
1

FastStereoNet: A Fast Neural Architecture Search
for Improving the Inference of Disparity Estimation

on Resource-Limited Platforms
Mohammad Loni , Student Member, IEEE, Ali Zoljodi, Amin Majd , Member, IEEE,

Byung Hoon Ahn, Student Member, IEEE, Masoud Daneshtalab , Senior Member, IEEE, Mikael Sjödin ,
and Hadi Esmaeilzadeh , Member, IEEE

Abstract—Convolutional Neural Networks (CNNs) provide the
best accuracy for disparity estimation. However, CNNs are com-
putationally expensive, making them unfavorable for resource-
limited devices with real-time constraints. Recent advances in
Neural Architectures Search (NAS) promise opportunities in
automated optimization for disparity estimation [1], [2]. However,
the main challenge of the NAS methods is the significant
amount of computing time to explore a vast search space (e.g.,
1.6×1029 [3]) and costly training candidates. To reduce the NAS
computational demand, many proxy-based NAS methods have
been proposed. Despite their success, most of them are designed
for comparatively small-scale learning tasks. In this paper, we
propose a fast NAS method, called FastStereoNet, to enable
resource-aware NAS within an intractably large search space.
FastStereoNet automatically searches for hardware-friendly CNN
architectures based on Late Acceptance Hill Climbing (LAHC),
followed by Simulated Annealing (SA). FastStereoNet also em-
ploys a fine-tuning with transferred weights mechanism to
improve the convergence of the search process. Collection of these
ideas provides competitive results in terms of search time and
strikes a balance between accuracy and efficiency. Compared to
the state-of-the-art [1], FastStereoNet provides 5.25× reduction
in search time and 44.4× reduction in model size. This benefits
are attained while yielding a comparable accuracy that enables
seamless deployment of disparity estimation on resource-limited
devices. Finally, FastStereoNet significantly improves the percep-
tion quality of disparity estimation deployed on FPGA and Intel®

NCS2 accelerator in a significantly less onerous manner.

Index Terms—Machine Vision, Disparity Estimation, Opti-
mization, Neural Architecture Search, Transfer Learning

I. INTRODUCTION

D ISPARITY estimation is the problem of finding cor-
responding pixels in multiple images of a scene from

different viewpoints. Disparity estimation is a key task in

Manuscript received ...; revised ...; accepted Date of publication ...; date
of current version (Corresponding author: Mohammad Loni.)

Mohammad Loni, Ali Zoljodi, and Mikael Sjödin are with the School of
Innovation, Design and Engineering, Mälardalen University, 72218, Västerås,
Sweden (e-mail: {mohammad.loni, ali.zoljodi, mikael.sjodin}@mdh.se).

Masoud Daneshtalab is with the School of Innovation, Design and En-
gineering, Mälardalen University, 72218, Västerås, Sweden (e-mail: ma-
soud.daneshtalab@mdh.se) and the Department of Computer Systems, Tal-
Tech University, Ehitajate tee 5, 19086, Tallinn, Estonia.

Amin Majd is with the Department of Economics and Business Analysis,
Arcada University of Applied Sciences, Jan-Magnus Janssonin aukio 1, 00560
Helsinki, Finland (e-mail: amin.majd@arcada.fi).

Byung Hoon Ahn and Hadi Esmaeilzadeh are with Alternative Computing
Technologies (ACT) Lab, Department of Computer Science and Engineering,
University of California San Diego, La Jolla, CA 92093-0404 USA (e-mail:
{bhahn,hadi}@eng.ucsd.edu).

the processing pipeline of extracting depth information from
stereo images. Disparity estimation is widely used in many
applications, such as remote handling with depth models [4],
image segmentation [5], and 3D-modelling of natural objects
[6]. CNNs provide highly accurate depth estimation results [7],
[8], [9], [10]. However, the massive computational intensity
of CNNs requires energy-hungry GPUs to provide real-time
performance for disparity estimation [11]. Concurrently, there
is an increasing demand for deploying CNNs onto resource-
limited devices due to connectivity, privacy, and efficiency
concerns [12], [13].

In cyber-physical systems, as embedded vessels of compu-
tation, Field Programmable Gate Arrays (FPGAs) represent
a power efficient alternative to GPUs while offering versa-
tility over Application-Specific Integrated Circuits (ASICs).
However, FPGAs in embedded systems are often resource
constrained to meet the power envelop. This poses a signif-
icant challenge for the FPGA implementation of CNN-based
disparity estimation, while they have traditionally been used
to realize conventional methods of disparity estimation (Sec-
tion II-A). However, the accuracy of the conventional methods
is not satisfactory in comparison with CNN-based techniques
[11], [14], [15], [16]. Intel® Neural Compute Stick 2 (NCS2)
is another embedded accelerator providing rapid development,
supporting low-power embedded applications, and operating
without cloud compute dependence. However, limited process-
ing resources (on-chip memory<500MB) prevent their usage
in implementing CNN-based disparity estimation.

Neural Architecture Search (NAS) research has shown sig-
nificant progress in enabling resource-efficient neural archi-
tectures [17], [18], [19], [20], [21]. NAS is the process of
automatically optimizing a neural network architecture. How-
ever, a large majority of NAS methods suffer from significant
computational time [22] due to directly searching an exponen-
tially large design space. As such, some recent NAS methods
customize the search space by stacking copies of pre-trained
neural cells [1], [23], [22], where each cell is usually well-
optimized for proxy tasks. Although this technique decreases
the search time, it might not be optimal for new unseen tasks.

In this paper, we propose FastStereoNet, a fast-and-efficient
but straightforward multi-stage optimization method that di-
rectly explores a large search space for the disparity es-
timation task. FastStereoNet utilizes an ordered sequence
of Late Acceptance Hill Climbing (LAHC) and Simulated

Prep
rin

t

https://orcid.org/0000-0002-9704-7117
https://orcid.org/0000-0001-7256-6618
https://orcid.org/0000-0001-6289-1521
https://orcid.org/0000-0001-7586-0409
https://orcid.org/0000-0002-8548-1039

2

Annealing (SA) as the optimization stages. The reason why
the proposed search method is substantially fast comes from
the single solution based nature of SA, while for example,
the genetic algorithm is relatively slow due to their multi-
sample population-based evolutionary strategy (Appendix B).
The convergence of the SA algorithm is highly sensitive to its
initial candidate that is usually selected randomly. Therefore,
we employed LAHC as the first stage of the optimization to
provide initial candidates for SA and as such speedup the SA
with a better initial condition. FastStereoNet considers accu-
racy and estimated inference time as the search objectives to
design resource-efficient neural architectures with acceptable
accuracy. Importantly, FastStereoNet uses a latency predictor
to improve the overall speed of the neural architecture search.
The experimental results (Appendix G) show that the R2 score
of the FastStereoNet latency predictor for GPU, FPGA, and
Intel® NCS2 is 0.998, 0.98, and 0.97, respectively. We also
considered the number of floating-point operations (FLOPs)
to verify the search efficiency of the latency predictor. The
correlation between FLOPs and measured GPU latency for
the disparity estimation task is 0.68.

FastStereoNet leverages a discrete design space, represented
as a Directed Acyclic Graph (DAG), while its vertices are
the computational blocks of the CNN and the edges are the
skip connections (Section III). The utilized discrete design
space provides diverse architectures competitive with cell-
based neural architecture design spaces. Inspired by [24],
we use Siamese neural architecture as the backbone of the
disparity estimation. FastStereoNet also utilizes a fine-tuning
module for weight transfer across networks to improve the
accuracy of candidates during the search steps (Section III-C).
This paper makes the following contributions.

• We introduce a multi-objective Neural Architecture
Search algorithm that combines Late Acceptance Hill
Climbing followed by Simulated Annealing.

• We devise a latency predictor to accurately estimate the
inference time of the candidate neural architectures on a
range of target devices.

• We integrate a transferred weights mechanism that reuses
the weights while training the candidate neural architec-
tures to expedite the overall search.

• We extend the original LAHC and SA algorithms to
guarantee a deterministic termination condition.

According to our experiments on KITTI 2015 dataset [25],
we achieved 2× reduction in FPGA latency while yielding
higher accuracy compared to state-of-the-art. Furthermore, the
design time to find the CNN architecture is only 8 GPU days
compared to 42 GPU days. This is, FastStereoNet requires
5.25× less search time to find the most accurate architecture
for disparity estimation reported by AutoDispNet [1]. Out of
all leading computation devices, Intel® NCS2 device is an
emerging platform for accelerating CNNs on resource-limited
embedded systems. To the best of our knowledge, FastStere-
oNet is the first method making the real-time implementation
of accurate CNN-based disparity estimation on Intel® NCS2
[26] possible (Section VI-A) by reducing the size of memory
footprint and using primitive CNN operations.

II. RELATED WORK

To the best of our knowledge, FastStereoNet is the fist
global search (macro NAS) method that yields competitive
results compared to cell-based methods (micro NAS) in terms
of search cost while meeting the resource constraints of the
target embedded devices. To this end, we first present the
potential resource-limited devices for accelerating disparity
estimation. Then, we review the recent research advances in
Neural Architecture Search (NAS).

A. Disparity Estimation on Resource-limited devices

Field Programmable Gate Array (FPGA). FPGAs are
popular platforms for embedded devices that are successfully
adopted for conventional disparity estimation methods with
real-time constraints [14], [11], [15], [27]. Table VII compares
the performance of different triangulation-based methods im-
plemented on FPGA (Section VI-G). Although the inference
time of the FastStereoNet on FPGA is still less than some
of the triangulation-based methods, FastStereoNet is the first
attempt that remarkably reduces the existing performance
gap and delivering a higher accuracy by optimizing CNN
architecture.

Intel® NCS2 accelerator. Intel® NCS2 is another embed-
ded accelerator providing rapid development, supporting low-
power embedded applications, and operating without cloud
compute dependence. To the best of our knowledge, Fast-
StereoNet is the first successful implementation of accurate
disparity estimation on Intel® NCS2 (Section VI-A).

B. Neural Architecture Search (NAS)

Inspired by [28], we first categorize NAS methods as macro
NAS and micro NAS. We review the prior works that utilize
proxy tasks to improve NAS efficiency since dealing with the
time-consuming evaluation and huge search space are the main
challenges in NAS [23], [29]. Since we utilize a discrete search
space, we review substantial research studies in this area.

1) Macro NAS: Macro NAS methods try to directly de-
sign the entire neural network architecture from scratch [30],
[31], [32], [21], [33]. In other words, NAS finds an optimal
architecture within a huge search space with the granularity
of operations. It provides a high flexibility search space.
However, the larger search space come at the cost of higher
search cost.

Reinforcement learning (RL) is a popular approach for gen-
erating neural architectures [32], [21], [3], [30]. [32] proposed
an LSTM-based controller to configure the CNN descriptions,
then trains this LSTM with RL to maximize the classification
accuracy. [3] proposes ENAS, a fast and efficient NAS trying
to search an optimal sub-graph within a large computational
graph by employing a meta-controller. In macro NAS, the size
of search space exponentially grows with the increasing depth
of a network [30], [32], e.g., a network with less than 12
possible result in 1.6×1029 distinct architectures [3]. It is not
feasible to efficiently search such a large space in a reasonable
amount of time (requiring thousand GPU hours). [3], [30], [32]
prune the search space by limiting the depth of CNNs leading

Prep
rin

t

3

to lower accuracy [28]. In contrast, FastStereoNet can directly
search a vast search space in a reasonable amount of time.

Alternatively, a group of research studies rely on the evolu-
tionary search methods where the best architecture is designed
by iteratively refining a population of candidate architectures
[34], [35], [36], [23], [37], [38]. However, these methods
are costly, requiring hundreds of GPU days. FastStereoNet
cuts down the search time to find optimal solutions despite
large design spaces. DenseDisp [2] is a simulated annealing-
based search method. Compared to DenseDisp, FastStereoNet
provides more accurate results by utilizing a more complex
space and a latency prediction model (Section VI-A).

