
Automatic Characterization and Mitigation of
Shared-resource Contention in Multi-core

Systems

Jakob Danielsson

2021

Till min familj

iii

Abstract

Multi-core computers are infamous for being hard to use in time-critical sys-
tems due to execution-time variations as an effect of shared resource con-
tention. In this thesis, we study the problem of shared resource contention,
which occurs when multiple applications executing on different cores do not
have exclusive access to a shared hardware resource. We investigate perfor-
mance variations of parallel tasks in multi-core systems and present a method
to pinpoint the source of the contention using hardware performance counters.
We investigate mitigation methods for performance variations due to resource
contention, including the Jailhouse hypervisor and the cache-partitioning tool
PALLOC. We propose a benchmark strategy that quantifies the isolation gained
from a specific technique and exemplify this strategy using the Jailhouse hy-
pervisor. We furthermore present and implement solutions for cache-partition
allocation during application runtime. Our implementation aims to avoid over-
provisioning of cache through pre-runtime estimations of an application’s de-
pendency towards the cache and continuous re-partitioning of the cache mem-
ory during application runtime.

The primary goal of this thesis is to contribute to a process that automates some
of the tedious manual testing needed to detect resource contention bottlenecks.
The methods we present in this provide a holistic solution for automatically
mitigating resource-contention in a multi-core system. First, we evaluate the
risk for shared resource contention when several applications execute simulta-
neously. We then allocate partitions to mitigate resource contention for appli-
cations that risk severe performance degradations. We finally present methods
that dynamically re-allocate partition space to meet the performance require-
ments of the running applications.

v

Sammanfattning

Flerkärniga datorer är ökända för att vara svåra att använda i tidskritiska sys-
tem på grund av prestandavariationer som sker på grund av samtidigt delande
av hårdvaruresurser. I denna avhandling studerar vi problemet med delade
resurser som uppstår när flera applikationer som körs på olika kärnor inte
har exklusivt ägande av en delad resurs. Vi undersöker prestationsvariationer
för parallella uppgifter i flerkärniga system och presenterar en metod för att
identifiera källan till resurskonflikten med hjälp av befintliga hårdvarupresta-
tionsräknare. Vi undersöker begränsningsmetoder för prestationsvariationer på
grund av resurstvister, inklusive Jailhouse-hypervisor och cachepartitionsverk-
tyget PALLOC. Vi föreslår en riktmärkesstrategi som kvantifierar isoleringen
från en specifik isoleringsteknik och exemplifierar denna strategi med hjälp av
Jailhouse -hypervisor. Vi presenterar och implementerar dessutom lösningar
för tilldelningskontroll för cachepartitioner under applikationstiden. Vår im-
plementering syftar till att undvika onödiga cacheallokeringar genom att upp-
skattninga programmets beroende av cacheminnet och kontinuerlig omallok-
ering av cacheminnet medans applikationen kör.

Huvudmålet med denna avhandling är att underlätta den manuella testnin-
gen av resurskonflits-flaskhalsar och istället föreslå en automatiska metoder.
De metoder vi presenterar ger en helhetslösning för automatisk lindring av
resurskonflikter i ett flerkärnigt system. Först utvärderar vi risken för nega-
tiv påverkan genom delade resurser när flera applikationer körs samtidigt. Vi
tilldelar sedan partitioner för att mildra resurskonflikter för applikationer som
riskerar allvarliga prestandaförsämringar. Vi presenterar slutligen metoder som
dynamiskt omallokerar cacheminne för att uppfylla prestandakraven för de ap-
plikationer som körs.

vii

Acknowledgments

I would like to express my sincere gratitude towards my supervisors for their
patience, help and valuable discussions throughtout this thesis. I would like
to acknowledge each supervisor’s special contribution to my thesis; Mikael
Sjödin, for his deep knowledge and ability to guide me towards a feasible path
when i’ve gotten stuck. Moris Behnam, for challenging my critical thinking
and encouraging new ideas. Tiberiu Seceleanu for spending countless of hours
of invaluable technical discussions and encouragement to pursue new ideas.
Marcus Jägemar for teaching me, providing hands-on technical feedback and
help and for being my source of inspiration and positive thinking.

The work presented in this thesis has been funded by Mälardalens Högskola
and KKS throughout the DPAC project.

I would also like to thank my mother Annika Danielsson and father Christer
Danielsson for supporting me. I want to acknowledge the value of the technical
discussions that I have had with my father and for taking his time to read
my thesis. I also thank my grandfather Bo Danielsson for helping me with
photoshop.

I want to thank Nandinbaatar Tsog, my room-mate, my closest colleague, my
"brother-in-arms". I am very grateful that I got the opportunity to work beside
you for these years and for of the technical discussions that we have had.

My final expression of gratitude goes to Ida Carlén, my girlfriend, who has
stood by my side during my master years and PhD student years.

Jakob Danielsson
Västerås, 2021

ix

List of Publications

Papers included in thesis

Paper A : Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris
Behnam and Mikael Sjödin. Measurement-based evaluation of
data-parallelism for OpenCV feature-detection algorithms. In 42nd

Computer Society Signature Conference on Computers, Software and
Applications (COMPSAC). IEEE, 2018.

Paper B : Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris
Behnam and Mikael Sjödin. Resource Dependency Analysis in
Multi-core systems. In 44th Computer Society Signature Conference on
Computers, Software and Applications (COMPSAC). IEEE, 2020.

Paper C : Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris
Behnam and Mikael Sjödin. LLM-shark – A Tool for Automatic
Resource-boundness Analysis and Cache Partitioning Setup. In 45th

Computer Society Signature Conference on Computers, Software and
Applications (COMPSAC). IEEE, 2021.

Paper D : Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris
Behnam and Mikael Sjödin. Testing Performance-Isolation in
Multi-Core Systems. In 43rd Computer Society Signature Conference
on Computers, Software and Applications (COMPSAC). IEEE, 2019.

Paper E : Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris
Behnam and Mikael Sjödin. Automatic Quality of Service Control in
Multi-core Systems using Cache Partitioning In 26th In proceedings of
the Emerging Technologies and Factory Automation (ETFA), IEEE,
2021.

xi

Paper F : Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris
Behnam and Mikael Sjödin. Run-time Cache-Partition Controller for
Multi-core Systems. In 45th Annual Conference of the IEEE Industrial
Electronics Society (IECON) IEEE, 2019.

Paper G : Jakob Danielsson, Janne Suuronen, Tiberiu Seceleanu, Marcus
Jägemar, Moris Behnam and Mikael Sjödin. Modelling Application
Cache Behavior using Regression Models. In IEESD: The 11th

International Workshop on Industrial Experience in Embedded Systems
Design (IEESD) IEEE, 2021.

xii

Papers not included in thesis

Paper G : J. Danielsson, M. Ashjaei, M. Behnam, T. Sörensen, M. Sjödin, T.
Nolte Performance Evaluation of Network Convergence Time Measure-
ment Techniques. In 22nd Emerging Technologies and Factory Automa-
tion (ETFA), IEEE, 2017.

Paper H : J. Danielsson, N. Tsog and A. Kunnappilly A Systematic Mapping
Study on Real-time Cloud Services In 1st workshop Quality Assurance
in the Context of Cloud Computing (QA3C), IEEE, 2018.

Paper I : J. Danielsson, M. Jägemar, M. Behnam and M. Sjödin. Investigat-
ing Execution-Characteristics of Feature-Detection Algorithms. Work
in progress paper Published in proceedings of the 22nd Emerging Tech-
nologies and Factory Automation (ETFA). IEEE, 2017.

Paper J : S. Imtiaz, J. Danielsson, M. Behnam, G. Capannini, J. Carlson and
M. Jägemar Towards Automatic Application Fingerprinting Using Per-
formance Monitoring Counters. In 7th Published in proceedings of En-
gineering of Computer Based Systems (ECBS), ACM, 2021.

Paper K : S. Imtiaz, J. Danielsson, M. Behnam, G. Capannini, J. Carlson and
M. Jägemar Automatic Platform-Independent Monitoring and Ranking
of Hardware Resource Utilization. In 26th Published in proceedings
of the Emerging Technologies and Factory Automation (ETFA), IEEE,
2021.

xiii

Contents

I Thesis 1

1 Introduction 3

1.1 Scope of the thesis . 5

1.2 Thesis outline . 5

2 Background 7

2.1 Internal memory subsystem of a computer 7

2.1.1 Address management 9

2.1.2 Translation lookaside buffer 10

2.1.3 Registers . 11

2.1.4 Cache memories . 12

2.2 Performance monitoring unit 15

2.3 Application performance . 16

2.3.1 Resource-boundness 17

2.4 Resource sharing . 18

2.4.1 Memory sharing . 19

2.5 Resource isolation . 20

2.5.1 Cache coloring – an example of an isolation technique 21

3 Research Overview 23

3.1 Problem formulation . 23

xv

3.1.1 Identification of resource contention 24

3.1.2 Resource management 24

3.2 Research methodology . 25

3.3 Research approach . 26

3.4 Delimitations . 27

4 Related work 29

4.1 Resource-boundness . 29

4.1.1 Understanding cache contention 30

4.1.2 Utilization of isolation techniques 32

4.2 Performance evaluation . 34

5 Thesis contributions 37

5.1 TC1 – Ad-hoc monitoring of performance 40

5.2 TC2 – Automatic resource-boundness determination 41

5.3 TC3 – Methods for measuring the degree of resource-isolation
in a system . 44

5.4 TC4 – Dynamic allocation of cache memory 46

5.5 Summary of papers . 47

5.6 Overview of included papers 48

5.6.1 Paper A: Measurement-based evaluation of
data-parallelism for OpenCV feature-detection
algorithms . 48

5.6.2 Paper B: Resource Dependency Analysis in Multi-core
systems . 48

5.6.3 Paper C: LLM-shark – A Tool for Automatic Resource
-boundness Analysis and Cache Partitioning Setup . . 49

5.6.4 Paper D: Run-Time Cache-Partition Controller for
Multi-Core Systems 50

5.6.5 Paper E: Automatic Quality of Service Control in
Multi-core Systems using Cache Partitioning 50

xvi

5.6.6 Paper F: Run-Time Cache-Partition Controller for
Multi-Core Systems 51

5.6.7 Paper G: Modelling Application Cache Behavior using
Regression Models 52

6 Conclusions and Future Work 53

6.1 Future Work . 55

Bibliography 56

II Included Papers 61

7 Measurement-based evaluation of data-parallelism for OpenCV
feature-detection algorithms. 63

7.1 Introduction . 66

7.2 Background . 68

7.2.1 Feature detection . 68

7.2.2 Parallel programming 70

7.2.3 Shared memory . 71

7.3 Approach . 72

7.3.1 OpenCV feature detection 72

7.3.2 Performance Monitoring 73

7.4 Experiment . 74

7.4.1 Data partitioned measurements 76

7.4.2 Keypoints detected 79

7.4.3 Execution time differences 81

7.4.4 Execution Characteristics 84

7.5 Conclusions . 87

7.5.1 Future work . 88

8 Paperf 93

xvii

8.1 Introduction . 96

8.2 Background . 97

8.2.1 Application performance 97

8.2.2 Resource boundness 98

8.2.3 Profiling resource boundness 100

8.2.4 Considered resources 100

8.2.5 Related work . 101

8.3 Method . 102

8.4 Characterizations . 103

8.5 Discussion of applicable methods 106

8.5.1 Distribution of data 106

8.5.2 Filtering interesting data points 107

8.5.3 Relationship evaluation 109

8.6 Summary . 111

8.6.1 Future work . 112

9 Paper C: LLM-shark – A Tool for Automatic Resource-boundness
Analysis and Cache Partitioning Setup 115

9.1 Introduction . 118

9.2 Background . 119

9.2.1 Performance counters 119

9.2.2 Resource-boundness 120

9.2.3 Cache partitioning 121

9.2.4 Analyzing resource-boundness 122

9.3 Methodology . 123

9.3.1 System model . 124

9.4 Application experiments . 126

9.4.1 Baseline scenario . 127

9.4.2 Resource contention 129

xviii

9.5 Partitioning experiments . 133

9.5.1 Cache partitioning performance impacts 133

9.5.2 Initial cache partitions 135

9.5.3 Discussion . 139

9.6 Related Work . 139

9.7 Summary . 140

9.7.1 Future work . 141

10 Paper D: Testing Performance-Isolation in Multi-Core Systems 145

10.1 Introduction . 148

10.2 Background . 150

10.2.1 Jailhouse hypervisor 150

10.3 Shared resource contention 151

10.3.1 CPU utilization . 152

10.3.2 Internal Memory Contention 153

10.3.3 Memory bus contention 154

10.4 Performance isolation . 154

10.4.1 CPU isolation test 155

10.4.2 L2-Cache isolation test 157

10.4.3 Memory bus isolation test 158

10.5 Conclusion . 161

11 Paper E: Automatic Quality of Service Control in Multi-core Sys-
tems using Cache Partitioning 165

11.1 Introduction . 168

11.2 Background . 169

11.2.1 Application Quality of Service 169

11.2.2 Cache contention . 169

11.2.3 Cache partitioning 170

xix

11.2.4 Related work . 172

11.3 Cache partition distribution 173

11.4 Implementation . 174

11.5 Experiment setup . 175

11.5.1 Test applications . 176

11.5.2 Controller setup . 176

11.6 Partitioning experiments . 177

11.6.1 Initial experiment . 177

11.6.2 Naïve cache partitioning 178

11.6.3 Fair distribution . 179

11.6.4 Reference distribution 181

11.6.5 Priority distribution 183

11.6.6 Equal priority distribution 185

11.6.7 Discussion . 187

11.7 Summary . 188

11.7.1 Future work . 188

12 Paper F: Run-Time Cache-Partition Controller for Multi-Core
Systems 191

12.1 Introduction . 194

12.2 Background . 195

12.2.1 Partitioning to avoid LLC contention 195

12.2.2 Cache partitioning effect 196

12.3 Cache partition decision . 198

12.3.1 Controller implementation 200

12.4 Experiments . 202

12.4.1 Point of saturation - Correlation threshold 203

12.4.2 Summary of experiments 205

12.4.3 LLC-PC evaluation 206

xx

12.5 Related Work . 209

12.6 Conclusion . 210

13 Paper G: Modelling Application Cache Behavior using Regression
Models 213

13.1 Introduction . 216

13.2 Background . 217

13.2.1 Computer resource usage 219

13.2.2 Measurement strategy 219

13.2.3 Regressive performance analysis 220

13.2.4 Related work . 222

13.3 Method . 222

13.3.1 Model System Behaviour 222

13.3.2 Evaluation Methodology 224

13.4 Experiments . 225

13.4.1 Execution scenario 225

13.4.2 Environment . 226

13.4.3 Execution . 227

13.4.4 Model Comparison 229

13.5 Dicussion of applicable methods 233

13.6 Summary . 234

13.6.1 Future work . 235

xxi

Part I

Thesis

1

Chapter 1

Introduction

Multi-core systems are becoming the de-facto standard in both the commercial
off-the-shelf (CoTS) and embedded computation domains. Multi-core proces-
sors present greater computational capacity while offering a decrease in size
and weight than their single-core predecessors. Multi-core processors enable
parallelization at both application-level and system-level and simultaneously
execute different applications on different cores. Multi-core systems often im-
plement an internal shared-resource structure to increase inter-core communi-
cation speeds. Examples of shared resources include the Translation lookaside
Buffers (TLB), The Last Level Cache (LLC), the memory bus, and the general-
purpose I/O peripheral. We exemplify a typical shared resource-structure in
Figure 1.1.

Figure 1.1: Example of a typical common 4-core system

3

Figure 1.1 exemplifies a modern computer’s memory subsystem that contains
multiple shared resources across different cores, such as the cache memo-
ries and the memory bus. Each core also shares resources logically between
threads, such as the branch predictor unit (BPU) and floating-point unit (FPU).
Processor manufacturers have since the multi-core paradigm’s release followed
the trend to add additional cores to the same chip. Intel®, for example, imple-
ments a 10-core architecture in their latest high-performance versions of the
Comet-Lake processor. At the same time, Xilinx offers up to 4-core’s in many
of their chip solutions that uses an ARM architecture.

An increase in computational cores may seem tempting at first glance since the
overall computational capacity increases. However, increasing the core count
of a processor also increases the capacity requirements on the shared com-
puting resources such as the LLC. Multi-core architectures allow applications
executing on different cores to utilize the LLC simultaneously, wherefore a
race-condition appears where multiple applications on different cores requests
to use the LLC. This occurrence is called cache contention and causes se-
vere execution-time fluctuations for applications. LLC contention is one of the
major bottlenecks trying to bring multi-core processors into the time-critical
domain [8].

