] presents a hard-
ware monitor for a shared-memory multiprocessor system calledTed(Testbed
for Distributed Processing). They propose this monitor to be used in debug-
ging and run-time process-scheduling. In the following we will describe this
monitor in detail to give a more complete presentation of a work that relates to
the multiprocessor implementation of MAMon (presented in Paper B).

The Ted consists of Intel 8086 single board computers that are organised
in clusters. Within a cluster, the single board computers are connected to a
Multibusand communicate via shared memory. Clusters are connected with an
Ethernet network. Figure 6.3 shows the architecture of Ted. The monitoring
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hardware is attached via a probe interface to the Multibus on the cluster to
be monitored. In this approach, the monitoring device detects events on the
Multibus and collects the data for use by an external system. The external
system may be a completely independent computer, or it could be one of the
board computers (dedicated for monitoring) within the cluster as is proposed by
the authors. In the latter case, the monitor is controlled via the Multibus, hence,
a slight interference will occur. However, when monitored data is collected
from the monitor, the parallel port of the processor board is used in order to
avoid contentions on the Multibus.
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Figure 6.3: The Ted architecture [LP89]

Figure 6.4 shows the internal architecture of the monitoring device. The
probes of the monitor connects to the bus within the cluster. A standard Multi-
bus edge connector serves this function. Via the monitor’s bus interface, the bus
signals are sampled and compared with a set of predefined signal patterns. This
is done in the event filter where a set of user-programmable registers contains
the patterns for the events of interest. The bit pattern consists of the following
signal lines:

• 20-bit address lines

• 16-bit data lines, and
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• 4-bit read/write lines (I/O and memory r/w)
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Figure 6.4: Functional block diagram of the Ted monitor [LP89]

When a match occurs, the event filter triggers a clock-counter mechanism
which counts the elapsed number of clock-cycles between two consecutive
events. The event data and the counter-values are then stored in a local buffer
which is managed by the buffer unit. The buffer unit manages the buffer mem-
ory using a double-buffering scheme which allows one buffer to be filled while
the other is emptied. When a buffer fills, the control unit starts transmitting the
buffer contents to the external system via the parallel port.

Discussion:Compared with the above monitoring systems (except thePriority
Event Monitor), MAMon’s IPU is not a hardware monitor that collects any
data present on physical wires in the system, at least it is not intended for such
use in the first place. However, the IPU may easily be customised for such
purposes as well. On the other hand, the monitoring systems above are obsolete
in computers that employ cache-memories that obstructs off-chip probes from
observing processor execution. Since the IPU may be placed in a SoC it is
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possible to overcome the problem with obstructive caches by attaching the IPU
directly in between – soft IP – processor cores and their caches.

When comparing MAMon with Baker and Crilly’s monitor, MAMon pro-
vides the same features for observing interrupts and their priorities.

6.3 Hybrid Monitoring Systems

The Co-Processor "Flight Recorder" Monitor
Research prototypes for hybrid monitoring systems have been proposed in
[HW90, MSHA98, Gor91, Sch94, CP98]. The common approach in most of
these systems is to employ a hardware monitor that collects instrumentation-
generated events via a memory-mapped register interface. An exception to this
model, however, is the monitor proposed by Gorlick [Gor91]. His monitor is
implemented using a co-processor which executes special monitoring code that
is inserted, manually by the user or automatically by the compiler, at the loca-
tions of interest. The monitoring process is triggered by an event occurrence
in the target processor, resulting in that the co-processor starts executing the
monitoring code while the target processor continues normal program execu-
tion. In this manner, the co-processor may perform the monitoring operations
with a very low impact on the system’s performance. Gorlick compares his
monitor with the operation of a flight-recorder in that it saves traces of the
execution history.

MultiKron
The MultiKron1 project presented in [Min94] by Mink et al. is an attempt to
provide a chip implementation of a hybrid monitor. This chip, called Mul-
tiKron, supports event tracing andperformance countersin combination, or
only the performance counters in one version of the chip. The performance
counters are generic 32-bit registers that may be used for counting the number
of occurrences of a target event or to record the elapsed time between events.
In [MSHA98] they present a prototype implementation for inclusion in com-
puter systems with a PCI-bus [PCI]. In the same paper they also demonstrate
the integration of the monitor with a tool suite for parallel performance mea-
surements called Paradyn [MCC+95].

1MultiKron is a registered trademark of the National Inst. Of Standards and Tech. (NIST),
USA
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Transprobe
Yet another chip implementation of a hybrid monitor is theTransprobepro-
posed by Calvez and Pasquier [CP98]. Their monitor is also a hardware monitor
in that it also provides a mechanism to latch in arbitrary signals in the hardware.
They also advocate using the monitor in an on-chip solution to overcome ob-
structive hardware packaging, and reach in deeply behind cache memories. To
monitor distributed system, i.e. multiple computer nodes, the Transprobe may
be connected with other Transprobe chips using a custom token-ring serial net-
work called Transbus. The Transbus operates with an effective bandwidth of
1 Mbyte/s, thus allowing an event throughput of up to 100,000 events/s (each
event packet is 10 bytes). They also provide an in-house developed tool suite
that supports various performance assessments.

Discussion:MAMon provides hybrid monitoring in the same way as the ma-
jority of the surveyed monitors above. MAMon is however more similar to
the monitor proposed by Calvez and Pasquier as their implementation of the
Transprobe chip should also allow for incorporation in a SoC. However, in
the current implementations of MAMon there may only exist one IPU in the
observed system.

6.4 On-Chip Techniques
With the developments towards increased integration of hardware and soft-
ware components and utilisation of hardware implementation technologies,
it is becoming more and more attractive to put complete systems into single
chip solutions, i.e. systems-on-chip that incorporates one or more proces-
sor cores, custom IP, I/O control components, and sometimes even reconfig-
urable hardware block. To support the development of these type of systems
we see increased efforts to provide debugging capabilities right on the SoC
[YS99, HL99, Chi00, Sig, Sca].

ARM’s EmbeddedICE
The EmbeddedICE Logic [YS99, Lim99] (see Figure 6.5) provides on-chip de-
bugging capabilities for theARMseries of processor cores. This module comes
as an integral part of an ARM-processor, and supports breakpointing and step-
ping code, non-intrusive monitoring of instruction flow and data access, and
the ability to modify memory without halting the processor, and all this during
full-speed execution. The module is controlled from a debugger – running on
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a separate host computer – through a standard JTAG port [JTA93]. Due to the
tight coupling with ARM’s processor architectures, the EmbeddedICE module
can provide these features seamlessly.

Debugger running
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Figure 6.5: ARM’s EmbeddedICE Logic for On-Chip Debugging [YS99]

ChipScope and SignalTap
TheChipScope ILA(Integrated Logic Analyzer, byXilinx Inc. [Chi00]) is an-
other on-chip solution for analysing logic in Xilinx’ reconfigurable hardware
chips. The approach is to integrate a logic analyser IP-component on-board
Xilinx FPGAs. The ILA component, which is connected in HDL and then syn-
thesised with the design, collects logic-level events in run-time, and transfers
the events via the JTAG port over to a host computer where the data is pre-
sented in a waveform graph. Thus, the ILA gives the designer full access to
all internal nodes and the (FPGA’s) data bus at full system speeds. A similar
solution is also provided byAltera Inc. [Sig] in their SignalTap IIembedded
logic analyzer.

Discussion: The event tracefeature of the EmbeddedICE Logic module for
ARM processors may just as MAMon be used for hardware and hybrid moni-
toring of software execution. However, this module is not generally applicable
with other processors.

To compare MAMon and its IPU with the other on-chip techniques describe
above is not straightforward, since they do not address the same questions we
formulated in Chapter 3. However, the hardware/software system development
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support they provide altogether indicates the need for increased observability
in today’s state-of-the-art computer systems, a trend which strongly confirms
our overall motivations for this work.



Chapter 7

Conclusions

The main conclusions from this thesis are summarised below:

• We have proposed a monitoring concept, designatedMAMon, and suc-
cessfully proved its use in a number of implementations. MAMon of-
fers non-interference observability of computer systems that employ a
hardware-accelerated RTOS. The central contribution is the concept of
an integrated hardware probe unit(IPU) which passively detects and
collects process-level information from the hardware-accelerated RTOS,
and communicates this data to an external computer for analysis, debug,
and visualisation.

• We have also proved it possible to utilise MAMon for combined obser-
vations of hardware and software behaviour. In the latter, the IPU is
used to trace software execution and data through instrumentation of the
software. To avoid probe-effects in concurrent programs we suggest the
instrumentation to be kept in the deployed product.

• It is also shown in a case-study that MAMon may be used to measure
task’s execution time and cache performance behaviour [Seb02a]. From
this study we conclude that task execution properties may be measured
very precisely during run-time and full-speed execution. Another advan-
tage is that MAMon may be employed in a real execution environment,
where the observed system is exposed to natural behaviour and distur-
bances from the environment. These properties of the monitor makes
it very useful for task execution and resource utilisation analysis that is
done prior to the scheduling process of real-time computer software.
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• The monitor’s IPU has a small hardware footprint which makes it attrac-
tive to integrate in systems comprising custom hardware, such as FPGAs
and ASICs. As hardware implementation technologies are becoming
cheaper (e.g. FPGAs and CPLDs), our proposed monitor delivers ob-
servability at a low cost.

Despite that MAMon initially was tailored to observe the behaviour of the
hardware-accelerated RTOS, we believe that it is quite general and may be
explored further to also address testing and analysis of hardware, and Systems-
on-Chip in particular. The fact that the IPU may be implemented as anintellec-
tual propertycomponent (IP) for integration in a SoC make it interesting and
relevant for use in industrial practice. This is also confirmed by the support for
patenting the concept.

Furthermore, we conclude that there are disadvantages with the MAMon
concept regarding its dependability on a communication channel that must pro-
vide - or by other means be capable of delivering - performance that is propor-
tional to the amount of generated run-time information in the system. This
sort of "Achilles heel"of MAMon is in fact dependent on several properties:
the type of application that is monitored, the monitored level of abstraction
(the lower, the more information), the size of the IPU’s FIFO-buffer, the band-
width of the communication channel and its buffering requirements on the host
peer, and the performance of file operations and database storage at the host
computer system. The FIFO-buffer in the IPU must be dimensioned to handle
the event input rate with respect to the type of application monitored, and the
bandwidth of the communication channel. As a precaution measure we have,
however, provided a way of indicating FIFO overruns in the IPU, so that we
can determineif andwhenthe FIFO buffer-size is underestimated.
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Future Work

Current trends in hardware design shows an increasing use and re-use of IP
components. The components may either be standardised such as those in-
cluded in design tool libraries or frameworks, or may come from third-party
vendors who provide specialised components. This development towards reus-
ability resembles very much recent developments in thesoftware engineering
approach to software design. As in software engineering, hardware design-
ers face an increasing complexity in the verification and validation process of
large SoCs that comprise components originating from different sources/ven-
dors, and components with different versions and configurations. Although the
components are verified standalone, it may be difficult to predict their run-time
behaviour when they are compound in a SoC. To manage product platforms
based on such premises, and handle evolutionary system changes is an increas-
ing challenge for SoC developers. Therefore it is motivated to find methods
and develop tools that facilitates several aspects in SoC development.

We believe the MAMon approach with on-chip IPU-components can be
utilised better for run-time observations of components within SoC, not only
for development purposes, but also in deployed products with complex behav-
iour. The underlying idea is to have on-board monitoring facilities throughout
the lifetime of SoC-based products, in particular such products that have safety
critical, or high quality, requirements. Just as a "flight-recorder" [Gor91], the
recorded traces from the monitor may be used as input to post-crash analysis
tools and debuggers [TSHP03]. The traces should be long enough to cover
faulty execution histories, and be kept in non-volatile memory embedded in
the system (on-chip or off-chip the SoC). These ideas are already implemented
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for traditional board computer systems. However, we believe there will be an
increased demand for this type of facilities in SoC-based systems.

Hardware/software co-designis another research field where monitoring
may come to play an important role. The main objectives of hardware/soft-
ware co-design is to raise the design abstraction to a behavioural description
level [SW97, MS96, FN01], and optimise a system design by partitioning
its implementation into hardware and software technology respectively. The
partitioning may be optimised with respect to several parameters, e.g., execu-
tion performance, chip area costs and pin constraints, power consumption, and
trade-offs between the parameters. Problems that relate to hw/sw co-design are
the difficulties in debugging a design that partly resides in hardware, and partly
in software. Hence, a co-debugging strategy must be adopted. Koch et al.
[KRK98] propose interactive breakpoint-based debugging using co-emulation
of hw/sw systems. Their approach provides the ability to set breakpoints in
either technology, and synchronise hardware and software processes that halts
due to breakpoints. Potkonjak et al. [KP97, KKH+01] propose an approach
to symbolic debugging of behavioural descriptions. Their efforts are motivated
by the need to synchronise variable values in the hw/sw implementation with
their related symbols in the behavioural description.

To facilitate co-designed system development we believe a monitoring ap-
proach like MAMon could be utilised for run-time observations. An experi-
mental idea is to extend hw/sw co-synthesis with generation of instrumentation
for processes in software, and generate customised IPUs that are attached with
the synthesised hardware.
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Abstract

Verification of today’s Systems-on-Chip (SoC) occur at low abstraction-levels,
typically at register-transfer level (RTL). As the complexity of SoC designs
grows, it is increasingly important to move verification to higher abstraction-
levels. Hardware/software co-simulation is a step in this direction, but is not
sufficient due to inaccurate processor models, and slow hardware simulation
speeds. System-level monitoring, commonly used for event-based software
debugging, provides information about task scheduling events, inter-task com-
munication and synchronisation, semaphores/resources, I/O interrupts, etc.

We present MAMon1, a monitoring system that can both monitor the logic-
level and the system-level in single/multiprocessor SoCs. A small hardware
probe-unit is integrated in the SoC design and connects via a parallel-port link
to a host-based monitoring tool environment. The probe-unit collects all events
in the target system in run-time, and timestamps them with a resolution of 1µs.
The events are then stored in a database on the host for further processing. The
paper will describe MAMon and how it works for software and hardware mon-
itoring. The paper also describe how system-level monitoring can be achieved
non-instrusively by using a hardware-based Real-Time Kernel.

1Multipurpose/Multiprocessor Application Monitor
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9.1 Introduction
Already today many System-on-Chip (SoC) applications are hard to verify and
optimise. The complexity is increasing and to verify a whole system using
computer model simulations is time consuming, and some times impossible
due to inaccurate models. It is also difficult to model the real-world (i.e. the
environment) around the SoC.

Often a bug in a system is traced from a high-level view of the system, com-
monly referred to as thesystem-level, downto theregister-transfer level(RTL)
(or even lower levels if things are really bad). In this paper we refer to the
system-level as to denote both the process/task-level information in software,
and the behavioural-level information in hardware. As Figure 9.1 illustrates,
the number of events occuring in a system are fewer at the system-level, which
motivates a top-down debugging strategy.

Target
System

System-Level

RTL

Gate-Level

Few events/s

Many events/s

Figure 9.1: Events in a target system

Observability into SoC designs is today mostly supported for RTL verifi-
cation. As SoC designs tend to increase in size and complexity, the verifica-
tion process need also to take place at the system-level. Support for system-
level verification already exist for the software part of a SoC, where a com-
mon technique is the use ofsoftware monitors. These monitors are typically
found in RTOS (Real-Time Operating System) development tool environments
([Men98, Baw99]), and provides the developer with process-level informa-
tion such as task-scheduling events (start/stop, block/resume, taskswitch, etc.),
inter-process communication events (e.g. send and receive messages), synchro-
nisation and resource utilization (CPUs, semaphores, I/O), external interrupts,
etc. For this information to be extracted it is often required to instrument the
software with special monitor instructions or processes, which later can be re-
moved after the validation phase. The drawbacks of instrumentation is that it
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utilizes target resources such as memory space and execution time from the
CPUs. Also, when the instrumentation is removed, the system may change be-
haviour due to timing differences. This problem, commonly referred to as the
probe effect([Gai86, MH89]) causes many timing- and synchronisation-related
errors in concurrent/distributed systems and real-time systems [TBHS96].

In this paper we present MAMon, a hardware-based monitoring system that
makes a SoC observable at different abstraction-levels both in hardware and
software. MAMon is a solution that integrates a small hardware component
into the SoC. It works like a probe, either by listening to logic- or system-level
events in a passive manner, or by being activated by software that writes to
a specific register. Detected events are time-stamped and sent via a link to a
host-based tool environment where the events are stored in a database. The tool
environment includes a set of fascilites to view, search, and analyse the events
in the database. Depending on the capacity of the database disk system, and
the rate at which events occur, a monitoring session (or execution history) may
be several days long.

In systems running a software RTOS, the process-level events can be ex-
tracted by instrumenting the code withhook routinesthat writes information to
the MAMon hardware. Hook routines are small functions that can be attached
to the RTOS functions, e.g. task scheduling events, system-calls, and so on.
Except the extra recourses that the instrumentation would require, it may also
render problems if it has to be removed after system validation. An alternative
could be to monitor the RTOS via the CPU’s bus activities. This would how-
ever require that bus activities be visible outside the CPU, so cache-memories
may need to be turned off if the CPU does not support monitoring of internal
bus logic.

When using a hardware-based RTOS kernel [AFLS96] for the management
of SoC software, we will show how the process-level events can be monitored
without software overhead and with no instrusion on the system’s timing be-
haviour. Moreover, since it is non-instrusive, it gives the SoC developer the
free choice of either keeping or removing the monitor component in the final
product.