2) Micro NAS: Micro NAS methods search the inner ar-
chitecture of learning cells, while the interconnection among
neural cells is defined by stacking several copies of the
discovered cells [23], [3], [39], [29], [1], [28]. Although micro
NAS methods decrease the search time, they might not be
optimal for any unseen tasks since each cell is targeted to
proxy tasks.

NASNet [29] is a popular micro NAS that searches neural
cells on a small dataset, then transfer the discovered cells to a
larger dataset. To search neural cells, Real et al. [23] proposed
an evolutionary algorithm with modified tournament selection.
[28] proposes GDAS, a gradient-based search using a learnable
differentiable architecture sampler to avoid considering all the
possible architectures in search space. Although the micro
NAS employs an efficient search space to design the entire
network, they are mainly optimized for comparatively small-
scale datasets, e.g., CIFAR-10 dataset [29], [3], which do
not guarantee optimal performance with large-scale datasets
[1], [21]. Saikia et al. [1] proposes AutoDispNet, an efficient
NAS for large-scale encoder-decoder architecture. FastStere-
oNet provides a more efficient search strategy because it is
roughly 5.25× faster than AutoDispNet while searching a
larger space. Also, FastStereoNet provides better latency-error
trade-off by providing approximately 45.5× higher Network
Information Density (NID = Accuracy

NetworkParameters). All in all,
FastStereoNet maximizes design flexibility by enabling search
at the granularity of primitive operations by adopting insights
and methods from macro NAS.

3) Improving NAS Efficiency: To improve NAS speed and
to reduce the NAS computational cost, a variety of techniques
have been proposed to utilize proxy tasks [40]. HyperNet
generates weights for candidate networks and evaluates them
without full training from scratch [31]. [17], [18], [41] use
partial training for accuracy prediction at the cost of noisy
evaluations. Sharing weights among potential networks de-
creases the search time by two orders of magnitude [3]. [30],
[42], [19], [43] use network to network transformation for
reusing weights of previously discovered networks to amortize
the training cost. In this work, we employed a transferred
weights mechanism (Section III-C) to expedite the search
(Section VI-D).

III. ARCHITECTURE DESIGN SPACE

In this section, we first present the overview of a Siamese
neural architecture. Then, we describe the genotype encoding
that represents the architecture of each candidate.

 Siamese Right Sub-Network (Nw)

Data
Handler

Siamese Left Sub-Network (Nw) Inner product

Disparity Map

Batch
Norm

Conv2D
3x3

Softm
ax

Data
Handler

Left Patch
(x1)

Right
Patch (x2)

Conv2D
5x5

Conv2D
7x7

Conv2D
3x3 Summation

Conv2D
7x7

SummationConv2D
3x3

Fig. 1: The overview of the Siamese network architecture.

A. Siamese Network Architecture

In general, Siamese neural network is a learning model that
tries to learn the similarity of its input images, instead of
direct classification. Siamese neural networks contain two (or
more) identical sub-networks, NW (X) parameterized by the
same weight W , to extract the similar features between two
input data (X1, X2). The objective of the training for Siamese
networks is to find W such that the the Euclidean distance
d(X1, X2) = |NW (X1)−NW (X2)| is minimized for pair of
similar images. We used a flexible Siamese neural network
as the backbone architecture for disparity estimation, where
each sub-network processes the left or right image (Fig. 1).
While the use of the Siamese network in this paper is similar
to [24], there is a significant difference. Instead of using
hand-crafted design, we leveraged neural architecture search
to automatically find an efficient sub-network (NW (X)). At
the end of the Siamese network, we placed an light-weight
inner-product layer to join NW (X1) and NW (X2) leading to
faster inference speed.

Training. In this paper, the image pairs are assumed to
be rectified. Therefore the horizontal image axis is aligned
with the epipolar lines. To train the network, [24] uses small
patches sequentially extracted at random from the dataset for
which ground-truth is available (managed by data handler).
This strategy improves the diversity of examples and provides
higher memory efficiency. While the size of the left image
patch is equal to the network’s receptive field, a larger patch
is used for the right image. The features extracted by the
aforementioned sub-networks are fed into the inner-product
layer to compute the score of each disparity range (typically
128 or 256). Assuming (xi, yi) is the image coordinates of the
center of the patch extracted from the left image, and dxi,yi

is the corresponding ground-truth disparity, we minimize the
cross-entropy loss:

min
W

∑
i,yi

pgt(yi) log pi(yi,W) (1)

We are interested in the 3-pixel error metric as the default
disparity comparison measurement. Thus, we utilize a smooth
target distribution pgt(yi) that is centered around the ground-
truth (yi)

GT . For example,

pgt(yi) =


λ1 ifyi = yi

GT

λ2 if |yi − yi
GT | = 1

λ3 if |yi − yi
GT | = 2

0 otherwise

(2)

where we select λ1 = 0.5, λ2 = 0.2, and λ3 = 0.05. The
aim is to minimize cross-entropy for classification.

Prep
rin

t

4

B. Representation of CNN Architectures

We represent the design space by using a single Directed
Acyclic Graphs (DAG). Fig. 2 shows an example of a DAG,
where a CNN architecture is a genotype directly encoded
by two concurrent Lists, List A and List B, containing com-
putational nodes [18]. The advantage of this representation
is its flexibility, supporting variable-length architectures with
arbitrary skip connections.

...

...

List A

List B

index: j = 1 j = M

index: i = 1 i = N

Nod#1

Input Output

Nod#2 Nod#3 Nod#4

Nod#5 Nod#6 Nod#7 Nod#8

Passive Node
Active Node

Summation Node

Passive Connection
Active Connection

Input / Output

Nod#9

Fig. 2: A generic example of a genotype representing a CNN
architecture in the design space.

Let us assume List A and List B have N and M columns,
respectively. In this representation, the genotype is a flexible-
length representation, where the size of N and M varies
during network evolution. Inspired by [18], we define twenty-
six types of node operations including summation, batch
normalization, and variegated combinations of 2D convolution
(Conv2d) settings as summarized in Table I. In this paper,
we do not use the Pooling layer since the size of feature
maps in each dimension should be odd. Importantly, we only
used the primitive operations to support a wider range of
devices, e.g., Intel® NCS2 does not execute the TensorFlow
RandomUniform operation or separable convolution layer at
the time of submitting the paper. The summation function adds
two feature maps in an element-wise manner. If the input fea-
ture maps of summation node have different sizes of width and
height, we resize the bigger image to match the small image
by using image.resize_with_crop_or_pad function
in TensorFlow [44]. To compensate the information loss from
resizing, we apply a convolution layer connected to the batch
normalization on the resized feature map before it is fed into
the summation node. In the case of having a different number
of channels, we pad the smaller feature maps with zeros. While
adding the edges between the nodes, some nodes become
isolated (Nod#6 in Fig. 2). We consider them as passive nodes
and ignore them during the training.

TABLE I: The specification of valid node operations supported
by all commodity devices.

Node Operation Value
Parameter

padding {Same, Valid}
2D convolution (Conv2d) filter size {32, 64}

kernel size {3× 3, 5× 5, 7× 7,
9× 9, 11× 11, 13× 13}

Summation -
Batch Normalization -

Network Construction Procedure. Here, we briefly de-
scribe the LEGO-like stacking procedure. 1 First, we fill both
List A and List B with random operations selected from Table I.
The initial size of N and M is 10 in our experiments. 2 Next,
we connect the jth node to the (j − 1)th node in the same
List. However, if jth node in a list is a summation node, we
connect the (j − 1)th node of both lists as the summation
requires two inputs (Nod#7 in Fig. 2). The output feature map
of the summation node will be connected to a copy of the
same summation node in the other List (Nod#4 in Fig. 2) and
the next node in the same List. 3 We connect the summation
of output feature maps received from List A and List B to the
output node (Nod#9 in Fig. 2). FastStereoNet supports two
types of mutation operations: swapping of two random nodes,
and replacing a node operation with another valid operation.

The size of design space depends on the length of List A
and List B in the genotype. The minimum size of the design
space is 2 × 2410 since both List A, and List B consist of
10 nodes at the beginning of the search. However, the length
of these two Lists may increase after mutation. For example,
during the mutation, a mutated Conv2d with Valid padding
must be replaced by two new Conv2d operations with Valid
padding such that the old Conv2d kernel size is equal to the
summation of the two new Conv2d kernel sizes minus one.
We limit the maximum size of each list to 30. Therefore, the
maximum size of the design space is 2× 2430.

C. Efficient NAS by Transferred Weights Mechanism

In each iteration, we evaluate each network candidate by
fully training from scratch. Due to the enormous training
cost (up to 2 GPU hours/network), iterative search approaches
would be impractical. Therefore, to accelerate the evaluations,
we propose a transferred weights mechanism that fine-tunes
the training of the mutated architecture (child) by reusing
the information stored on the previous architecture (parent).
This mechanism allows the child architecture to inherit the
knowledge from its parent and achieve higher accuracy with
the same training epochs. Assume we mutate the jth node

Training from
Scratch

Traditional Evaluation
Workflow

Initial
model Evolved

model

FastStereoNet
Evaluation Workflow

Training from
Scratch

Training with
Transferred

Weights

Evolved
model

Evolved Nodes Training Nodes Frozen NodesNodes in Initial
Model

Fig. 3: Comparing the traditional training workflow and the
fine-tuning with transferred weights mechanism. FastStere-
oNet reuses shared weights of the previous architecture (par-
ent) with the new architecture (child) to improve evaluations.

Prep
rin

t

5

of the List A. Weights of all the nodes preceding the jth

node in both Lists are reused from the previous architecture
(parent) and are frozen in the new training procedure of new
architecture (child). Fig. 3 compares the workflow of the
full training evaluation (traditional) with the proposed weight-
reusing training evaluation. Only the blue nodes in Fig. 3 will
be trained after evolving network, leading to faster training.
Experimental results (Section VI-C) show that fine-tuning with
transferred weights mechanism provides a significantly faster
convergence compared to the traditional methods.

IV. SEARCH STRATEGY

Neural Architecture Search (NAS) is an NP-hard problem
with an exponential time complexity [36]. In other words,
there is no polynomial optimization method to find the optimal
solution in a reasonable amount of time. Also, an exhaustive
search for finding a global optimum is infeasible even for
small design spaces, e.g., [17] requires 334 GPU days to
exhaustively search a design space containing only 8000
solutions. To this end, we leverage a meta-heuristic search
to deal with the exponential complexity of the NAS problem.

A. Proposed Method

Inspired by [45], [46], we propose a multi-stage search
method with two major stages, comprising Late Acceptance
Hill Climbing (LAHC) [47], and Simulated Annealing (SA)
[48], [49], respectively. Algorithm 1 summarizes the pseudo-
code of the FastStereoNet. The inputs of the FastStereoNet
are the training and search configuration specified in Table III.
The LAHC algorithm, as the semi-local search engine, quickly
searches the space to bias the initial solution of SA. The key
motivation of leveraging LAHC as the first search stage is
to improve the SA convergence by providing better initial
conditions. SA, as the global search engine, starts with a
solution augmented by LAHC. LAHC mainly explore the
search space, while SA tries to exploit the search space.

Compared to discrete search methods [36], [50], differen-
tiable architecture search methods provide promising results
by designing and training the network architecture at the
same time [39]. However, differentiable architecture search
methods are not ultimate solutions for any given task while
discrete search methods provide more efficient results. For
example, SI-EvoNet provides more accurate results with 1.84x
higher compression rate and 2.1x faster search time compared
to DARTS [39] search method on CIFAR-10 [50]. This is
due the fact that 1) differentiable architecture search methods
suffer from inefficient training [51]; 2) different differentiable
architecture search methods converge to similar results [52]
with equal search spaces and training setups, suggesting that
differentiable architecture search methods are not capable of
discovering diverse set of solutions. To this end, we propose a
multi-stage iterative method as the optimization algorithm to
provide higher discovery proficiency. In the rest of this section,
we explain the LAHC and SA algorithms and how we tweak
them for our problem. Finally, we analyze the time complexity
and the proof of convergence of FastStereoNet.