This dissertation aims to improve the knowledge on resource contention in
multi-core systems, caused by simultaneous resource usage from executing
applications. We propose ad-hoc methods for measuring an application’s re-
source usage and techniques to automatically determine the dependency be-
tween an application’s performance and a specific hardware resource, which
we denote as resource-boundness. We use resource-boundness calculations
for determining partitioning methods that reduce resource contention in multi-
core systems. Our final contribution includes run-time reconfiguration of a
partitioned system to avoid wasting hardware resource space.

4

1.1 Scope of the thesis

This thesis focuses on homogeneous multi-core systems that utilize two or
more cores to execute applications. We target the Last-level cache (LLC), an
encompassing term for all caches located last in the memory hierarchy. The
LLC is most commonly physically shared across a processor’s different cores
and links the connection between a processor’s local cache and the memory bus
and is especially prone to shared-resource contention since it is shared across
different cores. We target two different architectures; ARM-cortex A53 [1]
where the LLC is implemented as an L2-cache and therefore stands as the
second step in the internal memory hierarchy and Intel® CoreTM-i5 3570 [12];
where the LLC is implemented as an L3-cache and therefore the stands as the
third step in the memory hierarchy.

Our research mainly targets shared-resource contention, which happens due
to the simultaneous use of multiple cores. We focus mainly on resource con-
tention in the LLC, exemplified by an L3-cache in Figure 1.1, but we also touch
the topic of CPU contention.

1.2 Thesis outline

This thesis is composed of two parts. Part I, Chapters 1–6, describes the
shared-resource contention problems and our research results. Part II contains
the included papers, from Chapters 7–13.

Part I is organized as follows: Chapter 2 gives background information on
multi-core computing and explains the origins of shared-resource contention.
We also explain the memory subsystem of a computer and exemplify how to
avoid shared-resource contention by isolating shared resources. Chapter 3 lists
the research challenges, formalizes the challenges into research questions, and
describes the methodology we have used to solve these challenges. Chapter 4
provides relevant related work, and Chapter 5 discusses our thesis contribu-
tions in detail with respect to the research challenges. Chapter 6 finalizes part I
part of the thesis with discussions, conclusions, and directions for future work.
Part II consists of the seven papers included in the thesis.

5

Chapter 2

Background

2.1 Internal memory subsystem of a computer

It is essential to understand how data requests travel through the memory hi-
erarchy to grasp the resource contention problem. A data request starts with a
load instruction in the CPU and must (if “unlucky") search through the inter-
nal memory hierarchy, the main memory and finally the hard drive to locate the
requested data. The internal memory subsystem, in turn, is very complex and
usually consists of several layers of caches and translation lookaside buffers
(TLB’s). The sizes of the different memory units forms a pyramid. The least
spacious memory (the register memory) locates at the top of the pyramid, while
the most spacious memory (the hard drive) locates at the bottom.

Figure 2.1: Model on the memory hierarchy

The chain of a computation always starts in the processor, where an operation
uses one or more registers. The CPU holds a small set of general-purpose regis-
ters - modern 64-bit Intel® processors, for example, host a total of 16 different

7

general-purpose registers named R1-R16. The processor uses these registers
to perform various operations such as load, store, addition, subtraction, jump,
and comparison. Figure 2.1 illustrates the memory hierarchy starting with the
registers on top and the hard drive at the bottom. The hard drive is most spa-
cious, followed by the DRAM, caches are next, and the register memory is the
least spacious.

Figure 2.2: The entire memory call chain

Each memory operation contains a lookup procedure which checks if the re-
quested data segment is available in the respective memory - see Figure 2.2.
These memory lookups start in the caches/TLBs where caches store data and
TLBs store address translation data. Data lookup failures in caches are called
cache misses and require re-writes into the cache. Address translation lookup
failures in TLBs are called TLB misses and require the requested address trans-
lation to be read from the page table in the physical memory. Lookups failed
from the page table in the physical memory are called page faults and require
the requested address to be read from disk. The following sections provide
background information on address management and data management.

8

2.1.1 Address management

The Dynamic Random Access Memory (DRAM) divides addressable data into
into words. The DRAM use a 32-bit or 64-bit wide word depending on the
computer architecture. The program address space of modern computers is of-
ten significantly more spacious than the actual DRAM address space. Modern
computers implement virtual memory which is a technique that uses the hard
disk as a secondary memory address storing space. Using virtual memory re-
duces the possibility of system crashes due to insufficient physical memory.
The virtual address space is significantly more spacious than the physical ad-
dress space - a 64-bit system hosts a total of 264 available entries in the virtual
memory, while most physical memories in regular computers only host 234 to
235 entries in the physical memory. Since the virtual address space is signifi-
cantly larger than the physical memory, there is no possibility to fit all virtual
addresses in the physical address space. The virtual address of a word is there-
fore translated into a physical address. The translation information for a word
is called a page and is stored in a list called the page table, see Figure 2.3.
Entries in the page table are called page table entries.

Figure 2.3: Illustration on page table mapping

The memory divides into pages. Each page has a size of 4 KB on most archi-
tectures, but the size may be configurable depending on system requirement.
It is possible to use huge pages, which typically reside in the megabyte or gi-
gabyte range to extend the map for very large memory regions. Virtual address
requests trigger a lookup in the page table. If the requested virtual address is
present in the physical memory, a page hit has occurred. If the requested vir-
tual address is not present within the physical memory but instead is located
on the disk, a page miss has occurred, the memory content is brought from the

9

disk. Page misses require new page table entries to be made for the requested
address and cause substantial latency.

2.1.2 Translation lookaside buffer

The page table is relatively spacious, but also slow. The TLB is a small
hardware-implemented buffer for storing page table entries and increases ad-
dress translation latencies. The TLB often contains a small number of entries,
such as 32 or 64 entries. The TLB is thus significantly less spacious than
the page table, but also significantly faster – the TLB is essentially another
cache used for address translations instead of data. TLB is often arranged into
different types of TLB’s for instruction and data - ITLB and DTLB which de-
termines the page address space for instructions and data. Figure 2.4 depicts
the lookup procedure and presents the respective penalties for each stage.

Figure 2.4: Virtual memory lookup procedure

The figure exemplifies an address request call-chain. The CPU instantiates
an address lookup process for data in the first step. The address is returned
directly if the requested address is present within the TLB (as whole, or as
pointer to disk). The Page table is instead searched if the TLB’s does not
contain any information on the requested address. The disk is searched if the
page table does not contain the requested address. Each step difference cycle
penalties since it different amount of time to fetch addresses from the units.
TLB’s are fastest (1 cycle) and the disk is slowest (millions of cycles).

10

2.1.3 Registers

The register memory is the closest memory to the processor, but it is small:
32 or 64 bits per register depending on architecture. The registers are split
into different subsets such as general-purpose registers, branch history regis-
ters, special-purpose registers, and clock registers. The special-purpose regis-
ters are pre-defined and are mainly used to interact with the hardware of the
chip. The general-purpose registers are used to perform operations, also called
instructions. Instructions include arithmetic-, logical-, comparison-, and mem-
ory operations. When executed, an instruction splits into smaller parts and is
sent to the instruction pipeline. The pipeline executes these partial instructions
in stages. We exemplify a classic RISC pipeline that uses 5-pipeline stages in
figure 2.5, for demonstrative purposes.

Figure 2.5: Classic 5-stage RISC pipeline [4]

A processor that utilizes a classic RISC-pipline executes an instruction in five
different stages (IF, ID, EX, MEM, WB). An instruction that goes through
the final stage in the processor pipeline is completed and marked as retired.
The number of pipeline stages and the functionality of each pipeline stage
varies greatly between different processors. Modern pipelines typically split
an instruction into even more stages, including, e.g., predecode and instruction
queues. For example, ARM Cortex-A53 uses a dual-issue, 8-stage pipeline [1]
that and Intel® CoreTM Ivy-Bridge uses a pipeline length of 14-18 stages [13].

11

2.1.4 Cache memories

In this thesis, we focus on the management of data used by processes executing
in parallel. Therefore, we only discuss data caches and not instruction caches.
In this section, we discuss the cache hierarchy from a three-layer cache per-
spective. This type of hierarchy is the most commonly occurring structure in
Intel® desktop computers. Figure 2.6 shows the cache hierarchy and cache
size of an Intel® CoreTM i5-3570k processor.

Figure 2.6: Intel® CoreTM i5-3570k cache hierarchy

The cache is the second closest memory to the processor and is used to improve
memory latencies of applications [7]. Modern Intel® chips often use several
cache layers of different sizes. One of the most common designs includes
two L1-cache’s (one L1I-cache for instructions, and one L1D-cache for data)
and one unified (instruction + data cache) L2-cache per core. The L2-cache
connects to one system-wide L3-cache, that is shared by all cores in the system.
The L1-cache is closest to the processor and therefore fastest, but also the
smallest. The L2-cache is located further away from the processor and slower
than the L1-cache, but more spacious. The L3-cache is furthest away from the
processor and, therefore, slowest, but is also most spacious. Data requests from
the processor start a lookup procedure in the cache, exemplified in a three-level
cache system by Figure 2.7.

12

Figure 2.7: Three-level cache lookup procedure

The cache lookup procedure searches for the requested data within the sections
of the cache memory, known as cache lines or cache blocks. Data found in
the cache lines of the L1-cache causes an L1-cache hit and returns the data
immediately to the processor for use. Data not found in the cache lines of the
L1-cache causes an L1-cache miss and triggers a second lookup in the upper
levels of the cache hierarchy to continue searching for the data. An L1-cache
hit causes no performance penalty and is, therefore, preferable to an L1-cache
miss, which causes extra latency, called cache miss penalty. The cache lookup
procedure is common for all the cache levels. However, the latency caused
by a cache miss depends on which cache level caused the miss. L3-cache
misses require data from the DRAM and therefore causes the highest latency.
L3-cache misses also require insertion of the DRAM data into the lower level
L2-cache and L1D-cache. Misses in the L1D-cache cause the lowest latency
while the miss penalty of the L2-cache falls in between. The L3-cache has the
highest hit chance since it is the most spacious cache, while the L1D-cache
has the lowest hit chance. The last level cache is also often shared between
multiple cores, which presents interesting problems, described in section 2.4.1.

13

Cache memories are relatively small (usually ranging in the KB to single-digit
MB sizes) compared to the DRAM. The small cache memory space means that
the likelihood of experiencing only cache hits during application execution
is small. The memory footprint of most applications is usually greater than
the LLC. Since caches have only a limited memory space, the cache will in-
evitably, at some point, become full during application execution. Cache’s im-
plements memory replacement strategies such as least recently used (LRU) and
first in first out (FIFO) to determine what data to replace when the cache is full.
These strategies are called cache eviction policies. Eviction policies are one of
the prime reasons for cache contention – a hazardous situation where different
applications continuously steal cache memory from each other. Cache con-
tention is further described in detail in section 2.4.1 while cache mechanisms
for dealing with incoming data are described in section 2.1.4.1.

2.1.4.1 Cache data mechanisms

Cache lines are inserted into rows of the cache matrix, also called sets. The
memory location placement for insertion of new cache lines into the cache de-
pends on the cache placement policy. Caches are divided into three categories;
direct-mapped, fully associative, and set associative. Cache’s are structured
into n ∗m matrices where n represents the columns (cache ways) of the cache
and m represents the cache rows (cache lines).

• Direct-mapped caches - the cache is organized into multiple sets, one set
for each individual cache line, and can be represented as an n∗1 matrix.

• Fully associative caches - the cache is organized as one set, which con-
tains all different cache lines, and can be represented by an 1∗mmatrix.

• Set associative - a tradeoff between fully associative and direct mapped.
The set-associative cache contains multiple sets, each set contains mul-
tiple cache lines and can be represented as an n ∗m matrix.

These three policies have their respective advantages and disadvantages, and
choosing one cache placement policy needs to be carefully thought out before
committing to one policy. This section will only discuss set-associative caches
since they are the most relevant to this thesis and also most commonly used in
modern computers. The structure of a set-associative cache can be represented
as an n ∗m matrix, which means the entire set of cache lines is split between

14

different partitions of the cache. The smaller partitions are called ways. Fig-
ure 2.8 exemplifies the lookup procedure using a 2-way set-associative cache.

Figure 2.8: 2-way set-associative cache lookup example

The set-associativity of a cache creates a border between two ways. Incom-
ing data will end up in either the first or second way of the cache. The
set-associative bits determine the cache-way placement of data. If the set-
associative bit is 0, data is placed in the first cache way; if the set-associative
bit is 1, the data is placed in the second cache way. The index bits determine
the row that stores the data. The final tag bits are used during cache lookups
to match existing cache lines with new incoming data. If the tag bit of a new
incoming data is equal to the tag bit of a cache line currently in the cache, a
cache hit has occurred. The last valid bit is a final check to see if the cache
line has been loaded with valid data yet. Set-associativity makes it possible
to choose which cache line gets evicted in case the cache gets full. It further-
more enables isolation of tasks, further discussed in section 2.11, which can be
accomplished by techniques such as page coloring.

2.2 Performance monitoring unit

It is possible to monitor system behavior using special-purpose registers. The
performance monitoring unit (PMU) is responsible for sampling the hardware
performance counters, a set of special-purpose registers built into processors.
The performance counters are used for monitoring certain hardware events
within the processor and do not cause any extra overhead when used. Modern
PMUs support a vast set of events for different purposes, such as profiling for

15

system optimization. We exemplify some PMU events in Table 2.1 to give a
brief idea of what can be measured using the PMU.

Table 2.1: Example of PMU events provided in the ARM cortex A-53 architecture

PMU event Description
L1D_CACHE_REFILL Counts L1D-cache line replacements
L2D_CACHE_REFILL Counts L2-cache line replacements

BUS_ACCESS Counts memory bus accesses
L1D_TLB_REFILL Counts TLB replacements

Performance counters are originally per-core bound, meaning each perfor-
mance counter only measures the events of its own designated core. It is,
however, possible to insert trace functionalities to the PMU, which enables
the measurement of process ID (PID) specific events rather than core-specific
events. Tools such as perf [29] create PMU mappings for the Linux operating
system and provide a more accessible interface for the usage of performance
counters - compared to using assembly instructions to set up the PMU events.
Other tools such as the Performance API (PAPI) [21] re-use the PMU map-
pings created by perf and enable an in-code usable API to trace performance
counter events. Performance counters run ad-hoc of an application and incre-
ment for each occurred event until the application has finished executing or
until the programmer sends a stop command to the register.

2.3 Application performance

It is possible to measure an application’s performance in several ways, includ-
ing total execution time, data processed per time interval (such as packets per
second and frames per second), memory operations per time interval, etc. In
this thesis, we view performance as the raw throughput of instructions that
passed the final stage in the processor pipeline. Successfully executed instruc-
tions have passed all pipeline stages and are marked as retired once passing
the final step. Therefore, an application should display a higher count of in-
structions retired in a time interval than a low count since more executed in-
structions per time interval typically mean the application finishes faster and,
therefore, displays a better execution time. There are, however, exceptions to
this rule since a high number of instructions does not necessarily mean that
the application is executing useful work. For example, a network application
that utilizes a busy-wait loop while waiting for packages to arrive will display

16

a high count of instructions retired while doing no valuable work. For such ap-
plications, it is not feasible to use instructions retired as a performance metric,
but instead, other metrics such as packets per second should be used.

It is preferable for an application to exhibit a high count of instructions retired
since it means the application will execute more instructions and complete its
execution faster than if run with a low count of instructions retired in a time
interval. Simple architectures that operate on one edge of a squared-wave clock
can execute one instruction per cycle, assuming zero delays in the pipeline.
Thus, in absolute ideal settings, an application will execute one instruction
every cycle. Many things, such as memory faults and branch prediction faults
can happen in modern computers that hinder the pipeline from executing one
of the stages; such faults cause pipeline stalls and temporarily suspends the
pipeline from executing.

Pipeline stalls occur when instructions or data are not yet available and can
result from data dependencies, branch mispredictions, and memory not being
available. The processor cannot execute instructions during pipeline stalls and
thus has to wait until the stall has been resolved to execute instructions again.
Pipeline stalls decrease the number of instructions possible to execute in a time
interval. An application’s pipeline stalls vary depending on the application
functionality; sort algorithms typically contain many conditional statements
that make them prone to branch mispredictions. Image processing algorithms
contain lots of data transfers, making them prone to memory stalls. Appli-
cations with poorly structured code can suffer from structural data hazards.
An application’s performance thus builds a dependency towards such pipeline
stalls, high count of stalls means less instructions are executed compared to the
ideal case without pipeline stalls.