The use of MAMon may be different for FPGA SoCs and ASIC SoCs.
Leading FPGA manufacturers (Xilinx [Xil] and Altera [Alt]) are now promis-
ing SoC solutions with embeddedsoft or hard processor cores (IP). In such
FPGA-based SoCs, MAMon’s probe component could be instantiated and con-
nected to the RTL and system-level description of the design during the verifi-
cation and validation phase. After synthesis for the FPGA, the connections to
the design are easy to change, and re-synthesise. For ASIC implementations,
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however, it is much more costly to redesign. In this case MAMon may be more
suitabel for long-term usage as a monitor for CPU busses, and hardware-based
real-time kernel events.

The paper is organised as follows: Section 9.2 gives an overview of MAMon
and how it is used for hardware and software monitoring respectively. More-
over, we give a detailed description of the internal layout of the hardware,
and the host interface to the tool environment. The tool environment is only
described slightly. Finally, section 9.4 and 9.5 summarizes the paper with a
discussion on further work and some concluding remarks.

9.2 MAMon

The proposed monitoring system, called MAMon, aims at providing means for
event-based hardware and software debugging of single- and multiprocessor
SoCs. An overview of MAMon is depicted in Figure 9.2. In this approach the
monitoring system is comprised of three parts;(i) theProbe Unitwhich con-
nects to internal SoC logic,(ii) aTool environmentresiding on a host computer
system, and(iii) the communication link between the Probe Unit and the Tool
environment, called the Host Interface.

IP
Core

IP

System Bus

Probe
Unit

EPP

Host InterfaceTarget System Board

Tool Environment

System-on-Chip

Figure 9.2: Overview of MAMon
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The Probe Unit (PU, described in next section) is integrated in the design
HDL code, and connected to signals that constitue the events to be monitored.
For instance, an event could be defined as an access of a SoC component (IP),
a certain condition on a bus (address, data, or control), arrival/contents of com-
munication data, or an interrupt assertion, and so on. Then, in run-time, the PU
performs detection, timestamping, and recording of events. Recorded events
are transferred, via the Host Interface, to the Tool environment, where a data-
base is used to store the events for further processing in display and analysis
tools (section 9.2.3).

In certain cases there is need to cause events from software, for instance to
monitor the system-level events occuring in a software real-time kernel. Such
events are produced by inserting software instructions (software probes) that
writes to a PU register connected to the system/processor bus. Software probes
can also be used as checkpoints in the code (flags), or to report memory con-
tents.

Not only may system-level events be monitored, but also the hardware logic
itself can be analysed and depicted against higher-level events, e.g. in wave-
form graph tools. This feature is useful for tracking down hardware logic er-
rors which cannot be analysed using conventional probing methods (e.g. logic
analysers and oscilloscope).

9.2.1 The Probe Unit

Figure 9.3 shows a block-diagram of PU’s internal organisation. The compo-
nent illustrated in top of the figure is theevent-detectorwhich merely performs
conditional comparisons (comparator) on input signals. The input signals are
hard-wired (in HDL) from selected points in the SoC. Also the condition ex-
pressions that defines events are hard-coded in the event-detector. When a
certain condition for an event is detected, a sample is collected and stored im-
mediately along with a timestamp in an on-chip memory buffer. Events gener-
ated by software, i.e. software probes, are detected as write-accesses to a 32-bit
register (SWPROBE_REG) in the PU’s bus-interface (address/data/control).

An event-sample comprises the event-type, the timestamp, and an event-
defined parameter field, see Figure 9.4. The parameter field is used to store
additional information about an event. For instance, for various access-events
to IP-components to be enough informative, the parameter field might contain
call parameters, e.g. a bus-vector. The parameter field for a software-probe
constitutes the 32-bit value that was written to SWPROBE_REG.

The timestamp comes from a 32-bit timer device which denotes the rela-
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tive system time with a resolution of 1µs per tick. A default timer device is
included in the PU.

Event Detector

T
im

er

From SoC: e.g. chip-select,
address/data, ctrl, registers,
irq, etc.

Event 4

Event 3

Event 2

Event 1

empty

MMU
RAM

EPP Host
Interface

IRQ
GEN

 To Host

SWPROBE_REG

Decode
Logic

System/CPU Bus

Probe Unit

Figure 9.3: Internal organisation of the Probe Unit

Since the amount of event samples can be rather large before it can be com-
municated to a host computer, the on-chip memory requirements may not be
feasable because of area or economical constraints, especially in FPGA SoCs.
Therefore an external (off-chip) RAM buffer could be required. If an external
RAM buffer is used, the on-chip buffer would still be needed in order to avoid
write-access latencies to the external RAM. With this buffer configuration it
is possible to detect and store up to 5 events occuring within 1µs, if a clock
speed of 10 MHz is assumed. This is quite useful in some extreme situations,
for instance, when monitoring timing-dependant response to external interrupts
when there are several sources of competing interrupts.
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The Memory Management Unit (MMU) is responsible for moving event
samples from the internal buffer to the external RAM. Both buffers are or-
ganised as circular FIFO buffers for maximum space utilisation. The current
version of MAMon is implemented with a 128kB RAM buffer. With an event
sample size of 10 bytes (Figure 9.4) this means that more than 13 000 events
can be stored before the buffer needs to be emptied. Furthermore, the MMU
manages requests to move sample data from RAM to the host computer by way
of the parallel port interface (described in next section).

4 Bytes1 Byte

ParametersParameters

EventEvent

5 Bytes

TimestampTimestamp

Figure 9.4: The event sample format

9.2.2 Host interface

Since the on-board event buffer is limited it is important that event samples
are transferred to the host with a guaranteed high communication bandwidth.
Therefore, a parallel port implementing the bi-directionalEnhanced Parallel
Port protocol (EPP 1.9 [EPP]) is used as the host communication interface.
With EPP the event samples can be transferred with a rate up to 2MB/s, or
more than 200k events per second.

As part of the host interface is theinterrupt generator, refer to Figure 9.3.
This component can be programmed to interrupt the host computer whenever
there are new events in the buffer. When enabled, the interrupt generator can
be set into one of three modes:

• Interrupt whenever new events are detected

• Interrupt when the RAM buffer is half-full

• Interrupt when the RAM buffer is full

The first two modes are useful when continous monitoring is desired. The
third mode is more useful if the PU is set to sample from a given command
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until the buffer becomes full, and then stop. Providing the ability to choose the
interrupt mode gives a customised solution that best suits the capabilities of the
host computer performance, the tools, or the user. When the interrupt function
is disabled, events can still be acquired inpolled mode. Control of the PU’s
behaviour, and acquisition of event samples and other status information, is all
done via the EPP register interface, i.e. from the host computer system.

9.2.3 The tool environment

The proposed tool environment provides the user with facilities to view and
search the event samples received from PU. In order to manage possibly huge
amounts of events that can be produced from long system runs, the received
data must be stored in file-structures that are optimal for searching. A data-
base will therefore be used for storage of the event samples. As illustrated
in Figure 9.5, the database then acts as a server for various requests from the
tools.

Event
Database

Event-graph
Tool Statistics

Utilities

Debug Query
Tool MAMon Interface

+
Evt Database Control EPP I/F

Figure 9.5: MAMon’s tool environment

An event-graph that displays portions of the event history is a necessity
in order to help the user in finding erroneous execution patterns. The event-
graph tool, illustrated in Figure 9.6, collects events from the database, and
displays them along a timeline. Apart from standard functions such as zooming
and scrolling, there is also support for time-markers that are used for timing
measurements, and search-markers that can be used to locate event conditions
and patterns. For logic-level events, the tool looks and behaves similar to a
waveform graph. The difference however, is that the tool is able to show a mix
between logic- and system-level information on the same timeline, giving the
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user the ability to correlate events in the hardware and software.
In order to ease visibility, and understandability of the execution, an event-

filter can be used to hide excess information. The filter-tool can also reduce the
search-space which will improve performance of the database.

The event-database is also suitable for other post-analysis, such as extrac-
tion of various statistics. Examples on such applications are; diagrams and
histograms showing task’s execution-time, processor utilisation, IPC frequen-
cies, interrupt-response times, etc.

Figure 9.6: Example tools: Event-graph and event-filter

9.3 An Ideal Example: Monitoring a Hardware Real-
Time Kernel

When connecting the MAMon system to a hardware-based RTOS kernel, the
process-level can be extracted with zero software overhead, and thus, with-
out changing the timing behaviour of the system. A hardware RTOS ker-
nel implements traditional (software) RTOS functions (e.g. scheduling algo-
rithms, task management, inter-process communication primitives, synchro-
nisation, semaphores, event flags, etc.) in hardware. The RTU (Real-Time
Unit [AFLS96, FSLA98]) is such a component that has proven to be success-
ful for increasing RTOS performance and operational predictability. Moreover,
it can also be used as the single RTOS for both single- and multiprocessor sys-
tems [LKF99].

The connection between MAMon’s Probe Unit and the RTU is done using
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signals in VHDL ([SL97]). The recorded events are then transferred to the
host-based tool environment, where a process-view can be displayed using the
event-graph tool. The provided fascilities in the event-graph tool can help the
designer to find erroneus execution patterns and/or be used to tune performance
and load-balance in a multiprocessor SoC.

RTU MAMon
Probe Unit

CPU 1..n,
RAM

Special
Hardware

MAMon
Tool Environment

SoC

Figure 9.7: A RTL and system-level monitoring configuration using MAMon

Figure 9.7 illustrates a SoC configuration using the RTU for scheduling of
one or more CPUs, and MAMon for monitoring the system at both the RTL
and system-level. In this configuration no additional monitoring software is
required on the target.

9.4 Current and Further Work
A first version of MAMon is currently being implemented together with a sim-
ple tool environment including the event-graph display tool. In this version
only tasking activities inside the RTU are monitored. Further work will pri-
marily focus on adding support for monitoring the other RTU features, such as
inter-process communication management, and handling external interrupts.
Moreover, there will be extensive work on development and improvement of
the tool environment. The results will be published in a forthcoming paper, to-
gether with a case study showing the use of MAMon for debugging of typical
timing and synchronisation errors. There are also plans to extend the Probe
Unit with support for run-time detection of user-defined event-patterns which
then can be used to halt the software, either completely (all CPUs) or partially
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as per CPU or task, or groups of CPUs and tasks. This feature could be utilised
to implement synchronous and consistently halting breakpoints for use in co-
operation with traditional source-level debuggers.

9.5 Conclusions
On-chip support for monitoring and debugging is becoming critically impor-
tant since traditional solutions that uses in-circuit emulation (ICE) techniques,
logic analysers, and oscilloscope, do not keep pace with today’s system speeds.
Moreover, on-chip approaches are motivated because of limited pinouts in
chip-packaging, and even difficulties in reaching the physical pins (e.g. Ball-
Grid Arrays, BGA).

The approach of integrating MAMon on a SoC offer an on-chip solution
that also gives non-intrusive, synchronous, and consistent RTL and system-
level monitoring. This, in turn, is ideal for event-based debugging and profil-
ing of embedded real-time SoC applications. MAMon together with a hard-
ware RTOS kernel gives a simple solution to process-level monitoring without
requiring additional software overhead.

In a FPGA solution it is also convenient to monitor a mix between RTL
system-level to get an effective debug and optimisation environment. In an
ASIC solution MAMon is more suitable for run-time system-level monitoring,
e.g. for process views.

All monitored data are time-stamped with a resolution of 10 times the sys-
tem clock freqency. This capability is important so that events at different
abstraction-levels can be compared and correlated with a high precision.

The requirement to manually connect SoC logic and signals to MAMon’s
Probe Unit, and then define event-conditions, is unconvenient and can be tricky
to handle for SoCs with many small submodules. Here, it is desirable to have
a tool, preferable an interactive GUI, that automates the necessary connections
and definitions in HDL. In this case, the HDL code would probably need pre-
processing before compilation and synthesis.
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Abstract

This paper presents a novel hardware monitoring system that gives non-intrusive
observability into the execution of hardware-accelerated Real-Time Operating
Systems.

Monitoring is a necessity for testing, debugging and performance evalua-
tions of real-time computer systems. Most research into monitoring of real-
time systems have been devoted to minimising the execution interference im-
posed by the monitor. One approach to this has been the use of hardware
support to extract software execution traces by probing the external processor
(or system) busses.

However, the use of cache memories on various levels, and the increased
integration of system components on-chip (SoCs) in addition to limited chip-
package pins, severely obstructs traditional hardware monitors from probing
processor signals and busses. For real-time systems built on these premises
there is a need to access execution information residing on-chip, as well as to
avoid interference with the system’s execution behaviour.

In this paper we present an integrated solution to on-chip monitoring of
system-level events in a real-time system. The monitor, called MAMon1,
probes a hardware-based Real-Time Kernel using a Probe Unit integrated as an
IP-block. This component detects and collects events regarding process’ exe-
cution, communication, synchronisation, and I/O interrupt activities. Collected
events are timestamped and transferred to a separate computer system hosting
an event database and a set of monitoring application tools. We describe the
monitor architecture, the implementation of a prototype, and an evaluation of
its use.

1Multiprocess Application Monitor
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10.1 Introduction

Run-time observability in embedded system architectures is a requirement for
testing, debugging, and for validating design assumptions made about the be-
haviour of the system and its environment. The classical approach to run-time
observability is to applymonitoring, i.e. the process of detecting, collecting,
and interpreting run-time information regarding the system’s execution behav-
iour. In monitoring real-time systems an important aspect is to minimise, or
completely avoid, the intrusiveness of the monitor on the system’s timing and
execeution properties. Failing to handle monitor intrusivity may lead toprobe
effectswhich cause non-deterministic behaviour in programs with race condi-
tions and poor synchronisation [Gai86, MH89].

The research efforts on real-time monitoring has over the past decade been
mostly devoted to dealing with probe effects and timing interference in various
applications of monitoring [TKM89, TFC90, CJD91, JRR94, HW90]. Hence,
a wide spectrum of monitoring approaches have been proposed, ranging from
pure software techniques [TKM89, JRR94] to the use of special hardware sup-
port [LP89, TFC90, HW90].Software monitoring systemsoffer the cheapest
and most flexible solution where a common technique is to insert instrumenta-
tion code at interesting points in the target software. When the instrumentation
code is executed the monitoring process is triggered and information of inter-
est is captured into trace buffers in target system memory. The drawbacks of
instrumentation is the utilisation of target resources such as memory space and
processor execution time. Moreover, to avoid probe effects, the instrumenta-
tion code must be kept in the deployed software or be compensated for in the
real-time schedulability analysis [TKM89] - with both alternatives resulting in
performance penalties.Hardware monitoring systemson the other hand use
special hardware to passively probe the target’s physical busses, such as the
processor and system busses, and collect information of interest without inter-
fering with the target’s execution. The main advantage with hardware monitor-
ing is that probe effects can be completely avoided. The disadvantages are the
dependancy on the target architecture and its related costs.Hybrid monitoring
uses a combination of software and hardware monitoring and is typically used
to reduce the impact of software instrumentation alone [HW90].

With today’s highly integrated hardware, encapsulating complete systems
on a chip (SoC), the traditional hardware monitors are facing severe difficul-
ties. Processor cores, I/O components, cache memories, and even standard
memory, are all integrated on the same chip. Given also that chip packages can
be obstructive (as in Ball-Grid Array packages) and have limited pins, it has
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become almost impossible for external hardware to probe internal signals. For
real-time systems built on these premises there is a need to access execution
information residing on-chip, as well as to avoid interference with the system’s
execution behaviour.

In this paper we present an architecture for on-chip monitoring of single-
and multiprocessor real-time systems that are based on hardware-accelerated
operating systems [AFLS96, LKF99, MRS+90, NUI+95]. The monitor, called
MAMon, probes a hardware-implemented Real-Time Kernel (RTK) using a
Probe Unit integrated as an IP-block at the VHDL-level. A hardware RTK
implements traditional (software) RTOS functions, such as scheduling algo-
rithms, process management and communication, in hardware [AFLS96, LSF+98].
Operating at the system-level the Integrated Probe Unit detects and collects
events regarding process’ execution, communication, synchronisation, and I/O
interrupt activities. The collected events are timestamped with the resolution
of the system clock frequency (10 MHz = 100ns) and then transferred, via a
high-speed parallel port link, to a separate host computer system. At the host
the events are stored in a database which constitutes the heart of a monitor-
ing application framework featuring event analysis and debugging (searching,
filtering, and graphing), performance evaluations, and more. Monitoring oc-
cur mainly at the system-level, but lower abstraction-levels are supported too
by allowing instrumentation code to write to dedicatedprobe registersin the
monitor hardware. This opportunity would, however, classify the monitor as a
hybrid system, and thus requires a perturbation analysis of the software instru-
mentation.

The main contributions of this work are the ideas on system-level moni-
toring of hardware RTKs, on-chip rather than by probing external processor
busses. We believe that on-chip monitoring support will be required in future
development of real-time systems, especially those based on SoCs.

The paper is organised as follows. Section 10.2 describes a multiprocessor
system concept based on a hardware-accelerated RTOS. This system will be the
target platform in further discussions on our proposed monitor. Section 10.3
describes the monitor architecture for a generic target RTOS that utilise hard-
ware RTKs. An overview of the system and a detailed description is given
for the Integrated Probe Unit, the host-based monitoring application frame-
work, and the communication interface in between. Section 10.4 describes an
FPGA prototype implementation of the monitor for a multiprocessor system
with 3 PowerPC-750 processors. An evaluation of the prototype is given in
Section 10.5, and finally, Section 10.6 summarises the paper with some con-
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cluding remarks and directions on future work.