Algorithm 1 Pseudo-code of the FastStereoNet Algorithm
1: function FASTSTEREONET():
2: LocalOptimum ← LAHC (RandomSolution)
3: GlobalOptimum ← SA (LocalOptimum)
4: return GlobalOptimum

5: function LAHC(RandomSolution):
6: i ← 1
7: idle ← 0
8: CurrentSolution ← RandomSolution
9: while i ⩽(Steps×MinRate)∨((idle<IdleFraction×i)∧(i⩽Steps×MaxRate)) do

10: NewSolution ← MUTATE (CurrentSolution)
11: E1 ← ENERGY (CurrentSolution)
12: E2 ← ENERGY (NewSolution)
13: if E2 < E1 then
14: CurrentSolution ← NewSolution
15: else
16: idle += 1
17: i += 1
18: return CurrentSolution

19: function SA(LocalOptimum):
20: TMin,TMax←SCHEDULER (MaxRateTMax, MaxRateTMin, Steps)
21: GlobalOptimum← ANNEALER (LocalOptimum, TMin, TMax,

Steps, MaxRateAnnealing)
22: return GlobalOptimum

23: function SCHEDULER(MaxRateTMax, MaxRateTMin, Steps):
24: T← |ENERGY (RandomSolution_1) - ENERGY (RandomSolution_2)|
25: i ← 0
26: while AcceptanceRate > 0.98 ∧ i ⩽ MaxRateTMax × Steps do
27: T ← ROUND ((T / 1.5), 2)
28: RUN (Steps)
29: i += 1
30: i ← 0
31: while AcceptanceRate < 0.98 ∧ i ⩽ MaxRateTMax × Steps do
32: T ← Round((T × 1.5), 2)
33: RUN (Steps)
34: i += 1
35: TMax ← T
36: i ← 0
37: while ImprovementRate > 0 ∧ i ⩽ MaxRateTMin × Steps) do
38: T ← ROUND ((T / 1.5), 2)
39: RUN (Steps)
40: i += 1
41: TMin ← T
42: return TMin, TMax

43: function ANNEALER(LocalOptimum, TMin, TMax, Steps,
MaxRateAnnealing):

44: TFactor ← - LOG (TMax / TMin)
45: i ← 0
46: Steptotal ← Steps × MaxRateAnnealing
47: CurrentSolution ← LocalOptimum
48: while i ⩽ Steptotal do
49: i += 1
50: NewSolution ← MUTATE (CurrentSolution)
51: E1 ← ENERGY (CurrentSolution)
52: E2 ← ENERGY (NewSolution)
53: if E2 < E1 then
54: CurrentSolution ← NewSolution
55: else
56: RANDOM (r∈(0, 1))
57: ∆ ← E2 - E1
58: if r < EXP(-∆ / T) then
59: CurrentSolution ← NewSolution
60: T ← TMax × EXP (TFactor × (i/Steptotal))
61: return CurrentSolution

Prep
rin

t

6

Stage 1: Late Acceptance Hill Climbing (LAHC). LAHC
is a heuristic search method that is responsible for providing
initial solutions for the SA algorithm. LAHC is an extension of
the simple hill climbing algorithm [53], while worse solutions
are allowed to be accepted in LAHC in hopes of finding a
better solution in future [47]. Function LAHC in Algorithm 1
describes the pseudo-code of the LAHC.

The LAHC tries to delay getting stuck in a local op-
timum by continuing the search procedures until the total
number solutions with no improvement exceeds a descending
threshold, named IdleFractionRatio, which is equal to
IdleFraction×i. IdleFraction is a constant value,
and i is the loop counter. The original LAHC algorithm only
considers the IdleFractionRatio as the search termi-
nation condition. Considering the huge size of FastStereoNet
search space and costly evaluating each candidate, the original
LAHC algorithm is not a fast search method in practice
since IdleFractionRatio is not a deterministic upper-
bound termination condition. Therefore, we extend the original
LAHC algorithm by limiting the maximum number of search
iterations. The new search termination condition is defined in
Equation 3, where TotalIdleSolutions is the accumu-
lated number of unsuccessful solutions after the last improve-
ment, and MinimumSteps and MaximumSteps are lower-
bound and upper-bound for the search process, respectively.
While the proposed extended LAHC is fast, it cannot be used
in isolation because its performance is not still competitive
with more complex meta-heuristics (Section VI-C). To this
end, we complement this by augmenting SA to the search.

∀i ∈ 1..N ⇒((TotalIdleSolutions < IdleFractionRatio)

and (i ⩽ MaximumSteps))

or (i ⩽ MinimumSteps)

(3)

Stage 2: Simulated Annealing (SA). SA, on the other
hand, is a guided optimization method in charge of finding the
global optimum in the design space. SA avoids getting trapped
in a local optimum by accepting worse neighbors with a
varying probability. As such, SA enables the fast convergence
to global optimum solution. The proof for the convergence of
SA is presented in Section IV-B. Function SA in Algorithm 1
describes the pseudo-code of the SA. The ENERGY function in
the algorithm is the search objective function. SA first begins
by producing the new solutions by using the MUTATION
function described in Secrtion III-B. Then it accepts the new
solution if it has lower ENERGY function (objective function),
while a worse solution is accepted with the probability of
MIN(1, EXP(-∆ / T). ∆ is the difference of search objectives of
the current solution and the new generated solution (∆ = EN-
ERGY (NewSolution) - ENERGY (CurrentSolution)),
and T is the controlling parameter which corresponds to
the temperature of the annealing procedure. T is gradually
decreased according to the predefined minimum and maximum
temperatures (TMax and TMin). SA starts with a high value of
T (TMax), occasionally accepting worse solutions for explo-
ration, preventing the algorithm from being trapped in a local
optimum. However, as the T approaches TMin, the algorithm
puts more weight on the exploitation. The overall SA search
is summarized in the ANNEALER function.

The number of Steps highly impacts the results of the
search. If there are not enough Steps to adequately explore
the search space, it might get trapped in a local optimum.
We tuned the Steps as provided in the Section V-C to
prevent such issue. Likewise, an important consideration while
determining the initial temperature TMax was to make sure the
SA accepts approximately 98% of the new solutions (explore
the design space in the early iterations). On the other hand, the
final temperature TMin should be low enough such that the new
solution does not have too much improvement (SA exploits the
good solution founded so far in the later iterations). Since the
TMax and the TMin values significantly influence on the result,
SCHEDULER function automatically determines the starting
values of TMax and TMin that would ensure convergence to a
low energy solution. SCHEDULER contains three loops where
the two first loops are responsible for estimating TMax and
the third loop estimates the TMin value. The RUN function
iterates Steps times and calculates the number of solutions
with fewer ENERGY function (ImprovementRate) as well
as the number of solutions with no improvement but accepted
by the probability of EXP(-∆ / T (AcceptanceRate)). The
goal of the SCHEDULER is to refine the value of T(Max, Min) in
order to accept 98% of moves at the beginning and reduce the
probability of accepting a new solution at the end of search.

Equation 4 and Equation 5 present the objective functions
considered in both search stages. The number of network
floating-point operations (FLOPs) is considered to indirectly
represent the network inference time (latency) in Equation 4.
On the other hand, Equation 5 represents the second objective
function based on latency prediction model. We devise three
different latency predictors for FPGA, GPU and Intel® NCS2
to design customized a CNN architecture for each target
device. These latency predictors provide accurate estimations
of the inference latency as shown in Appendix G, leading
to higher reproducibility of our algorithm as shown in Sec-
tion VI-F.

Energy =
FLOPs

Accuracy
(4)

Energy =
Latency Prediction

Accuracy
(5)

B. FastStereoNet Practical Proof of Convergence

Generally, SA algorithm comes with a stochastic guarantees
to reach a global optimum [9]. We present an empirical
evaluation of SA compared to different search algorithms such
as random search and LAHC to demonstrate the superior
optimization performance of SA. According to [10], [11],
[12], the random search can find the best architecture in many
applications. However, as shown in the Fig. 4, SA reached the
lowest global ENERGY. Overall, experiments show it succeeds
to find a feasible solution in a reasonable time.

C. FastStereoNet Complexity Analysis

We analyze the computational complexity of the FastStere-
oNet based on the “big-O” analysis (Appendix C) as well as

Prep
rin

t

7

0

50 10
0

15
0

2
00

104

105

106

107

108

109

Iteration

E
n
er
g
y

(L
og

ar
ith

m
ic

Sc
al

e)

Random Search
SA

LAHC

Fig. 4: Comparing the search capability of SA, LAHC, and
random search (baseline) with the identical search objective.

the empirical evaluations of the total number of used images
during the search (Appendix D). The overall FastStereoNet
computational complexity is O(Steps2), and FastStereoNet
uses 120M images in total for designing an efficient architec-
ture that is 9.3× less than 1.15 billion images used by [22].

V. EXPERIMENTAL SETUP

In this section, we present the evaluation dataset (Sec-
tion V-A), hardware specifications (Section V-B), and experi-
mental configuration setup (Section V-C) that are used to test
the FastStereoNet framework. The detailed descriptions of the
smoothing filters and hardware implementation methods are
presented in Appendix E and Appendix F, respectively.

A. Evaluation Dataset
KITTI 2015 is an extensive visual stereo dataset which plays

a crucial role in developing several algorithms supporting
autonomous systems [54], [25]. The KITTI 2015 dataset is
recorded in a city (on highways and rural areas) with a
car equipped with a Velodyne HDL-64E LiDAR, GPS, two
stereo cameras (color and gray-scale), and inertial sensors
[55]. KITTI 2015 includes 200 training and 200 test RGB
stereo-pairs with the dimension of 1242×375 pixels. D1-
all is an estimation metric in which a pixel is correctly
estimated if the difference between the value of a ground-truth
pixel and corresponding estimation value is less than 3% (or
<5%). KITTI 2015 reports both non-occluded (Noc) pixels
and pixels with available ground-truth. The Noc evaluation
excludes all pixels falling outside the image surface while
pixels occluded by objects within the same image could not
be reliably estimated fully automatically because of the laser
scanner properties [55]. Therefore, the Noc evaluations have
higher accuracy. Some studies use the end-point-error (EPE)
as the disparity error metric, however, the KITTI evaluation
server1 only reports the D1-all test set error measurement.

1http://www.cvlibs.net/datasets/kitti/eval scene flow.php?benchmark=stereo

B. Hardware Specifications

Table II presents specifications of utilized hardware devices.
TABLE II: Hardware Specification.

Device Specification
GPU NVIDIA® GTX 1080ti (2.5 GHz)

GPU Memory 11 GB
GPU Compiler cuDNN Version 10.0

Training System Memory 64 GB
CPU Intel® Mobile Processor (Core i7-7820 HQ)

CPU Compiler TensorFlow Compiled on Intel®SSE4 Instruction Set
Intel® OpenVINO™ Version 2020.1 [56]

FPGA Instance Amazon EC2 (Zynq UltraScale+)
Intel® NCS2 Accelerator Movidius™ Myriad™ Vision Processing Unit
Intel® NCS2 Compiler Intel® OpenVINO™ Version 2020.1

C. Experimental Configuration

Some recent studies use partial training to accelerate the
evaluation process [36], [2]. However, in this work, we do
not use any search proxies such as accuracy predictors to
provide accurate evaluations. The candidates are trained using
AdaGrad stochastic gradient descent [15]. AdaGrad adapts the
gradient-based on historical information similar to momentum-
based gradient descent. Table III summarizes the setup of
experiments utilized for the full training and search steps.
Finally, we used TensorFlow Version 1.14 to develop the
FastStereoNet framework.