2.3.1 Resource-boundness

Several resources can cause pipeline stalls, such as the TLB’s, the BPU, and
caches, affecting an application’s performance. An application’s performance
which decreases when the pipeline stalls increases, forms a dependency to-
wards the resource that causes the pipeline stalls. The PMU offers capabilities
to monitor most events that cause pipeline stalls and include events such as
L1-cache- and L2-cache-misses, branch mispredictions, and TLB-misses.

We call the dependency between an application’s performance and a specific
hardware resource resource-boundness and illustrate an example of resource-
boundness in Figure 2.9.

17

Figure 2.9: L2-cache-bound matrix multiplication

Figure 2.9 plots the millions of instructions retired on the left-hand side y-axis
(blue squares) and the number of L2-cache-misses on the right-hand side y-axis
(red rhombus) of a 200x200 matrix multiplication. We sample the performance
counters instructions retired and L2-cache misses every ten milliseconds until
the matrix multiplication finishes its execution. The x-axis marks each sam-
ple number. We also plot the moving averages with a window size of 10 to
emphasize the of the resource-boundness.

The performance of the matrix multiplication shows a dependency to the
L2-cache-misses where an increase in L2-cache-misses leads to a notable de-
crease in instructions retired, and vice-versa, which in turn means the matrix
multiplication is L2-cache-bound. Similar dependencies can be investigated
for all shared resources which have PMU-counters available to monitor. Ap-
plications that display a high resource-boundness towards one resource will
perform significantly worse if the capacity/size of that hardware resource is
reduced, or if that resource is simultaneously used by another core.

2.4 Resource sharing

Hardware resource sharing splits into three categories: CPU-, memory-, and
I/O-sharing [31], all of which are subject to resource contention in multi-core
systems. CPU-sharing is handled by scheduling techniques and/or virtualiza-

18

tion containers that control CPU utilization for specific tasks. I/O-sharing is
also handled by virtualization techniques that create virtual I/O drivers which
schedule I/O requests into software buffers to avoid contention problems that
can occur. Memory sharing is the most complex mechanism in multi-core
system since it spans over multiple units such as DRAM, TLB’s and caches.
In this thesis, we focus mainly on the consequences of cache sharing in multi-
core systems. The following subsection explains cache sharing and its negative
performance implications.

2.4.1 Memory sharing

Memory sharing is present in all modern multi-core systems due to the lim-
ited memory space of the internal memory units such as caches and TLB’s.
The shared L3-cache is an excellent example of unpredictable performance in
multi-core systems due to the cache replacement mechanisms. Figure 2.10 ex-
emplifies a system suffering from cache contention due to the usage of multiple
cores.

Figure 2.10: Example of LLC contention

The figure shows the memory requests of two applications app0 and app1, ex-
ecuting on core 0 and core 1. The applications are synchronized, which means
app0 is running just about before app1. When the applications are synchro-
nized in this manner, the shared cache memory starts storing the memory re-
quests from each application in a sequential way. The cache memory requests
start with request A from core 0, stored in the first cache line, continues with
request x from Core 1, etc. Sharing the cache starts to become a problem once

19

the maximum cache capacity is reached. The maximum cache capacity in the
example is eight cache lines, and the maximum capacity is reached once app0
writes F to the cache. The next memory request, xy, from app1 now will evict
one of the existing cache lines to make room for the new xy request.

In the example, we have used LRU as eviction policy, which means A will
be the evicted cache line. The next memory request from app0 is A, which
was recently replaced by the previous xy memory request from app1. The A
memory request will thus result in a cache miss and suffer from a cache miss
penalty. This occurrence would not have happened if the xy memory request
from app1 did not evict that cache line - it would instead have resulted in a
cache hit. The chain of replacements continues where app0 and app1 contin-
uously replace the cache lines of each other, resulting in a behavior known as
thrashing. Thrashing can be very hard to predict since it often occurs due to
two workloads executing independently. Thrashing is not limited to only the
cache but can also occur in the TLB or the page table.

2.5 Resource isolation

Hardware isolation using software techniques is a concept based on removing
the resource sharing aspects of a multi-core system without altering the under-
lying hardware architecture, thus creating an isolated environment. Therefore,
executing applications within an isolated domain should not affect applications
in another isolated domain.

Complete isolation of entire systems can, however, become immensely com-
plex due to a large number of hardware units within a computer, see Figure
2.11 (a system with two partitions). The figure shows a complex environment
with many shared hardware units such as the DRAM, the caches, memory bus,
I/O and TLB’s. These units need to be put in different isolated domains in
order to provide full isolation including different techniques such as TLB col-
oring [23], DRAM bank partitioning [37], memory bus bandwidth scheduling
[38], I/O virtualization [27].

Section 2.1.1, 2.1.3 and 2.1.4 explain that the memory hierarchy call chain has
different dependencies. The cache memory can only be utilized at maximum
efficiency if there are minimal misses in the TLB because all data needs an
address. The TLB can only be utilized at maximum efficiency if there are min-
imal misses in the Page Table. The resource contention in one certain hardware
unit can happen due to resource contention in one of the higher memory hier-

20

Figure 2.11: Example of a completely partitioned system

archies. Therefore, there is a risk that indications of resource contention in a
certain hardware unit can be falsely reported.

2.5.1 Cache coloring – an example of an isolation technique

We exemplify cache isolation in Figure 2.12, through cache coloring.

Figure 2.12: Thrashing avoided by cache coloring

The idea behind cache coloring is to remove the "shared" aspects of the
cache through software techniques that alter how memory is mapped from
the DRAM to the cache. Memory requests from different applications are
assigned specific colors corresponding to specific memory regions within the

21

cache. Enforcing the cache coloring methodology disables applications on
different cores from using each other’s cache lines. The only cache evictions
which occur now will happen due the application that “owns" the colour, as
can be seen on core 1, where xy replaces the y cache line. Since the cache
coloring methodology disables applications from using each other’s memory,
the cache is now isolated.

We compare the effects of cache partitioning to a non-partitioned system in
Figure. 2.13. The figure shows 150 executions of a 200x200 matrix multipli-
cation that runs on core 0. The y-axis plots the execution times, and the x-axis
marks one matrix multiplication execution. We start another matrix multipli-
cation on core 1 at execution 75.

Figure 2.13: Cache coloring

The figure further shows a matrix multiplication running under two system
setups; unpartitioned Linux (blue) and cache partitioned Linux (orange). We
call the matrix multiplication that runs in a non-partitioned system matmult1
and the matrix multiplication that runs within a partitioned system matmult2.
Matmult1 is significantly affected when the second matrix multiplication is
started on another core. Matmult2 presents a slightly decreased performance
compared to matmult1 for the first 75 iterations, which is an effect of the
cache partitioning overhead. The main benefit of partitioning is shown on
iteration 75 when starting another matrix multiplication on another core, where
matmult2 displays no performance degradations.

22

Chapter 3

Research Overview

3.1 Problem formulation

Avoiding shared-resource contention is important for time-critical systems,
since it negatively impacts an application’s performance and predictability.
Unfortunately, shared-resource contention is also difficult to detect – system
engineers have to create stand-alone testing suites that overload a shared re-
source’s capacity to gain knowledge on which applications may experience
performance degradation due to resource contention. This process cannot be
done during system run-time and adds additional overhead to system testing.
Finding resource-contention and managing system partitions in a multi-core
system is thus a system engineer’s task. This thesis aims towards migrating
this task to an automated process managed by an operating system. We for-
malize this thesis overall goal as follows.

Thesis goal: An automated resource-contention mitigation process.

Two significant challenges that arise from our overall goal are; i) identification
of shared-resource contention and; ii) appropiate allocation of resources using
isolation techniques. We discuss the two challenges in the following subsec-
tions.

23

3.1.1 Identification of resource contention

There are techniques such as cache partitioning that solve resource contention
in the cache memory but they often come at a cost of execution-time over-
head [5] [6] [37]. It is therefore important to discuss when and how to use
such isolation techniques. In this thesis we employ a cache partitioning method
called page coloring which is suitable for removing resource contention, but
can on the other hand dramatically reduce an application’s performance if as-
signed inappropriately. Therefore, it is essential to assign cache partitions only
to applications that display a boundness towards the LLC, in order to avoid
waste of resource space. Hence, the first research challenge that we face is the
identification of resource-boundness. Identification of resource-boundness is
critical to multi-core computations since it quantifies the risk of an application
suffering from shared-resource contention. An exact measurement of an appli-
cation’s resource-usage is, however, time-consuming to provide, due to code
and hardware complexity. System engineers need to carefully analyze an appli-
cation’s hardware interactions within the code to create a resource-boundness
model, which can become a time-consuming process. We formalize research
challenge 1 as follows:

Research challenge 1 (RC1): Automatic identification of shared-
resource contention and resource-boundness.

3.1.2 Resource management

There are finite hardware resource capacities in a computer. Therefore it be-
comes an interesting challenge to determine how to allocate partition space for
applications running in a system. Allocating too small amount of resources
may lead to unacceptable application performance degradation. In contrast,
allocating too much resources for an application may lead to depletion of re-
sources and degraded performance for other applications (without any signif-
icant gain for the application that have been overprovisioned with resources).
We must consider each application’s resource-boundness to allocate the correct
amount of resources to an application and furthermore gain an understanding
on how a change in resource allocation will affect the application’s perfor-
mance. We formalize research challenge 2 as follows:

Research challenge 2 (RC2): Appropiate allocation of resources using
isolation techniques.

24

3.2 Research methodology

This thesis addresses the research challenges using empirical studies. The em-
pirical studies are concentrated on executing industrial workloads on a tradi-
tional operating system for embedded applications. We have used a set of fea-
ture detection algorithms which are image processing algorithms, common in
obstacle localization and avoidance domains such as avionics and autonomous
vehicles. We also use synthetic workloads, that occupy a particular resource.
We categorize our studies into two types, exploratory and implementation. We
list our papers and the corresponding type for each paper as follows:

Publication RC Type
Paper A 1 Exploratory
Paper B 1 Exploratory
Paper C 1 & 2 Implementation
Paper D 2 Exploratory
Paper E 2 Implementation
Paper F 2 Implementation
Paper G 1 Exploratory

Table 3.1: The contribution of the individual papers to the research sub-goals

In our exploratory studies, the main research focus is investigating the effects
of resource-contention in multi-core systems. We first execute application
tests on one core, without any deliberately disturbing loads on other cores.
The single-core execution of an application is our reference point for compar-
ison and we call this baseline execution. Once we have established a baseline
execution of an application, we execute the application in a multi-core envi-
ronment. the multi-core environment also runs other applications on different
cores. The outcome from our exploratory studies are conclusions on why ap-
plications behave in a certain way in a multi-core setting.

Our implementation studies proposes methods to counter resource-contention
behavior detected in our exploratory studies. We compare our solutions to ex-
isting techniques and discuss positives and drawbacks. The outcome from our
implementation studies are application binaries written in C/C++ for Linux.

25

3.3 Research approach

We use a methodology based on empirical case studies on memory-intensive
applications combined with theoretical reasoning. Figure 3.1 provides an
overview of our research process. The research steps are listed as follows:

1. Identification of the research problem and establishing an overall re-
search goal of the thesis. This step also includes state of the art research.

2. Dividing the research problem into smaller and more manageable re-
search challenges.

3. Categorize the research challenges into thesis contributions which more
clearly defines what problem is solved.

4. Perform case study on application run-time behavior.

5. Perform solution suggestions.

6. Evaluate solution suggestions.

Figure 3.1: Research methodology

Step 1 provides an overall goal for the thesis, while step 2 splits the overall
goal into research challenges. Our iterative investigation process starts from

26

step 3, where we target one research challenge and work towards solving that
research challenge. In step 4, we conduct our exploratory research in forms of
case studies. The case studies produces a deeper understanding on application
behavior in mutli-core systems. In step 5 we propose implementation solutions
to manage resource isolation techniques. In step 6, we evaluate the usefulness
of our proposed solutions.

3.4 Delimitations

This thesis work was conducted closely with representatives from several com-
panies that provided input to our case studies. The industrial input included
use-cases that we evaluate to ensure that they have an industrial relevance.
Our tests execute in a Linux environment on CoTS hardware which means
we do not simulate an environment for our tests. The main strength of this
approach is that the tests for a specific platform become realistic since we op-
erate in an environment that contains real hardware and all software events
that are tied to this hardware. The main weakness of this approach is that the
test results are specialized to that particular platform. We design our control
and analysis methods to be generalizable for different platforms, but hardware
with different cache properties will display a difference in cache utilization.
E.g., an application that displays a strong cache boundness on one platform
could potentially display a weaker boundness on another platform with a more
spacious LLC.

We use the performance metric instruction retired, which means we must limit
the scope of our test applications to only include applications that does not
utilize busy-wait loops. We chose this approach since it enables us to auto-
matically sample an application’s performance without having to modify the
code. This approach, however, means we must limit the scope of the applica-
tions that benefits from a high number of instructions retired. I/O applications
are often stuck in tight busy-wait loops while waiting for the I/O resource to
become ready and therefore display a display a high number of instructions
retired while doing little useful work.

Our final limitation of this thesis is the usage of isolation methods. We inves-
tigate two isolation methods, Jailhouse hypervisor (For isolation of CPU and
local resources) and Palloc (For LLC partitioning). Other isolation options
such as TLB coloring, DRAM-bank partitioning, memory bus partitioning ex-
ists, but we wanted to gain a more profound knowledge in a specific contention
area (the LLC) and control resource allocation in that area.

27

Chapter 4

Related work

In our approach, we divide a multi-core system into three critical parts which
are at risk due to resource contention: the CPU, the internal memory compo-
nents, and the I/O units. In this thesis we placed our focus on investigating
internal memory.

While there exist a rich body of research looking into the isolation of shared
hardware resources that affect the execution time predictability of applications,
the following subsections discuss related work aspects that are in line with our
research goals and chosen approach.

4.1 Resource-boundness

Resource dependency analysis splits into two subcategories; tools and method-
ologies. Tools are fully-fledged automatic processes that take an application
as input, utilizes the performance counters to investigate the application’s run-
time characteristics, and then provide an output in terms of application be-
havior. In this subsection, we discuss fully-fledged tools that determine an
application’s resource-boundness using performance counters.

Scarphase [10] is a PMU-based tool that is closely related to our research on
the boundness topic and presents methods for investigating performance coun-
ters in detail. Sembrandt et al. [25] [26] discuss how to split applications into
phases according to their resource usage. The works present how to distin-
guish resource dominant parts of an application such as cache-heavy parts
and branch-prediction unit (BPU) heavy parts. The research related to the

29

Scarphase tool shows how an application utilizes computer resources differ-
ently during run-time and can therefore be used to investigate contention sce-
narios. Scarphase only investigates the resource usage and does not account
for how an application’s performance relates to that specific resource usage.

Charmon [14] is another PMU-based tool that investigates how resource usage
relates to application performance. Charmon correlates a performance metric
(such as packets per second) with a performance counter. The higher correla-
tion between the performance metric and the performance counter event means
a higher resource-boundness since the performance depends on that particu-
lar hardware resource. The difference between Charmon and our work is the
definition of performance, where Charmon views performance as something
which needs to be user-specified depending on application functionality. We
use a generic metric rather than an application specific which allow our method
to to analyze legacy software binaries without any annotations of the source
code. Our approach, however, limits scope of applications to non-I/O-bound
applications.

Hua et al.[11] propose a scheme utilizing curve fitting to build a model on an
application’s resource-dependency. The paper uses instructions per cycle as
performance metric and segments thread execution and into smaller segment
(similar to [25]) slices. The paper creates models on how the performance
varies with the size of a determined resource (in the paper, the variable re-
source is described as the register rename file). The main difference between
our approach in our tool and the previously presented tools is the plug-and-
play nature of our tool. Our tool can monitor and determine the resource-
boundness without modifying an application’s source code. Our approach runs
cross-platform directly on hardware and does not require simulated resources
to estimate an application’s resource-boundness.

4.1.1 Understanding cache contention

Our work mainly targets cache contention as the source for performance degra-
dation. Related methodologies to display and verify cache contention are rel-
evant to us as they provide methodologies that enforce cache contention and
thus degrade applications’ performance. Cache pirating [8] and Bandwidth
bandit [9] present methods to pollute the cache and the memory bus with an
excessive amount of data and, thus, force an application into a resource con-
tention state. Cache pirating and Bandwidth Bandit run one application on one
core while running another "resource hungry" load on another core, creating
a disadvantageous execution environment for the first application. The two

30

methodologies are essentially benchmarks on how poorly an application will
execute in the absolute worst-case conditions.