10.2 A Real-Time Multiprocessor Architecture - SARA
The Scalable Architecture for Real-Time Applications (SARA [LKF99, KL99])
is a research platform for real-time multiprocessor computing systems. The
two main research objectives with SARA are: 1) to provide a hardware archi-
tecture that behaves predictably to the real-time application, and 2) to provide a
flexible system architecture that simplifies processor (performance) scalability.
In attaining these design goals, a SARA architecture is based on ahardware-
acceleratedRTOS. The hardware support comes from a co-processor called
RTU (Real-Time Unit [AFLS96, LSF+98]) which provides the RTOS with
kernel-level services such as process/task scheduling, synchronisation and com-
munication, see Section 10.2.1 for more details.

Figure 10.1 shows the hardware view of a SARA system which includes
one or more processor nodes, a communication network (bus), and the RTU
as a shared software process scheduler. This view is the same whether the
hardware is implemented on a multi-board computer system, such as VME or
CompactPCI-based [PCI] systems, or as a SoC. A SARA implementation on
a CompactPCI system is described in Section 10.2.2, and in [CHNA01] a SoC
implementation is proposed.

Processor Node 1

CPU Memory I/O Bus
Interface

Local/CPU Bus

Processor Node N

CPU Memory I/O Bus
Interface

Local/CPU Bus

RTU

System Bus

Figure 10.1: Hardware view of a SARA system

The software, which is partitioned onto each node in SARA, includes a
minimalRTOS which mainly interfaces to the RTU, and a collection of processes
which are scheduled to execute on one or more processor node(s). To sim-
plify the programming model, hardware is abstracted to the software so that
processes need not be bound to a certain processor, and process migration is
allowed.
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Communication between processes takes part over a virtual bus (VCB)
which spans over all processor nodes. The VCB programming model, shown
in Figure 10.2, uses the concept ofvirtual slotswhich processes must attach
to in order to send and receive messages. Moreover, synchronised sending,
broadcasting and multicasting of messages is supported.

Application

Process 1

Virtual Communication Bus (VCB)

Message
Queues

Slots

Free Slot

Application

Process 2

Application

Process N

Figure 10.2: Process communication model in SARA

10.2.1 RTU - Real-Time Kernel in Hardware

Hardware support to increase performance and predictability in real-time oper-
ating systems have been proposed in [MRS+90, AFLS96, LSF+98, NUI+95].
The Real-Time Unit, RTU by Lindh et. al. [AFLS96, LSF+98], is a co-processor
with support for real-time kernel services such as process scheduling and man-
agement (create, terminate, etc), inter-process communication (IPC, message
send/receive), synchronisation (semaphores), and I/O interrupt handling. The
RTU, which supports scheduling of both single- and multiprocessor systems,
runs in parallel with the target system’s processor(s). Processors interface with
the RTU by memory-mapping to its processor-independant register interface.
Via this interface,service-callsare placed by writing to dedicated service-call
registers.

Figure 10.3 shows the basic building blocks of the RTU. The core part is
the scheduler which schedules processes on-line (pre-emptive priority scheme)
and dispatches process execution. Connected in between the scheduler and the
programming/bus interface, a set of functional modules implements the various
services in the RTU, such as management of the scheduler, IPC, semaphores,
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clock and timer management. Process context-switching is notified to CPUs
using interrupts causing handlers in software to perform the actual context-
switching.

Process Mngmnt
Module

RT Scheduler/Dispatcher

IPC
Module

Timer
Module

Semaphore
Module

I/O
Interrupt
Module

CPU/System Bus

Programming Interface  (Registers)

IRQ

Bus Interface (Target Dependant)
RTU

Taskswitch
Interrupt

Figure 10.3: Basic building blocks of the RTU

10.2.2 A SARA CompactPCI System

Desribed in [KL99] is a SARA implementation on a CompactPCI (CPCI [PCI])
computer system. A CPCI system has 8 slots where CPU-boards can be in-
serted. The first slot, slot 0, is dedicated as thesystem slotwhich requires
that the CPU-board on that slot handles arbitration and clock distribution on
the CPCI backplane. Figure 10.4 shows the current SARA implementation
with 3 PowerPC-750 CPU-boards. The RTU, which resides on a PMC-board
(PCI Mezzanine Card [PCI]), is attached to the system board from where it can
communicate with all CPUs in the system (see also Figure 10.10).

All CPU-boards have local memory and a local PCI-bus. Processes that
are allowed to migrate between CPUs require global memory to hold their
Process Control Blocks (PCB). This global memory can be defined out of local
memories on all CPU-boards. Currently, global memory is allocated at the
system board only.



76 Paper B

System Board
Non System Boards

RTU
PMC
Board

Non-Transparent
Bridge

CompactPCI-Bus

Mem

Bridge

PCI2PCI
Bridge

PPC
750 Mem

Bridge

PCI2PCI
Bridge

PPC
750 Mem

Bridge

PCI2PCI
Bridge

PPC
750

Transparent
Bridge

Local PCI-bus

Global
Memory

Local Bus-to-PCI
Bridge

Figure 10.4: A SARA system based on CompactPCI-board computers [KL99]

10.3 A Monitoring System for Hardware-Accelerated
RTOSs

10.3.1 Overview

The proposed monitoring system aims at providing means for on-chip observ-
ability at the system-level in single- and multiprocessor real-time systems. The
monitor, which we call MAMon (short for Multiprocess Application Monitor),
is based on the following assumptions about the monitored target system:

• The target’s RTOS is supported by a hardware Real-Time Kernel (RTK),
like the RTU or a similar component as described in Section 10.2.1.

• The RTK holds information about the state of every process in the sys-
tem, inter-process communication activities, timers, interrupts, etc.

• The RTK must allow external access to internal (vital) signals and data.
Since the RTU was available to us as asoftIP-component (HDL source),
access to all signals and data is straightforward in VHDL.

The architecture of MAMon, shown in Figure 10.5, consists of two major
parts: theIntegrated Probe Unit(IPU, Section 10.3.2) which is the hardware
part of MAMon, and ahost computer system. Like an IP-block, the IPU is
integrated with the hardware RTK at the VHDL level. In a SoC the IPU may
also be connected to processor busses, I/O components, and other hardware
logic in order to extract information at various levels of abstraction. In the
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synthesized hardware (e.g. ASIC or FPGA implementation), the IPU monitors
the RTK in run-time, and collects events regarding the system-level behav-
iour of the real-time application. The collected events are timestamped each
and then transferred over a high-speed parallel communication port to the host
computer where they are stored in a database. In an integrated framework (Sec-
tion 10.3.5) the database serves as an event repository which can be used by
monitoring application tools to provide event-based debugging, performance
analysis, assessment of design constraints, etc.

In certain cases there is a need to generate events from software, for in-
stance, to mark code checkpoints (flags), or to report register and memory con-
tents required for lower-level analysis. Such events are produced by inserting
software instructions (software probes) that writes to a dedicated register con-
nected in between the IPU and the system/processor bus.

Host Interface

Target System

Host Computer with
Monitoring Applications

HW

SW

RTUIPU

ProcessProcessProcess

RT Application

CPU 1 CPU NCPU 2

Figure 10.5: Overview of MAMon

10.3.2 The Integrated Probe Unit

Figure 10.6 shows a block-diagram of the IPU’s internal organisation.

10.3.2.1 Event Detector

The Event Detector, seen in top of Figure 10.6, is responsible for the detec-
tion of events and for collecting event samples. Detection of events is per-
formed by comparing input event signals with pre-defined eventcondition ex-
pressions. The input signals are hard-wired (in HDL) from selected points in
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Figure 10.6: The Integrated Probe Unit

the RTU. Over-sampling of the input signals is not required because the pre-
defined events will never occur simultaneously. When an event is detected, a
sample is collected and stored immediately along with a timestamp in the local
FIFO buffer.

An event-sample comprises the event-type, the timestamp, and an event-
defined parameter field, see Figure 10.7. The parameter field is used to store
additional information about an event. For instance, for atask-switch event
to be sufficiently informative, the parameter field contains the new task’s id-
number and the CPU it was scheduled to run on. For asend message event, the
parameter field may contain the id-number of the receiving task and the pointer
to the message, and so on.

The timestamp comes from the 48-bit Timer module which denotes the
absolute system time given in nanoseconds. The Timer is updated at the reso-
lution of the system clock frequency.

To support detection of software probes, the IPU provides a simple inter-
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face that can be used by external decode logic. A single strobe line is all that
is required to indicate a software write-access, and to signal the IPU to latch
incoming data.

6 Bytes1 Byte

Event

5 Bytes

48-bit Timestamp Parameters

Figure 10.7: The event sample format

10.3.2.2 FIFO

The FIFO buffer is needed during transient over-loads of events while the host
computer is busy reading event data over the parallel port. FIFO buffer dimen-
sioning is described in Section 10.3.4. The FIFO is built onto on-chip dual-
ported RAM with parameterizable (generic) size and port width. Moreover, it
has signals that indicate when the buffer becomes full, or half-full.

10.3.2.3 FIFO Manager

The FIFO Manager mainly provides a byte-wide interface for the Host Port to
read event data from the FIFO. In circumstances when the required FIFO size
is not feasible on-chip, e.g. in FPGA implementations, the FIFO Manager can
also be used to extend the FIFO using external RAM. In this case, the FIFO
Manager will also take care of flushing the contents of the on-chip FIFO out
to the external RAM. The option to use external RAM can be set via the Host
Port.

10.3.2.4 Host Port

The Host Port is responsible for taking care of host-inititated acquisition of
event data. It also provides the host with a programming interface to read the
status of the IPU and to control its behaviour (the Control Logic in Figure 10.6).

Since FIFO buffering is limited it is important that event samples are trans-
ferred to the host with a guaranteed high communication bandwidth. There-
fore, the Host Port implements the bi-directionalEnhanced Parallel Portpro-
tocol (EPP 1.9 [EPP]). In theory the EPP supports transfer rates up to 2MB/s
(approx. 160k events/s).

To indicate availability of events in the FIFO the Host Port can be pro-
grammed to generate an interrupt to the host computer. When this feature is
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enabled, it can be set into one of three modes:

• Interrupt whenever new events arrive

• Interrupt when the FIFO buffer is half-full

• Interrupt when the FIFO buffer is full

The first two modes are useful when continous monitoring is desired. The
third mode is more useful if the IPU is set to sample from a given command
until the FIFO becomes full, and then stop. Providing the ability to choose the
interrupt mode gives a customised solution that best suits the capabilities of the
host computer performance, the tools, or the user. When the interrupt function
is disabled, events can still be acquired inpolledmode.

10.3.3 Events

Currently the Event Detector supports detection of four types of events;Taskswitches,
Service-Calls, Interrupts, and Software Probes. The conditions for these events
are hardcoded in the Event Detector. Therefore, the size of the Event Detector
logic is linearly proportional to the number of supported events. Given be-
low is a description of each event-type; its condition(s) and related data to be
collected.

10.3.3.1 Taskswitch events

For a taskswitch to be detected, the IPU is connected directly to the scheduler
module in the RTU. Whenever a taskswitch is to occur, the scheduler asserts
an interrupt signal and indicates the next task’s id along with the CPU it is to
run on. Upon detection of this event the following packet is produced.

TSW_EVT TIMESTAMP CPU_NR – TASK_ID
1B 6B 1B 2B 2B

10.3.3.2 Service-Call events

A service-call is detected whenever software writes to aService-Call Register
in the RTU, i.e. to indicate a service-request. For each CPU in the system
there exists one Service-Call Register in the RTU’s register-interface. These
registers are connected to the IPU as well. An event of this type produces the
following packet.
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SVC_EVT TIMESTAMP CPU_NR REG_VALUE
1B 6B 1B 4B

10.3.3.3 Interrupt events

The RTU supports handling of external interrupts by associating tasks with the
interrupts. When an interrupt is asserted the RTU’s interrupt module tells the
scheduler to start the associated task. To detect this event, the interrupt lines
are connected to the IPU along with the associated tasks’ id. An interrupt event
produce the follwing packet.

IRQ_EVT TIMESTAMP IRQ_NR – TASK_ID
1B 6B 1B 2B 2B

10.3.3.4 Software-Probe events

A software probe is similar to a service-call request in that software writes to
registers in the RTU. However, these register are dedicated to MAMon and are
connected only to the IPU. Values written to these registers can be used for
profiling, measurements and debugging purposes. A software probe event pro-
duce the following packet.

SWP_EVT TIMESTAMP REG_NR REG_VALUE
1B 6B 1B 4B

10.3.4 Performance and FIFO Dimensioning

10.3.4.1 Input rate

The rate at which the EDU detects and stores events in the FIFO buffer de-
pends on the system freqency; the higher frequency, the higher the input rate
to the buffer. The EDU requires 2 clock cycles to store one event in the buffer.
Since the currently supported events (see previous section) cannot occur con-
secutively within 2 clock cycles, no events will be missed. This implies that the
worst condition corresponds to an event occuring every 2 clock cycles. With
a clock freqency of 10 MHz, the input rate is 1 occurence per 200 ns. It is
also assumed that the input rate follows a Poisson statistical distribution, as
described in [LP89].

10.3.4.2 Output rate

The output rate for emptying the event FIFO buffer is largerly determined by
the performance of the host interface communication link, the EPP port in this
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case. In theory, EPP supports transfer rates up to 2 MB/s [EPP]. When using a
PC running Linux as the MAMon host computer, and a standard bi-directional
parallel port interface, we could reach a maximum transfer rate of 1.3 MB/s.
We therefore estimate the time to transfer one event-packet to 10µs, assum-
ing a transfer involves 13 byte reads; 12 for event data plus 1 for reading the
IPU’s status register (to check for event availability). The rate at which events
are stored in the database is not considered since it is much faster than the
communication bandwidth.

10.3.4.3 FIFO buffer dimension

To eliminate buffer overflow the FIFO buffer must be large enough to handle
the worst case input flow while the MAMon host system is busy flushing the
buffer. By applying a queueing analysis (adopted from [LP89]) we can esti-
mate the required buffer size. This analysis assumes two facts: 1) events can
arrive concurrently while the buffer is flushed, and 2) that the MAMon host
system starts flushing the buffer at latest when the buffer ishalf full. The first
assumption is fulfilled as the FIFO buffer is dual-ported. The second assump-
tion requires that the host either polls continously for new events, or uses the
half-full-buffer interrupt mode.

Let k be half the FIFO buffer size,R the mean input rate, andT the transfer
time per event-packet. Assuming that the input rate follows the Poisson distri-
bution, then,P(k) is defined as the probability that the buffer hask arrivals in
timeT (i.e. that half the buffer fills up withinT ). The probability function is,

P(k) =
(RT )k

k!
e−RT

In determining the total buffer size (2k) it is assumed that the probability of
filling up half the buffer is at a minimum, for instance 0.5%, given that it takes
kT time to flush the first buffer half. That is,

P(k) + P(k + 1) + P(k + 2) + . . . < 0.005

Using T = 10µs andR = 1/200ns, gives 70 as the best value fork.
Hence, the FIFO buffer must handle no less than 140 events.

10.3.5 The Monitoring Application Framework

To provide the user with a platform for event-based performance analysis and
debugging, we have developed an integrated framework for monitoring appli-
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cations. Our goal is not to develop a complete monitoring envrionment, but to
show the capabilities with our hardware monitoring approach.

The framework is developed mainly in Java and uses an SQL database to
store the event histories. Figure 10.8 shows this framework’s architecture. At
the bottom lies the IPU interface module which is mainly used to transfer event
samples from the IPU into the SQL database, and to control the behaviour of
the IPU. The IPU interface module runs as a separate process, but is controlled
from the Java framework via the Java Native method Interface (JNI). JNI is
required becasue this module is written in C/C++ as it is strongly dependant
on the underlying architecture for communicating with the EPP interface. The
SQL database is run by the MySQL DBMS (www.mysql.com). We choose
MySQL for its speed and capabilities to handle our amounts of events, and
because it is free for educational purposes. The database and IPU interface
constitutes the base of our framework.

The Java application forms the actual framework which provides an integrated
interface to control the monitoring process, to collect events into the database,
and to query the event database in various ways. Using this interface we can
now easily implement application specific monitoring tools that are plugged
into the framework.

From/To IPU

MySQL

Event
Database

IPU Interface

(EPP Parport)

IPU Interface

(EPP Parport)

Java Application FrameworkJava Application Framework

C/C++

Events

JDBC Java Native
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Event
Viewer

Performance
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Figure 10.8: MAMon’s Application Framework

An example monitoring tool is theEvent Viewerthat displays portions of
the event history. Such a tool can be useful for finding and analysing erro-
neous execution patterns. The Event Viewer tool, shown in Figure 10.9, col-
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lects events from the database, and displays them along a timeline. Apart from
standard functions such as zooming and scrolling, there is also support for
time-markers that are used for timing measurements, and search-markers that
can be used to locate event conditions and patterns.

Another example tool is theEvent Querytool (also shown in Figure 10.9)
which provides a user-friendly interface to query the database for event condi-
tions and execution patterns. The output from the query may be output textu-
ally to screen or to a file, or graphically by linking its results with the Event
Viewer tool.

The event database is also suitable for other post-analysis, such as ex-
traction of performance indexes for use in diagrams and histograms showing
task’s execution time, processor utilisation, IPC frequencies, interrupt response
times, etc.