TABLE III: The configuration setup of the training and search
procedure.

Full-Training Parameters Value
Activation Function Relu

Epochs 1000
Batch Size 128

Disparity Range 128
Optimizer AdaGrad

Learning Rate (lr) 0.01 and if (epoch⩾2400) then
lr = lr/5 after each 800 epochs

Search Parameters Value
Total Steps (Stepstotal) 200

Default Max Temperature (TMax) 25000
Default Min Temperature (TMin) 2.5

Steps 10
MaxRateAnnealing in the ANNEALER function 20

IdleFraction in the LAHC function 0.02
{MinRate, MaxRate} in the LAHC function {10, 30}

{MaxRateTMin, MaxRateTMax} in {5,10}the SCHEDULER function

VI. RESULTS

We evaluate the performance of FastStereoNet on various
resource-limited devices. Disparity estimation performance,
latency, search speed, search convergence, reproducibility,
disparity refinement, frequency selection of dominant oper-
ations (Appendix I), and hardware implementation results
are recorded as the evaluation metrics. We solved the NAS
problem with different search scenarios: Late Acceptance Hill
Climbing (LAHC), Random Search (RS), Simulated Annealing
without using transfer learning (SA), Simulated Annealing
with using Transfer Learning (SA+TL), Late Acceptance
Hill Climbing and Simulated Annealing without using trans-
fer learning (LAHC+SA), and Late Acceptance Hill Climb-
ing and Simulated Annealing with using Transfer Learning
(LAHC+SA+TL).

Prep
rin

t

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

8

TABLE IV: Comparing the FastStereoNet results with state-of-the-art methods on KITTI 2015. Unsuccessful implementation
are shown in the red cells (mainly due to the limited on-chip memory or OpenVINO™ limited supporting operations).

Architecture FLOPs Search Network Compression NID Accuracy
FLOPs Search Cost Error (%) Intel® NCS2

(×106) Method Rate(×)† (×106) (×106) (GPU Days)▷◁ Without Quantization Inference Time (Sec.)∗
DenseDisp [2] 1.56 Meta-heuristic 102 89.3 58.98 2 7.99 (D1-all) 0.626 (0.017̸=)
AutoDispNet-BOHB-CSS-ft† [1] 160 RL 1 0.88 - 42 OUT OF MEMORY‡
DenseMapNet [57] - Hand-Crafted - - - - 2.52 (EPE) 0.45
Vid2Depth [58] - Hand-Crafted - - - - 0.163 (Abs. Rel.) 0.276
GC-Net [59] - Hand-Crafted - 27.75 - - OUT OF MEMORY‡
Content-CNN [24] 2 Hand-Crafted 80 13.6 47.73 - 4.54 (D1-all) 0.7
GA-Net-deep [9] - Hand-Crafted - - - - OUT OF MEMORY‡
PSM-Net [10] 30 Hand-Crafted 5.3 6.1 - - OUT OF MEMORY‡
DispNet-CSS-ft∓ [60] 195 Hand-Crafted 0.8 0.84 - - OUT OF MEMORY‡
FastStereoNet (FLOPs) 2.08 Meta-heuristic 76.9 68.24 44.94 8 6.51 (D1-all) 0.64 (0.028̸=)
FastStereoNet (NCS2) 3.6 Meta-heuristic 44.4 40.07 26.6 8 4.22 (D1-all) 0.64 (0.028̸=)

† The baseline for comparing the compressing rate over the FLOPs metric.
∓ Reported in [1].

∗ The results are compiled with Intel® OpenVINO™.
‡ Undesired state which happens whenever the Intel® NCS2 on-chip memory cannot be allocated due to the huge network size.

▷◁ All the methods used 1× NVIDIA® GTX 1080ti for evaluating the candidates.
̸= Average computation time (kernel time) for 10000 times re-running network inference.

A. Disparity Estimation Performance

Table IV compares the FastStereoNet optimized architecture
with the other cutting-edge architectures regarding the D1-
all accuracy, Intel® NCS2 inference time, FLOPs, and the
search cost evaluation metrics. We consider end-to-end latency
(data transfer time + computation time) as the evaluation
inference metric. Batch size is equal to 1 in all the ex-
periments. We believe taking inference time, represented in
second(s), is not reliable as the only metric for comparing
the implementation efficiency of two different networks. The
reasons come from the fact that 1) the inference time even
on the same device depends on various factors, such as the
learning API (Torch [61], TensorFlow [44], etc.), compiler set-
tings, and hardware acceleration libraries (NVIDIA® cuDNN,
Intel® OpenVINO™, etc.); and 2) the hardware implementation
details are not usually reported in many studies. Therefore,
we also report network compression rate, Accuracy

FLOPs , and NID
(Section II-B2) in Table IV as three hardware-independent
alternative metrics. The architecture with the highest latency-
error trade-off, optimized by the LAHC+SA+TL scenario, is
reported as the final optimized FastStereoNet architecture.
Fig. J.1 in Appendix J illustrates the FastStereoNet optimized
architecture for each device.

FastStereoNet obtains 95.78% accuracy with 640ms total
inference time on the Intel® NCS2 accelerator, 2.39M param-
eters, and 3.6M FLOPs. In comparison with the AutoDispNet-
BOHB-CSS-ft NAS method, FastStereoNet presents 44.4×
more network compression rate while delivering a compa-
rable accuracy (less than 2.05% accuracy loss). It is worth
to mentioning that unlike AutoDispNet-BOHB-CSS-ft, we do
not use any training optimization technique to improve the
accuracy of disparity estimation. Also, FastStereoNet can be
successfully implemented on the Intel® NCS2 accelerator,
while AutoDispNet-BOHB-CSS-ft fails to be implemented in
the Intel® NCS2 accelerator due to huge memory footprint. In
terms of search time, although FastStereoNet directly searches
a huge space with the minimum size of 2× 2410 candidates,
FastStereoNet is still 5.25× faster than AutoDispNet which
is a cell-based search that usually take shorter time to find a
solution. Compared to DenseDisp [2], FastStereoNet provides
3.77% higher accuracy as it uses a more complex design space.
DenseDisp yields 4× faster search compared to FastStereoNet.

(a) Left Image (b) Right Image

(c) DenseMapNet (FP16 @ NCS2) (d) Vid2Depth (FP16 @ NCS2)

(e) DispNet (float @ CPU @ TensorFlow) (f) DispNet (float @ CPU @ OpenVINO™)

(g) GC-Net (float @ CPU) (h) FastStereoNet (FP16 @ NCS2)

Fig. 5: Illustrating the output of different studied disparity
estimators: (a) left image, (b) right image,(c) DenseMapNet
(FP16 @ NCS2), (d) Vid2Depth (FP16 @ NCS2), (e) DispNet
(float @ CPU @ TensorFlow), (f) DispNet (float @ CPU @
OpenVINO™), (g) GC-Net (float @ CPU), and (h) FastStere-
oNet (FP16 @ NCS2). FastStereoNet is the only solution that
yields clear disparity perception on Intel® NCS2.

However, this comes from the fact that DenseDisp trains the
candidate architectures for few epochs to estimate the accuracy
while FastStereoNet fully trains the network for all candidates.

Reporting the inference time on the Intel® NCS2 accelerator
is motivated by the following three observations: 1) some
real-time neural architectures such as DispNet [62] cannot be
deployed on some of the resource-limited devices due to their
high memory footprint; 2) the cutting-edge learning models
use complex operations which are not usually supported by
commodity embedded devices, e.g., Intel® NCS2 does not
support GatherNd operation used by MADNet [63]; and 3)

Prep
rin

t

9

Most of the resource-limited devices only support quantized
operations such as 8-bit floating-point (FP8) or 16-bit floating-
point (FP16). However, despite our expectation, the 16-bit
quantization decreases the accuracy significantly compared
to the full precision implementation (float) as illustrated in
Fig. 5.c. As such, the models tailored to high-performance
GPUs may not be useful for any resource constrained devices.
To the best of our knowledge, FastStereoNet is the only
solution that tackles all the challenges mentioned above by
providing a clear perception (Fig. 5.h) on the Intel® NCS2
accelerator. FastStereoNet achieves the clear perception with
low latency by: 1) considering network inference time as the
second search objective yields highly customized architectures
for a given target device; 2) using widely supported operations
(Table I) makes FastStereoNet favorable for many resource-
limited devices; and 3) utilizing an independent disparity
refinement which is not quantized during hardware implemen-
tation; thus, it refines quantization drawbacks.

B. Estimation Error Across Different Metrics

Table V compares the D1-all disparity accuracy across
different error metrics for the model designed for Intel® NCS2.
In this experiment, we do not use any disparity refinement
techniques. FastStereoNet obtains a 3-pixel stereo error of
7.82%, while Content-CNN [24] achieves 8.97% with 2.9×
more parameters. [64] performs slightly better than FastStere-
oNet on 2- and 3-pixel. However, this is because the main
objective of FastStereoNet was to meet the resource constraints
while achieving a reasonable performance, whereas [64] solely
focuses on improving the accuracy without consideration for
the resource constraints.

TABLE V: Comparison of the output of the matching network
across different error metrics. The table illustrates D1-all (non-
occluded+occluded) error on the KITTI 2015.

Methods without
> 2-pixel > 3-pixel > 4-pixel > 5-pixelDisparity Refinement

MC-CNN [65] 16.83 14.12 12.72 11.80
Content-CNN [24] 11.67 8.97 7.62 6.78

Zhou et al. [64] 10.96 7.29 7.28 6.22
FastStereoNet 12.64 7.82 6.94 6.0

Methods with
> 2-pixel > 3-pixel > 4-pixel > 5-pixelDisparity Refinement

PSM-Net [24] 3.01 2.32 1.42 1.15
GA-Net-deep [24] 2.79 1.81 1.37 1.1

C. Smoothing Comparison

In this section, we evaluate different disparity refinement fil-
ters by employing edge-preserving and smoothing algorithms
(Appendix E describes the filters). Table VI shows the 3-pixel
error results after applying different filters. The qualitative dis-
parity results of the studied smoothing filters are illustrated in
Fig. 6. The yellow circles in Fig. 6 indicate the disparity region
with noise and low-confidence matches. Employing smoothing
filters shows a notable accuracy improvement (between 0.5%
to 3.6%). The cost aggregation encourages local smoothness
leading to improve the results slightly. The Median filter elim-
inates many image noises, but minor isolated noisy areas were

remaining (Fig. 6.c). In addition, we observe that MATLAB®

smoothing functions followed by Median filter achieves up to
2.6% edge-preserving performance (Fig. 6.c). However, there
still exist some low-confidence matches. The Binomial filter
is not effective since it works as a linear band-pass filter
which only blurs the disparity map. LRCSGM is a robust
filter focusing on sub-pixel enhancement. LRCSGM yields the
maximum error reduction regarding the raw disparity by 3.6%
(as shown in Fig. 6.d).

TABLE VI: Comparison of different smoothing methods ap-
plied on the raw output of the FastStereoNet architecture. The
table illustrates the 3-pixel error results on the KITTI 2015.
The best result is highlighted in green cell.

Smoothing Filter DenseDisp [2] FastStereoNet (Ours)
- 12.4 7.82

CA 11.9 7.27
Median [15×15] 9.9 5.41

LRCSGM 7.9 4.22
MATLAB® imguidedfilter 13.0 8.4

MATLAB® anisodiff2D 11.2 6.55
MATLAB® anisodiff2D + Median [15×15] 9.75 5.24

MATLAB® sharpen + Median [15×15] 9.9 5.39
Bilateral + Median [15×15] 10.4 6.01

Binomial [5×5] 13.1 8.7

D. Search Convergence Analysis

Fig. 7 plots the energy function (Equation 4) across search
iterations. FastStereoNet finds architectures with a monotonic
decrease in the energy, indicating FastStereoNet leads to a
higher FLOPs-error trade-off with more search iterations. In
addition, results show that LAHC+SA and LAHC+SA+TL, that
begins from better initial conditions from LAHC, provided up
to 20.1× less energy compared to SA and SA+TL without
LAHC initialization.