Sandberg et al. [24] utilizes cache pirating and proposes a model utilizing the
phase concept for determining when multiple co-executing applications risk
cache contention. The models rely on run-time data such as cache usage from
applications that execute. The authors then create models that estimate the per-
formance degradation of an application when running it simultaneously with
another application. The model provides an accurate estimate of an applica-
tion’s performance degradation due to contention but performs these calcula-
tions offline due to their reliance on run-time application data. Our approach
does not provide a metric for an application’s performance degradation but
instead serves as an indicator for cache contentious scenarios. Our approach
using a performance counter can, however, be used online and does not require
pre-sampling.

Chandra et al. [2] present three different models, including frequency of ac-
cess, stack distance, and inductive probability for predicting the severity of
cache contention. Subramanian et al. [28] proposes the application slowdown
model (ASM), which utilizes the cache access ratios of an application’s phases.
It demonstrates the model’s ability to predict application slowdown due to both
bandwidth and cache partitioning. Xu et al.[32] propose a shared cache perfor-
mance prediction model using histograms of an application’s cache re-usage
distance, citing a lack of performance (in terms of overhead) and throughput
from previous solutions. Zhao et al. [39] presents an approach to detect cache
contention by examining the shadow memory. The paper combines the trace
from both cache misses and cache invalidates to determine if contention ex-
ists. The solution is based on running threads and does determine the number
of cache contentions between threads.

The main difference between our work and above-mentioned studies is the uti-
lization of resource-boundness as an indicator for inbound cache contention
scenarios. The approach is less accurate compared to prediction models [2,
24, 28, 32] since we do not consider aspects such as re-use distance or cache
invalidates. Resource-boundness is determined online during the execution
of an application, can therefore be applied directly towards running systems
without pre-processing steps. We argue that our approach is better to use in
large-scale systems where the number of permutations of co-executing tasks
makes offline measurements of the complete system too time-consuming. Our
approach requires an application to run, and we can continuously build the ap-
plication’s resource-boundness profile during runtime. If the application stops
executing, we store the application’s resource-boundness value in a database

31

that is available for decision making (to partition or not to partition) the next
time this application is scheduled for execution.

4.1.2 Utilization of isolation techniques

Mittal et al. [18] present an extensive survey on different cache partitioning
methods for multi-core processors. The paper categorizes cache partitioning
research papers based on the optimization goal of each paper, i.e., what are the
algorithm proposals trying to accomplish. Mittal lists five different optimiza-
tion domains, including system fairness, QoS or priority, static energy/dynamic
energy, and power capping. QoS or priority is related to the work presented in
this thesis.

Kasture et al. [15] present Ubik, an approach designed to guarantee tail laten-
cies of latency-critical applications. The central concept of Ubik is exploiting
the scheduling of tasks. Re-assessment of cache-memory size is done when-
ever latency-critical applications are scheduled to execute. The cache memory
is redistributed to other applications once the latency-critical application goes
back to an idle state.

Moreto et al. [20] propose flexDCP, a bridge for operating systems that tries
to convert user-specified quality of service requirements to resource allocation
using performance counters of currently running applications. The flexDCP
methodology compares the current application performance versus the maxi-
mum achievable performance (i.e., when all cache partitions are assigned to
the application). FlexDCP then builds a model that estimates QoS changes
that may occur due to changing cache partition sizes. FlexDCP then allocates
cache partitions according to the model with the user’s QoS requirements in
mind.

Mittal et al. [19] present the MANAGER framework which provides a QoS
guarantee that an application running in the MANAGER will not operate un-
der 22% of its maximum possible performance when using cache partitioning.
MANAGER estimates an application’s execution time loss due to cache misses
during run-time and assumes that all memory cycle stalls vary linearly with the
number of cache load misses. MANAGER provides a method for assessing
how changing the cache partition size will affect the application performance
since a decrease in cache partition size typically leads to more cache misses.

What is common to the quality of service papers listed above is the notion
of QoS as user-defined and requires the user to know the specifications of
what the application is supposed to produce, in order to provide a quantitative

32

measure on how well the application is performing.

In our work, we take a different approach and generalize the QoS of all non-
I/O-bound applications to be the number of instructions retired produced in a
specific time interval. We utilize performance counters and trace the number
of instructions retired of individual process ID’s which means we can make
cache partition assignments without knowing what the application is supposed
to execute.

Online partitioning provides solutions for cache partition allocations to an
already running system. On the other hand, offline partitioning relies on
knowledge of a system’s executing tasks and can therefore perform exhaustive
searches to find the optimal cache partition allocations based on all task
permutations.

Our work utilizes the online, combined DRAM-bank and cache tool called
PALLOC [37] for partitioning the cache memory. We aim to expand the
usage of PALLOC by implementing control mechanisms for load-balancing
applications using the cache memory, while PALLOC mainly focuses on the
DRAM-bank perspective. Other related works include the Coloris cache par-
tition scheme [36] which re-partitions cache memory for applications running
on different cores by continuous monitoring the cache accesses performance
counter. Pan and Pai [22] suggest another approach using cache-way parti-
tioning using histograms of the cache re-use distance, similar to the approach
proposed in [32]. However, the solution is limited to cache-way partitioning
and relies on the hardware vendor to provide the tools for cache partitioning.

Other recent works by Xu et al. [34] embrace the new cache allocation tech-
nology (CAT) provided by Intel. CAT divides the cache into N cache partitions
and assigns these to different cores using a bitmask. Xu presents the tool called
vCAT, which enables cache partitioning through CAT to span over multiple
cores in a virtualized environment to improve the WCET of tasks running in
a virtualized environment. The main downside of the vCAT approach is the
dependency on Intel® chips. vCAT can only work using Intel® chips, whereas
ARM chips are often used in embedded systems.

Kloda et al. [16] implements the page-coloring algorithm for the Jailhouse hy-
pervisor. Their page coloring algorithm allocates cache memory to improve
isolation between Jailhouse guest operating systems (cells). The downside of
Kloda’s approach is the static nature of its implementation. Portions of the
cache memory are assigned to the guest operating systems at hypervisor boot.
Therefore, it is not possible to tune the cache partition sizes without a reboot
of the hypervisor. In contrast to vCAT and Jailhouse page coloring, we uti-

33

lize PALLOC (page-coloring), which is cross-platform. PALLOC runs the
Cgroup interface and is the best fit to run on lightweight hypervisors such as
QEMU/Docker. In addition, our utilization of PALLOC enables us to auto-
matically re-tune the cache memory for individual processes during runtime.
Therefore, our approach has more functionality, than just assigning partitions
according to a guest operating system. At the same time, it also operates cross-
platform, due to the PALLOC interface.

Xu et al. [33] also present the work CaM, which is an extension of vCAT that
also includes memory bus partitioning. CaM proposes an algorithm that con-
tains multiple procedures that optimize task schedulability in a system. The
main similarities between our work and CaM lie in resource allocation and
load balancing. CaM takes the approach of allocating the minimum partition
size to tasks executing on different cores and then re-allocates partitions until
all tasks are schedulable. CaM also executes load balancing by migrating tasks
from unschedulable cores to schedulable cores while providing WCET guar-
antees. Our work, instead, focuses on tweaking the performance of specific
applications in an online fashion. Our controller does not evaluate all possible
task permutations in a system, but focuses on tweaking the cache partition size
of already running applications to satisfy performance needs.

4.2 Performance evaluation

Measuring performance degradation and performance isolation is important
to our research. It enables us to quantify the amount of isolation given by
an isolation technique and measure the effectiveness of the isolation tech-
nique. Perhaps the most common approach is measuring the slowdown ra-
tio given between a baseline environment system and its extended counter-
part [3, 17, 30, 35]. The baseline measurement value is often represented by
the performance of an application running in a native operating system envi-
ronment, which in most cases is Linux. The extended counterpart measure-
ment value is often represented by the performance of an application running
in a Linux system with isolation extensions, such as virtual machines or cache
partitioning algorithms.

Our opinion is that the application performance metric is highly dependent on
the purpose of the application. Therefore, measuring the performance of an
application will differ depending on the application’s purpose. For example, it
is not sufficient to use execution time as a TCP/IP stack algorithm performance
metric since the throughput will be partly dependent on waiting for data from

34

other units. For this reason, we argue that it is important to derive the root
cause of performance degradation in applications rather than looking at the
execution time as the prime measurement for performance. Countless studies
evaluate how to increase performance through parallelisms, measuring system
performance effects from a newly implemented algorithm, measuring perfor-
mance degradation of virtual machines, and many more. In fact, the entire
field of computer science is imbued with performance measurements; when-
ever a new application is implemented, the programmer will want to know the
application’s performance and how it fits the system specifics.

Our approach to measure an application’s performance using instructions re-
tired in a time-base is not new, but our with our methods simplifies the pro-
cess of measuring application performance. We use a separate thread to con-
tinuously monitor the number of instructions retired of one application and
therefore get quick feedback on the application’s current performance. Our
plug-and-play methodology for measuring an application’s can be attached to
an already running application, it does not require modification of the applica-
tion’s code. The performance measurements are also valuable when combined
with measurements of other performance counters to estimate the application’s
resource-boundness.

35

Chapter 5

Thesis contributions

This thesis aims to move the responsibility of finding and mitigating shared re-
source contention from a system engineer to an automated process that is man-
ageable by the system itself. Our primary resulting artefact is the LLM-shark
tool, an application that monitors application performance ad-hoc, character-
izes application resource-boundness, suggests sizes of cache partition contain-
ers, and, finally, re-partitions the cache to follow application requirements. We
present a model of LLM-shark architecture in Figure 5.1.

Figure 5.1: Holistic overview of LLM-shark

37

Figure 5.1 simplifies the LLM-shark architecture into 5 different parts, listed
as follows:

1. Selection step – The database contains a list of applications that should
run under the umbrella of LLM-shark. A system engineer must further
specify the performance counters that are of interest in the LLM-shark
selection step.

2. Measurement step – LLM-shark will run an application on one core
and a performance-counter probe on another core that monitors the ap-
plication’s performance counter events. This procedure is done offline in
our papers but can also be done online. However, online measurements
can become less accurate as resource contention might exist in the sys-
tem, and as such, we then measure the resource-boundness of an already
resource contented load.

3. Resource-boundness – LLM-shark will automatically calculate the
resource-boundness of all applications run in the previous monitoring
step using correlation. LLM-shark stores resource-boundness values
in a run-time database. We use the resource values as a basis for
partitioning setup.

4. Program start – LLM-shark consults the run-time database to formu-
late initial program partitions, including each program’s core affinity to
avoid scheduling contention and cache partitioning to avoid cache con-
tention. Then, LLM-shark starts the specified applications on different
cores and actuates an initial cache partitioning setup.

5. Dynamic adaptation – LLM-shark runs each program in cache par-
titioned containers, in a controller-like fashion. An application has a
setpoint performance (which is gained from the run-time database) and
the tool tries to satisfy the application’s performance setpoint using a
priority-based allocation policy.

Based on the holistic view of LLM-shark, we present four thesis contributions
that solve our research challenges, as follows.

1. Thesis contribution 1 (TC1) – Methodology for ad-hoc measurement of
application’s performance and run-time characteristics.

2. Thesis contribution 2 (TC2) – Automatic resource-boundness determi-
nation.

38

3. Thesis contribution 3 (TC3) – Methods for measuring the degree of
resource-isolation in a system.

4. Thesis contribution 4 (TC4) – Dynamic allocation of cache memory.

Our overall research goal presents two research challenges, described in Chap-
ter 3. We address the research challenges by thesis contributions, which, in
turn, each partially contributes to solve the overall goal. Figure 5.2 depicts the
connection between the overall goal, research challenges, and thesis contribu-
tions, and Figure 5.3 depicts the mapping between the included papers and
our thesis contributions.

Figure 5.2: Mapping between thesis contributions and research goals

Figure 5.3: Mapping between thesis contributions and research goals via published
articles

We elaborate more on the thesis contributions in the following subsections.

39

5.1 TC1 – Ad-hoc monitoring of performance

Continuous monitoring of application performance can become tedious and
often requires modification of the source code. The programmer must 1) un-
derstand the application code, 2) insert time measurement probes around ap-
propriate code parts and, 3) generate an understandable output. Steps 2) and
3) require modification of the source code. Step 3) is furthermore essential
to structure according to specific output formatting to be understandable by
computers.

This thesis contribution presents an ad-hoc way of monitoring an application’s
performance that does not require any of the modification of the source code.
We utilize the performance counter event instructions retired as performance
metric, instead of traditional execution time measurement.

We implement a performance-counter probe that samples the number of in-
structions retired of application’s PID. Our probe utilizes the PAPI interface,
can be attached to any user-space program and does not require code modi-
fication of the application. We utilize this approach for ad-hoc performance
measurements in Paper B, C, and E. Paper B’s primary goal is to investigate
methods to determine an application’s resource-boundness automatically. We
use the instructions retired to automatically identify the application’s different
execution phases. We experiment with different methods using the applica-
tion’s instructions retired to determine when an application started executing a
different phase. Figure 5.4 exemplifies the performance counter output of Har-
ris’ algorithm using our measurement approach. Purple marks the instructions
retired on the left-hand side y-axis while green marks the L2-cache misses on
the right-hand side y-axis. We distinguish each phase with a vertical black line
inside the graph.

The reason for detecting such phases is to automatically investigate the re-
source boundness of individual code segments rather than that of the entire
execution. We discuss automatic resource-boundness detection in detail in the
following subsection. Our performance measurement approach applies to ap-
plications that are not utilizing busy-wait loops. In paper E, we demonstrate
the usability of this performance measurement approach using an online cache
partitioning allocator that continuously monitors an application’s performance
and allocates cache partitions according to the performance.

40

Figure 5.4: Harris feature detection

The main benefit of our approach is that application performance can be mon-
itored ad-hoc and does not require any modifications to the code. The main
drawback is the requirement that it puts on an application’s functionality – the
application must not use busy-wait loops. Paper B and C propose and use
the measurement approach towards TC1, while Paper E utilizes the proposed
performance concept in a running system.

5.2 TC2 – Automatic resource-boundness determina-
tion

In this contribution, we present our approach to determine an application’s
resource-boundness automatically. We utilize our sampling-based measure-
ment approach from TC1 to monitor the performance and the usage of other
resources in a processor. Our theory is that an application heavily depen-
dent on L2-cache for execution will display significant performance degrada-
tion when the cache is full and starts to evict cache lines, ultimately lead-
ing to cache misses for new incoming instructions. Thus, an application that
binds to the L2-cache will display a performance increase when the L2-cache

41

misses decreases and a performance degradation when the L2-cache misses
increases. Using correlation between the two datasets (performance and a
resource counter-event) we can quantify the magnitude of this relationship.
There exists three types of relationships in a correlation; negative correlation,
where the values of two datasets moves in opposite directions; positive cor-
relation, where the values of two datasets moves in the same direction; and
no correlation, where the values of the two datasets shows no trends on af-
fecting each other. We exemplify the correlation types in Figure 5.5 (positive
correlation), Figure 5.6 (negative correlation) and Figure 5.7 (no correlation).

Figure 5.5: Positive correlation

Figure 5.6: Negative correlation

42

Figure 5.7: No correlation

The figures shows run-time measurements of one execution of a 512x512 ma-
trix multiplication executing on a quad-core Intel system that implements a
L3-cache as the LLC. The blue crosses plot the number of instructions re-
tired on the left-hand side y-axis. The orange triangle marks the performance
counter-event on the right-hand side y-axis (L2-cache-misses in Figure 5.5,
L3-cache-misses in Figure 5.6 and floating-point operations in Figure 5.7). The
x-axis marks the sample number.

Figure 5.5 displays a positive correlation where the instructions retired de-
crease, while at the same time L2-cache-misses decrease. The figure dis-
plays a positive correlation since the values of these two measurements de-
crease/increase in a similar fashion. In the background, we discuss the im-
portance of pipeline stalls, and L2-cache-misses is one event that causes stalls,
but the graphs show a different result where a decrease in L2-cache-misses
also leads to performance degradation. This phenomenon occurs because the
L2-cache depends on data from the L3-cache. If the L3-cache suffers a lot of
misses, it cannot provide enough data for the L2-cache to operate at maximum
capacity. Therefore, the number of L2-cache accesses will decrease, which
also results in a decrease in L2-cache-misses. The phenomenon means that the
matrix multiplication is not L2-cache bound but instead is bound to another
memory unit higher up in the memory hierarchy.

Figure 5.6 instead shows a negative correlation, where an increase in L3-cache
misses results in performance degradation. The matrix multiplication is thus
L3-cache-bound.

Figure 5.7 shows an insignificant correlation, where the performance varies
while the performance counter event displays no changes over time. The ma-

43

trix multiplication is thus not bound to the Floating point operations.