Figure 10.9: Screenshot of Event Query & Event Viewer tools

10.4 Physical Hardware Implementation

In this section we present some implementation details on a prototype of MAMon
for a SARA CompactPCI system (described in Section 10.2.2).
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10.4.1 The Hardware Prototype

The IPU is implemented together with the Real-Time Unit2 on a Xilinx Virtex-
1000 FPGA [Xil]. All modules are designed in VHDL which is either textu-
ally entered or automatically generated from state and block diagrams drawn
in Renoir (graphical hardware design tool, by Mentor Graphics). The FPGA
is mounted on a PMC-board and connects to the SARA-system via a PCI bus-
interface chip (PLX-bridge), see Figure 10.10. The host system of MAMon
connects to the parallel-port connector (left in Figure 10.10) with a IEEE-
1284C cable [EPP]. Because RAM-cells are limited inside the FPGA, a 128kB
SRAM module (on backside of the board) is used to extend the internal event
FIFO buffer.

Figure 10.10: PMC-board with a Xilinx Virtex-1000 FPGA and PLX-
bridge [KL99]

10.4.2 Physical Footprint

Table 10.1 shows some area figures from a synthesis to a Xilinx Virtex-1000
target. Although these figures are target-specific, they could serve as a ref-
erence for estimating the equivalent area requirements for other silicon tech-
nologies. Xilinx’s FPGA technology can be described as matrices of Config-
urable Logic Blocks (CLBs) where each CLB contains two Function Genera-
tors (FGs) and two D-Flip-Flops. According to Xilinx, a Virtex-1000 FPGA
has a capacity of “1 million gates” [Xil].
As shown in the table, the IPU makes up only 5% of the total number of CLBs
for the whole design. What is not shown in the figures, however, is the area
costs for the event FIFO buffer. This is becasue FIFO memory was mapped

2The RTU in this prototype was synthesised to support 128 tasks with 64 priorities.
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Resource IPU RTU Avail Utilisation
CLB Slices 181 3276 12288 28.13%
FGs. 361 6553 24576 28.13%
Flip-Flops 254 2580 24576 11.53%

Table 10.1: Area figures for a Xilinx V1000 FPGA

onto RAM cells built-in the FPGA (called Block-Select RAM). However, cal-
culating the area costs for memory is straightforward in many technologies.
Currently the event FIFO buffer can store 16 events where each is 96 bits wide
(12 bytes), i.e. 1536 bits are required.

The host interface port, currently implemented as an EPP parallel port, re-
quires 15 I/O pins; 8 for data, and 7 for control. On a chip with limited pinouts
it could be preferrable to multiplex these pins with other I/O, or choose an in-
terface with less ports, e.g. a synchronous serial port. Moreover, an additional
29 I/O pins are used to interface with the external SRAM used to extend the
event FIFO buffer. As this memory is optional, this overhead can be removed
if the internal event FIFO can be fitted on-chip.

10.5 Prototype Evaluation
The prototype system was validated in a number of small tests on both single-
and multiprocessor targets. With no intrusion on neither the execution or the
timing behaviour of the target system the prototype was able to monitor task-
switches, service-calls, and external interrupts. Monitoring of software probes
(hybrid monitoring) was also accomplished but with a minimal intrusion equal
to the delay of a 32-bit PCI-transfer per probe (@33MHz = 30ns). To illus-
trate a proof of concept we present hereunder an example were we analyse a
deadlock situation using the monitor.

Example: Deadlock Detection

The program in this example illustrate a typical situation where two tasks need
to synchronise before proceeding to a next step, in this case opening a pair of
fuel valves. The deadlock occurs due to an in-planted synchronisation error be-
tween the two tasks T1 and T2 which execute on processors CPU1 and CPU2
respectively. Figure 10.11 shows the pseudo-code for the tasks. The tasks
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synchronise with mutual sending and receiving of messages over the VCB (de-
scribed in Section 10.2). Task T1 uses the blockingsendwait()call to send a
message and wait for the other party to send as well. For a proper synchro-
nisation, task T2 should also call sendwait(), but due to a programming error
the receive()call was used instead. This results in a deadlock since T1 cannot
resume, and T2 will get blocked the second time it calls receive().

Global VCB Slot_T1;

Task T1() {
   Slot_T1 = Connect_to_VCB();
   LOOP {
      Compute_X;

      ...
      Slot_T1.sendwait(slot_T2);
      Open_valve1();
      ...
      Close_valve1();
   }

}

Global VCB Slot_T2;

Task T2() {
   Slot_T2 = Connect_to_VCB();
   LOOP {
      Compute_Y;
      .. .
      Slot_T2.receive(); // Bug!

      Open_valve2();
      .. .
      Close_valve2();
   }
}

Figure 10.11: Deadlock example in pseudo-code

To locate the bug, we first monitor the target system and collect the system-
level events into the host database. The Event Query tool is then used to per-
form a filtered search in the event database. Using predicate disjuncts and
conjuncts in the query we can easily find the first and last occurences of the
tasks of interest. Figure 10.12 shows a text-dump from the query tool. Rows 1-
3 shows that T1 starts and attempts to connect to the VCB. Rows 4-6 shows the
similar sequence for T2. The sendwait() call in T1 is mapped to the VCB prim-
itivesVCB_PutandVCB_Getseen on rows 7-8. After that T1 gets blocked, the
IDLE task starts on that processor (row 9). At row 10, T2 receives the message
from T1 without blocking, and later when it attempts to receive again at row 11
it gets blocked too. The same sequence of events can also be depicted by the
Event Viewer tool, see Figure 10.13. Horizontal bars indicate executing tasks,
and the icons beneath indicate service-calls.

10.6 Conclusions
This paper has described a monitoring system and its implementation for non-
intrusive monitoring of real-time systems. The monitoring system, called MAMon,
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##. Event  Timestamp         CPU   Subtype/Parameters

 1. TaskSwitch  00:00:00,815,083,600  CPU1  T1
 2. ServiceCall 00:00:00,821,241,000  CPU1  VCB_All oc  0x140101
 3. ServiceCall 00:00:00,821,255,200  CPU1  VCB_Ope n   0x020101
 4. TaskSwitch  00:00:00,828,930,200  CPU2  T2
 5. ServiceCall 00:00:00,834,384,300  CPU2  VCB_All oc  0x140202
 6. ServiceCall 00:00:00,834,395,000  CPU2  VCB_Ope n   0x020202

 7. ServiceCall 00:00:00,846,497,300  CPU1  VCB_Put     0x107102
 8. ServiceCall 00:00:00,864,018,800  CPU1  VCB_Get     0x10F501
 9. TaskSwitch  00:00:00,864,044,800  CPU1  IDLE
10. ServiceCall 00:00:00,908,777,500  CPU2  VCB_Get     0x108502
11. ServiceCall 00:00:00,979,800,300  CPU2  VCB_Get     0x108402
12. TaskSwitch  00:00:00,979,826,300  CPU2  IDLE

Figure 10.12: Text-dump in the Event Query Tool

Figure 10.13: Deadlock seen in Event Viewer Tool

integrates a probe component with a hardware Real-Time Kernel in order to
non-intrusively detect and collect process-level events at the target system. Via
a parallel communication link, the collected events are transferred to a host
computer system where they are stored in a database. Built onto the data-
base, a set of monitoring applications provides post analysis features such as
event-debugging, profiling, and performance evaulations based on the collected
events. While our approach is non-intrusive, it also overcomes the difficul-
ties in extracting execution information residing on-chip of processors and
in Systems-on-Chip (SoC). Monitoring occurs at full system speeds, both in
single- and multiprocessor targets. Although the monitor’s probe component is
hardware dependant in that it is tightly coupled to a hardware real-time kernel,
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the solution is independant of target processor architectures and no software
overhead is required.

The paper also describes the option to use MAMon as a hybrid monitoring
system for monitoring at lower abstraction levels, e.g. functional and data lev-
els. In this case instrumentation of the software is required and will introduce
execution delays (although minimised).

To our knowledge, the proposed idea is novel and introduces a new alter-
native to monitoring, particularly useful in systems with hardware-accelerated
real-time operating systems, and in SoCs. Future work include further valida-
tion of the MAMon concept for monitoring of real-case applications, and for
systems built on SoC hardware.
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Abstract

This report describes the architecture and integral components of the Multipur-
pose Application Monitor (MAMon). The IPU’s signal interface is described
and we explain how the interface conforms to intregation with a hardware RTK
and the communication port to an external host computer. The report also pro-
vide a programmer guide for the monitoring application framework, as well
as a user manual for the currently implemented monitoring tools within the
framework. The report is mainly intented as a reference guide for working
with MAMon at a user’s level.
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11.1 Introduction
This report describes the architecture and integral components of MAMon.
The report also provide a programmer guide for the monitoring application
framework, as well as a user manual for the currently implemented monitoring
tools. The report is organised as follows:

Section 11.2Overview of MAMon

Section 11.3The Integrated Probe Unit

Section 11.4The MAMon Application Framework

Section 11.5Framework Software Architecture

Section 11.6Framework Programmer’s Guide

Section 11.7MAMon Tool Desktop User Guide

11.1.1 Related documents

Some of the concepts discussed in this report are described in previously writ-
ten documents. Thus, the following publications are recommended for addi-
tional information:

• Paper A: A Hardware and Software Monitor for High-Level System-on-
Chip Verification [1]

• Paper B: On-Chip Monitoring of Single- and Multiprocessor Hardware
Real-Time Operating Systems [2]

• HWMON – EPP/SPP IEEE1284 Host Interface [3]

• MAMON 1.1 USB – Implementation Report [4]

• Monitoring of System Work Load (M.Sc. thesis report) [5]

11.2 Overview of MAMon
The Multipurpose Application Monitor – MAMon for short – is divided in two
major parts: 1) theIntegrated Probe Unit(IPU) which is integrated with the
observed computer system’s hardware (thetarget), and 2) theMAMon Applica-
tion Frameworkthat constitutes all the software component residing on a sepa-
rate computer system (thehost). Figure 11.1 shows an overview of MAMon’s
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building blocks. In between the target and the host is theHost Interfacewhich
is a communication medium and a programming interface to the IPU. In prin-
cipal, the IPU generates event packets thar are sent to the host through the Host
Interface, and vice versa, the host controls the IPU’s behaviour through the
same interface.

The MAMon Application Framework, or justthe Framework, is a collec-
tion of software tools and components that together handles event storage, ac-
cess, display and analysis. These include theMAMon Tool Desktopand the
monitoring toolsavailable in it, the SQL database where events are stored, and
theIPUBridgewhich is adriver component that manages communication with
the IPU. The MAMon Tool Desktop (MTD) may be seen as the central program
that manages everything on the host, including the monitoring process at the
target by way of the IPUBridge. Furthermore, the MTD controls the collection
of event data into the SQL database, and hosts the tools that make use of the
collected events. These tools reside in the MTD asplug-insand provide vari-
ous monitoring features, e.g. such as querying the event database for specific
events or event patterns, display of event histories textually and graphically,
save event histories to file, depict histograms and charts, etc. Moreover, the
MTD and the plug-ins are programmed mainly using the Java object-oriented
language.

Host Interface

Target System

MAMon 
Application Framework

HW

SW

RTKIPU

Process
M

Process
2

Process
1

Real-Time/Concurrent Program

CPU 1 CPU NCPU 2

Host Computer System

Host Interface

Target System

MAMon 
Application Framework

HW

SW

RTKIPU

Process
M

Process
M

Process
2

Process
2

Process
1

Process
1

Real-Time/Concurrent Program

CPU 1 CPU NCPU 2

Host Computer System

Figure 11.1: Overview of MAMon

The Framework and the MTD are overviewed further in Section 11.4, and
in Section 11.5 the software architecture of the Framework is described. Sec-
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tion 11.6 provide a manual for programming with the Framework. Section 11.7
presents a user guide for working with the MTD and the currently featured
plug-in monitoring tools. The following section describes the IPU’s hardware
interface more in detail.

11.3 The Integrated Probe Unit
In the following the IPU’s integration with the target system is described, in-
cluding its connections to the hardware RTK, and how it is accessed and con-
trolled from a host computer system. The IPU is fully implemented in VHDL,
and thus, is included in an RTL-description of the hardware that comprise the
RTK.

11.3.1 Entity interface

The IPU’s signal interface is depicted in Figure 11.2. Thisentity view of the
IPU shows a specific version that has a host port that implements the EPP
(Enhanced Parallel Port [3]) protocol as the communication method in the Host
Interface (see following section). In another implementation of the IPU, the
host port is replaced with a USB interface [4]. The discussions throughout this
report assumes, however, an EPP connection is provided as the host port. A
description of the signals is given in Figure 11.3.

  
clk 
reset_n 
 
nanobase 
 
tsw_irq 
tsw_taskid 
 
svc_req 
svc_req_data 
 
sw_probe 
sw_probe_reg 
sw_probe_value 
 
ext_irq 
 

mem_cs1
mem_cs2
mem_oe
mem_rw

mem_addr
mem_data

addrstb_n
datastb_n

write_n
wait_n

ad
intr

p_reset_n

dir
hd

IPU 

Figure 11.2: The IPU’s entity interface
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The signalnanobaseis an input vector which sets the number of elapsed
nanoseconds in aclock period. This is used by time-stamp module within the
IPU. For example, if the clock speed is 10 MHz, then each clock period is
100 ns long. The vector may be hard-coded in the synthesised hardware, or
more prefereably, be programmable from software. The necessary logic for
the nanobase input must be provided.

Thetsw_irq is a strobe signal that indicates the occurence of a task-switch.
The signal is active ’high’ during the task-switch, and the ID of the new task
should be provided using thetsw_taskidvector. In a hardware RTK, the equiv-
alence of the tsw_irq and tsw_taskid repsectively are available between the
scheduler module and the external bus-interface. In a multiprocessor version
of the RTK, there exists one pair of tsw_irq and tsw_taskid for each CPU in the
system. Hence, the tsw_irq may be a vector with a length equal to the number
of CPUs. The tsw_taskid vector length is the number of CPUs multiplied with
the number of bits required for the task-ID. For example, in a system with 3
CPUs and an RTK that supports 256 tasks, the tsw_irq has a length of 3 and
the tsw_taskid has a length of3 ∗ 8 = 24 bits.

The scv_reqis also a strobe signal which, when ’high’, indicates that a
service-callwas issued to the RTK, and thesvc_datais the vector that contains
the actual parameters for that service-call. Like tsw_irq, the svc_req may also
be a vector in a multiprocessor RTK. svc_data is typically routed from a (32-
bit wide) register within the RTK’s bus-interface, and the svc_req signal may
be extracted also from the process that manages the bus-interface (i.e. the bus
adress decode logic).

The IPU’s software probe registers are similar to the register provided for
service-call management, i.e. software must write to a dedicated register in
the RTK’s interface. Therefore, the sw_probe is a strobe signal that behaves
equally the same as svc_req. It is ’high’ when a probe register is written to, and
the written data must be provided with the sw_probe_value vector (32-bit). In
order to differentiate between different types of software instrumentation, it is
possible to support multiple software probe registers in the hardware interface
to the IPU/RTK. Thus, the signalsw_probe_regmay be used to indicatewhich
register was accessed. The necessary decode logic that handles this separation
must be provided, e.g by modifying the RTK’s bus-interface, or by providing a
separate bus-interface for the IPU.

Theext_irqsignal vector may be routed directly from the interrupt source
signals that goes to the RTK. An interrupt is detected when one of the vector’s
signals goes ’high’. This signal must then be negated in order to be detected
again (i.e. it must toggle for multiple interrupts).
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The signals namedmem_...constitutes an interface to an external RAM-
module which may be used to extend the internal FIFO buffer (see Section 11.3.2.1).
The size and data widths of this memory interface may be adjusted using the
IPU’s generic port configuration.

The other signals conform to the EPP interface (see [3]).

Signal Direction Description 
clk IN System clock 
reset_n IN System reset 
   
nanobase IN Time-base unit for time-stamp 
tsw_irq IN High on task-switch 
tsw_taskid IN ID of new task 
svc_req IN High when service-call is asserted 
svc_req_data IN Service call argument 
sw_probe IN High if sw-probe register access 
sw_probe_reg IN Sw-probe register select 
sw_probe_value IN Sw-probe value 
ext_irq IN External interrupts 
   
mem_addr OUT Memory address 
mem_cs1 OUT Memory chip select Low-byte 
mem_cs2 OUT Memory chip select High-byte 
mem_oe OUT Memory output enable 
mem_rw OUT Memory read/write 
mem_data IN/OUT Memory data input/output 
   
addrstb_n IN EPP address strobe 
datastb_n IN EPP data strobe  
p_reset_n IN EPP reset  
write_n IN EPP data direction 
wait_n OUT EPP host acknowledge signal 
ad IN EEP data input/output 
intr OUT EPP interrupt to host signal  
dir OUT For IEEE1284-buffer steering 
hd OUT For IEEE1284-buffer steering 
 

Figure 11.3: Signal description of the IPU entity interface

11.3.2 The Host Interface

The IPU’sHost Portmodule provides a logical programming interface for com-
munication with the host-based software (i.e. the MAMon Framework). The
events collected by the IPU are sent via this interface, and vice versa, the in-
terface is also used by the host software to control and supervise the IPU. Re-
gardless of the type of Host Port that is used (EPP, USB, etc), the programming
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interface is logically the same.
The programming interface consists of three 8-bit wide registers: 1) MONSR

– contains various IPU status bits, 2) MONCR – a register that is used for con-
trolling the IPU, and 3) MONEVT – the register that is used for reading the
collected event data bytes. Due to the different types of Host Port modules that
can be used, we do not go into the details on how these register are accessed
from a host computer. Instead, we refer to the specific documents available for
the Host Port communication [3, 4].