E. Analyzing Search Methods

Fig. 8.b illustrates the FLOPs-error trade-off for the im-
proved architectures (mutation with improving the objective
function) over different search methods. We plot the optimiza-
tion results with Equation 4 as the baseline objective function.
RS could not find any improved architectures, meaning that our
search space was not the only reason behind the efficiency
of FastStereoNet. Although LAHC is very fast as it required
only 47 iterations to converge (Fig. 8.a), it could not find as
efficient neural architecture as it was trapped in local optima.
LAHC+SA+TL and SA+TL provide the best trade-off between
FLOPs and error compared to the other methods. However,
LAHC+SA+TL is 1.8× faster than SA+TL, because LAHC
provided better initialization that led to faster convergence
of SA (Fig. 8.a). Although LAHC+SA+TL has 2.1× slower
search convergence compared to LAHC+SA, it discovers more
improved architectures with a better FLOPs-error trade-off as
the transferred weights mechanism led to better solution [43].

F. Reproducibility of the Results

Many works on Neural Architecture Search (NAS) had
issues regarding reproducibility due to the innate stochasticity.
We demonstrate the reproducibility of FastStereoNet by plot-
ting the improvement with the shades to denote the confidence

Prep
rin

t

10

(a) Original input image and ground-truth (b) Without using smoothing filter (D1-all=7.82) (c) Median filter [15x15] (D1-all=5.41)

(e) anisodiff2D filter (D1-all=6.55) (f) anisodiff2D+Median filter (D1-all=5.24) (d) LRCSGM filter [15x15] (D1-all=4.22)

(g) Binomial filter [5x5] (D1-all=8.7) (h) Bilateral+Median [15x15] filter (D1-all=6.01) (i) Sharpen+Median [15x15] filter (D1-all=5.39)

Reference image from KITTI 2015

Reference ground-truth from KITTI 2015

Disparity mapDisparity map Disparity map

Disparity mapDisparity mapDisparity map

Disparity mapDisparity map

Stereo error map

Stereo error mapStereo error map

Stereo error mapStereo error map

Stereo error map Stereo error map

Stereo error map

Fig. 6: Visual results of the proposed FastStereoNet framework after applying different disparity refinement filters. The yellow
circles indicate the disparity region with noise and low-confidence matches.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Improvement

50000

100000

150000

200000

250000

En
er

gy
 (

O
bj

ec
ti

ve
 F

un
ct

io
n)

Search Scenario
LAHC
SA
LAHC+SA
SA+TL
LAHC+SA+TL

Fig. 7: Convergence of the energy function.

intervals in Fig. 9. Results show that, while the confidence

interval is wide in the beginning, all search runs converge
to neural architectures with similar energy. Importantly, the
search for GPU, FPGA, and Intel® NCS2 were based on
latency prediction. Results show that the search based on
latency prediction provided higher confidence results with
smaller standard deviation during the search and converged
significantly faster compared to using FLOPS as the search
objective. Appendix H reports the reproducibility of results
and correlation coefficients of multiple running FastStereoNet
by using the Equation 4 objective function.

G. FPGA Implementation Results

In this section, we discuss the implementation of deploying
our optimized network on FPGA. Table VII presents the com-
parison of the inference time for different disparity estimation

Prep
rin

t

11

RS
LA

HC SA

LA
HC+

SA

SA
+TL

LA
HC+

SA
+TL

Search Scenario

0

50

100

150

200

250

300

350
Se

ar
ch

 T
im

e
(#

 It
er

at
io

ns
)

11
47 62

98

339

189

(a)

10 20 30 40 50
Error (%)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

FL
O

PS

1e7
Search Scenario

LAHC
SA
LAHC+SA
SA+TL
LAHC+SA+TL

1e6

(b)

Fig. 8: (a) The number of taken iterations to achieve the best
candidate over different search scenarios. (b) FLOPs-error

trade-off of discovered candidates by different search
methods. We also plot the Pareto frontier of each scenario to

tell the decision maker the best balanced architecture.

methods implemented on FPGA. We use the number of pro-
cessed Frame-Per-Second (FPS) as the metric. FastStereoNet
provides 2.07× faster inference time compared to Content-
CNN as a CNN-based disparity estimation [24]. FastStere-
oNet provides 11% faster inference time in comparison with
the architecture optimized by the FLOPs objective metric
indicating that the latency prediction provides better search
guidance. In comparison with [14], as an SGM based method,
FastStereoNet delivers 3.27× less FPS, but provides 9.68%
more accurate estimation. [27] presents cutting-edge results
on SGM-based disparity estimation on FPGA by leveraging
a heterogeneous device (Xilinx ZCU104 + CPU) leading
to achieve considerable performance improvement. Although
FastStereoNet fails in comparison with [27], to have a fair
comparison, we need to consider that [27] only implements a
subset of disparity estimation pipeline on the FPGA (Median
filters, SGM, redundancy checks, etc.), while the dynamic
tasks with high access to memory are implemented on CPU

0 2 4 6 8 10 12
Improvement

0.002

0.004

0.006

0.008

0.010

0.012

0.014

En
er

gy

GPU
FPGA
Intel NCS2
FLOPs (Scaled)

Fig. 9: Illustrating the reproducibility of results. Each line
presents the mean value of five times running of FastStereoNet
for various devices. Shades represent the confidence interval.

TABLE VII: FPGA implementation results of FastStereoNet
compared to state-of-the-art.

Work Method Disparity FPS Accuracy (%)
FPGA Device Range (D1-all)

[14] ELAS†[66] - 9.5 86.1
Zynq ZC706 (CPU+FPGA)

[27] SGM+ELAS - 52 91.3‡
Zynq ZCU104 (CPU+FPGA)

Content-CNN [24] CNN 128 1.4 95.46
Zynq UltraScale+

FaststereoNet (FLOPs) CNN 128 2.6 93.49
Zynq UltraScale+

FaststereoNet (FPGA) CNN 128 2.9 95.78
Zynq UltraScale+

† The Efficient Large-Scale Stereo (ELAS), is the fastest triangulation-based
disparity estimation algorithm on CPU.

(image transformations, disparity interpolation, etc.).

VII. CONCLUSION

Directly solving the NAS problem on large scale tasks such
as KITTI 2015 is highly expensive, as each candidate takes
days to converge. A main disadvantage of evolutionary and RL
based methods is that they require enormous computational
resources prohibiting their usage in limited budget circum-
stances. In this paper, we propose a multi-stage search method,
named FastStereoNet, which is significantly more efficient in
terms of search cost and quality of the results compared to the
state-of-the-art. FastStereoNet considers the estimated network
inference time along with accuracy as the search objectives
to discover resource-efficient architectures. The experiments
showed FastStereoNet provides competitive results compared
to other alternative approaches.

ACKNOWLEDGMENT

The authors would like to thank Mr. Mohammad Riazati
for helping us to get FPGA results. This work was supported
by the Swedish Knowledge Foundation (KKS) through Deep-
Maker and DPAC projects, and VINNOVA through AutoDeep
project.

Prep
rin

t

http://www.es.mdh.se/projects/495-DeepMaker__Deep_Learning_Accelerator_on_Commercial_Programmable_Devices_
http://www.es.mdh.se/projects/495-DeepMaker__Deep_Learning_Accelerator_on_Commercial_Programmable_Devices_
http://www.es.mdh.se/projects/414-DPAC___Dependable_Platforms_for_Autonomous_systems_and_Control
http://www.es.mdh.se/projects/570-AutoDeep__Automatic_Design_of_Safe__High_Performance_and_Compact_Deep_Learning_Models_for_Autonomous_Vehicles_

12

REFERENCES

[1] T. Saikia, Y. Marrakchi, A. Zela, F. Hutter, and T. Brox, “Autodispnet:
Improving disparity estimation with automl,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
1812–1823.

[2] M. Loni, A. Zoljodi, D. Maier, A. Majd, M. Daneshtalab, M. Sjödin,
B. Juurlink, and R. Akbari, “Densedisp: Resource-aware disparity map
estimation by compressing siamese neural architecture,” in 2020 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2020, pp. 1–8.

[3] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in International Conference
on Machine Learning. PMLR, 2018, pp. 4095–4104.

[4] L. Niu, O. Suominen, M. M. Aref, J. Mattila, E. Ruiz, and S. Esque,
“Eye-in-hand manipulation for remote handling: Experimental setup,” in
IOP Conference Series: Materials Science and Engineering, vol. 320,
no. 1. IOP Publishing, 2018, p. 012007.

[5] C. Liu, W. Wang, J. Shen, and L. Shao, “Stereo video object segmen-
tation using stereoscopic foreground trajectories,” IEEE transactions on
cybernetics, 2018.

[6] F. Logothetis, R. Mecca, and R. Cipolla, “A differential volumetric
approach to multi-view photometric stereo,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 1052–1061.

[7] S. Daniel, S. Richard, and H. Heiko, “Middlebury stereo evaluation-
version 3.”

[8] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual
learning: A two-stage convolutional neural network for stereo matching,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 887–895.

[9] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr, “Ga-net: Guided
aggregation net for end-to-end stereo matching,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 185–194.

[10] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 5410–5418.

[11] C. Ahlberg, M. L. Ortiz, F. Ekstrand, and M. Ekstrom, “Unbounded
sparse census transform using genetic algorithm,” in 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2019,
pp. 1616–1625.

[12] B. H. Ahn, J. Lee, J. M. Lin, H.-P. Cheng, J. Hou, and H. Esmaeilzadeh,
“Ordering chaos: Memory-aware scheduling of irregularly wired neural
networks for edge devices,” arXiv preprint arXiv:2003.02369, 2020.

[13] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[14] O. Rahnama, D. Frost, O. Miksik, and P. H. Torr, “Real-time dense
stereo matching with elas on fpga-accelerated embedded devices,” IEEE
Robotics and Automation Letters, vol. 3, no. 3, pp. 2008–2015, 2018.

[15] D. Zha, X. Jin, and T. Xiang, “An improved global stereo-matching on
fpga for real-time applications,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 274–274.

[16] S. Jin, J. Cho, X. Dai Pham, K. M. Lee, S.-K. Park, M. Kim, and
J. W. Jeon, “Fpga design and implementation of a real-time stereo vision
system,” IEEE transactions on circuits and systems for video technology,
vol. 20, no. 1, pp. 15–26, 2009.

[17] M. Loni, A. Zoljodi, S. Sinaei, M. Daneshtalab, and M. Sjödin,
“Neuropower: Designing energy efficient convolutional neural network
architecture for embedded systems,” in International Conference on
Artificial Neural Networks. Springer, 2019, pp. 208–222.

[18] M. Loni, A. Majd, A. Loni, M. Daneshtalab, M. Sjödin, and E. Troubit-
syna, “Designing compact convolutional neural network for embedded
stereo vision systems,” in 2018 IEEE 12th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE,
2018, pp. 244–251.

[19] T. Elsken, F. Hutter, and J. H. Metzen, “Efficient multi-objective neural
architecture search via Lamarckian evolution,” in 7th International
Conference on Learning Representations, ICLR 2019, 2019.

[20] C.-H. Hsu, S.-H. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-C.
Chang, J.-Y. Pan, Y.-T. Chen, W. Wei, and D.-C. Juan, “Monas: Multi-
objective neural architecture search using reinforcement learning,” arXiv
preprint arXiv:1806.10332, 2018.