Paper A presents an introduction to LLC contention and motivates our auto-
matic resource-boundness detection approach, showing the complexity behind
finding which applications are prone to resource contention. Paper B inves-
tigates correlation between a matrix multiplication’s instructions retired and
L3-cache-misses and presents the foundation idea behind resource-boundness.
Paper C introduces the LLM-shark tool and utilizes correlation to determine
if an application should receive cache partition allocations in a cache parti-
tioned system. The paper presents six applications, of which three (HAR-
RIS, Matmult, SIFT) are bound to the LLC and three (SUSAN, SORT, FAST)
are bound to other resources. We evaluate the correlation methodology us-
ing Leech tests, where we deliberately introduce an excessive amount of LLC
misses using an application called Leech. Our tests reveal that highly LLC-
bound applications display more significant performance degradations due to
LLC contention than low correlated applications. Finally, paper G investigates
different auto-regressive modeling approaches to foresee cache usage of dif-
ferent applications. Paper A, B and G runs on a live Intel® system while paper
C runs on a live ARM system.

5.3 TC3 – Methods for measuring the degree of
resource-isolation in a system

This contribution tests available isolation techniques and investigates the per-
formance impact caused by a specific isolation technique. However, isolation
techniques are often complex, since they have to override mechanisms of the
operating system. Adding more isolation mechanisms to an operating system
can thus decrease the overall performance of tasks. The application of isola-
tion techniques, therefore, presents two questions. Firstly, does the proposed
technique provide the promised isolation? Secondly, how much impact does
the isolation technique have on applications’ performance in the system?

To answer these questions, we create a methodology to verify the isolation
gained, that is, increase I (Equation 5.1), employing the proposed methodol-
ogy, using the setup depicted in Figure 5.8.

We divide our methodology into two steps:

1. Measure execution time of an application without any deliberately dis-
turbing loads (baseline)

44

Figure 5.8: Verification of isolation

2. Measure execution time of an application while running deliberately re-
source heavy loads on other cores (loaded)

We execute these two steps using a non-isolated environment and an isolated
environment. We then compare the executions in these environments and cal-
culate the isolation coefficient - see Equation 5.1, where CL is the execution
time of an applicationC running simultaneously with other intentionally mem-
ory disturbing loads on other cores. O stands for induced overhead by system
externals such as partitioning solutions. CP stands for the baseline perfor-
mance of application C, that is, the execution time of application C without
any deliberately disturbing loads on other cores.

I =
CL −O
CP

(5.1)

Non-isolated environments induce no additional overhead to the system and
therefore O will be equal to 0 for a non-isolated system. We expect that a
loaded non-isolated environment suffers significant performance degradation
due to shared-resource contention and therefore, the CL will be greater than
CP and I will be greater than 1. Furthermore, we expect an isolated envi-
ronment to have an execution time close to the baseline execution time, with
variations given by overhead (see Equation 5.1) of the isolation technique. A
perfectly isolated system will, therefore, have an isolation coefficient I equal
to 1.

45

We have tested two isolation techniques, the static Jailhouse partitioning hy-
pervisor [27] and the combined LLC and DRAM partitioning kernel module
PALLOC [37]. We measure the degree of isolation obtained using the Jail-
house hypervisor and performed similar experiments using the PALLOC ker-
nel module. Both isolation techniques show isolation improvements in their
respective domains, PALLOC as an LLC isolating tool and Jailhouse as a
CPU/local cache isolation tool.

Paper D mainly addresses TC 3, illustrating the isolation gained from the Jail-
house hypervisor running on an ARM cortex A-53 chip with a petalinux 4.9
kernel.

Paper C and F also touch TC 3, where we use our benchmark to illustrate the
isolation gained from cache partitioning through PALLOC on an ARM cortex
A-53 processor (Paper C) and an Intel® CoreTM i5-8850H processor (Paper F).

5.4 TC4 – Dynamic allocation of cache memory

In this contribution, we explore resource allocation management of the
cache isolation technique called page coloring. We utilize the combined
DRAM/cache partitioning tool PALLOC [37] as an actuator to partition
the cache memory and thus, remove or diminish the cache contention from
simultaneously executing applications. This contribution splits into three
problems, listed as follows.

• Initial setup – Changes in cache partition size will dramatically affect a
cache-bound application performance, but will not affect a non-cache-
bound application to the same extent. It is critical to allocate cache par-
titions only to applications that are cache bound to avoid the waste of
a precious resource. Applications with a higher cache-boundness factor
should receive a more sizeable cache partition space than low cache-
bound applications.

• Dynamic adjustment – There is a risk that the system applications do not
execute at the desired QoS using the initially suggested cache partitions.
Therefore, we need to dynamically adapt the cache partition size during
the run-time of the system applications to answer to QoS needs.

• Stop trigger – There are scenarios where an increase in cache partition
space does not benefit an application performance, since the assigned

46

cache partition space provides sufficient memory to cover the applica-
tion’s memory footprint. Therefore, assigning more cache partitions to
this application will only result in a waste of cache space.

In paper C, we address the initial setup problem and automatically allocate
more LLC partition space according to the application’s resource boundness.
We show that it prefferable is to allocate cache partitions based on their
resource-boundness rather than allocating partitions based on the count
ofLLC misses.

In paper E, we expand the LLM-shark tool to manage continuously running
applications in a multi-core system. We implement an LLC partition control
algorithm onto a system that contains three continuously running applications.
Two are strongly cache-bound (matrix multiplications), and one application
(SUSAN) does not show a strong LLC-boundness. We show in our experi-
ments different scenarios on how our controller assigns LLC partitions to meet
the setpoint performance of each applications.

There are circumstances where the number of cache partitions has reached a
saturation point, i.e., no more performance will be gained from increasing the
cache partition size for an application. Paper F proposes a cache-saturation de-
tection mechanism using correlation, that measures when an application does
not benefit from an increased LLC partition space.

5.5 Summary of papers

Table 5.1 summarizes how each paper covers each contribution and how each
contribution links to the research challenges. We denote thesis contributions
as TC and research challenges as RC.

Table 5.1: The contribution of the individual papers to the research sub-goals

Papers TC1 TC2 TC3 TC4 RC1 RC2
Paper A X X
Paper B X X X
Paper C X X X X X X
Paper D X X
Paper E X X
Paper F X X
Paper G X X

47

5.6 Overview of included papers

5.6.1 Paper A: Measurement-based evaluation of data-parallelism
for OpenCV feature-detection algorithms

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary. We investigate the effects on the execution time, shared cache
usage, and speed-up gains when using data-partitioned parallelism for the fea-
ture detection algorithms available in the OpenCV library. The purpose of
this paper is to investigate how to cache contention affects the performance of
parallelized workloads and also to give an insight into how performance coun-
ters can be used to localize cache contention. The measurements are used to
conclude which algorithms are suitable for parallelization on hardware with
shared resources.

Thesis contribution TC2

Research challenge RC1

Author’s contribution I am the initiator, main driver and author to all parts
in this paper. All other co-authors have contributed with valuable discussions
and reviews.

Status Published in proceedings of 42nd Computer Society Signature Confer-
ence on Computers, Software and Applications (COMPSAC), 2018, IEEE

5.6.2 Paper B: Resource Dependency Analysis in Multi-core sys-
tems

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary. In this paper, we evaluate different methods for statistical determi-
nation of application resource dependency in multi-core systems. We measure
the performance counters of an application during run-time and create a sys-
tem resource usage profile. We then use the profile to evaluate the application
dependency on the specific resource. We discuss and evaluate two methods
to process the data, including moving average filter and partitioning the data
into smaller segments in order to interpret data for correlation calculations.
Our aim with this study is to evaluate and create a generalizeable method for
automatic determination of resource dependencies. The final outcome of the

48

methods used in this study is the answer to the question: "On which resources
is this application dependent?". The recommendation of this tool will be used
in conjunction with our last-level cache partitioning controller (LLC-PC), to
make decision if an application should receive last-level cache partition slices.

Thesis contribution TC1 and TC2

Research goal RG1

Author’s contribution I am the initiator, main driver and author to all parts in
this paper. All other co-authors have contributed with valuable discussion and
reviews.

Status Published in proceedings of 44th Computer Society Signature Confer-
ence on Computers, Software and Applications (COMPSAC), 2020, IEEE

5.6.3 Paper C: LLM-shark – A Tool for Automatic Resource -
boundness Analysis and Cache Partitioning Setup

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary. We present LLM-shark, a tool for automatic hardware resource-
boundness detection and cache-partitioning. Our tool has three primary ob-
jectives: first, it determines the hardware resource-boundness of a given ap-
plication; secondly, it estimates the initial cache partition size to ensure that
the application performance is conserved and not affected by other processes
competing for cache utilization; thirdly, it continuously monitors that the ap-
plication performance is maintained over time and, if necessary, changes the
cache partition size. We demonstrate LLM-shark’s functionality through a se-
ries of tests using six different applications, including a set of feature detection
algorithms and two synthetic applications. Our tests reveal that it is possible
to determine an application’s resource-boundness using a correlation scheme
implemented in LLM-shark. We propose a scheme to size cache partitions
based on the correlation coefficient applications depending on their resource
boundness.

Thesis contribution TC1, TC2, TC3 and TC4

Research challenge RC1 and RC2

Author’s contribution I am the initiator, main driver and author to all parts in
this paper. All other co-authors have contributed with valuable discussion and
reviews.

49

Status Published in proceedings of 45th Computer Society Signature Confer-
ence on Computers, Software and Applications (COMPSAC), 2021, IEEE

5.6.4 Paper D: Run-Time Cache-Partition Controller for Multi-
Core Systems

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary. In this paper, we investigate how to define performance isolation in
multi-core systems. We investigate resource contention in the CPU, LLC, and
also the memory bus. We define a test to determine the level of isolation gained
by the isolation hypervisor called Jailhouse in comparison with a regular Linux
system. Our paper concludes that the Jailhouse hypervisor does not produce
any noticeable overhead when executing multiple shared-resource intensive
tasks on multiple cores, which implies that running Jailhouse in a memory
saturated system will not be harmful.

Thesis contribution TC3

Research challenge RC2

Author’s contribution I am the initiator, main driver and author to all parts in
this paper. All other co-authors have contributed with valuable discussion and
reviews.

Status Published in proceedings of 43rd Computer Society Signature Confer-
ence on Computers, Software and Applications (COMPSAC), 2019, IEEE

5.6.5 Paper E: Automatic Quality of Service Control in Multi-core
Systems using Cache Partitioning

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary. We present a last-level cache partitioning controller for multi-core
systems. Our objective is to control the Quality of Service (QoS) of appli-
cations in multi-core systems by monitoring run-time performance and con-
tinuously re-sizing cache partitions, according to the application needs. We
discuss two different use-cases; one that promotes application fairness and
another one that prioritizes applications according to the system engineers’
desired execution behavior. We display the performance drawbacks of main-

50

taining a fair schedule for all system tasks and its performance implications
for system applications. We, therefore, implement a second control algorithm
that enforces cache partition assignments according to user-defined priorities
rather than system fairness. Our experiments reveal that it is possible, with
non-instrusive (0.3-0.7% CPU utilization) cache controlling measures, to in-
crease performance according to setpoints and maintain the QoS for specific
applications in an over-saturated system.

Thesis contribution TC4

Research challenge RC2

Author’s contribution I am the initiator, main driver and author to all parts in
this paper. All other co-authors have contributed with valuable discussion and
reviews.

Status Accepted in proceedings of 26th Emerging Technologies and Factory
Automation (ETFA), 2021, IEEE

5.6.6 Paper F: Run-Time Cache-Partition Controller for Multi-
Core Systems

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary. We propose a cache partition controller called LLC-PC that uses
the PALLOC page coloring framework to decrease the cache partition sizes for
applications during run-time. LLC-PC creates cache partitioning directives for
the PALLOC tool by evaluating the performance gained from increasing the
cache partition size. We have evaluated LLC-PC using three different applica-
tions, including the SIFT image processing algorithm, a matrix multiplication,
and a random number generator. We show that LLC-PC can reduce the amount
of cache size allocated to applications compared to intuitively chosen cache
partitions while maintaining their performance. LLC-PC thus allows for more
cache space to be allocated for other applications.

Thesis contribution TC4

Research goal RC2

Author’s contribution I am the initiator, main driver and author to all parts in
this paper. All other co-authors have contributed with valuable discussion and
reviews.

51

Status Published in proceedings of 45th Annual Conference of IEEE Industrial
Electronics Society (IECON), 2019, IEEE

5.6.7 Paper G: Modelling Application Cache Behavior using Re-
gression Models

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary In this paper, we describe the creation of resource usage forecasts
for applications with unknown execution characteristics, by evaluating differ-
ent regression processes, including autoregressive, multivariate adaptive re-
gression splines, exponential smoothing, etc. We utilize Performance Monitor
Units (PMU) and generate hardware resource usage models for the L2-cache
and the L3-cache using nine different regression processes. The measurement
strategy and regression process methodology are general and applicable to any
given hardware resource when performance counters are available. We use
three benchmark applications: the SIFT feature detection algorithm, a standard
matrix multiplication, and a version of Bubblesort. Our evaluation shows that
Multi Adaptive Regressive Spline (MARS) models generate the best resource
usage forecasts among the considered models, followed by Single Exponential
Splines (SES) and Triple Exponential Splines (TES).

Thesis contribution TC2

Research challenge RC2

Author’s contribution I am the initiator, main driver and co-author to all parts
in this paper. All other co-authors have contributed with valuable discussion
and reviews.

Status Published in 11th IEEE International Workshop on Industrial Experi-
ence in Embedded Systems Design (IEESD)

52

Chapter 6

Conclusions and Future Work

The main goal of this thesis is to understand the origins of shared-resource
contention, investigate the reasons of it, propose means to solve the resource
contention using isolation techniques, and finally propose automatic allocation
strategies for adjusting application performance according to user-specified
needs. Our investigation in paper A is designed to display the complexity
of the resource contention problem – some applications suffer greatly from the
cache contention while others do not.

We propose the resource-boundness concept for understanding the origins of
resource contention. We measure an application’s resource-boundness using
the internal performance counters and specifically target the LLC as the source
of contention. Our proposal is a correlation-based methodology between the
number of instructions retired and the LLC misses. We propose that appli-
cations that show a negative correlation between the number of instructions
retired and the number of LLC misses are bound to the LLC and thus risk
suffering performance degradation due to LLC contention. Our methodology
applies to all computer architectures that provide the performance counter util-
ity. However, the resource-boundness results will vary, depending on the size
of the hardware resources on different platforms.

We utilize resource-boundness to determine what kind of isolation techniques
are suitable for a particular application. We investigate the usability of two iso-
lation strategies: i) Jailhouse virtualization applies to applications that utilize
I/O and core specific resources, such as the local caches and the floating-point
unit; ii) Palloc page-coloring, which applies to applications that utilize the
DRAM and LLC memory. We investigate in our papers how these strategies
provide isolation and investigate the potential drawbacks in terms of overhead.

53

Jailhouse provides an isolation layer towards the global Linux scheduler and
hides the partitions, making it impossible for the Linux scheduler to assign
new tasks to the hidden partitions arbitrarily. Thus Jailhouse isolates core-
specific resources such as the floating point unit, branch predictor unit, and
local caches. Jailhouse shows a slight performance degradation of our test
tasks, which happens due to an increase in LLC and memory bus usage due to
the additional complexity in the Jailhouse MMU hierarchy. Palloc partitions
the LLC and thus provides an isolation layer for applications that utilize the
LLC. Palloc displays a notable performance degradation of our test tasks due
to the complexity of the page coloring algorithm. However, the drawbacks of
the performance may still outweigh the performance degradations caused by
cache contention.

Our last contribution targets the adaptivity and load-balancing of tasks that run
in a system with limited cache memory. We propose methods that:

1. Allocate cache memory at system start.

2. Re-allocate cache memory during system run-time.

3. Provide stop mechanisms for allocating cache memory, to determine
when an increased cache partition space is no longer beneficial to an
application.

Our methodology utilizes the resource-boundness concept to formulate initial
cache partitions and effectively filters out applications that do not need cache
partition space, as different to other methodologies that do not provide such a
functionality. In addition, we implement two strategies (fairness and prioritiza-
tion) to continuously load-balance the cache memory of applications that run
simultaneously on different cores. Our final efforts investigate a stop mecha-
nism that detects when an application does not benefit from additional cache
partition space.

54

6.1 Future Work

In paper G, we compare different autoregressive models to model and forecast
an application resource usage. Interesting future work is to schedule applica-
tions according to their resource usage and counter resource contention before
it happens using resource-aware scheduling strategies. The benefit of using
resource-aware scheduling is that we might be able to remove many pipeline
stalls due to resource contention and thus allow the computer to do more useful
work.