Following is a description of the MONSR and MONCR registers respec-
tively. The MONEVT register is not described since it is mainly used for read-
ing raw event data bytes (exceptions to this behaviour is mentioned below how-
ever).

11.3.2.1 MONCR – Monitor Control Register

Acronym R/W Address 7-6 5 4-3 2 1 0 

MONCR R/W $01 Not 
Used 

Extended 
FIFO 

IRQ Mode Error 
Detection 

Stop 
Condition 

Start 

 

The register’s address ($01) is relative to abase addressfor the IPU (assuming
the IPU is accessed as a memory-mapped device). Moreover, the register can
beread from, andwritten to.

Bit-field descriptions:

Start Enables/Disables monitoring

0 = disabled [default]

1 = enabled

Stop Condition Tells the IPU to stop monitoring when the FIFO buffer is full.

0 = continuos monitoring

1 = stop when FIFO buffer is full [default]

Error Detection Enablesread error detection mode. When this mode is set,
each event data byte read from MONEVT has to be written back to
MONEVT in order to be verified. If a mismatch between what is read
from/written to MONEVT is detected theRead Errorbit in MONSR will
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be set. Also, in this mode, the event data pointer will only advance when
correct data is written back.

0 = off [default]

1 = on

IRQ Mode Selects between polled event acquisition mode, and interrupted
modes of event acquisition.

00 = off (polled mode) [default]

01 = new_evt_mode

10 = buf_halffull_mode

11 = buf_full_mode

Extended FIFO Enables/Disables external RAM to be used as an extension
of the internal FIFO buffer

0 = disabled

1 = enabled [default]

11.3.2.2 MONSR – Monitor Status Register

Acronym R/W Address 7-5 4 3 2 1 0 

MONSR R $00 Not Used IRQ Buf Full Buf HalfFull New Event Read Error 

 

The register’s address ($00) is relative to an assumedbase addressfor the IPU.
Moreover, the register can only beread from.

Bit-field descriptions:

Read Error Indicates that a read error has occurred. This bit is set if the data
byte written to MONEVT does not match the data byte previously read
from MONEVT. Only valid when error detection mode is enabled.

0 = no error

1 = error
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New Event Indicates whether there are any event data bytes left to read from
the FIFO buffer. This bit is effectively used to check for new events in
thepolledevent acquisition mode (seeIRQ Modebits in MONCR).

0 = empty FIFO buffer

1 = (at least) one data byte is in the FIFO buffer

Buf HalfFull Indicates if the FIFO buffer is half-filled. Normally used to-
gether with the interrupt modebuf_halffull_mode(see MONCR).

0 = FIFO is not half-filled

1 = FIFO is half-filled

Buf Full Indicates if the FIFO buffer is full. Normally used together with the
interrupt modebuf_full_mode(see MONCR).

0 = buffer is not full

1 = buffer is full

IRQ Indicates if the IPU generated an interrupt request. This bit is cleared
only when the reason for the interrupt is negated.

0 = no interrupt is requested

1 = interrupt was requested
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11.4 The MAMon Application Framework
This section explains how the Framework components are organised and func-
tion, specifically how the MTD should globally look and the features it should
support. First, the communication between then MTD program and the hard-
ware IPU is explained, followed by a short sketch of how the MTD is used.

11.4.1 Connection with hardware

The event data collected by the hardware can be transferred to a host machine
via an EPP connection (or a USB connection as described in [4]). A library
provides the access to the hardware using this connection. The monitoring
process can be started and stopped from the MTD, and events collected by the
IPU can be read. The MTD uses this interface to control the monitoring process
and to store the collected events in a database. A technology called the Java
Native Interface (JNI) is applied in order to access this library in the Java code
of the MTD.

Collecting events from the hardware and directly writing them in the data-
base would make the process dependent on the speed of the database. There-
fore a medium is used. The medium chosen here is the so-called FIFO file,
a special file type for such purposes. When both a reader and a writer have
opened the file, data can be passed through it. Writing events into a FIFO file
is no different from writing into a normal file. Similarly, the database com-
mand that reads from the FIFO file is the same as the database command for
reading from a file. The reading process of the database will not finish until
after the FIFO file has been explicitly closed by the writing party.

For the MTD program to control the database, the Java DataBase Connec-
tivity (JDBC) is used. This enables access to a database from within a Java
program using SQL queries. This same functionality is put in to use when the
event data is required by the monitoring tools (i.e. the plug-ins) within the
MTD.

A schematic view of the path event data follows is shown in Figure 11.4.

11.4.2 The main program

The main program consists of the MTD on which the plug-ins are available in
smaller windows. In order to use these plug-ins, one should first create a new
(or open an existing)sessionwhich stores the data and settings to re-use it later.
Now the tools can be used on the data that was stored in the database or new
data can be obtained from the hardware.
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EPP

Real-Time SystemHost

Native Code

MAMon

FIFO

Hardware Monitor

Database

Figure 11.4: Schematic view of transport of event data

Starting the monitoring will remove any data that was previously stored in
the session and the new event data is stored instead. Statistics on the number
of events that has been transported are displayed while the monitoring process
is active. It is possible to use all the plug-ins while monitoring.

The plug-ins that currently are present in the MTD are:

Text plug-in Can be used by the MTD program or other plug-ins to display
texts, such as query results. The user is able to edit the text and save it to
file.

Event Query plug-in A query-interface to select events the user is interested
in.

Event Viewer plug-in Gives a graphical overview of the events that occurred
over time.

Chart plug-in A tool that can display line charts, but without any specific
charts implemented yet.
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These plug-ins may cooperate with each other on a certain level. For exam-
ple, the results of a query in the Event Query plug-in may be displayed using
the Event Viewer to give the user an idea of the events’ context.
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11.5 Framework Software Architecture
In this section the architectural solutions applied in the Framework are de-
scribed. These solutions are based on a set of design requirements which we
think are important. The section concludes with a description of all packages
and their classes.

11.5.1 Packages

Based on the different functionalities within the MTD, the following general
division into packages are made:

database contains classes dealing with access to the database.

event contains classes for the representation of events loaded from the data-
base.

gui contains classes dealing with graphical representation, except for the plug-
ins.

ipuBridge contains classes dealing with communication with the IPU.

plugIn contains an interface for plug-ins, and the plug-ins’ classes themselves.

sessioncontains classes dealing with storing and retrieving session informa-
tion.

11.5.2 Meeting requirements

In this section we present the design requirements for the Framework and the
implications each requirement has on the Framework’s architecture.

11.5.2.1 Stability

To provide a stable working environment the MTD must be able to run indepen-
dently from the hardware and the monitoring process. Therefore the program
code that deals with the event collection is implemented in separate threads as
thread classes. These areIPUBridge, IPUThread(both in packageipuBridge)
andDatabaseWriter(in package database). See also Section 11.5.4.

11.5.2.2 Extendability

As the name plug-in suggests, it should be possible to write a new one — or
rewrite an existing one — and ‘plug it in the MTD program’, without modify-
ing or even re-compiling the MTD. This means the MTD must be able to use
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classes at run-time it did not know about at compile-time. The MTD program
could be pointed to these classes by user input. Such a feature is available in
Java and is calleddynamic extension([10]).

Using classes that are unknown at compile-time makes it impossible for the
MTD program to use any of the plug-ins functionality unless it knows some-
thing about the plug-in. Therefore, all plug-ins should implement a common
interface, so the MTD program can use the general methods defined in the
interface, while the exact implementation of the plug-in is still free.

This general interface for plug-ins is in the classPlugIn, in the package
plug-in.

11.5.2.3 Independence

Making the MTD’s components independent means that it should be possible
to change the implementation of a part of the MTD program or any external
components, without influencing the rest of the MTD program. For example,
addition of a new plug-in should not influence any other part of the MTD pro-
gram. The same should hold for external factors influencing the MTD, such as
the type of system that is monitored or the database that is used. This level of
independence is present all over the MTD; different functionalities are sepa-
rated from each other, and the graphical representations are separated from its
actual implementation.

11.5.2.4 High-level Query Language

The plug-in called Event Query (classEventQueryPlugIn) provide a user inter-
face for interactive querying of the event database. The user can make his own
selection of events. Because no query language is used, the level of expression
is not equal to that of f.e. SQL, but it is easier to use and fitted for this partic-
ular purpose. The results of a query can be displayed on screen, written to file
or transported to plug-ins with graphical capabilities.

To make this querying tool more user-friendly, we want to use the real
names of the events instead of having to use the corresponding numeric values
(which is what is stored in the database). We would also like to use these names
in other plug-ins. Stored in the database are three values for each event:

type the type of the event

time the time at which this event occurred

parameters a field containing values relevant for this type of event. Not the
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entire space available is necessarily used.1

The values we would like to translate are the type and the parts of para-
meters that are defined for an event. For these translations, we create anevent
definitionsfile. This file contains:

• definitions of events, containing the name and number of the event, and
the parts of parameters that are defined for this type.

• definitions of fields — parts of parameters — using the name and where
in parameters (bit-values) the field is located.

• definitions of constants, a possible value a field can take. A constant is
defined within the scope of an event type and a field.

This file is read by the classEventDefinitions. The same class then pro-
vides the rest of the MTD program with the translations. For example, the
Event Query plug-in can request the names of the defined events, and the fields
defined for these events. It can display these names to the user. When the user
performs a query, the names can be translated to numbers again (using methods
from EventDefinitions), so the database can be queried.

11.5.2.5 Session

In a session, monitoring settings can be stored, along with settings by the var-
ious plug-ins. The settings are not stored on file, but in a database table. The
user can only use the MTD to manage sessions. The MTD takes care that the
database table and the session information are created and deleted at the same
time.

The classSessionManagerdeals with saving/loading/updating/deleting a
session (an object of typeSession) in the database.

Because the sessions are stored in the database, it does not make sense
to storedatabasesettings in the session. Instead, these settings — and other
general program settings — are saved in a file. Its contents are read at start-up,
and the settings can be changed from within the program. Since the settings
involve a database-password, the settings are not written in a human-readable
format, but as the serialised form of a class,ProgramSettings. An instance of
this class is used by the MTD program to read and write the settings.

1Note that, for performance reasons, the parameter part of an event is actually stored in two
table columns in the database.
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11.5.2.6 User Interface

Most requirements for the MTD’s user interface do not require any architec-
tural features; they are mostly superficial. The only requirement that really
influence the architecture is that the plug-ins should behave as in aMulti-
Document Interface(MDI)2. Several classes together providing an MDI are
presented in [8]. These classes are used in the MTD, be it in an adapted form.

11.5.2.7 Documentation

The only documentation that is directly connected with the MTD program is
the on-line help. For this purpose the JavaHelp ([19]) is used. This standard
Java add-on package separates the help-functionality from the rest of the MTD.
Furthermore, it is very easy to extend the help documentation in case of, for
example, a new plug-in.

11.5.3 Architecture Overview

In this section, an overview of Framework’s software architecture is presented
up to class level. A class diagram showing the relationships between all classes
is illustrated in Figure 11.5. More specific documentation can be found in [7].

11.5.3.1 Packagegui

The MTD is centred around thegui package. It is responsible for displaying
the main program window, and linking all its buttons and menus to the correct
functions provided by other packages, such as connection with the hardware
in ipuBridge. Because the main window is contained in here,gui also controls
the smaller plug-in windows, which reside in the main window.

ClassGUI
This class manages all main graphical items. It is also the class where the
start-up main method is located. All exceptions thrown outside the plug-ins
are handled in here, and the graphical management of the plug-ins is regulated
in here. All other classes in this package are just minor support classes.

ClassMDIDesktopManager
Manager for the MTD program’sdesktopthat supports MDI functionality for
the plug-ins. Enables the use of a special window menu and a scrollable desk-
top. Adapted from [8].

2Examples of MDI’s are word processors such as Word or WordPerfect.
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ClassMDIDesktopPane
Desktop that supports MDI functionality for the plug-ins. Adapted from [8].

ClassWindowMenu
Menu for managing the plug-in windows. Contains functions for arranging the
windows and the possibility to switch to a certain window. Adapted from [8].

ClassSplashScreen
A splash screen window running in a thread, displaying an image. Used on
start-up of the program.

ClassGauge
Graphical representation of a value on a logarithmic scale. Used to display the
throughput (the number of events retrieved per second) when monitoring.

11.5.3.2 Packagedatabase

This package provides all necessary access to the database: reading and writing
of data, but it can also deal with storing a session.

ClassDatabaseAccess
This class provides connection to a database using JDBC. Once connected,
queries may be performed, of which the results are returned. When finished
querying, one can disconnect from the database. This is the only class that
actually connects to a database, which means that all connections are made via
an instance of this class.

ClassDatabaseReader
Provides reading access to information in the database; it enables querying.
When dealing with tables containing event data, the results are returned in the
form of Eventobjects.

ClassSessionRetriever
This class deals with a special table in the database used to store all session in-
formation. New sessions can be written, old sessions can be loaded or deleted.

ClassDatabaseWrite
The storage of event data in the database is handled by this class, which runs
as a thread.
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ClassSubQuery
A container class necessary to use a method fromDatabaseReader.

11.5.3.3 Packageevent

Contains classes for the representation of events and for the translation of nu-
meric values of the events.

ClassEvent
This class stores one (1) result row of a query on an event table. The result of
a query is converted intoEventinstances for use by the plug-ins.

ClassEventDefinitions
Reads name definitions of the events that occur in the hardware from file and of
fields within these events and values that can be assigned to these fields. These
names are used to display the events.

ClassesEventDef, FieldDef and ConstDef
Container classes used byEventDefinitionsto store information on the names
of events, fields and constants.

11.5.3.4 PackageplugIn

The code of the plug-ins is entirely located in theplugInpackage. All plug-ins
implement a common interface, necessary forgui to call general functionality
such as displaying the plug-in.

InterfacePlugIn
Interface which all plug-ins must implement in order to be available in the
program.

Plug-in classes
All the classes of the plug-ins are also within theplugIn package. The main
class of each plug-in implementsPlugIn. These classes all have names end-
ing on PlugIn. The other classes in these packages are container classes, or
auxiliary classes for the plug-ins.
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11.5.3.5 PackageipuBridge

Connection to the IPU hardware for reading and storing the events is provided
here.

ClassIPUBridge
Manages the retrieval of the event data from the hardware, using two threads,
one of typeIPUThread, and one of typeDatabaseWriter.

ClassIPUThread
This thread class communicates, via EPP, with the IPU. It reads event data, and
makes it available for storage in the database. Part of the actual implementation
is not done in Java, but in C. Access to this code is provided through JNI.

11.5.3.6 Packagesession

Container classes for sessions (containing session specific settings) and general
program settings.

ClassSession
Contains information on a session: specific settings for that session from the
main program and from the plug-ins. A session belongs to a table in the data-
base.

ClassProgramSettings
Contains the general settings of the program regarding among others database
settings.

11.5.4 The retrieval mechanism

Although the MTD is a large program, most of its code is easy to understand.
The main exception is the code that deals with the retrieval of events from the
hardware and storing them in the database. In this section that mechanism is
explained in more detail.

11.5.4.1 Threads

The monitoring process consists of the two tasks that need to be executed con-
currently: events must be collected from the IPU (1) and events must be stored
in the database (2). On top of this, we want the MTD to be able to perform
other operations too when the program is busy monitoring. To achieve this
goal, the MTD program uses the Java thread mechanism.
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The classesIPUBridge andDatabaseWriterare both defined as threads.
Initially, these threads are “suspended”, which means they are inactive. A
thread can be suspended by issuing a wait()3 command. When the user starts
the monitoring process, the threads can be “awakened” using the notify() com-
mand.

Listing 11.1 schematically shows the program code dealing with the start-
ing and stopping of the monitoring process. When the start button is pressed,
startRetrieval() is called, and stopping the monitoring results in a call of sto-
pRetrieval(). Note that this code is not the same as the actual code in the
program; it is a simplified version.

Upon start we notify both threads and their suspension ends. Then,IPUThread
resets the hardware, opens the FIFO and start reading events from the hardware.
DatabaseWriterwill have the database perform a query to insert the data from
the FIFO.

When the monitoring process is stopped by the user,IPUThreadstops ex-
ecuting readEvents, closes the FIFO and goes back into suspension. In the
DatabaseWriter, the query will — eventually — end since the FIFO has been
closed. Then, theDatabaseWritergets suspended, too.

Listing 11.1: Starting and stopping

/ / IPUBridge
pub l i c vo id s t a r t R e t r i e v a l ( ) {

i puThread . s topped =f a l s e ;
synchron ized ( i puThread ) {

ipuThread . n o t i f y ( ) ;
}
synchron ized ( d a t a b a s e W r i t e r ) {

d a t a b a s e W r i t e r . n o t i f y ( ) ;
}

}

pub l i c vo id s t o p R e t r i e v a l ( ) {
i puThread . s topped =t rue ;

}
. . .
/ / IPUThread

3A wait() command should be used within a synchronized-clause. This also holds for the
notify() command.
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pub l i c vo id run ( ) {
whi le ( t rue ) do {

synchron ized ( t h i s ) {
wa i t ( ) ;

}
r e s e t H a r d w a r e ( ) ;
openFIFO ( ) ;
whi le ( ! s t opped ) do {

r e a d E v e n t s ( ) ;
}
c loseFIFO ( ) ;

}
}
. . .
/ / Da tabaseWr i te r
pub l i c vo id run ( ) {

whi le ( t rue ) do {
synchron ized ( t h i s ) {

wa i t ( ) ;
}
P e r f o r m I n s e r t Q u e r y ( ) ;

}
}

11.5.4.2 Updating

When monitoring, it can be desirable to use the most recent data in the plug-
ins without stopping the monitoring process. However, we can only obtain
the latest data from the database after the insert query has ended. To achieve
this, we must close the FIFO and therefore temporarily suspend the reading
of events from the hardware. We wish to continue these processes as soon as
possible, and therefore can skip the waiting.