[21] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” in 7th International Conference on
Learning Representations, ICLR 2019, 2019.

[22] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 19–34.

[23] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, 2019, pp. 4780–4789.

[24] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for
stereo matching,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 5695–5703.

[25] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[26] L. A. Libutti, F. D. Igual, L. Pinuel, L. De Giusti, and M. Naiouf,
“Benchmarking performance and power of usb accelerators for inference
with mlper*.”

[27] O. Rahnama, T. Cavallari, S. Golodetz, A. Tonioni, T. Joy, L. Di Stefano,
S. Walker, and P. H. Torr, “Real-time highly accurate dense depth on
a power budget using an fpga-cpu hybrid soc,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 66, no. 5, pp. 773–777,
2019.

[28] X. Dong and Y. Yang, “Searching for a robust neural architecture in
four gpu hours,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 1761–1770.

[29] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

[30] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture
search by network transformation,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[31] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “SmaSH: One-shot
model architecture search through hypernetworks,” in 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, 2018.

[32] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in 5th International Conference on Learning Representations,
ICLR 2017 - Conference Track Proceedings, 2017.

[33] X. Li, Y. Zhou, Z. Pan, and J. Feng, “Partial order pruning: for best
speed/accuracy trade-off in neural architecture search,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 9145–9153.

[34] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” in 6th
International Conference on Learning Representations, ICLR 2018 -
Conference Track Proceedings, 2018.

[35] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep
neural networks,” in Artificial Intelligence in the Age of Neural Networks
and Brain Computing. Elsevier, 2019, pp. 293–312.

[36] M. Loni, S. Sinaei, A. Zoljodi, M. Daneshtalab, and M. Sjödin,
“Deepmaker: A multi-objective optimization framework for deep neural
networks in embedded systems,” Microprocessors and Microsystems,
vol. 73, p. 102989, 2020.

[37] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
designing cnn architectures using the genetic algorithm for image
classification,” IEEE Transactions on Cybernetics, 2020.

[38] M. Suganuma, M. Kobayashi, S. Shirakawa, and T. Nagao, “Evolution
of deep convolutional neural networks using cartesian genetic program-
ming,” Evolutionary Computation, vol. 28, no. 1, pp. 141–163, 2020.

[39] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in 7th International Conference on Learning Representations,
ICLR 2019, 2019.

[40] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, 2019.

[41] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient ar-
chitecture search for convolutional neural networks,” arXiv preprint
arXiv:1711.04528, 2017.

[42] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, “Path-level network trans-
formation for efficient architecture search,” in International Conference
on Machine Learning. PMLR, 2018, pp. 678–687.

[43] T. Chen, I. Goodfellow, and J. Shlens, “Net2Net: Accelerating learning
via knowledge transfer,” in 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, 2016.

[44] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-

Prep
rin

t

13

scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[45] Y. Liu, J.-Q. Ma, T. He, B.-Q. Li, and J.-R. Chu, “Hybrid simulated
annealing-hill climbing algorithm for fast aberration correction without
wavefront sensor,” Guangxue Jingmi Gongcheng(Optics and Precision
Engineering), vol. 20, no. 2, pp. 213–219, 2012.

[46] J. Li, M. Zhou, Q. Sun, X. Dai, and X. Yu, “Colored traveling salesman
problem,” IEEE transactions on cybernetics, vol. 45, no. 11, pp. 2390–
2401, 2014.

[47] E. K. Burke and Y. Bykov, “The late acceptance hill-climbing heuristic,”
European Journal of Operational Research, vol. 258, no. 1, pp. 70–78,
2017.

[48] H. Szu and R. Hartley, “Fast simulated annealing,” Physics letters A,
vol. 122, no. 3-4, pp. 157–162, 1987.

[49] V. Granville, M. Krivánek, and J.-P. Rasson, “Simulated annealing:
A proof of convergence,” IEEE transactions on pattern analysis and
machine intelligence, vol. 16, no. 6, pp. 652–656, 1994.

[50] H. Zhang, Y. Jin, R. Cheng, and K. Hao, “Efficient evolutionary search
of attention convolutional networks via sampled training and node
inheritance,” IEEE Transactions on Evolutionary Computation, vol. 25,
no. 2, pp. 371–385, 2020.

[51] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[52] X. Dong, L. Liu, K. Musial, and B. Gabrys, “Nats-bench: Benchmarking
nas algorithms for architecture topology and size,” IEEE transactions on
pattern analysis and machine intelligence, 2021.

[53] R. Stuart, N. Peter et al., “Artificial intelligence: a modern approach,”
2003.

[54] M. Poggi, F. Tosi, K. Batsos, P. Mordohai, and S. Mattoccia, “On the
synergies between machine learning and stereo: a survey,” arXiv preprint
arXiv:2004.08566, 2020.

[55] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3061–3070.

[56] N. Smith, “Transitioning from intel® movidius™ neural compute sdk
to intel® distribution of openvino™ toolkit,” 2019.

[57] R. Atienza, “Fast disparity estimation using dense networks,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 3207–3212.

[58] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised learning
of depth and ego-motion from monocular video using 3d geometric
constraints,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 5667–5675.

[59] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and context
for deep stereo regression,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 66–75.

[60] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4040–4048.

[61] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine
learning software library,” Idiap, Tech. Rep., 2002.

[62] AlessioTonioni, “Code for ”real-time self-adaptive deep stereo” -
cvpr 2019 (oral),” 2019. [Online]. Available: https://github.com/
CVLAB-Unibo/Real-time-self-adaptive-deep-stereo

[63] A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. D. Stefano, “Real-
time self-adaptive deep stereo,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 195–204.

[64] C. Zhou, H. Zhang, X. Shen, and J. Jia, “Unsupervised learning of
stereo matching,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 1567–1575.

[65] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 1592–1599.

[66] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Asian conference on computer vision. Springer, 2010,
pp. 25–38.

Mohammad Loni is a Ph.D. candidate at
Mälardalen University (MDU). Currently, he is a vis-
iting researcher at AutoML research group, Leibniz
University Hannover, Germany. He is a member of
DPAC, AutoDeep and HERO projects. He works on
efficient implementation of deep neural networks on
embedded platforms using neural architecture search
techniques.

Ali Zoljodi is a Ph.D. student at the School of
Innovation, Design, and Engineering at Mälardalen
University (MDU). He received his M.Sc. degree in
software engineering from Shiraz technical Univer-
sity. He works on robust development of computer
vision algorithms for autonomous driving applica-
tions.

Amin Majd is currently a senior researcher and
lecturer at Arcada University of Applied Sciences on
smart swarms of autonomous vehicles with a broad
background in computer science. He got his first
PhD from the University of Turku in 2019 by devel-
oping a hybrid meta-heuristic optimization method.
The second PhD has obtained in 2021 from Åbo
Akademi University by developing the DIANA as
safe and efficient navigation of autonomous vehicles.

Byung Hoon Ahn is a Ph.D. candidate at University
of California San Diego working under the supervi-
sion of Prof. Hadi Esmaeilzadeh. Prior to Ph.D. stud-
ies, he worked at Samsung Research as a Software
Engineer. His research interests include Computer
Architecture, Compilers, and Machine Learning.

Masoud Daneshtalab is currently a Prof. at
Mälardalen University (MDU), Adj. Prof. at Tal-
Tech, and co-leading the Heterogeneous System
research group. He is on the Euromicro board of
directors, an editor of the MICPRO journal, and has
published over 200 refereed papers. His research
interests include HW/SW co-design, reliability, and
deep learning acceleration.

Mikael Sjödin received his Ph.D. in computer sys-
tems in 2000 from Uppsala University. Since then,
he has been working in both academia and in the
industry with embedded systems, real-time systems,
and embedded communications. In 2006 he joined
the Mälardalen University (MDU) faculty as a full
professor with a specialty in real-time systems and
cyber-physical systems.

Hadi Esmaeilzadeh received his Ph.D. from the
Department of Computer Science and Engineering
at the University of Washington in 2013. Currently,
he is the Halicioğlu Chair in Computer Architecture
at University of California San Diego with the rank
of Associate Professor. He received the IEEE Young
Computer Architect Award in 2018. His research
interests include Computer Architecture, Machine
Learning, and Data Security.

Prep
rin

t

https://github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo
https://github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo

A1

Supplementary Material

APPENDIX A
DISPARITY ESTIMATION PIPELINE

In this section, we first present the pipeline of disparity
estimation. Then, we review the methods that use triangulation
for efficient disparity estimation on resource-limited devices.
The stereo vision triangulation is the conventional method
for extracting depth information in multiple simultaneous 2D
images. The conventional stereo vision algorithm consists of
the following four steps [1]: 1) cost initialization, calculat-
ing the matching costs for assigning different disparities to
different pixels; 2) cost aggregation, spatially aggregating the
initial matching costs over a supporting window; 3) disparity
optimization, selecting the best disparity for each pixel by
minimizing the matching cost; and 4) disparity refinement,
post-processing the generated disparity map to preserve the
variation of the discontinuous disparity values and removing
the mismatches. Fig. A.1 pictures the processing steps of the
triangulation-based stereo matching algorithm.

Left Image

Right Image

Cost
Initialization

Cost
Aggregation

Disparity
Optimization

Disparity
Refinement

Raw Disparity
Map

Final Disparity Map
(Depth Information)

Left Feature Volume

Right Feature Volume

Matching
Cost

Volume

Fig. A.1: The overview of the processing steps of the
triangulation-based stereo matching algorithm.

The taken steps in this pipeline depends on the specific
methods categorized in three modalities, comprising: 1) local
[2], [3]; 2) global [4]; and 3) Semi-Global Matching (SGM)
[5]. The global methods try to optimize problem over the
entire image, while local methods are restricted to the intensity
of surrounding neighborhood information of the pixel under
evaluation. In general, the global methods are more accurate,
but the local and semi-global methods are more efficient since
we can limit the searching range of disparity estimation [6],
[7]. Therefore, semi-global methods are preferable for real-
time embedded systems. SGM, which is the most widely used
stereo matching algorithm, considers the neighboring pixels
to extract smooth surfaces, while the resolution of matching
ambiguities is much more reliable than local methods.

APPENDIX B
SIMULATED ANNEALING VS GENETIC ALGORITHM

The design space of the target neural architecture search
problem is astronomically large (2 × 2410 in the minimum
case). To solve this problem using Genetic Algorithm (GA)
we have to either 1) consider large population size, usually
10% of the whole design space, with a small number of
search iterations; or 2) consider a small population size
with a large number of search iterations. However, both of
these options are time-consuming. For instance, [8], a cell-
based NAS method that uses GA, requires 27 GPU-days to
design an optimized architecture for CIFAR-10 dataset. On

the other hand, FastStereoNet is a macro NAS method that
uses LAHC+SA to design an optimized architecture for KITTI
2015 dataset in only 8 GPU-days. In addition, FastStereoNet
leverages the SCHEDULER function to adaptively select the
search hyper-parameters (e.g., TMax and TMin), while [8] needs
expert intuition to select search hyper-parameters for any
unseen problem.

APPENDIX C
TRADITIONAL COMPLEXITY ANALYSIS OF

FASTSTEREONET

The FastStereoNet algorithm consists of two sub-functions,
including LAHC and SA. Thus, the computational complex-
ity of the FastStereoNet is the summation of the extended
LAHC and the extended SA computational complexities. The
computational complexity of the extended LAHC depends
on the maximum number of search iteration, which is equal
to Steps×MaxRate. The computational complexity of the
MUTATE function and replacement are considered O(1). We
also consider the computational complexity of the ENERGY
function (training) equal to O(1) to only compute the order
of search complexity. Considering the MaxRate value is con-
stant, O(Steps) is counted as the computational complexity
of the extended LAHC. In other words, the computational
complexity of the extended LAHC only depends on the
maximum number of produced networks.