Current isolation methods are promising solutions to reduce unexpected per-
formance degradations due to resource contention, but our work primarily fo-
cuses on optimizing the partitioning allocations to load-balance application
performance. Isolation is primarily a method for real-time systems where
deadline misses can become catastrophic; in this thesis, we do not focus on
real-time verification of our holistic architecture. We, therefore, envision real-
time verification as an interesting future work, where we execute time-critical
loads inside our LLM-shark architecture to test its real-time applicability.

Other exciting works include incorporating more sophisticated algorithms into
the cache-management part. For example, we currently implement a linear
controlling algorithm due to the small amount of available cache memory in
our ARM-chip. We believe that when the cache memory is more spacious, it
will become more beneficial to incorporate a proportional element to the cache
allocation controller, optimizing the time it takes to find the saturation point.

55

Bibliography

[1] ARM. Cortex-a53. https://developer.arm.com/
ip-products/processors/cortex-a/cortex-a53. 2021-
01-06.

[2] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In 11th Interna-
tional Symposium on High-Performance Computer Architecture, pages
340–351. IEEE, 2005.

[3] J. Che, Q. He, Q. Gao, and D. Huang. Performance measuring and com-
paring of virtual machine monitors. In 2008 IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing, volume 2, pages
381–386. IEEE, 2008.

[4] W. commons. Risc architecture. accessed: 2019-11-04.

[5] J. Danielsson, M. Jägemar, M. Behnam, T. Seceleanu, and M. Sjödin.
Run-time cache-partition controller for multi-core systems. In IECON
2019-45th Annual Conference of the IEEE Industrial Electronics Society,
volume 1, pages 4509–4515. IEEE, 2019.

[6] J. Danielsson, M. Jägemar, M. Behnam, M. Sjödin, and T. Seceleanu.
Measurement-based evaluation of data-parallelism for opencv feature-
detection algorithms. In 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), volume 1, pages 701–710.
IEEE, 2018.

[7] S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, and P. Prinetto. Marci-
atesta: an automatic generator of test programs for microprocessors’ data
caches. In 2011 Asian Test Symposium, pages 401–406. IEEE, 2011.

[8] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache pi-
rating: Measuring the curse of the shared cache. In 2011 International
Conference on Parallel Processing, pages 165–175. IEEE, 2011.

[9] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Bandwidth
bandit: Quantitative characterization of memory contention. In Proceed-
ings of the 2013 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pages 1–10. IEEE, 2013.

[10] https://github.com/uart/scarphase. Scarphase tool.

56

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53

[11] Y. Hua, Z. C. Ping, Z. Z. Hui, Z. Wei, and P. Z. Jin. Understanding
performance-resource dependency by thread slicing and curve fitting. In
Proceedings of 2011 International Conference on Computer Science and
Network Technology, volume 1, pages 17–22. IEEE, 2011.

[12] Intel. Intel product catalogue.

[13] Intel®. Intel® 64 and ia-32 architectures optimization reference man-
ual. https://software.intel.com/en-us/download/. Ac-
cessed: 2019-11-04.

[14] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A scheduling archi-
tecture for enforcing quality of service in multi-process systems. In 2017
22nd IEEE International Conference on Emerging Technologies and Fac-
tory Automation (ETFA), pages 1–8. IEEE, 2017.

[15] H. Kasture and D. Sanchez. Ubik: Efficient cache sharing with strict qos
for latency-critical workloads. ACM SIGPLAN Notices, 49(4):729–742,
2014.

[16] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 1–14.
IEEE, 2019.

[17] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens. Quantifying the performance
isolation properties of virtualization systems. In Proceedings of the 2007
workshop on Experimental computer science, page 6. ACM, 2007.

[18] S. Mittal. A survey of techniques for cache partitioning in multicore
processors. ACM Computing Surveys (CSUR), 50(2):1–39, 2017.

[19] S. Mittal and Z. Zhang. Manager: a multicore shared cache energy saving
technique for qos systems. Iowa State University, Tech. Rep, 2013.

[20] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero.
Flexdcp: a qos framework for cmp architectures. ACM SIGOPS Operat-
ing Systems Review, 43(2):86–96, 2009.

[21] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

57

https://software.intel.com/en-us/download/

[22] A. Pan and V. S. Pai. Imbalanced cache partitioning for balanced data-
parallel programs. In 2013 46th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 297–309. IEEE, 2013.

[23] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb color-
ing. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015 IEEE, pages 3–13. IEEE, 2015.

[24] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Mod-
eling performance variation due to cache sharing. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Sym-
posium on, pages 155–166. IEEE, 2013.

[25] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Phase behavior in
serial and parallel applications. In 2012 IEEE International Symposium
on Workload Characterization (IISWC), pages 47–58. IEEE, 2012.

[26] A. Sembrant, D. Eklov, and E. Hagersten. Efficient software-based online
phase classification. In 2011 IEEE International Symposium on Workload
Characterization (IISWC), pages 104–115. IEEE, 2011.

[27] A. Siemens. Jailhouse partitioning hypervisor. Retrieved March, 2016.

[28] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The
application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory. In 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 62–75. IEEE, 2015.

[29] L. Torvalds. Perf tools. accessed: 2019-11-04.

[30] S. Toumassian, R. Werner, and A. Sikora. Performance measurements
for hypervisors on embedded arm processors. In Advances in Computing,
Communications and Informatics (ICACCI), 2016 International Confer-
ence on, pages 851–855. IEEE, 2016.

[31] S. H. VanderLeest. Arinc 653 hypervisor. In Digital Avionics Systems
Conference (DASC), 2010 IEEE/AIAA 29th, pages 5–E. IEEE, 2010.

[32] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache contention and appli-
cation performance prediction for multi-core systems. In 2010 IEEE In-
ternational Symposium on Performance Analysis of Systems & Software
(ISPASS), pages 76–86. IEEE, 2010.

58

[33] M. Xu, L. T. X. Phan, H.-Y. Choi, Y. Lin, H. Li, C. Lu, and I. Lee. Holistic
resource allocation for multicore real-time systems. In 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 345–356. IEEE, 2019.

[34] M. Xu, L. Thi, X. Phan, H.-Y. Choi, and I. Lee. vcat: Dynamic cache
management using cat virtualization. In 2017 IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), pages 211–
222. IEEE, 2017.

[35] X. Xu, F. Zhou, J. Wan, and Y. Jiang. Quantifying performance properties
of virtual machine. In 2008 International Symposium on Information
Science and Engineering, volume 1, pages 24–28. IEEE, 2008.

[36] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[37] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[38] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

[39] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Amaras-
inghe. Dynamic cache contention detection in multi-threaded applica-
tions. In Proceedings of the 7th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 27–38, 2011.

59

Part II

Included Papers

61

Chapter 7

Paper A:
Measurement-based evaluation
of data-parallelism for OpenCV
feature-detection

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam
and Mikael Sjödin. Measurement-based evaluation of data-parallelism for
OpenCV feature-detection algorithms. In 42nd Computer Society Signature
Conference on Computers, Software and Applications (COMPSAC). IEEE,
2018.

63

Abstract

We investigate the effects on the execution time, shared cache usage and speed-
up gains when using data-partitioned parallelism for the feature detection al-
gorithms available in the OpenCV library. We use a data set of three different
images which are scaled to six different sizes to exercise the different cache
memories of our test architectures. Our measurements reveal that the algo-
rithms using the default settings of OpenCV behave very differently when us-
ing data-partitioned parallelism. Our investigation shows that the executions
of the algorithms SURF, Dense and MSER correlate to L3-cache usage and
they are therefore not suitable for data-partitioned parallelism on multi-core
CPUs. Other algorithms: BRISK, FAST, ORB, HARRIS, GFTT, SimpleBlob
and SIFT, do not correlate to L3-cache in the same extent, and they are there-
fore more suitable for data-partitioned parallelism. Furthermore, the SIFT al-
gorithm provides the most stable speed-up, resulting in an execution between
3 and 3.5 times faster than the original execution time for all image sizes. We
also have evaluated the hardware resource usage by measuring the algorithm
execution time simultaneously with the L3-cache usage. We have used our
measurements to conclude which algorithms are suitable for parallelization on
hardware with shared resources.

65

7.1 Introduction

Many industrial systems often use feature detection algorithms in various ap-
plications ranging from face recognition to autonomous vehicular systems.
Detecting features in a frame is a time-consuming process [5] because of the
high number of traversed pixels. The number of traversed pixels depends
highly on the feature detection algorithm goal, e.g., detecting objects, corners,
edges, blobs or key points. The number of traversed pixels affects the appli-
cation execution time, which is often a limitation for time-sensitive real-time
systems.

The process of feature detection stipulates that different calculation sequences
search for specific conjunctions between pixels in a frame. The length of the
feature detection sequence varies significantly among the used algorithm. The
number of traversed pixels per frame grows if the feature detection sequence
is long leading to a further increased execution time.

One way of decrease the execution time of these calculations is to parallelize
the execution and use multiple CPU-cores at the same time. The computations
for a frame are often suitable for execution on parallel architectures, where
each CPU can operate on a sub-frame (i.e. a partition of the original frame).
Luckily, almost all processors available today are, so called, multi-core pro-
cessors which have at least 2 CPU cores.

However, in a multi-core architecture, the computing units compete for access
to common hardware resources, such as caches, memory banks and memory
buses. This competition lead to challenges in designing parallel software to
avoid bottlenecks in the data-flow and to prevent computing units from inter-
fering with each other. Examples of performance problems related to parallel
execution include cache trashing (one core evicts data from the cache that is
needed by another core), cache-line ping-pong (a false-sharing problem when
cores that are seemingly unrelated manipulate data-elements that are allocated
close in memory), and DRAM starvation (the DRAM controller may choose to
serve only memory requests from one controller for a while, since that brings
up the throughput of the memory system - at the expense of long delays for
some cores).

The ideal execution environment for a feature detection algorithm running on
a multi-core architecture is identified by several properties. Minimizing the
shared-memory congestion side effects and interprocess synchronization time
are the most important ones. One possible solution to reduce the harmful ef-
fects of shared resource congestion is to monitor and understand the algorithm

66

resource usage before-hand [15]. It is possible to obtain such knowledge by,
for instance, using Performance Measurement Counters (PMC) [7].

The knowledge of how feature detection algorithms such as FAST, HARRIS
or SURF affect the shared resources is an important part when incorporating
them into a multi-core system, since it can give an indication on how well the
algorithm scales with parallelism opportunities offered by multi-cores. Since
the input data to such algorithms can be relatively large, there is a possibility
that the algorithms may suffer from shared memory congestion and therefore
obtain an insignificant speed-up when utilizing multiple cores. Therefore, it
is possible that a feature detection algorithm has such characteristics that it is
better suited for running on a single core, together with other general work-
loads instead of reserving the several computational units of the computer
while achieving little execution time gains. However, the success of apply-
ing a parallel paradigm to a feature detection algorithm can however be an
efficient tool to decrease the execution time of such heavy workloads.

In this paper we study how the feature-detection algorithms using the Open
Computer Vision (OpenCV) library [4] behaves with respect to data-level par-
allelization in terms of L3 cache usage on multi-core processors. OpenCV is
one of the most widespread libraries for image processing and hence these re-
sults should be valuable for a large community. The main contributions in this
paper include:

• We have evaluated how the feature detection algorithms in the OpenCV
features2d module [19] perform from data partitioned parallelism with
respect to speed-up.

• We have measured the performance of the feature detection algorithms
in the OpenCV features2d module together with each algorithm hard-
ware resource usage. From these measurements, we deduced that the
L3-cache has the highest effect on the algorithm performance.

Outline: Section 7.2 give background information related to feature detection
algorithms and their resource usage. Detailed information on our implementa-
tion is given in Section 7.3 and the experiments in Section 7.4. We conclude
the paper by summarizing our conclusions in Section 7.5.

67

7.2 Background

It is possible to run image processing on multi-core systems with the purpose
of decreasing the execution time by using coarse-grained data parallelized al-
gorithms [27]. Relevant work include investigating how to parallelize feature
detection algorithms such as SIFT [10], [29], SURF [28], and Harris [12] for
performance increase. Applying these parallelization techniques however re-
quire an in-depth investigation of the algorithm functionality and also how to
adapt the functionality parameters to the hardware in use. In this paper, we
have instead executed a generalized coarse-grained parallelism model which
can be applicable for speed-up gains without studying the workload in de-
tail. Since our approach does not require in-depth knowledge of neither the
hardware or the software, it is also easy to migrate between different hard-
ware setups. In this paper, we have executed a generalized coarse-grained
parallelism model which can be applicable even though the work-load is not
studies in detail. To the best of our knowledge, our paper is the first that in-
vestigates the effects data-level parallelism has on the shared memory using
OpenCV feature-detection algorithms. The algorithms investigated in this pa-
per are well established feature detection algorithms, available in the free and
non-free branches of features2d in the OpenCV library. We have used the de-
fault algorithm tuning values which come with the OpenCV library in order to
have a reference for the comparison.

7.2.1 Feature detection

Feature detection is a way of distinguishing anomalies in an image. Feature de-
tection can be divided into 4 sub-sets, edge detection, corner detection, object
detection and blob detection. In this work, we have used the common inter-
faces class [19] of the OpenCV library which implements 11 different feature
detection algorithms listed in Table 7.1.

A feature detection algorithm is typically built upon a set of mathematical
rules which defines a corner. These mathematical rules control not only how
a corner is defined, but also how the pixels in a frame are accessed. The main
mechanism of every corner detection algorithm is to traverse each pixel within
a frame. Detecting a corner in an image can become a costly process in terms
of hardware resources since frames become larger as a consequence of higher
resolution, which lead to an increased amount of pixels which have to be tra-
versed. Larger frames can also potentially contain more corners, which fur-
thermore increases the processing time of an image.

68

Table 7.1: Our investigated feature detection algorithms.

Algorithm License Description
Harris [11] BSD Corner detector
FAST [23] BSD Corner detector
SIFT [16] Proprietary Object detector
SURF [3] Proprietary Object detector
ORB [24] BSD Object detector
BRISK [14] BSD Corner detector
MSER [17] BSD Blob detector
GFTT [26] BSD Corner detector
STAR [1] BSD Corner detector
DENSE [4] BSD Feature extractor
Simple blob [4] BSD Blob detector

Feature detection algorithms use different mechanisms for detecting interest
points in an image. There are although some common stages for all algo-
rithms. The first step is always to read the input image file and translate it
into a matrix filled with RGB (Red, Green, Blue) data points, where each data
point represents a pixel. The second common step is to convert the image in-to
grayscale, which is translates the RGB values to a matrix of pixel intensities,
which represent values of the brightness of the pixels. After this step, the al-
gorithms begin to execute their respective interest point detection mechanism.
The actual detection mechanisms differs a lot depending on the algorithm. To
exemplify a diversity, we have depicted the mechanisms of two feature detec-
tion algorithms in Fig. 7.1. The figure illustrates a Sobel filter (marked 1 with
purple boxes) which serves as one of the primary mechanisms for the Harris
algorithm and a Bresenham Circle (marked 2 with blue boxes) which is the
main mechanism of the FAST algorithm.

The second property all algorithms have in common is that the entire image
matrix gets traversed at least once. Algorithms such as SURF and SIFT create
new matrices that contain results from the initial image matrix. The algo-
rithm repeatedly traverses the original image matrix until it has processed the
complete image. There can also be co-dependence between the algorithms,
meaning that one algorithm uses the results given by another algorithm. For
example, ORB uses the result of Harris or FAST to detect objects. The last
step of a feature detection algorithm is to return the pixels considered to be
featured. OpenCV calls these features keypoints.

69

Figure 7.1: Example of FAST and Harris.

7.2.2 Parallel programming

There are various approaches reduce the execution time through parallelism
[21]. Designing a feature detection program with a fork-join is one way of
utilizing the core-level parallelism, which is efficient due to the mechanics
of these algorithms. A fork-join model has two parts controlled by the main
thread. First, the fork section where one or several tasks, feasible for paral-
lelization, are allocated over the available CPU cores. The main thread re-
sumes its execution when all spawned tasks have finished and entered the join
section. Fig. 7.2 illustrates an example of the fork-join model utilizing 4 cores.

Figure 7.2: The fork-join model for parallelization of algorithms.

The fork-join model is a trivial way when trying to increase the performance
of feature detection algorithms since there are no global variables shared. This
means the algorithms can be split up to work on sub-parts of an image without
interfering with another sub-part of the image.

70

7.2.3 Shared memory

Shared resource congestion is one of the major limiting performance factor
when running applications, such that the application performance is correlated
to the shared resource usage [13]. The resource usage of an application is
usually measured by the Performance Monitoring Unit (PMU) [20], such as
Intel [15], and deduce resource bottlenecks [7]. The application performance
is typically [8, 9] measured in an application-specific metric [2]. In this paper
we are mostly concerned with L3-cache usage because it is the first system-
wide shared resource, which makes it the first resource that is eligible to suffer
from multi-core memory contention.