However, when the waiting is skipped, the situation may occur that the in-
sertion query does not finish. The scheduling of the treads may be such that
the closure and opening of the FIFO occur before the database thread can exit
the query. This can be solved by havingIPUThreadwait, being notified by
DatabaseWriterwhen it has finished its query. This means, however, that we
need to synchronise the behaviour of DatabaseWriter and IPUThread; we can-
not have the DatabaseWriter notifying when the IPUThread is not yet waiting
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(deadlock). This is achieved by including the closeFIFO(); statement in the
synchronized-block around wait().

Finally, it is also necessary to prevent the plug-in that called for the update
from accessing the database before the insert query has ended. This is realised
by suspending the main program. Before a new insertion query starts, the main
program is notified byDatabaseWriter.

Listing 11.2 shows the code for interrupting the retrieval process in order
to update the database.

Listing 11.2: Updating

/ / IPUBridge
pub l i c vo id upda teDa tabase ( ) {

d a t a b a s e W r i t e r . u p d a t i n g =t rue ;
i puThread . s topped =t rue ;
synchron ized ( t h i s ) {

wa i t ( ) ;
}

}
. . .
/ / IPUThread
pub l i c vo id run ( ) {

synchron ized ( t h i s ) {
wa i t ( ) ;

}
whi le ( t rue ) do {

r e s e t H a r d w a r e ( ) ;
openFIFO ( ) ;
whi le ( ! s t opped ) do {

r e a d E v e n t s ( ) ;
}
synchron ized ( t h i s ) {

c loseFIFO ( ) ;
wa i t ( ) ;

}
}

}
. . .
/ / Da tabaseWr i te r
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pub l i c vo id run ( ) {
whi le ( t rue ) do {

i f ( u p d a t i n g ) {
synchron ized ( i puThread ) {

n o t i f y ( ) ;
}
synchron ized ( i p u B r i d g e ) {

n o t i f y ( ) ;
}
u p d a t i n g = f a l s e ;

} e l s e {
wa i t ( ) ;

}
P e r f o r m I n s e r t Q u e r y ( ) ;

}
}
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11.6 Framework Programmer’s Guide

11.6.1 General

In this section, some general information for program development in the Frame-
work is presented; which files and directories are present in the MTD program’s
file directory, how to compile and run the MTD, how to generate the Javadoc
documentation.

11.6.1.1 Files and directories

The MTD file directory will contain the following sub-directories. All of them
are required by the MTD, with the exception of the src directory, which is only
necessary for compiling the MTD.

classescontains all the class files, including a native shared library called
IPUThread.c, which handles the communication with the IPU hardware.
The class diagram presented in Figure 11.5 gives an overview of all the
Java classes in the Framework. Each class is represented by a box. If
a class is associated with an other class, they are connected. The class
at the end of the connection with a range is referred to by the class at
the other end of the connection. The number of instances to which is
referenced is indicated by the range, where x.. means x or more (no
maximum).

documentation contains the documentation generated by javadoc.

help contains the help files used in the program.

images contains the images and icons that are used in the program

src contains the source code for the program, including the source of the
shared library (in theipuBridgepackage directory), and the JDBC driver
file.

In the MAMon installation directory a number of files are also present for
use by the MTD program.

event.def contains name definitions of events. Required to run the MTD pro-
gram.

settings.dat contains the general settings of the MTD. Required to run the
MTD program.
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Figure 11.5: Class diagram
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fifofile the file used by the MTD to store data in the database. Required by the
MTD program, but location and name are not fixed.

Besides these, there are also some shell scripts in the MAMon directory.
Their use is explained in the coming sections.

11.6.1.2 Compiling and running

To compile or run the program, include the following in the classpath:

1. the directory where the classes are stored (classes)

2. the jar-file for JavaHelpsrc/jhall.jar

3. the jar-file for JCChartsrc/jcchart451K.jar

4. the jar-file for the JDBC driversrc/mm.mysql-2.0.4-bin.jar
(file name changes when using another DMBS, see Section 11.6.4).

When compiling the entire program, compile all the .java files in all pack-
age directories. When running the MTD program, run gui.GUI, that is where
the main() method is located. Shell scripts calledrun andcomp take care of
running and compiling the program.

To compile the IPUThread library, go to src/ipuBridge, that is where the
C-files IPUThread.c , mamon.c and mamon_dev.c are located. Shell
ccomp compiles these files and places the resulting library in the classes direc-
tory. For more information on how to compile this library, see the JNI tutorial
([18]).

11.6.1.3 Generating documentation

The commanddoc generates the API documentation for MAMon using Javadoc.
It is basically called with a list of all packages that should be included in the
documentation. The following options are included, too:

• -private Includes documentation for private methods and fields.

• -sourcepath src The source directory.

• -d documentation The output directory of the HTML files.

In case more options are required, read [16].
The commanddoctex generates API documentation for the Framework

with Javadoc, but the output is in the form of a TEX-document instead of
HTML. For this, a so-called doclet is used. To use Javadoc with this doclet,
use the following options:
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• -doclet com.c2_tech.doclets.TexDoclet The name of the
doclet.

• -docletpath doclet.jar The location of the doclet code.

• -output javadoc.tex The name of the output file.

More options for this doclet are discussed in [17].

11.6.2 Adding a new plug-in

To add a plug-in the main class of this new plug-in should implement an in-
terface,PlugIn. After the newly created plug-in has been compiled (put the
class-files in the same directory as the other plug-ins are located), you can use
the plug-in by adding its name as an argument when starting the MTD program.

The following section gives guidelines and help on how the plug-in’s in-
terface should be implemented and how to use certain facilities the program
offers.

11.6.2.1 Interface

The interfacePlugIndefines a number of methods that should be implemented
for the plug-in to function correctly within the program, and a number of meth-
ods that can be implemented if required.

In order to make the plug-in visible in the main window, the method get-
PlugInFrame() should return aJInternalFrameThe easiest way to achieve this
is to have the plug-in class to extendJInternalFrame. getPlugInFrame() can
then returnthis , and the plug-in will be made visible in the correct way.
On theJInternalFrame, a user interface can be built usingSwingcomponents.
Take a look at Sun’s Swing tutorial ([15])if for how to make a graphical user
interface.

Other methods that are necessary are getPlugInName(), which returns the
name of the plug-in, and getPlugInMenu(). The contents of the menu of the
plug-in are not restricted, but for conformity with other plug-ins the menu
should at least include the items Hide and Show. Also make sure that clos-
ing the plug-in window will lead to hiding of the window, not closing, because
a plug-in cannot be restarted from within the program. For an example on how
to implement this exactly, check the source of an existing plug-in, such as the
Text plug-in.

The size and location of each plug-in are stored in the program’s general
settings. Access to theProgramSettingsobject is possible in the method set-
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ProgramSettings(). This method is called by the main program, with thePro-
gramSettingsobject as a parameter. In the setProgramSettings() method, the
plug-in can retrieve the size and location stored in this object by calling get-
PlugInSettings() with the name of the plug-in as an argument. Note that when
the plug-in runs for the first time, there are no settings available it, so default
values should be assumed for this case.

The final method that should be implemented for correct functioning is
cleanUp(). In this method, the plug-in must prepare for a clean exit. Usually,
this involves releasing its database connection (see section 11.6.2.2) and dis-
posing of itsJInternalFrame. If it uses any other resources, be sure to clean
them up as well.

All other methods in the interface do not need to be implemented. However,
to make use of certain functions, they will have to be implemented. For more
information on these methods, see the remaining of this section.

11.6.2.2 Accessing the database

In order to access the database, an object of typeDatabaseReaderis from the
packagedatabaseis needed. This object should be constructed using infor-
mation from the ProgramSettings, so the best place to initialise an instance
of DatabaseReaderis in the method setProgramSettings(). When the pro-
gram exits and calls the plug-in’s cleanUp() method, call theDatabaseReader’s
cleanUp() method in order to release the connection with the database.

Performing a query
In case the query you wish to perform in the plug-in returns events, you can
use either eventQuery() or eventQuerySQL(). The name of the table on which
to perform this query is the same as the name of the current session (see sec-
tion 11.6.2.3 on how to access that information). Neither of these methods will
return any values; instead you must use the methods moreEvents() and getNex-
tEvent(). moreEvents() indicates whether there are any results left that haven’t
been returned yet, and getNextEvent() returns the next event.

Whenever possible, you should use eventQuery(), and not eventQuerySQL().
Only use the latter one in case you can not express the query using event-
Query(). This is because you will need to enter literal SQL when you use
eventQuerySQL(), and this may cause the plug-in to work incorrectly when
the database component is modified. See section 11.6.2.2 for how to use even-
tQuery().

In case the query does not involve events, for example, if you want to
know the number of events that is stored in a particular table, you can use
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querySQL(). This method returns an object of typeResultSet. See the docu-
mentation on JDBC for how to obtain information from it ([14]).

If you want a query to use the latest data, even when the MTD is moni-
toring, call the method updateDatabase() fromIPUBridge. This will cause the
monitoring process (when active) to stop momentarily, so that recent data will
be available from the database for the plug-in. A reference to the instance of
IPUBridgecan be obtained from the interface method setIPUBridge().

Using the eventQuery method
The eventQuery() method can query for events in an event table, although the
possibilities are less expressive than SQL. You can restrict the events returned
in the following ways:

• By time.Use parameters timeAfter and timeBefore to specify the times
(in nanoseconds) after or before which the events should take place (non-
inclusive).

• By number. Limit the number of events returned is possible in three
different ways. Returning the first limitFirst events (type 0), the last
limitFirst events (type 2), or events limitFirst to limitLast (type 1). The
type of limitation is defined using limitType.

• By the values of the event.The events returned will satisfy all theSub-
Query objects passed as a parameter. Details onSubQueryare given
below.

For all parameters holds that a value of -1 means that particular parameters will
not be considered in the query.

Within aSubQueryevents can be required to be of a specific type, and you
can require a part of the parameters-field of an event to be equal (or not equal)
to a certain value. All these requirements have to be entered as a parameter
when creating a newSubQueryobject. To get the correct bit-values of a specific
parameter field, you can use theEventDefinitions(see section 11.6.2.4). This is
preferred above including the values statically in the code, since that will make
the plug-in useless when a change occurs in the way events are defined.

11.6.2.3 Sessions

If there are settings in the plug-in that are defined by the user, you may want to
store them in the current session, so that the same settings are used when the
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same session is re-openend later. You also need sessions to obtain the name of
the table in case the plug-in performs queries on the database.

Saving information
A Sessionobject allows each plug-in to store oneObject. In case you wish to
store more than one value, you should use a container class for this. This can
be of a type that is already available in Java, such as an array, orVector(from
thejava.utilpackage). Or you can create your own class in which all the values
are put together.

Storing of the information you wish to save must occur in the savePlugIn()
method defined by thePlugIn interface, whereSession’s setPlugInSettings()
can be used. Besides the object to be saved, that method also requires a unique
name which should be used later to get the stored information back. The most
straightforward name to use is the name of the plug-in; in this way, there will
be no mix-up of settings.

Restoring information
Whenever a new session is loaded, the method loadSession() is called for all
plug-ins. At this moment, any stored information from that session can be
accessed using the getPlugInSettings() method with the name used when the
information was stored. This information will be returned in the form of an
object.

Be sure to implement loadSession() so that it can also handle sessions in
which no information was stored for the plug-in; assume default values for
these settings in these cases.

From theSessionobject received in the loadSession() method, you can also
get the name to use in a database query. Use getName() for this purpose.

11.6.2.4 Event names

Information regarding events, obtained from the database, is not really suitable
for displaying. TheEventclass provides a basic method which will return a
printed string representing that event. If you want to use the actual names
of events, fields and constants otherwise, use the classEventDefinitions. An
object of this type can translate the numerical values returned by the database
into the names of the events they represent, and vice versa.

An object containing this information is passed through the method setEvent-
Definitions() from the common plug-in interface.
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11.6.2.5 Communication with other plug-ins

Sometimes, it is useful to use functionality of other plug-ins. But because
the program does not know if a certain plug-in is available in the program or
not, it is not possible to refer to an instance of, for example, the Event Viewer
from the Event Query plug-in. However, there is a way in which plug-ins can
communicate with each other.

Using functionality of other plug-ins
The method setOtherPlugIn() from the common interface, called by the main
program, provides an array of all the plug-ins that are available in this run of
the MTD. They are only accessible asPlugIn objects, so only the methods de-
fined in that interface can be called. Two of these methods are currently defined
for use by other plug-ins: writeMessage() and displayTimeStamp(). writeMes-
sage() displays a message (string) on screen, while displayTimeStamp() (graph-
ically) highlights a time. These methods need not be implemented by any of
the available plug-ins, so if you want to use one of them, call it for each plug-in
from the array (note that the array includes a reference to your plug-in, too).

If these methods do not offer the functionality required, you could consider
extending the interfacePlugIn with new methods. If you do so, you must
adapt all existing plug-ins so they support this new method, even if they do not
implement it.

Offering functionality to other plug-ins
If you want to make some of your functionality available to other plug-ins, all
you need to do is implement the methods mentioned in the previous section so
they perform the actions you desire.

As examples, the Text plug-in in the MTD implements the writeMessage()
method; it simply writes the message in its text area. The Event Viewer moves
its time marker to the time specified by the caller of displayTimeStamp(). The
plug-in Event Query makes use of both these features to display the results of
a query posed by the user.

11.6.2.6 Help files

Each plug-in should also include help files. When the MTD is running, these
will be visible together with that of the MTD program. When the plug-in is not
running, its help pages are not available.

A plug-in’s help files should be written for JavaHelp (see [19] for how to
write such files) and located in the directoryhelp/plugIns/YourPlugIn .
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The program will give produce errors when the help files are not found.

11.6.3 Using the event definitions file

As explained in section 11.6.2.4, the file with event definitions can be used
to display the event data in a readable way. This section defines how the file
containing this data is built up.

11.6.3.1 Structure of the file

The event definitions file is default namedevent.def . In this file you can
define event types by their name and the different parts of the parameters field
that represent a field. A field is defined by a name and the first and last bit it
occupies in the 5 byte parameter field (so bit values range from 0 to 39). A
special event named “all” is defined by default. Use this type of event to look
for a specific field within several events. For example, in both the TaskSwitch
and the ServiceCall event, the CPU field is defined at the same location.

Apart from defining events, constants can also be defined. These are pos-
sible values which a field of an event can contain. For example, the value 16
represents a ServiceCall event of Type (field) Thread_Create.

11.6.3.2 Grammar

The grammar for the event definitions file, in Extended Backus-Naur Form, is:

EventDefinitions ::= { <Event> | <Constant> }
<Event> ::= ‘event’ <EventName> <Value> ‘{’ {<Field>} ‘}’
<Field> ::= <FieldName> <Bit> <Bit>
<Constant> ::= ‘const’ <EventName> <FieldName>

<ConstantName> <Value>
<Bit> ::= 0..39
<EventName> ::= <Name>
<FieldName> ::= <Name>
<ConstantName> ::= <Name>
<Name> ::= ‘A’..’z’
<Value> ::= 0..

11.6.4 Changing the DBMS

When you change the DBMS used in the Framework for storing events, take
care of the following issues.
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First, get a JDBC driver for the DBMS you will use. Make sure the driver
files are in the class-path. Then, open the program settings dialog in the main
program and change the name of the JDBC driver to the new driver. You need
give the full name of the package. The program needs to be restarted for the
new driver to take effect. A list of drivers is available at [13].

With the new driver, almost all queries can be performed without change.
There are two exceptions. The query that is used for storing new events in the
database is dependent on the DBMS that is currently used, viz. MySQL. Rea-
son is that insertion queries from file are not standard ANSI-SQL. However,
most DBMSs offer such functionality, but with different syntax. The Frame-
work offers room to implement another way to perform the insertion query.
This new approach should be implemented in the run() method of the class
DatabaseWriter. There is a switch-statement, which choose a user-defined
method of inserting. Currently, only option 0 is implemented. The option se-
lected can be changed in the MTD program’s settings dialog.

A second place where the Framework depends on MySQL is in the class
SessionManager. The method sessionTableAvailable() uses the MySQL spe-
cific command "SHOW TABLES", to give a list of all tables available. A
similar command is usually available in other DBMSs, change this command
so it works with the new choice of database.

11.6.5 Specific plug-ins

11.6.5.1 Event Viewer

The event viewer displays icons for events other than taskswitches. For service
calls, there are even different icons for different service call types. To change
these icons, do the following:

• Put the images you want to use in theimagesdirectory.

• In the method loadImages() in theEventViewerEvent(defined in the
EventViewerPlugIn file), add the images for service call types to the
svcImages array, and the images for event types to eventImages. Make
sure the indexes used for the arrays are the same as the numbers of the
event types/service call type. You can use the event definitions file for
that purpose, too.

• Add the array positions just defined to the instance ofMediaTrackerde-
fined in the same loadImages() method. This will ensure that the images
are loaded only once.
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11.6.5.2 Chart Viewer

The Chart plug-in has the possibility to add new types of charts. This section
describes how to write a new chart type, and how to include it in the plug-in.
For displaying the chart, the chart part of the JClass package is used (see [12]).

Implementing a new chart type
The new chart type you make must implement the interfaceChartType. This
interface has five methods.