The SA algorithm contains two main sub-functions,
including SCHEDULER and ANNEALER. The worse-case
computational complexity of the ANNEALER depends
on the maximum number of search iteration which is
equal to Steps×MaxRateAnnealing. Considering the
MaxRateAnnealing value is constant, the computational
complexity of ANNEALER is O(Steps). SCHEDULER em-
ploys three independent loops to estimate the value of the
TMax and TMin. In each iteration of these three loops, we
Steps times produce a new solution fulfilled in the RUN
function. Since these loops are bounded to a maximum it-
eration (Steps×MaxRateT(Max, Min)), the computational
complexity of each loop is O(Steps2). In the same way,
the computational complexity of SCHEDULER is computed as
O(3×Steps2) = O(Steps2). Therefore, the computational
complexity of SA is O(Steps)+O(Steps2) = O(Steps2).
Similarly, the overall FastStereoNet computational complexity
is O(Steps) +O(Steps2) = O(Steps2).

APPENDIX D
EMPIRICAL COMPLEXITY ANALYSIS OF FASTSTEREONET

Inspired by [13], we evaluate the total number of images
used by the search process as a reasonable metric for an-
alyzing the complexity of the proposed search method. We
do not consider the transferred weights mechanism in worst-
case complexity analysis since it improves search results.
Suppose that we train each solution partially with P = 1000
epochs to select the best architecture. According to the search
configuration, the search process needs I = 600 iterations in
total. We need I × P epochs for the end-to-end optimization
process. Therefore, we use 120M images (in each P epochs

Prep
rin

t

A2

we evaluate 200 images) in total, that is 9.3× less than 1.15
billion images used by [13].

APPENDIX E
SMOOTHING FASTSTEREONET OUTPUTS

The output of FastStereoNet is a raw predicted dispar-
ity of each image location, without applying any disparity
refinement. In this paper, we investigate different disparity
refinement methods to improve the robustness of the output
results. In particular, we use cost aggregation, Median filtering,
MATLAB® edge-preserving and smoothing toolbox, as well as
Bilateral filtering as a means of noise removal and smoothing.
We briefly present these methods in the following.

Cost Aggregation (CA). We leveraged a simple cost ag-
gregation method by performing average pooling over a 5×5
window size.

Median Filtering. Is a popular nonlinear method that pre-
serves sharp edges while tries to effectively suppress impulsive
noises by replacing each pixel with the median of neighboring
pixels. In this paper, we perform the Median filter over a
window size of 15×15 in all the experiments.

MATLAB® Edge-Preserving and Smoothing Filters.
MATLAB® provides a set of image enhancement functions
that we applied to smooth, sharp, and preserve edges with
minimal effort. We exploit the following three filtering func-
tions supported in MATLAB® 2017b.

1) imguidedfilter. The guided image filtering is a
function that considers the statistics of a region in the
corresponding spatial neighborhood of a second image,
so-called guidance image, to improve edge-preserving
smoothing influence. We used the ground-truth as the
guiding image to improve the filtering quality.

2) anisodiff2D. The anisotropic diffusion filtering is
one of the most popular methods in 3-D reconstruction,
image denoising, and stereo matching, which works based
on the heat transfer partial differential equation [14].

3) sharpen. In general, the sharpening process is a high
pass filter that increases the contrast between bright and
dark pixels. In this paper, we applied the Median filter
(15×15) on the output of a sharpen function to smooth
the disparity values between adjacent depth-continuous
pixels.

Bilateral + Median Filtering. The bilateral filter is a non-
linear image smoothing noise-reducing and edge-preserving
filter. The bilateral filter swaps the intensity value of each
pixel with the weighted intensity average of its neighbourhood
pixels. In this paper, we applied the Median filter (15×15) on
the output of the bilateral filter to achieve a higher level of
smoothness.

Binomial Filtering. The binomial filter is a statistical
smoothing filter based on a kernel filed with binomial weights.
The binomial filter does not require multipliers and thus can
be deployed efficiently in resource-limited hardware. However,
the binomial filter could not enhance disparity refinement
performance since it is a band-pass filter which blurs the edges.

Left-Right Consistency + Speckle + Gap Interpolation
+ Median (LRCSGM) [2]. The algorithm performs the

following four steps: 1) Left-right consistency: that requires
switching target and reference images in the matching and
remove inconsistent matches (the most challenging step); 2)
Speckle filter: check whether or not there is a sufficient
number of pixels within a window of similar disparity; 3) Gap
interpolation: fill non-confident values with the disparity of
closes valid disparity; 4) Median filter: the final noise removal
function. According to our experimental results, the LRCSGM
filter provides the maximum smoothing accuracy.

APPENDIX F
HARDWARE IMPLEMENTATION DETAILS

This section presents steps to deploy a CNN architecture on
the target hardware devices.

FPGA. We utilize the Xilinx High-Level-Synthesis (HLS)
tool to automatically deploy a CNN architecture represented in
Python TensorFlow to FPGA. The main reason for employing
HLS for developing the toolchain is that HLS allows neural
network designers who actually have little knowledge about
the underlying hardware and digital design. However, HLS
tools usually only support OpenCL, C or C++, while neural
network designers typically use high-level APIs to describe
their networks such as TensorFlow, or PyTorch. To solve this
challenge, we leveraged DeepHLS [16] conversion tool to
convert TensorFlow to ANSI C. In addition to the conversion,
DeepHLS supports conversion result verification. Fig. F.1
pictures the overall flow of the toolchain. This process’s input
is a trained CNN in TensorFlow plus the test data used in the
CNN design phase. The main steps of Fig. F.1 are:

1) Preprocessing. Generate the memory dump of the test
data and network weights and biases.

2) Synthesizable C code generation. In the first step, we
process the TensorFlow to extract the specifications of
each layer. Next, the output code generation begins. In
fact, we use a library of C templates for generating the
output code.

3) Testbench. Test and simulate the generated C code from
the earlier step to check the correctness of code. If the
data type is exactly the same as what was used in the
TensorFlow design phase, the accuracy must be the same.
In this paper, we use the 16-bit fixed-point data type for
the FPGA implementation.

GPU. TensorFlow is able to automatically deploy a CNN on
GPU by utilizing NVIDIA® CUDA® Deep Neural Network
library™ (cuDNN). cuDNN is a GPU-accelerated library of
primitives for DNNs. cuDNN provides highly optimized im-
plementations of routines that frequently occur in DNN appli-
cations. We used cuDNN version 10.0 to perform experiments.

Intel® NCS2. The Myriad 2 Vector Processing Unit (VPU)
is designed as a 28-nm co-processor that provides high-
performance tensor acceleration with less than 1W chip dissi-
pates [17] and 600MHz nominal frequency. The Intel® Neural
Compute Stick 2 (NCS2) is an implementation of the Myriad
2 VPU. Intel® NCS2 uses the OpenVINO™ toolkit to facilitate
faster inference. Intel® NCS2. The programming interface
supports Python and C/C++. To perform inference on the
device, the programming API follows a set of operations that

Prep
rin

t

A3

TensorFlow
Description

H
ig

h-
le

ve
l S

yn
th

es
iz

er Preprocessing

TensorFlow to C

HLS
D

ev
ic

e

FPGA

Data Dump
Weights
Biases

CNN Testbench
Generator

Accuracy (C code)

Floating-point

Model
Training Dataset
Test Dataset

Fig. F.1: The bird’s eye view of the DeepHLS toolchain.

is a non-blocking MPI. Thus, a load operation transfers the
input and prepares the NCS2 for execution in the first step.
Then, a wait operation blocks the process on the host until
finishing the execution on the NCS2.

APPENDIX G
LATENCY PREDICTION

Inference time (latency) is the second objective for design-
ing resource-efficient CNN architectures. Optimizing CNN
based on direct latency measurement instead of FLOPs can
better represent hardware traits [21]. However, direct latency
measurement prolongs the design time (up to 20 minutes for
measuring the FPGA latency of each candidate [18]). There-
fore, direct latency measurement is not ideal for scalable NAS.
On the other hand, several studies optimize CNN architecture
based on FLOPs [36], [2] or direct performance measurement
[17]. Nevertheless, FLOPs cannot capture the desired hardware
characteristics [20]. To demonstrate this claim, we compared
the latency of a network on two different hardware devices.
Fig. G.1 illustrates the measured latency surface of a 3×3
convolution operator with different input and output channel
sizes on an Intel® core i5-3210m 2.5 GHz and a Xilinx
ZCU104 FPGA. Intel® processor and Xilinx ZCU104 have
different latency surface area over network FLOPs.

Instead of direct measurement, we build a regression model
to estimate network inference time. For a network architecture
with a sequence of operations, the expected inference time
of the network can be expressed with the summation of the
network operations [19]:

EL[latencynetwork] = ΣiEL[latencyi] = Σ
LP (oi)
i (6)

where EL[latencyi] is the expected latency of the ith

operation, LP(oi) denotes the predicted latency of the op-
eration ith. Accordingly, we need to predict the latency of
each network operation. Therefore, the inputs of the latency
prediction model include: (a) input and output feature map

(a)

(b)

Fig. G.1: Latency vs. #Channels for a 3×3 convolution on
an input image size of 56×56 and stride 1 on (a) Intel® core

i5-3210m 2.5 GHz and (b) Xilinx ZCU104 FPGA. Blue
(red) color indicates low (high) latency.

size, (b) type of the operator, (c) kernel size, and (d) stride
size. We randomly sampled 105 architectures from the search
space, where 80% of the samples are used to build the latency
model, and the rest for testing the model. Fig. G.2 to Fig. G.4
compare several regression models for predicting the latency
of GPU, FPGA, and Intel® NCS2, respectively. The regression
model with the minimum mean-squared-error (MSE) has been
selected as the best prediction model. The results show that
there is a strong correlation between directly measured latency
and the predicted latency on the test set, suggesting that the
proposed latency prediction model can be used to replace the
expensive real hardware latency measurement.

APPENDIX H
REPRODUCIBILITY OF RESULTS

Fig. H.1.a illustrates the reproducibility of results for the
baseline scenario using FLOPs-based search method with
the same solution as the initial point. The average standard
deviation (STDEV) of reproducing the results is 14.2%. The
variation of STDEV in the first iterations is up to 36.0%
indicating that we explore the design space in early search
steps, while we exploit the space in the later search steps with
≃10% STDEV. Fig. H.1.b presents the Pearson correlation
coefficients of multiple FastStereoNet runs. Results show that
there is a strong relationship between the several times running
FastStereoNet with Pearson− r =0.94 on average.

Prep
rin

t

A4

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)
Random Forest

MSE=0.002, MAE=0.29, R2=0.796
x=y

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Neural Network

MSE=0.0, MAE=0.013, R2=0.911
x=y

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Bayesian Ridge

MSE=0.003, MAE=0.045, R2=0.597
x=y

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Decision Tree

MSE=0.0, MAE=0.002, R2=0.998
x=y

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Lasso

MSE=0.003, MAE=0.04, R2=0.497
x=y

−0.1 0 0.1 0.2 0.3 0.4
−0.1

0

0.1

0.2

0.3

0.4

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Support Vector Regression

MSE=0.004, MAE=0.56, R2=0.545
x=y

Fig. G.2: Comparison of different GPU latency prediction
models. All values are in millisecond. The green figure is the

best model.

APPENDIX I
ANALYZING FREQUENCY SELECTION OF THE DOMINANT

OPERATIONS

Fig. I.1 presents the dominance pattern of each node op-
eration (method LAHC+SA+TL) in the mutated architectures
over proceeding the search iterations. The kernel with size 5×5
and the Same padding (Same:5×5) is the dominant operation
in the first random initial candidate (iteration = 1). However,
by proceeding the search iterations, the kernel with size 3×3
and the Valid padding (Valid:3×3) shows promising results
by occupying around 70% of nodes after 100 iterations. It
means that FastStereoNet favors to select Valid:3×3 as a
superior operation since a small kernel size can extract the
tiny features of the image which is extremely important for
finding corresponding pixels in two stereo images.