It is difficult to correlate the cache usage to execution time [6] when running
applications on a HW with shared caches. Sanberg et al [25] focus on under-
standing and modeling the execution behavior caused by a congested shared
cache. It is also possible to quantize how cache misses affect the system per-
formance by profiling the resource usage of a system [22].

Most non-dedicated computer systems utilize caches to be able to access data
quickly. However, the cache is often a costly part of a processor, which limits
the amount of available to the CPU. The limited cache size force most CPU to
implement cache eviction policies to remove less-used data from the cache and
replace it with new data. One of the most commonly known algorithms for re-
placing data inside a cache is the Least Recently Used (LRU) policy. The LRU
tracks data usage, and the least recently used data is removed from the cache
and replaced with the new data when the cache is congested. Multi-core sys-
tems often make use of a shared cache when communicating between threads
and processes. Shared caches of a multi-core processor can, however, lead to
negative behavior when using policies such as the LRU policy. When multiple
threads access the same memory, the risk is that one thread requests a block
of data from the DRAM that replaces the data which was about to be read by
another thread. Such congestion scenarios can lead to cache thrashing, where
several threads continuously replace each other’s data, which in turn can lead
to a significant system performance decrease. Computers which execute corner
detection algorithms and use a fork-join model will, at some point, have to use
the shared resources, such as caches and memory. Shared caches may not be
a problem if the image fits into the local cache. Such favorable scenario hap-
pens, for example, when the feature detection algorithm can process the whole
image in a single iteration, i.e., before other processes replace the cache con-
tent. However, the processed memory depends highly on the used algorithm.
We have focused to investigate the effects that shared cache congestion causes

71

on the speed-up gains when using the OpenCV feature detection algorithms
utilizing a data-partitioned fork-join model.

7.3 Approach

Our study consists of two parts. The first part is a program that implements the
OpenCV algorithms and samples the desired performance counters simultane-
ously as the test execution time. The second part analyzes the measurements.

7.3.1 OpenCV feature detection

OpenCV provides an overlying feature detection class that contains 11 differ-
ent feature detection algorithms. We have used a data-partitioned fork-join
model for evaluating the OpenCV library on multi-core systems. We depict
the execution model in Fig. 7.3.

Figure 7.3: The image data is partitioned to support the fork-join model.

Fig. 7.3 shows how the workload is distributed to the different cores of our
system. At the fork stage, each thread has its affinity set to a core which is
not in use by the algorithm, which means thread 0 gets affinity 0 and there-
fore executes on core 0 and so on. The thread affinity is furthermore used for
partitioning the Image. For partitioning the image, we have chosen to divide
each image on a height basis. The threads work horizontally on the indexes
calculated according to equation (7.1) where Workx is the work indexes and
ImageSizex is the horizontal size of the image. The vertical workload is cal-
culated according to equation 7.3 and 7.4, where UpperBound is upper vertical
index bound, LowerBound is the lower vertical index bound, ImageSizey is
the size of the entire image and aff is the core affinity of the current thread,
which is indexed between 0 and n-1, where 0 is the first core and n-1 is the last
core.

72

Workx = ImageSizex (7.1)

if(aff) = 0, UpperBound = 0 (7.2)

if(aff) > 0, UpperBound =
ImageSizey
aff + 1

(7.3)

LowerBound =
ImageSizey
aff + 2

(7.4)

7.3.2 Performance Monitoring

We have implemented a system function that simultaneously monitor the re-
source usage and performance of an application. The following subsections
describe our test up for measuring application performance and application
resource usage.

7.3.2.1 Application Performance

We measure the execution time of each algorithm using the high resolution
clock chronox (c++11 library) for measuring the algorithm execution time.
The placement of the timestamps are depicted in Fig. 7.4.

Figure 7.4: The algorithm performance measurement sequence.

73

7.3.2.2 Resource Usage

We monitor the number of shared cache misses by using the Performance API
library (PAPI) [18] which provide an interface towards the PMU [20]. We
insert PAPI start before the algorithm start and PAPI read when the algorithm
is finished, as depicted in Fig. 7.4.

7.4 Experiment

We have run our experiments on a quad-core Intel® CoreTM i5-3570 processor
running at 3.40GHz using g++ version 5.4 with -pthread, -std=c++11 and -
O3 as compiler arguments. The HW specifications are listed in Table 7.2.
Streaming SIMD Extensions (SSE) instructions are enabled by OpenCV as
default configuration.

Feature Hardware Component
Core 4xIntel® CoreTM i5-3570 CPU (Ivy Bridge)

3.4GHz
L1-cache 32 KB 8-way set assoc. instruction caches/core

+ 32 KB 8-way set assoc. data cache/core
L2-cache 256 KB 8-way set assoc. cache/core
LLC 6 MB 12-way set assoc. shared platform cache
MMU 64 Byte line size,

64 Byte Prefetching,
DTLB: 32 entries 2 MB/4 MB 4-way set assoc.
+
64 entries 4 KB 4-way set assoc.,
ITLB: 128 entries 4 KB 4-way set assoc.,
L2Unified-TLB: 1 MB 4-way set assoc.,
L2Unified-TLB: 512 entries 4 KB/2 MB 4-way
assoc.

Table 7.2: Hardware specifications Intel® CoreTM i5-3570.

We measure two different parameters in our test suite, utilizing different
amount of cores. The first parameter is Application performance which
measures the total execution time of the feature detection algorithms utilizing
1, 2, 3 and 4 cores. We then use the execution time to calculate the speed-up
gained from using multiple cores compared to single core. The second
parameter is the execution-time measured per image partition, which means
we execute the same image partitions but on single core and compare them to

74

our per-core multi-core respective values. At the same time, we also measure
the L3-cache misses which describes the shared resource usage during the
test execution. We have also measured the amount of keypoints detected
using single-core on a full image, to be able to see what effects the amount
of detected keypoints has on the speed-ups gained. In our tests we have used
images designed to fit different parts of the Cache memory of our test system
Intel® CoreTM i5-3570k. The specification for our test images are listed in
table. We present the test image size variations in Table 7.3.

Table 7.3: Image size variations and their cache boundess.

Figure nr. Image Size Mem. Req. Cache boundness
1 103x103 32 KB L1-cache
2 209x209 131 KB 4 × L1-cache
3 295 x295 262 KB L2-cache
4 591x591 1 MB 4 × L2-cache
5 1431x1431 6.1 MB L3-cache
6 2862x2862 24.6 MB 4 × L3-cache

We have executed tests using different images, within a similar environment.
The images are presented in Fig. 7.5 and follow the specifications presented
listed in Table 7.3.

Figure 7.5: Test images.

The purpose of each test is to reveal the feasibility of our data-partitioned pro-
gram model when using the standard OpenCV feature detection algorithms.
The default parameters of the STAR algorithm in the OpenCV feature detec-
tion suite uses a specific set of image scales when executing the Laplacian
operator. Some of these image scales are so large that they are not feasible
for our smaller image variations, which results in a non-proportional speed-
up when partitioning small images to even smaller image partitions. We have
therefore exempted these inaccurate STAR detector results.

75

7.4.1 Data partitioned measurements

An important behavior to observe when using data partitioned parallelism is
the speed-up given by executing the algorithm on multiple cores. This mea-
surement gives us an absolute value on how well the algorithm responded to
our proposed parallel data partitioned model. In this section, we present and
discuss the speed-up gained by utilizing 2, 3 and 4 cores compared to 1 core.
Each test on each core was repeated 500 times to provide a median of the exe-
cution times. The median execution time is then used to calculate the speed-up
according to Equation (7.5), where S is the speed-up gained, t0 is the single-
core execution time, ti is the execution time of core i and n is the number of
cores used.

S =
t0

{max(ti) : 0 ≤ i < n}
(7.5)

Fig. 7.6 shows the speed-up of each feature detection algorithm. The y-axis
denotes the gained speed-up, and the x-axis represents 3 test images, each
one with 6 image size variations. The first cluster of 6 image sizes belongs
to the image shown in Fig. 7.5 a, the second set to Fig. 7.5 b, and the third
set to Fig. 7.5 c. We categorize speed-ups into three categories: The first is
linear speed-up, where the resulting execution time is equal to the single core
execution divided by the number of cores used. The second is sub-optimal
speed-up, which provides a smaller speed-up than the linear one. The third
and final is super-linear speed-up which provides a more significant speed-up
than a linear one.

To increase readability, we will refer to specific test cases as Img_#figure_size
where # is the figure number.

The numbers for the BRISK detector show a sub-optimal speed-up using
4 cores. The achieved speed-up is small when using the smallest image
but increases with the image size. However, the speed-up is at its peak at
Img_1262KB , Img_21MB and Img_3262KB . When further increasing
the image sizes, the speed-up decreases again. We call this behavior a
pyramid-like behavior.

76

Fi
gu

re
7.

6:
Fe

at
ur

e
de

te
ct

io
n

al
go

ri
th

m
sp

ee
d-

up
fa

ct
or

s
fo

rv
ar

io
us

te
st

-c
as

es
w

he
n

ru
nn

in
g

a
m

ul
ti-

co
re

te
st

sy
st

em
.

77

The Dense Feature detector shows a small speed-up using any of our multi-core
tests, the peak speed-up is at roughly 70% faster than the original 1 core ver-
sion. Furthermore, there is no gain at all from using multi-core until increasing
the image size to 1 MB. The Smaller sizes of 32 KB, 128 KB, and 256 KB ac-
tually decrease the execution time compared to the single core version. The
Dense detector also shows a pyramid-like behavior and has peak performance
at Img_26.1MB and peak speed-up at Img_124.6MB and Img_324.6MB , how-
ever, the differences between the speed-ups are roughly 15%, meaning it is
small and could just be a coincidence.

The FAST feature detector has a low speed-up using the smaller image sizes
and the speed-up increases with the image size. However, FAST reaches a
sub-optimal performance at each speed-up peak which is between 2 to 3 times
speed-up when using multi-core. The insignificant speed-up gained on the
smaller images can be explained as an effect of the overhead gained by the
data-partitioned parallelism. If the overhead of an algorithm is dominant, ini-
tializing the algorithm multiple times will make the algorithms parallelism less
efficient, or even worse (as seen in the Dense algorithm) when using images so
small that the work-load execution time does not match the overhead execution
time.

The GFTT feature detector has a similar speed-up result for all three test
suites. The smallest image has a speed-up of roughly 50%, which is similar
to the speed-up of the largest image. Furthermore, the GFTT feature detector
achieves a close to optimal speed-up using the 1 MB image. Due to the major
speed-up differences, GFTT presents an even stronger pyramid behavior than
the Dense and BRISK feature detector.

The speed-up obtained by using 2,3 and 4 cores on Harris are similar to the
speed-ups of the GFTT feature detector which is reasonable since it is based
upon the same fundamentals as GFTT. The 1 MB image provides the best
speed-up, however, in the Harris case a speed-up of almost 4 instead of 3.
Furthermore Test suite 1 and 2 of the Harris test are similar in the matter of
speed-up behavior, but the 3rd test suite has a lesser peak speed-up at the 1 MB
image.

The speed-up obtained utilizing four cores using the MSER feature detector
show a different behavior from the other feature detectors. The speed-ups
illustrate a reverse pyramid behavior, whereas the 32 KB image obtains a small
super linear speed-up and the other images show a lesser speed-up. The trend is
a speed-up to the 6 MB version of the images, and then a stall of the speed-up.

The speed-up of ORB illustrate a small pyramidic behavior with a peak at the

78

3rd size variation of each image. The speed-up the progressively decreases as
the image size increases.

The Simpleblob speed-up illustrates a small speed-up as the image sizes in-
creases. This is an on-going process as the speed-up is lowest at the smallest
image variation and highest at the largest image variation. The exception is the
test results from Img_21MB , which provides a slightly higher speed-up than
the other 1 MB sizes.

The SIFT speed-up is the only algorithm which presents a close to consistent
speed-up on all of the frames. Although the speed-up obtained from all frames
is sub-optimal, the speed-up gained from SIFT is close to the same on the
32 KB version as the speed-up gained on the 24.6 MB version. This result
suggest that SIFT is a scalable solution for every image size.

The SURF detector illustrates a behavior which originally expected for all al-
gorithms, since the smaller images fit entirely in the L1 cache and potentially
could be processed directly. SURF executes the 32 KB images at a super-linear
which gradually decreases when the image size is increased.

7.4.2 Keypoints detected

OpenCV denotes features detected as keypoints. Due to the varying sizes of
the images, there will be a variance in detected keypoints even though the al-
gorithm in scale-invariant, simply because there are less pixels available. Table
7.4 presents the keypoints detected in each image variation for each algorithm.
Since we are using the default settings of OpenCV, some algorithms use a
threshold value of how many keypoints can be detected at max, this occur-
rence can be seen in the HARRIS, GFTT and ORB detectors.

As the number of detected keypoints increases with the image size, except
for the algorithms which have a threshold value, we can conclude that the
keypoint detection does not have a negative impact on the speed-up gained by
an algorithm. This occurrence is especially clear in the FAST detector, which
has a larger speed-up at the largest frame with 21253 (image 1), 71934 (image
2) and 142727 (image 3) keypoints detected than the smallest frame which
only finds 330 (image 1), 280 (image 2) and 318 (image 3).

79

Im
age

Size
H

A
R

R
IS

Sim
pleB

lob
SIFT

SU
R

F
O

R
B

M
SE

R
G

FT
T

FA
ST

D
ense

B
R

ISK
1

32K
B

90
0

55
61

50
24

276
330

324
13

1
128K

B
110

0
281

285
358

29
737

1184
1225

72
1

256K
B

217
0

450
644

453
59

1000
2211

2500
173

1
1M

B
613

3
1502

2341
500

187
1000

7264
9801

565
1

6M
B

1000
9

5632
10945

500
743

1000
23828

57121
2214

1
24M

B
1000

38
16652

33346
500

1989
1000

51253
227529

5898
2

32K
B

81
0

56
65

56
33

200
280

324
12

2
128K

B
137

0
185

321
339

66
489

868
1225

51
2

256K
B

203
0

433
545

428
97

720
1355

2500
108

2
1M

B
593

7
1459

1769
500

198
1000

4443
9801

363
2

6M
B

1000
9

3645
7856

500
614

1000
22833

57121
853

2
24M

B
389

15
4824

28929
500

1021
1000

71934
227529

1154
3

32K
B

100
0

80
93

59
35

199
318

324
18

3
128K

B
347

0
245

385
370

63
763

1151
1225

86
3

256K
B

497
0

455
710

461
97

1000
1824

2500
154

3
1M

B
1000

12
1581

2399
500

276
1000

6212
9801

537
3

6M
B

1000
70

6015
8288

500
1043

1000
10831

57121
1447

3
24M

B
1000

133
27472

41037
500

3084
1000

142727
227529

6782

Table
7.4:

D
etected

key
points.

80

7.4.3 Execution time differences

We have measured the execution time of the program when it is run in parallel
and compared it to a Sequential execution of the program to monitor any even-
tual losses in the execution time of the parallel program due to shared memory
contention and overhead execution times. We executed this test using 4 dif-
ferent cores, introducing synchronization points between each core execution.
The sequential version of our program is depicted in Fig. 7.7. Our sequential
version of the program thus executes one image partition, running on one core
before executing the next image partition on another core. The maximum ex-
ecution time of the executing cores represent the execution time of the entire
program, since a program is never faster than the slowest core. Each test was
conducted 500 times to provide a median value.

Figure 7.7: Sequential version of the test program.

81

We call the difference between our sequential execution and our parallel exe-
cution ∆T , which is calculated according to equation (7.6) where i is the core
used, which are indexed starting from 0 and n is the number of cores used. tp
is the median execution time using a parallel approach and ts is the median
execution time using a sequential approach.

∆T ={max(tpi) : 0 ≤ i < n}−{max(tsi) : 0 ≤ i < n} (7.6)

∆T allows us to quantify how much of the program execution time is affected
by utilizing a multi-core architecture. Fig. 7.8 illustrates the ∆T per core per
image.

Fig. 7.8 depicts the ∆T on the y-axis using a logarithmic scale w the x-axis
represents 3 test images, each one with 6 different image variations, separated
with a gray field. The SURF algorithm performed worst in this test, with a ∆T
of roughly 900000 microseconds compared to the sequential version using the
largest image size.

FAST and Dense are the best overall algorithms according to the ∆T calcula-
tions, where the majority of the values are placed within the 80 microseconds
range. There few outliers ranging 2300 microseconds using our largest image
sizes which are small compared to the other algorithms.

82

Fi
gu

re
7.