First of all, decide whether chart you want to draw should be updated at
a fixed interval. If so, the method isTimedUpdate() should return true, and
getUpdateTime should return the interval (in milliseconds) between two up-
dates.

The method setChart() provides the object on which the chart will be dis-
played. Using this object, of typeJCChart, you can adapt the visual settings of
the chart. For example, you can display a legenda, or set the colours to be used
(see [12]).

Next, you can (not obligatory) define a dialog which will pop up when the
user requests the chart to be displayed in displaySettingsWindow(). Here you
can ask the user for input, for example the time range the chart will cover.

The most important method is update(). This method should return an ob-
ject of typeChartDataModel. A very basic implementation is available under
the nameDataSource, in which the x-values and a number of corresponding y-
values (so you can display multiple lines at the same time) should be entered.
Now, all you need to do is calculate the values to display. For this purpose,
access to the database and the currently opened session are present. For more
information on how to use these, see Section 11.6.2.

If you require a more sophisticatedChartDataModelfor your chart, you
can implement your own (see [12]).

Including the new chart type
Add the code for your chart type to the same source file as the plug-in (Chart-
PlugIn.java). Then, add the name of your chart type to the array chartType-
Names in theChartPlugInclass and add an instance of your chart type to the
array chartTypes. Be sure that the indices are the same in both arrays.

Now, recompile the Chart plug-in, and the new chart type will be available
when you restart the program.
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11.7 MAMon Tool Desktop User Guide

11.7.1 Quick start

This section explains in five short steps how you can use MTD. You will open a
session, collect monitoring data from the hardware, analyse this data, and exit
the program.

Create a session
Before you can start doing any monitoring, you need to create a new session.
To do this selectSession|Open or pressCTRL+O. You will see the follow-
ing window appearing:

Enter a name for your session and press OK. Now you have created a new
session.

Start monitoring
Now, you can start to collect events from the hardware. Make sure a connection
with the target system exists and that a program is running (or is ready to run).
On the toolbar of the MTD, you will see the following buttons.

Press the leftmost button, i.e. theSTARTbutton. Monitoring will start now.
The left bottom of the program, you should see the "Status" caption change
from "idle" to "monitoring". You will also notice other values on the status bar
in the bottom of the screen will change.

Stop monitoring
When you have monitored long enough, you can stop the process by pressing
theSTOPbutton, which is the rightmost button on the toolbar above the pro-
gram’s desktop. The monitoring will now end. The "Status" caption in the
bottom left corner of the screen will display "idle" again.
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Analysing data
Now you have collected event data, you can start to analyse it using one of the
plug-ins. The plug-ins are the smaller windows resident on the MTD.

Quit program
When you are done analysing and monitoring, you can exit the MTD by select-
ing Session|Exit or pressingALT+F4. You can not exit as long as you
haven’t stopped the monitoring. The session that was open when you pressed
exit is automatically saved.

11.7.2 Reference guide

In this reference guide, you can find detailed information regarding the follow-
ing topics:

Events - MAMon monitors events. What are they and how to use them?

Event time format - All throughout the MTD a specific time format is used.
How does it work?

Menu - What do all the items in the different menus do?

Monitoring - How do I operate the monitoring process?

Plug-ins - What are plug-ins and how can I manipulate their windows?

Sessions- How to deal with sessions?

Settings - How to adjust settings, and what do they mean?

11.7.2.1 Event format

The data that a monitoring session with the MTD delivers consists of events.
An event consists of three parts, a type, a timestamp and parameters. In the
plug-ins, you will see different representations of events. The representations
are based on the three basic parts of an event, whichare all stored as numerical
values. However,the MTD is also able to assign names to those numbers.

Type
Each event has a type, represented by a number. Examples of types can be
task scheduling events, communications events (both events generated by the
hardware) or software triggered events.



130 Paper C

Time
Each event is accompanied by a timestamp. This denotes, in nanoseconds, the
time at which this particular event occurred. For display, a special format can
be used.

Parameters
The final component of an event is a field of parameters. The exact contents of
this field are different for each type of event. For some events, only a small part
of the parameters contains sensible data such as the CPU on which the event
occurred, while other types may occupy the entire field, such as the contents of
a register.

A plug-in that displays an event will only display the parts that are relevant
for that event.

Definitions of names
By using the event definitions file (event.def ), you can define names to be
used within the program. In there, names for event types are defined (for ex-
ample, event type 1 corresponds to a task-switch event). Then, the fields within
the parameters are defined (for example, event type 1 contains two fields named
CPU and TaskID). Finally, you can define constants. For example, within the
context of event type 1, the value 0 for the field TaskID means theidle taskwas
executing. Instead of displaying a zero, you can display a IdleTask here.

You can enable the use of names in the Program Settings, where you can
also set other issues regarding the display of events.

For information on how to edit the event definitions file, see the Program-
mer’s Guide.

11.7.2.2 Event time format

In several places in the program and in plug-ins you will encounter the event
time: when monitoring, when querying for events, when viewing event repre-
sentations. The time format used for events is the same throughout the MTD.
It is constructed as follows:

hours:minutes:seconds,milliseconds,microseconds,nanoseconds

As an example, the following represents 1 hour, 22 minutes, 44 seconds, 0 mil-
liseconds, 85 microseconds and 3 nanoseconds (or 100000003 nanoseconds):
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01:22:44,100,000,003

When times are printed, they are displayed like the one above, including the
full number of zeroes. However, if you need to type in a time yourself, you can
use shorter forms. The following can be left out when typing:

• The parts of at the start of the time that are not used. For example, when
typing 1 second, the hours and minutes fields are be zero. Instead of
00:00:01,000,000,000 you can type01,000,000,000 .

• Leading zeroes. For example, when typing 1 second, instead of
01,000,000,000 you can type1,0,0,0 .

11.7.2.3 Menus

The MTD program has the following five menus:

• Session - control sessions

• Edit - change program settings or edit text

• Tools - access to the plug-in functionality

• Window - adjust plug-ins and the general view

• Help - help and information regarding the program

Session menu
The session menu has five items, with the following functionality:

• New - create a new session

• Open - open a stored session for usage

• Close - close the currently opened session

• Delete - delete a stored session

• Exit - quit the MTD

Edit menu
The edit menu has five items, with the following functionality:
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• Copy - copy the selected text to the clipboard

• Cut - cut the selected text and copy it to the clipboard

• Paste - paste the contents of the clipboard to the specified location

• Program Settings - adjust general settings regarding the program

• Monitor Settings - adjust settings regarding the monitoring process

Tools menu
The tools menu has as many items as there are plug-ins available. The items
each plug-in offers is different, but typically there are at least two items present,
viz.:

• Show - makes the plug-in visible on the desktop

• Hide - makes the plug-in unvisible on the desktop

Window menu
The windows menu has 4 items plus as many items as there are plug-ins avail-
able. The four items are:

• Tile - orders the plug-in windows by filling the desktop

• Cascasde - orders the plug-in windows cascading from the top left corner
of the desktop

• Cross-platform ’Look & Feel’ - the program uses the Java look and feel

• Platform specific ’Look & Feel’ - the program uses the look and feel of
the local operating system

The remaining items give a list of all the plug-ins available. The item that is
checked is the plug-in that is currently in front at the desktop. If you select
another, this plug-in will be moved to the front. In case the plug-in is hidden,
it will be made visible, too.

Help menu
The help menu has only 2 items:

• Help - displays the help environment

• About - displays information on this program
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11.7.2.4 Monitoring

Before you can use the plug-ins to analyse data, you first need to collect data.
This process, monitoring, is controlled from the MTD too. In order to start
monitoring, you first need to have opened or created a session.

Control
The control panel for monitoring consists of three buttons, START, PAUSE and
STOP.

START begins the monitoring process. In case you have any event data stored
in the session, this data is removed, and the new data will be stored instead.
Before starting, the hardware is reset.

When you are monitoring you can PAUSE the process, which cause the MTD
to stop monitoring. When the PAUSE button is pressed again, the process is
resumed. The data is added to the data stored before the pause, and the hard-
ware is not reset. Resuming is also possible by pressing the START button.

To stop the monitoring process, press STOP. Monitoring can now only be
started again using the START button.

Status
While you are monitoring, you can see information on the process in the status
bar. From left to right, you see the following:

• Status - Displays "Idle" when not monitoring, "Monitoring" when mon-
itoring, and "Paused" when monitoring is paused.

• Error Detection - Displays "Err" when an error occured in the communi-
cation. This only works when Error Detection is selected in the Monitor
Settings.

• Throughput - Displays the number of events per second that is stored in
the database right now.

• Counter - Displays the total number of events that was stored in the data-
base since monitoring was started. This information is still available af-
ter the monitoring has stopped.

• Time - Displays the elapsed time on the monitored system since moni-
toring was started. This information is still available after the monitoring
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has stopped.

• Session - Displays the session that is currently opened.

11.7.2.5 Plug-ins

To analyse the data you have retrieved by monitoring, the MTD provides a
set of tools calledplug-ins. The number and kind of plug-ins that is available
within the program is not fixed, it depends on the choice of the user and the
availability of plug-ins. The plug-ins that are available in a run of the MTD are
all shown as small windows on the desktop of the main program. You can also
see a list of their names by using either theTools or theWindow menu.

Choosing which plug-ins to use
You can choose which plug-ins you want to be present in a run of the MTD.
If you just start the MTD, the program will run with a set of plug-ins that has
been set as default. You can define exactly which plug-ins are present by adding
them as an argument when starting the program. For example, the program is
normally started as follows, and the default plug-ins are used:

java -classpath yourClassPath gui.GUI}

If you start the program as follows, only the plug-ins called Event Viewer and
Event Query will be available:

java -classpath yourClassPath gui.GUI EventViewerPlugIn
EventQueryPlugIn

The names you provide in this way must be equal to the names of the class-
files for these plug-ins. These class files must be located in the directory
MAMon/classes/plugIn .

Size and position
In the program you can change the size or position of a window in the way
the windows are resized or repositioned in your operating system. To order the
plug-in windows, you may also use the functionstile (Window|Tile ) and
cascade(Window|Cascade ). Tile will attempt to show all the plug-ins
at the same time while filling as much of the desktop as possible.Cascade
will resize the windows to their original sizes and cascade them, starting in the
upper left corner of the desktop.
The sizes and positions of the plug-ins are stored when you close the program,
so they will appear in the same way when you restart the program.
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Showing and hiding
When you are running the program, it is impossible to close a plug-in. How-
ever, if you do not wish to see it on the desktop, you can hide it. There are to
ways to achieve this. The first one is by using the window closing feature of
your operating system. The second method is to select the plug-in you wish to
close from theTools menu. Then select the optionHide (see image below).

If you want to make hidden plug-ins visible again, you can do this by choosing
that plug-ins name from theTools menu and selectingShow. Alternatively,
you can go to the Window menu ,and select the plug-in you want to make
visible. This option will bring a plug-in the front, whether it was hidden or not
(see image below).

11.7.2.6 Sessions

Before you can start monitoring the system with the MTD you need to create a
session. A session will store the data you have monitored so you can analyse it
later using the plug-ins. A session also stores the monitor settings and plug-in
settings you used.
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Creating a new session
You can create a new session usingSession|New or CTRL+N. You will see
a dialog where you are asked to type in a name for the new session (see image
below). In case no session with the name you provided already exists, a new
session with the name is created.

Closing the current session
When you do no longer wish to use the session you are using at the moment,
you can close it usingSession|Close or CTRL+F4. The monitor and plug-
in settings as they are will be saved in that session, and any data you have
collected is stored with the session. Before you can start monitoring again, you
will need to create a new session or open a session you previously created.

Opening a previously stored session
When you want to use the settings and/or data of a session that you stored
earlier, you can open this session usingSession|Open or CTRL+O. You will
see a list of all the sessions that are stored (see image below). Select the session
you wish to open and click OK. The session you selected will now open, and
the settings will be adapted to match the settings stored in this session. If you
had a session openend before you chose to open another one, that session will
be saved before second one is opened.
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Deleting a previously stored session
When you no longer wish to keep a session stored, you can delete it using
Session|Delete or CTRL+D. You will see a list of all the session that are
stored (see image below). To delete, select the session you want to remove and
press the Delete button. If you want to delete more sessions, repeat this pro-
cedure. When you are finished deleting sessions, press the Close button. Note
that you are not allowed to delete the session that is opened at the moment.

Current session
You can see the name of the session you are using at the moment in the title
bar of the program, and also in the bottum-right corner of the screen, under the
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caption "Session" on the status bar (see image below).

11.7.2.7 Settings

It is possible to adapt many settings in the MTD. Basically, there are three
places where you can change settings. The first one are the settings for the
entire program, such as settings with respect to the database the Framework
uses to store data in. Next there are monitor settings. These settings are specific
to a session, you can adjust the way in which the events are collected from the
hardware. Finally, some plug-ins may offer the possibility to modify settings
for that particular plug-in.

Program settings
You can change the program settings usingEdit|Program Settings .
You will see a dialog divided in two sections (see image below). The first
section deals with settings for the database, the seconds with the format in
which events are printed within the program.

Database Settings
The following items can be set regarding the database the Framework uses to
store events and sessions:

• Database URL - the location of the database server

• DBMS type - the type of DataBase Management System*

• JDBC driver - the driver needed to communicate with the database*

• Database name - the name of the database that is used to store the data

• User login - the login name that should be used

• User password - the user password that should be used

• Database Writing - method used to insert event data in the database*

• FIFO location - path to the FIFO the MTD uses when monitoring. This
should be on the same machine as the database server.
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The items marked by an asterisk should only be modified when you change
the DMBS to use with the Framework. See Programmer’s Guide for how to
accomplish this.

Output Format
The items can be set regarding the way in which events are printed throughout
the program:

• Use names of events and constants - if defined, the MTD will use names
for events and their contents instead of displaying plain numbers

• Convert time - the times at which the events occurred are displayed using
the general time format, instead of a value in nanoseconds

• Use hexadecimal value - any numbers appearing are displayed in hexadec-
imal format instead of decimal

• Separator - this character is used to separate the different parts of an
event
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Monitor settings
You can change the settings for the monitor by selectingEdit|Monitor
Settings . You will now a dialog (see image below).

Here, you can set the following items:

• Stop Condition - if selected, the MTD will stop when the hardware buffer
is full, otherwise, monitoring is continuous

• Error Detection - if selected, the MTD will attempt to verify whether the
received data is correct by sending a confirmation.

• IRQ Mode - determines the way in which new events are detected. There
are four options:

– Polled

– New event

– Buffer half-full

– Buffer full

11.7.3 Plug-in Tools

11.7.3.1 Event Query plug-in

The Event Query plug-in allows you to make a selection of the events stored in
the database.
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Event type
To restrict the type of events that is returned, select the event type from the
first combobox in the Disjunct 1 section. If you want to search all types of
events, select All here. In the above image, we search for TaskSwitch events in
Disjunct 1.

Field requirements
To find only events where specific fields have specific values, use the second
combobox and the text box next to it. In the combobox, you can select the
fields that are defined for the event type you selected. In the text box, you
can than add the value you want the field to be. You can add a new field by
clicking the AND box. In the above example, the events in Disjunct 1 have to
be executed on CPU 1 and have TaskID 4.

To get events that do not have a certain value for a field, check the NOT
box. If you do not want to enter a value for a field, select the field All.

Disjuncts
If you want your query to return more than one type of event, click the OR
checkbox. A new part will become visible, similar to the Disjunct 1 section,
like shown in the above image. The results that you get will fulfill the require-
ments of the first disjunct or the second disjunct, or both. More disjuncts can
be added clicking subsequent OR boxes.
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Time
The events can also be restricted by time. If you fill in a value in the field
After, only events that appeared after that time are displayed. For the field
Before, only events before that time are displayed. You can also use both fields.
The time values can be expressed in both nanoseconds and in the MTD’s time
format.

Limit
If you only want a limited number of events returned, instead of all events
that match your requirements, use the Limit section. There are three type of
limiting:

• First - you will get the first x events in time that match your query, where
x is the number you type in the text box.

• Last - you will get the last x events in time that match your query, where
x is the number you type in the text box.

• Range - you will get events x to y in time that match your query, where
x and y are then numbers you type in the text boxes.

In the image shown above, the first 500 events that match the requirements will
be returned.

Results
The selected events can be displayed in three different ways:

• Find - this will output the events in text window

• Save - this will output the events to file. You can select the name of this
file. The format is the same as used for the textual output with Find.

• View - this will display the time of the first event in a graphical plug-in.
A new button will also appear, Next. This button shows the second event
of the result.

11.7.3.2 Event Viewer plug-in

The Event Viewer presents a graphical representation of the events that oc-
curred while monitoring. The events are displayed chronologically.
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Fetching data
You can load data in the event view by pressing the button labeled with this

icon:

You will see a dialog in which you can enter the range in time that you want
to display. WARNING: for long ranges, it may take some time to load and
display. The times to enter here can be in nanoseconds or in the common time
format. If you press OK, the events in the selected range will be loaded and
displayed. The intial view will be of the entire range fetched, except in case
this is longer than 1 minute; then the first minute will be visible.

Panel
After fechting, the panel displays a line for each CPU on the monitored sys-
tem. Events taking place on these CPU are displayed along these lines. Tasks
executing are shown as coloured bars, while other events are represented with
icons. Events regarding the entire system are shown above the line of CPU 0.
To get more details on a certain event, double-click it. A text-enabled plug-in
will then show you the details of this event.

Marker
By clicking on the panel, you will see a red line drawn. This line indicates
the time that point represents. In case you have lost view of the marker, press
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the button to find it again.