APPENDIX J
ILLUSTRATION OF THE FASTSTEREONET OPTIMIZED

ARCHITECTURE

Fig. J.1 illustrates efficient architectures designed by Fast-
StereoNet for GPU, FPGA, Intel® NCS2 latency predictors,
and FLOPs-based objective functions.

REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” International journal of
computer vision, vol. 47, no. 1-3, pp. 7–42, 2002.

0 20 40 60 80 100 120 140
0

50

100

150

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Random Forest

MSE=23.77, MAE=3.7, R2=0.97
x=y

0 20 40 60 80 100 120 140 160
0

50

100

150

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Neural Network

MSE=36.41, MAE=4.98, R2=0.968
x=y

−50 0 50 100 150
−50

0

50

100

150

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Bayesian Ridge

MSE=403.34, MAE=16.75, R2=0.71
x=y

0 20 40 60 80 100
0

20

40

60

80

100

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Decision Tree

MSE=51, MAE=5.85, R2=0.81
x=y

−40 −20 0 20 40 60 80 100
−50

0

50

100

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Lasso

MSE=445.78, MAE=18.67, R2=0.52
x=y

0 20 40 60 80 100
0

20

40

60

80

100

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Support Vector Regression

MSE=21.86, MAE=3.15, R2=0.98
x=y

Fig. G.3: Comparison of different FPGA latency prediction
models. All values are in millisecond. The green figure is the

best model.

Fig. I.1: Analyzing dominance pattern of each node operation
(Table I) in the mutated architectures over search proceeding.

[2] C. Ahlberg, M. L. Ortiz, F. Ekstrand, and M. Ekstrom, “Unbounded
sparse census transform using genetic algorithm,” in 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2019,

Prep
rin

t

A5

0 1 2 3 4 5
0

1

2

3

4

5

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)
Random Forest

MSE=0.03, MAE=0.1, R2=0.95
x=y

0 1 2 3 4 5
0

1

2

3

4

5

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Neural Network

MSE=0.06, MAE=0.22, R2=0.838
x=y

0 1 2 3 4 5
0

1

2

3

4

5

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Bayesian Ridge

MSE=0.14, MAE=0.28, R2=0.69
x=y

0 1 2 3 4 5
0

1

2

3

4

5

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Decision Tree

MSE=0.04, MAE=0.14, R2=0.92
x=y

0 1 2 3 4 5
0

1

2

3

4

5

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Lasso

MSE=0.13, MAE=0.29, R2=0.72
x=y

0 1 2 3 4 5 6
0

2

4

6

Actual (test data)

Pr
ed

ic
tio

n
(t

es
t

da
ta

)

Support Vector Regression

MSE=0.02, MAE=0.09, R2=0.97
x=y

Fig. G.4: Comparison of different Intel® NCS2 latency
prediction models. All values are in millisecond. The green

figure is the best model.

pp. 1616–1625.
[3] D. Chen, M. Ardabilian, and L. Chen, “A fast trilateral filter-based

adaptive support weight method for stereo matching,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 25, no. 5, pp. 730–
743, 2014.

[4] R. A. Hamzah and H. Ibrahim, “Literature survey on stereo vision
disparity map algorithms,” Journal of Sensors, vol. 2016, 2016.

[5] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual
information,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 30, no. 2, pp. 328–341, 2007.

[6] F. Schumacher and T. Greiner, “Matching cost computation algorithm
and high speed fpga architecture for high quality real-time semi global
matching stereo vision for road scenes,” in 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2014,
pp. 3064–3069.

[7] H. Laga, L. V. Jospin, F. Boussaid, and M. Bennamoun, “A survey on deep
learning techniques for stereo-based depth estimation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

[8] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, and V. N.
Boddeti, “Multi-objective evolutionary design of deep convolutional neu-
ral networks for image classification,” IEEE Transactions on Evolutionary
Computation, 2020.

[9] V. Granville, M. Krivanek, and J.-P. Rasson, “Simulated annealing: A
proof of convergence,” IEEE transactions on pattern analysis and machine
intelligence, vol. 16, no. 6, pp. 652–656, 1994.

[10] A. Yang, P. M. Esperanc¸a, and F. M. Carlucci, “Nas evaluation is
frustratingly hard,” arXiv preprint arXiv:1912.12522, 2019.

[11] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Uncertainty in Artificial Intelligence. PMLR,
2020, pp. 367–377.

[12] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The Journal of Machine Learning Research, vol. 13, no. 1, pp.
281–305, 2012.

[13] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture

0 5 10 15 20 25
Iteration

0

25000

50000

75000

100000

125000

150000

175000

En
er

gy
 (O

bj
ec

tiv
e

Fu
nc

tio
n)

Exploitation

Exploration Run #1
Run #2
Run #3
Run #4
Run #5
Average
STDEV

(a)

R
un

 #
1

R
un

 #
2

R
un

 #
3

R
un

 #
4

R
un

 #
5

Av
er

ag
e

Run #1

Run #2

Run #3

Run #4

Run #5

Average

1.00 0.91 0.90 0.82 0.92 0.94

0.91 1.00 0.96 0.92 0.94 0.98

0.90 0.96 1.00 0.92 0.99 0.98

0.82 0.92 0.92 1.00 0.89 0.95

0.92 0.94 0.99 0.89 1.00 0.98

0.94 0.98 0.98 0.95 0.98 1.00

0.85

0.90

0.95

1.00

(b)

Fig. H.1: (a) Illustrating the reproducibility of the results for
the FLOPs-based search. The purple line is the mean value

of five times running of FastStereoNet. (b) Correlation
coefficients of several times running the FastStereoNet

framework.

search,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 19–34.

[14] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[15] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization.” Journal of machine learning
research, vol. 12, no. 7, 2011.

[16] M. Riazati, M. Daneshtalab, M. Sjodin, and B. Lisper, “DeepHLS:
A complete toolchain for automatic synthesis of deep neural networks
to FPGA,” in ICECS 2020 - 27th IEEE International Conference on
Electronics, Circuits and Systems, Proceedings, 2020.

[17] D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick, and D.
Donohoe, “Myriad 2: Eye of the computational vision storm,” IEEE Hot
Chips 26 Symposium (HCS), pp. 1-18, 2014.

[18] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan, Y.
Hu, Y. Wu, Y. Jia, and P. Vajda, “Chamnet: Towards efficient network
design through platform-aware model adaptation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11398-11407, 2019.

[19] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[20] H. Bouzidi, H. Ouarnoughi, S. Niar, and A. A. E. Cadi, “Performance
prediction for convolutional neural networks on edge GPUs,” in Proceed-

Prep
rin

t

A6

 Siamese Right Sub-Network ()

Data
Handler

Inner product

Sum
m

ation

Nw

C
onv2d (32,

(13x13), Valid)

C
onv2d (32,

(37x37), Valid)

B
atch

N
orm

alization

C
onv2d (32,

(11x11), Sam
e)

C
onv2d (32,

(3x3), Sam
e)

C
onv2d (32,

(5x5), Valid)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(3x3), Sam
e)

C
onv2d (64,

(5x5), Sam
e)

C
onv2d (64,

(3X3), Valid)

C
onv2d (32,

(17x17), Valid)

B
atch

N
orm

alization

Sum
m

ation

(a) The FastStereoNet best architecture designed for GPU.

 Siamese Right Sub-Network ()

Data
Handler

Inner product

Nw

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

 (3x3), Valid)

C
onv2d (64,

(3x3), Valid)

C
onv2d (32,

(21x21), Valid)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(3x3), Sam
e)

C
onv2d (32,

(19x19), Valid)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(17x17), Valid)

B
atch

N
orm

alization

C
onv2d (32,

(11x11), Sam
e)

C
onv2d (32,

(11x11), Sam
e)Sum

m
ation

Sum
m

ation

C
onv2d (32,

(3x3), Valid)

(b) The FastStereoNet best architecture designed for FPGA.

 Siamese Right Sub-Network ()

Data
Handler

Inner product

Sum
m

ation

Nw

C
onv2d (32,

(15x15), Valid)

C
onv2d (32,

(19x19), Valid)

C
onv2d (32,

(5x5), Sam
e

C
onv2d (32,

(5x5), Valid)

C
onv2d (32,

(7x7), Valid)

C
onv2d (64,

(5x5), Sam
e)

C
onv2d (64,

(3x3), Valid)

C
onv2d (64,

(5x5), Sam
e)

C
onv2d (64,

(5x5), Sam
e)

C
onv2d (64,

(5x5), Sam
e)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(11x11), Valid)

C
onv2d (32,

(5x5), Valid)

C
onv2d (32,

(13x13), Valid)

(c) The FastStereoNet best architecture designed for Intel® NCS2.

 Siamese Right Sub-Network ()

Data
Handler

Inner product

Nw

C
onv2d (32,

(9x9), Valid)

C
onv2d (32,

(7x7), Valid)

C
onv2d (32,

 (3x3), Valid)

C
onv2d (64,

(3x3), Sam
e)

C
onv2d (64,

(3x3), Valid)

C
onv2d (32,

(3x3), Sam
e)

C
onv2d (32,

(3x3), Valid)

C
onv2d (32,

(3x3), Valid)

C
onv2d (64,

(5x5), Sam
e)

B
atch

N
orm

alization

C
onv2d (32,

(3x3), Sam
e)

C
onv2d (32,

(15x15), Valid)

C
onv2d (32,

(31x31), Valid)

C
onv2d (32,

(7x7), Valid)

B
atch

N
orm

alization

Sum
m

ation

(d) The best architecture with FLOPs-based objective function (Equation 4).

Fig. J.1: The Conv2d(α, (β, β), Valid/Same) stands for a
convolutional layer with α filters, kernel size of β, and

Valid/Same padding.

ings of the 18th ACM International Conference on Computing Frontiers,
pp. 54-62, 2021.

[21] M. Tan, B. Chen,R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q.
V. Le, “Mnasnet: Platform-aware neural architecture search for mobile,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2820-2828, 2019.Prep

rin
t

	Introduction
	Related Work
	Disparity Estimation on Resource-limited devices
	Neural Architecture Search (NAS)
	Macro NAS
	Micro NAS
	Improving NAS Efficiency

	Architecture Design Space
	Siamese Network Architecture
	Representation of CNN Architectures
	Efficient NAS by Transferred Weights Mechanism

	Search Strategy
	Proposed Method
	FastStereoNet Practical Proof of Convergence
	FastStereoNet Complexity Analysis

	Experimental Setup
	Evaluation Dataset
	Hardware Specifications
	Experimental Configuration

	Results
	Disparity Estimation Performance
	Estimation Error Across Different Metrics
	Smoothing Comparison
	Search Convergence Analysis
	Analyzing Search Methods
	Reproducibility of the Results
	FPGA Implementation Results

	Conclusion
	References
	Biographies
	Mohammad Loni
	Ali Zoljodi
	Amin Majd
	Byung Hoon Ahn
	Masoud Daneshtalab
	Mikael Sjödin
	Hadi Esmaeilzadeh

	Appendix A: Disparity Estimation Pipeline
	Appendix B: Simulated Annealing vs Genetic Algorithm
	Appendix C: Traditional Complexity Analysis of FastStereoNet
	Appendix D: Empirical Complexity Analysis of FastStereoNet
	Appendix E: Smoothing FastStereoNet Outputs
	Appendix F: Hardware Implementation Details
	Appendix G: Latency Prediction
	Appendix H: Reproducibility of Results
	Appendix I: Analyzing Frequency Selection of the Dominant Operations
	Appendix J: Illustration of the FastStereoNet optimized architecture
	References