Zooming

You can zoom in and out on the panel using theand buttons. The
button will bring you back to the original view. Exact zooming is also possible
by dragging the mouse over the panel. The MTD will zoom in to the selected
area, made visible by a red box, when the mouse button is released.

Settings

You can set the colours that are used to for the tasks using thebutton. You
will see the following dialog:

You can change the colour belonging to a task number by clicking the Set
button next to the task number. For numbers higher than 15, use the lower text
box. Enter the number and press enter to see the corresponding colour. You
can set it using the set button next to the text box.
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11.7.3.3 Text plug-in

The text plug-in consists of a text window, in which the program can display
textual information. You can edit and modify the text, or add your own text.
The contents of the window can be save on file by selectingTools|Text

Window|Save to File , or clicking .
To clear the contents of the text area, selectTools|Text Window|Clear

or click .
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Appendix A

Patent

Abstract of WO02077810 / SE517917
An integrated circuit (1) for a computer system, where the computer system
comprises at least one processor (2) and an operating system which has at
least one part (4) implemented in hardware, wherein said operating system part
(4) is arranged in the integrated circuit (1). The integrated circuit (1) further
comprises a unit (5) for supervising events in said computer system, wherein
the supervising unit (5) has means for detecting events in the computer system
and means for recording information about the events and that the supervising
unit (5) is connected to said operating system part (4) in such a manner that
information about internal events in the operation system part is possible to
transfer to the supervising unit.
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Description of WO02077810
Translated from SE517917

An Integrated Circuit

A.1 Field of the invention
The present invention refers to an integrated circuit for a computer system com-
prising at least one processor and an operating system, which at least has a
part that is implemented in hardware, wherein said operating system part is
arranged on the integrated circuit.

A.2 Prior art
In a computer system, it is desirable to be able to detect and record differ-
ent events in the computer system for the purpose of analyzing, measuring the
performance, and testing the computer system. This is particularly important
during the development of a new system. From now on, supervising of a com-
puter system relates to the collection of information regarding the behavior
of the computer system. The supervision may also extract or validate design
parameters, such as execution times and delays in the system.

It is known to supervise what happens in a computer system through spe-
cific program instructions being located in the software code of the system.
When those instructions are executed, events are initiated, and information
about the generated events is stored for later analysis. A drawback with han-
dling the supervision by software instructions in the program code is that the
software of the system becomes overloaded with those extra instructions and
that they might influence the timing in the system. The introduced disturbances
caused by the extra instructions might also change the behavior of the program
and when the software test is completed and the extra instructions are removed
new errors might occur due to the change of the timing.

It is particularly important in a real-time operating system that the supervi-
sion does not influence the timing. Real-time systems are different from most
other systems, since they are tremedously sensitive to disturbances in the tim-
ing. Typical for a realtime operating system is that it is deterministic, which
means that it shall always be predictable. Thus, the supervision of a real-time
system is not allowed to change the timing or the order of events in the system.

Another known method for supervising a computer system is the use of a
supervisory device implemented in hardware. Such a supervisory device com-
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prises probes, which are connected to buses and signals in the computer sys-
tem. The supervisory device detects passively what is going on at the bus and
collects information about events, which might be of interest. The advantage
with hardware supervision is that it does not interfere with the system that it
supervises. A problem in connection with the use of a separate supervisory
device is that, in certain modern computer systems, many functions are physi-
cally integrated in the same circuit in the same enclosure. Therefore, it may be
impossible to reach all signals necessary to achieve a good supervision. The
enclosure of an integrated circuit should preferably not be too large and thus it
has a limited number of pins. To obtain all signals necessary for the supervi-
sion, the number of pins must be considerably increased and thus the size of
the enclosure must be increased and that is not desirable.

For the purpose of enhancing the performance in a computer system, it is
known to implement the whole or at least a part of the operating system in
hardware in an external unit outside the processor. High performance is partic-
ularly important in applications performed in real-time, such as, for example
in process control applications. A hardware operating system has a realtime
kernel arranged on an integrated circuit that is physically separated from the
processor and the real-time kernel is communicating with the processor via a
bus connection. It is not suitable to supervise such a computer system with
software, since the timing in the system might be influenced. It is true that a
supervisory device can be connected to the bus between the processor and the
hardware operating system, but the information accessible on the bus is not
enough to perform a reliable supervision of the system or to detect errors in the
program code.

A.3 Summary of the invention
The object of the inventions is to provide an integrated circuit comprising a
hardware operating system or at least a part of an operating system which is
implemented in hardware and which makes it possible to achieve a reliable
supervision of events in the computer system.

This object is achieved with the initially described integrated circuit, which
is characterized in that it further comprises a unit for supervising events in
said computer system, wherein the supervising unit has means for detecting
events in the computer system and means for recording information about the
events, and that the supervising unit is connected to said operating system part
in such a manner that information about internal events in the operating system
part is possible to transfer to the supervising unit. By arranging a supervising
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unit in the same integrated circuit as a hardware operating system part and
connecting them to each other, necessary information for the supervision, for
example information about internal events in the operating system part, can be
transferred to the supervising unit.

Such internal information is not obtainable on the bus between the proces-
sor and the operating system part. The information about internal events is
usually inaccessible or so sensitive to disturbances, such as capacitances in the
cables, that it is not measurable. The supervising unit is passive and listens to
what is going on in the operating system without influencing the system and its
timing. When the supervising unit has detected an interesting event, it records
the information about the event.

This information may later be analyzed, for instance for the purpose of de-
tecting errors. Since the supervising unit is implemented in hardware, nothing
prevents it from being used for supervision of arbitrary physical signals in the
system.

In a preferred embodiment of the invention, said operating system is a real-
time operating system and said operating system part is a real-time kernel.
The invention is particularly advantageous if the operating system is a real-
time operating system, since the timing in the system is not influenced by the
supervision according to the invention.

In an embodiment of the invention, the operating system part comprises
means for handling when a number of tasks shall be executed by the proces-
sor and said information comprises information about the current state of the
tasks. This is important information and knowledge about it contributes to
an improved supervision of the system. This information is difficult to obtain
outside the integrated circuit, but the fact that the supervising unit and the hard-
ware operating system part are arranged on the same integrated circuit makes
it possible to transfer this information to the supervising unit in a simple way.

In an embodiment of the invention, the operating system part is communi-
cating with one or a plurality of processors via a bus and the supervising unit
comprises means for receiving information from the processor/processors from
said bus. Thanks to the fact that the supervising unit is connected to the bus, a
processor can address the supervising unit and transfer information about what
is going on in the processor to the supervising unit.

The software is provided with program instructions for transferring infor-
mation via the bus to the supervising unit. Thus, the supervision of the software
can be based on events in the operating system part and on arbitrary informa-
tion generated by the software itself. Accordingly, a combination of hardware
and software supervision is obtained. This means that the supervision is further
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improved, since the information about internal events in the operating system
is supplemented with information about events in the software. Since most of
the supervision is done in the hardware, only a few extra instructions in the
software code are necessary and thus the load on the system is not so large
as when all supervision is done in the software. Since the load on the system
becomes low, the extra instructions do not necessarily have to be taken away
when the supervision is finished and problems with the timing is thus avoided.

All information about events in the processor is not available on the bus. In
an embodiment of the invention, the integrated circuit comprises at least one
processor, which is connected to the supervising unit in such a manner that
information about internal events in the processor is possible to transfer to the
supervising unit. By integrating one or a plurality of processors in the computer
system in the same circuit as the operative system part and the supervising unit,
it is possible to transfer information about internal events in the processor to
the supervising unit.

Thus, further improvement of the supervision is achieved.
In an embodiment of the invention, the integrated circuit comprises means

for transferring the stored information to an external unit for further analysis
of the information. The external unit may, for example, be a computer. The
recorded and stored events are sent through a communication link to the exter-
nal unit where they are stored in a database. The collected information may
later, for example, be used for event based debugging, analysis of the behavior,
and for statistics.

A.4 Description of the drawings
The present invention will now be explained by the description of different
embodiment and with reference to the appended drawings (Section A.7).

Fig. 1 shows a block diagram of a computer system with an integrated circuit
according to an embodiment of the in vention.

Fig. 2 shows a block diagram of a supervising unit arranged on the integrated
circuit in Figure 1.

Fig. 3 shows the format of an event package.

Fig. 4 shows another embodiment of an integrated circuit ac cording to the in-
vention.
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A.5 Description of embodiments
A computer program is structured in different tasks. A task is a sequentially
arranged program and performs a predetermined function. In a real-time op-
erating system, the tasks are given mutually priority and if two tasks are to be
executed at the same time by the processor, the task with the highest priority is
executed first. The means handling when a certain task is to be executed by the
processor is denoted a scheduler and forms the kernel in a real-time operating
system.

Figure 1 shows a computer system comprising an integrated circuit 1 ac-
cording to the invention and three processors 2 arranged in parallel. The proces-
sors 2 and the integrated 1 circuit are connected to each other via a system bus.
The computer system has a real-time operating system comprising a real-time
kernel4, which is implemented in hardware (RTK = Real Time Kernel) in the
integrated circuit 1. The real-time kernel 4 is ar ranged in such a manner that it
mainly executes the same functions as traditional real-time operating systems
which are implemented in software do, for example handling, scheduling, and
giving priority to tasks, communication, and synchronization between the tasks
as well as interruption handling. More about how a real-time operating system
is constructed is described in the book "Utilization of Hardware Parallelism in
Realizing Real TimeKernels" by Lennart Lind, ISBN 0280-4506.

The integrated circuit further comprises a supervising unit 5 connected to
the real-time kernel 4. The function of the supervising unit is to detect and
record events in the computer system. Events in the operating system is, for
example : – a system call to the operating system, such as create task, delete
task, send message, receive message, – the state of the task is changed, such as
setting a task in a blocked state or unlock it from the blocking, and – interrup-
tion request from external units.

For the purpose of supervising events in the operation system, the supervis-
ing unit 5 is connected directly in the hardware to a number of selected signals
in the real-time kernel 4. The connection is implemented as one or a plurality
of physical wires 9 from internal signals in the real-time kernel 4 to the super-
vising unit 5. In such a way, it is possible to get access to valuable information
about what is happening in the operating system.

Those internal signals comprise i. a. information about the condition of the
tasks in the system, the priority of the tasks, internal communication activities
as well as internal and external interruptions.

In certain cases, the ability to generate events from the software is neces-
sary, for example to see whether certain control points are passed or to report
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the contents in a certain memory. Such events can be produced by introduction
of software instructions in the program code. The supervising unit can also be
used for recording general information, directly generated from the soft ware,
i. e. information coming directly from the execution of the software on one or
a plurality of processors 2 in the system. For the purpose of supervising events
in the software and to receive information from the software, a supervising unit
5 is connected to the system bus 3. The software generates information through
the system bus by writing data to a particular register in the supervising unit 5.

It is also possible to connect the supervising unit to an arbitrary signal or
hardware unit in the integrated circuit for supervising the signal or the hardware
unit. Such hardware units are buses and internal memories. This means that
the supervising unit may also function as a general logic analyzer. Thus, the
supervising unit 5 can be used to detect functional errors in the hardware.

This is particularly useful in situations where conventional error localiza-
tion methods are difficult to use, for example due to high system speeds or the
fact that the signals are difficult to reach because of a limited number of pins in
the integrated circuit. A hardware unit 6 in the integrated circuit 1 is connected
through physical wires 10 to the supervising unit 5.

The supervising unit 5 is further connected through a parallel communica-
tion link 7 to an external computer 8. The supervising unit 5 listens passively to
events, logical and/or on system level, in the real-time kernel 4 and interesting
events are recorded.

The recorded events are then transferred to a database in the external com-
puter where further handling and analysis of the information occur.

The integrated circuit can either be implemented in ASIC (Application Spe-
cific Integrated Circuit) or in a programmable hardware such as FPGA (Field
Programmable Gate Array). All the components are integrated on the same
plate, which preferably is made of silicon. Figure 2 shows a block scheme of
the internal construction of the supervising unit 1. The supervising unit com-
prises an event detector 11, a timer 12, an event recorder 13, an event buffer
14, and an interface 15 to the external computer. Input signals to the super-
vising unit are hardwired signals 9 from the real-time kernel, signals on the
system bus 3 and signals 10 from the hardware unit 6. The input signals are
received by the event detector 11 that detects whether any event to be recorded
has occurred. The event detector 11 is a comparator that compares the input
signals with internal predetermined conditions. There are a number of con-
ditions defining which events to be supervised and those conditions are hard
coded in the event detector.

The event detector detects whether an event has occurred by comparing the
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input signals with the predetermined conditions.
The event detector 11 comprises three different detectors 16-18 with differ-

ent predetermined conditions. The first detector 16 receives the internal signals
9 from the real-time kernel and detects events in the operating system. The sec-
ond detector 17 comprises a register receiving information from the software
via the bus 3 and detects when information is written to the register.

The third detector 18 receives the signals 10 from the other hardware units
and detects events in the hardware units.

When any of the conditions is met, i. e. an event is detected; the event is
reported further to the event recorder 13. The object of the event recorder is
to produce a package with information about the event, which package later
can be transferred through the interface 15 to the external computer. The event
recorder 11 is activated by one or a plurality of start signals from the event
detector and receives at the same time an identification number from the event
detector. The identification number presents information to the event recorder
about which signals to be packed together with the detected event. When the
event recorder is activated, it creates an information package comprising the
identification number of the event, the signals connected to the event, and the
time when the event was detected. The event package must have a certain
predetermined format. The time is read from the timer 12 that is connected to
the event recorder 13.

The event package is then stored in the internal event buffer 14.
This buffer is organized as a FIFO queue, i. e. the oldest package comes

out first from the queue and the newest package comes out last (FIFO = First
In First Out). At the same time as the event packages are stored in the event
buffer, an indicator of a detected event is stored in a status register (not shown).

The interface 15 transfers the packages to the external computer. Through
the interface, the external computer may have an indication of the fact that an
event has occurred and reads the event package from the event buffer 14. Indi-
cation about whether an event has been detected or not can either be obtained
by reading the information in the status register or by programming the inter-
face, so that it automatically generates a signal when new events are available
in the event buffer. The size of the event buffer can be varied and depends on
the application.

Sometimes one does not wish to transfer all detected events to the external
computer, for example, if the number of events is large. In the event detector
11, there is a filter 19 implemented as a programmable register. The filter 19
makes it possible to choose interesting events and only letting those through.
The filter 19 is connected to the interface 15 and it is possible to send in-
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structions from the external computer to the filter about which events to be let
through the filter.

Figure 3 shows an example of the design of a package having information
about an event. The event package comprises three different fields of infor-
mation, a first field 20 comprising the identification number of the event, i. e.
information about the type of event, a second field 21 comprising the time, and
a third field 22 comprising more information about the event in the form of a
plurality of parameters. An example of an event is when the processor begins
and ends execution of a new task. Parameters in the third field should then
comprise information about the identification number of the new task to be ex-
ecuted and which one of the processors to be executing the task. For the event
"send message", the parameters should comprise identification number for the
receiving task and a pointer to the message.

Figure 4 shows an embodiment of the invention, wherein an integrated cir-
cuit 29 comprising a processor 30, a real-time kernel 4 of the operating system,
a supervising unit 5, and various other types of hardware 6. The computer sys-
tem in this embodiment has only one processor and it is integrated in the same
circuit as the real-time kernel 4 and the supervising unit 5.

For a computer system comprising a plurality of processors, it is possible to
integrate all the processors in the same circuit. The supervision unit 5 is hard-
wired to a number of internal signals in the processor 30. Thus, the supervising
unit will have access to internal information about the events not visible on the
system bus. Examples of such signals are signals to and from Cash memories
in the processor. In the same way as in the previous embodiment, the supervis-
ing unit 5 is connected to internal signals in the real-time kernel 4 and to other
hardware functions 6 in the circuit.

The invention is not limited to the disclosed embodiments but may be var-
ied and modified within the scope of the following claims.
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A.6 Claims
1. An integrated circuit (1) for a computer system, where the computer

system comprises at least one processor (2, 30) and an operating system
which has at least one part (4) implemented in hardware, wherein said
operating system part (4) is arranged in the integrated circuit (1), char-
acterized in that the integrated circuit (1) further comprises a unit (5)
for supervising events in said computer system, wherein the supervising
unit (5) has means (11) for detecting events in the computer system and
means (13) for recording information about the events and that the su-
pervising unit (5) is connected to said operating system part (4) in such
a manner that information about internal events in the operation system
part is possible to transfer to the supervising unit.

2. An integrated circuit according to claim 1, characterized in that said op-
erating system (4) is a real-time operating system and that said operating
system part is a real-time kernel.

3. An integrated circuit according to claim 1 or 2, characterized in that the
operating system part (4) comprises means for handling when a number
of tasks shall be executed by the processor and that said information
comprises information about the current state of the tasks.

4. An integrated circuit according to any of the claims 1–3, characterized
in that said operating system part (4) is communicating with at least
one processor (2, 30) through a bus (3) and that the supervising unit
(5) comprises means (17) for receiving information about the events in
the processor from the bus.

5. An integrated circuit according to any of the previous claims, character-
ized in that it comprises at least one processor (30), which is connected
to the supervising unit (5) in such a manner that information about in-
ternal events in the processor is possible to transfer to the supervising
unit.

6. An integrated circuit according to any of the previous claims, character-
ized in that it comprises means (15) for transferring the recorded infor-
mation to an external unit (8) for further analysis of the information.

7. An integrated circuit according to any of the previous claims, character-
ized in that it is composed of a system integrated on silicon.
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A.7 Drawings
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