8:
D

iff
er

en
ce

s
in

ex
ec

ut
io

n
tim

e
us

in
g

pa
ra

lle
la

nd
se

qu
en

tia
la

pp
ro

ac
h.

83

7.4.4 Execution Characteristics

Given the different speed-up behaviors, there are certain events occurring
within the hardware, which limits the size of the possible speed-up. We
measured 16 different low-level metrics to investigate possible bottlenecks.
However, the most important metric to measure is the first system-wide shared
resource, which in this case is the L3-cache, since it is the first shared resource
with least amount of memory which makes it most likely to suffer from
thrashing by other threads. We have chosen to visualize only the L3-cache
misses metric due to space limitations. Fig. 7.9 depicts the total amount of
L3-cache misses for both the sequential and parallel versions plotted on the
left Y-axis, and the percentage deviation, denoted as ∆C plotted on the right
Y-axis. The L3-cache misses are the measured median values from 500
executions, while ∆C is calculated according to the total cache misses of all
used cores when run in parallel divided by the total cache misses of all cores
when run sequentially, denoted as ParallelMisses and SequentialMisses in
equation (7.7).

∆C =
ParallelMisses(C1..4)

SequentialMisses(C1..4)
(7.7)

The ideal value of ∆C is 0% L3-cache difference which indicates that no
thrashing has occurred. If thrashing occurs in the cache, the ∆C will increase.
If the difference is negative, it means the memory is efficiently re-used by other
threads and produces less L3-cache misses than the sequential version.

84

Fi
gu

re
7.

9:
L

3
m

is
se

s
us

in
g

pa
ra

lle
la

nd
se

qu
en

tia
lv

er
si

on
.

85

Compared to the other algorithms, FAST has a low L3-cache usage, see
Fig. 7.9, which is proportional to the amount of corners detected. We can also
observe that FAST suffers a comparatively low amount of additional cache
misses due to memory contention. The largest ∆C are in the smaller frames,
but the difference in total is almost negligible. Since the speed-up of FAST
is independent on how many cache misses are produced in L3-cache, we can
conclude that FAST is non-cache bound and therefore suitable for parallel
executions.

Similarly to FAST, SIFT has a relatively low ∆C at the 6 MB image, which
implies that SIFT re-use a lot of the data of the 6 MB variation of the image.
The speed-up of SIFT remains unaffected by the ∆C indicating that SIFT is
computationally heavy but is not memory bound.

The SURF algorithm has a relatively high ∆C, especially with larger image
sizes. L3-cache misses reveal an increase of 800000 misses in total using the
parallel version compared to the sequential one. Concluding that SURF is
cache bound is further strengthened by Fig. 7.5, which depicts an insignificant
speed-up when executing on the largest image. It is debatable how much the
increased amount of corners affect the speed-up; however, Fig. 7.8 reveals a
∆T of almost 1 Second for the largest images, suggesting that the amount of
corners detected have small to possibly no effect on the speed-up.

The ORB algorithm has a fairly low ∆C for the larger images and also shows
a low ∆T version compared to the other Object detectors. However, the ORB
speed-up does not correlate at all with these facts, wherefore we can conclude
that ORB is not L3-cache bound.

The Harris and GFTT algorithms are similar in regards of Speed-up behavior,
∆C and ∆T . However, neither Harris nor GFTT receive a speed-up boost
despite the fact that the L3-cache misses difference is considerably lower for
the larger image sizes which indicates that neither Harris nor GFTT are L3-
cache bound.

Dense has a high ∆C for all image variations. Although the total number
of cache misses are low, we must also consider the execution time of Dense,
which is also low. Since the Dense algorithm presents a ∆T of roughly 3000,
it loses 2/3 of its potential execution time when using parallel version. Com-
bining this with the fact that Dense has a high ∆C it is an indication that the
Dense algorithm is L3-cache bound.

BRISK shows a low ∆C as well as a low ∆T even though BRISK has a fairly
bad speed-up at the larger images. Due to this fact, we can conclude that

86

BRISK is not L3-cache bound.

The MSER algorithm can be considered L3-cache bound due to the correlation
between speed-ups gained in the larger images and the ∆C. In Fig. 7.6, we
see a stall in speed-ups from Img_16.1MB to Img_124.6MB and Img_36.1MB

to Img_324.6MB . However, the figure shows a speed-up from Img_26.1MB to
Img_224.6MB .

A similar pattern can be detected in Fig. 7.9 whereas the ∆C differs by 40%
in Img_16.1MB , Img_124.6MB , Img_36.1MB and Img_324.6MB , but only
differs 20% for Img_224.6MB ..

SimpleBlob has an irregular behavior according to ∆C. The differences for
each test-case are common, but it is hard to find any correlation between the
∆C and the speed-ups gained. Simpleblob, however, has a high total amount
of L3-cache misses, and when adding the fact that SimpleBlob has relatively
small ∆T compared to its extensive execution time (830000 microseconds), it
indicates that SimpleBlob is not observably bound to the L3-cache.

7.5 Conclusions

We have evaluated how default configured OpenCV feature-detection algo-
rithms perform when using a data-partitioned parallel programming model for
2,3 and 4 cores. The algorithms performed differently using our data-set. The
Harris algorithm obtained the highest speed-up at almost 4 times faster than
the original single-core performance. However, this result depends heavily on
the image size. SIFT was by far the most stable algorithm showing a speed-up
of roughly 3 times the single core performance for all image sizes. SURF, on
the other hand, received the worst speed-up, basically insignificant for larger
images, which are the most computationally heavy. We have concluded that
the parallelizing speed-ups of SURF, Dense, and MSER, are correlated to
L3-cache usage. Our measurements suggest that a system designer should not
co-locate these algorithms with other L3-cache bound tasks. We have also con-
cluded that FAST, ORB, BRISK, HARRIS, GFTT, SIFT and SimpleBlob are
not L3-cache bound indicating that they can be efficiently utilized on multi-
core systems, even though other tasks heavily load the L3-cache. We further
conclude that FAST, Dense, Harris, ORB, GFTT and BRISK all suffer from
various degrees of overhead penalties when processing smaller frames.

87

7.5.1 Future work

We have used the default OpenCV parameters in this study, which mean that
results from the feature-detection may differ due to different tuning. There-
fore, further studies should try to find an optimal tuning for each frame and
execute the the parallel feasibility tests described in our study. It is also pos-
sible to investigate the feasibility of co-executing feature detection algorithms
on different cores. Running SURF which we concluded to be L3-cache bound
on one core and running FAST which is not L3-cache bound on the three re-
maining cores could potentially be an efficient approach when the objective of
a system is to detect both blobs and corners.

88

Bibliography

[1] M. Agrawal, K. Konolige, and M. R. Blas. Censure: Center surround
extremas for realtime feature detection and matching. In European Con-
ference on Computer Vision, pages 102–115. Springer, 2008.

[2] A. R. Alameldeen and D. A. Wood. IPC considered harmful for multi-
processor workloads. IEEE Micro, pages 8–17, 2006.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
Computer vision–ECCV 2006, pages 404–417, 2006.

[4] G. Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer, 25(11):120–123, 2000.

[5] T. P. Chen, D. Budnikov, C. J. Hughes, and Y. Chen. Computer vision
on multi-core processors: Articulated body tracking. In Multimedia and
Expo, 2007 IEEE International Conference on, pages 1862–1865. IEEE,
2007.

[6] C. Ding, X. Xiang, B. Bao, H. Luo, Y. Luo, and X. Wang. Performance
metrics and models for shared cache. Journal of Computer Science and
Technology, 29(4):692–712, 2014.

[7] S. Eranian. What can performance counters do for memory subsystem
analysis? In Proceedings of the 2008 ACM SIGPLAN workshop on Mem-
ory systems performance and correctness: held in conjunction with the
Thirteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’08), pages 26–
30. ACM, 2008.

[8] S. Eyerman and L. Eeckhout. System-level performance metrics for mul-
tiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[9] S. Eyerman, K. Hoste, and L. Eeckhout. Mechanistic-empirical processor
performance modeling for constructing CPI stacks on real hardware. In
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 216–226, 2011.

[10] H. Feng, E. Li, Y. Chen, and Y. Zhang. Parallelization and characteriza-
tion of sift on multi-core systems. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pages 14–23. IEEE,
2008.

89

[11] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[12] F. Hosseini, A. Fijany, and J. Fontaine. Highly parallel implementation of
harris corner detector on csx simd architecture. In European Conference
on Parallel Processing, pages 137–144. Springer, 2010.

[13] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A Scheduling Ar-
chitecture for Enforcing Quality of Service in Multi-Process Systems. In
Proceedings of Emerging Technologies and Factory Automation. Analy-
sis, ETFA 2017.

[14] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invari-
ant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, pages 2548–2555. IEEE, 2011.

[15] D. Levinthal. Performance Analysis Guide for Intel ® Core ™ i7 Pro-
cessor and Intel ® Xeon ™ 5500 processors. Intel Cooperation, pages
1–72, 2009.

[16] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[17] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo
from maximally stable extremal regions. Image and vision computing,
22(10):761–767, 2004.

[18] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

[19] Open Computer Vision. Common interfaces of Feature detectors.

[20] D. Patil, P. Kharat, and A. K. Gupta. Study of performance counters and
profiling tools. In Proceedings of 21st IRF International Conference.,
pages 45–49, 2015.

[21] M. J. Quinn. Parallel programming. TMH CSE, 526, 2003.

[22] N. Rameshan, R. Birke, L. Navarro, V. Vlassov, B. Urgaonkar, G. Ke-
sidis, M. Schmatz, and L. Y. Chen. Profiling memory vulnerability of
big-data applications. In Dependable Systems and Networks Workshop,
2016 46th Annual IEEE/IFIP International Conference on, pages 258–
261. IEEE, 2016.

90

[23] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. Computer Vision–ECCV 2006, pages 430–443, 2006.

[24] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE inter-
national conference on, pages 2564–2571. IEEE, 2011.

[25] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Mod-
eling performance variation due to cache sharing. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Sym-
posium on, pages 155–166. IEEE, 2013.

[26] J. Shi et al. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Soci-
ety Conference on, pages 593–600. IEEE, 1994.

[27] H. Sugano and R. Miyamoto. Parallel implementation of good feature ex-
traction for tracking on the cell processor with opencv interface. In Intel-
ligent Information Hiding and Multimedia Signal Processing, 2009. IIH-
MSP’09. Fifth International Conference on, pages 1326–1329. IEEE,
2009.

[28] N. Zhang. Computing optimised parallel speeded-up robust features (p-
surf) on multi-core processors. International journal of parallel program-
ming, 38(2):138–158, 2010.

[29] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu. Sift implementation and opti-
mization for multi-core systems. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pages 1–8. IEEE,
2008.

91

Chapter 8

Paper B:
Resource Dependency Analysis
in Multi-core systems

Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris Behnam, and
Mikael Sjödin. Testing Performance-Isolation in Multi-Core Systems In 2020
IEEE 44th Annual Computer Software and Applications Conference (COMP-
SAC). Vol. 1. IEEE, 2020

93

Abstract

In this paper, we evaluate different methods for statistical determination of ap-
plication resource dependency in multi-core systems. We measure the perfor-
mance counters of an application during run-time and create a system resource
usage profile. We then use the resource profile to evaluate the application
dependency on the specific resource. We discuss and evaluate two methods
to process the data, including moving average filter and partitioning the data
into smaller segments in order to interpret data for correlation calculations.
Our aim with this study is to evaluate and create a generalizeable methods for
automatic determination of resource dependencies. The final outcome of the
methods used in this study is the answer to the question: "To what resources is
this application dependent on?". The recommendation of this tool will be used
in conjunction with our last-level cache partitioning controller (LLC-PC), to
make decision if an application should receive last-level cache partition slices.

95

8.1 Introduction

A multi-core processor contains multiple hardware resources, such as
a memory management unit, instruction and data caches, translations
lookaside buffers (TLB), I/O units such as GPIO’s, direct memory access
(DMA) controllers, etc. Processors may also have access to several different
computational units such as the floating point unit (FPU), the arithmetic and
logical unit (ALU) or the graphics processing unit (GPU). Most of these
hardware resources are often shared between various computational cores.
Several processes located on the same core will also share hardware resources.
This can lead to a state called shared resource contention, where multiple
cores or processes compete for using a hardware resource. Such contention
can lead to significant performance degradation or timing unpredictably.

Applications in a computer always utilize a portion of the above-mentioned
hardware and are thus bound to use these resources at certain times. Resource-
boundness of an application has a large impact on many different aspects of a
system, including how an application should be scheduled together with other
applications, how vulnerable an application is to shared resource contention
and also gives hints to what source of the shared resource contention the appli-
cation is vulnerable to.

One possible solution to avoid shared resource contention is to use isolation
techniques such as cache partitioning [16], TLB coloring [10], memory bus
reservations [15], DRAM bank partitioning [14] and more. Isolation tech-
niques create isolated hardware resource regions within the computer hard-
ware for different cores or processes. One core or process is forbidden to use
the hardware resource region of another process. Using such techniques of-
ten comes with an overhead performance penalty. It is therefore important to
have a clear understanding of when it is beneficial to utilize hardware resource
isolation techniques.

In this paper, we investigate methods for analyzing application resource bound-
ness automatically, in order to be able to use the appropriate resource isolation
techniques on workloads, in the future.

The rest of this paper is organized as follows: Section 8.2 gives the background
information on resource boundness. Section 8.3 proposes a tool skeleton for
identifying resource boundness. Section 8.4 shows the characteristics of our
baseline measurement case. Section 8.5 discusses different statistical methods
for evaluating resource boundness. We present our results and discuss them in
Section 8.6, and also provide directions for future work.

96

8.2 Background

In previous work, we state the importance of finding the appropriate partition-
ing techniques to avoid wrong resources being partitioned and thus lose unnec-
essary performance [5]. We have furthermore investigated methods to find the
saturation point partition (the point from which an application does not benefit
more from additional resources, or increased resource size) of workloads to
avoid over-commitment of certain resources such as the cache [3]. The ques-
tion, however, still remains on how to make the definite decision during run-
time on when a workload should be partitioned and what isolation techniques
should be applied. While it is possible to create an understanding on where
shared resource contention occurs using deductive reasoning [4], the question
on making the definitive computer-understandable verdict on what resource
boundness is remains.

8.2.1 Application performance

Performance is always related to time, but a full definition of performance
is more complex, and it may be also unclear. The general term for perfor-
mance is always that something is executed with a certain quality of service.
The quality of service can be defined as many things, such as packets per sec-
ond (common in network applications) and also total execution time (common
in high performance applications). All code is translated into machine code,
which are instructions that tell the computer what should be computed. All
instructions travel through the memory hierarchy of a computer until, finally,
reaching the processor which executes the calculations. The processor is, how-
ever, not the final point of actuation for an instruction. All modern processors
utilize instruction level parallelism, which means that all instructions are split
into smaller segments and executed within a unit called the processor pipeline
- Figure 8.1 depicts the classic 5-stage RISC pipeline.

Figure 8.1: Illustration of the classic RISC pipeline

An instruction which has passed the writeback stage has passed through the
entire pipeline and is now considered completed, or commonly called retired
by different processor manufacturers such as ARM and Intel. In high perfor-
mance systems, it is desirable to have as many instruction retired as possible

97

in a certain time-frame, as a measure of performance.

There are however exceptions to the previous performance measurement rule,
which comes with busy-wait programs such as network applications, which
measures performance using the packets per second metric. Here, we are given
a precise performance indicator, mentioning how many packets two nodes are
able to send and receive in a given time-frame. The packets per second metric
is based on a sender-receiver scheme where one of the nodes (node A) is the
sender, and the other node (node B) is the receiver. Node A will continuously
send packets at its maximum capacity while node B will be stuck in a busy-
wait loop, doing nothing until a packet has arrived. Since node B is stuck
in the loop, the amount of instructions retired will be un-proportionally high,
compared to the packets per second, which means that in this typical case -
instructions retired is not a feasible performance metric.

8.2.2 Resource boundness

The number of instructions retired can be halted by numerous occurrences
within the computer. Such occurrences include CPU suspends while waiting
for memory to become available and stalls within the pipeline which happen
as a consequence of branch mis-predictions and data hazards. Investigating
which resource an application is bound to is, therefore, important, since it
enables the system designer to make decisions on how different applications
should be handled in the system.

The amount of instructions retired in a given time-frame can become highly
dependent on what happens in the memory hierarchy of the computer. For in-
stance, if the memory used by an instruction is not immediately available (i.e.,
located directly in the processor memory) it needs to be fetched from one of
the upper memory layers within the processor, which in turn has its own hierar-
chy, including the L1D-cache, L2-cache and L3-cache, where the L1D-cache is
fastest and L3-cache is slowest. Measuring how the performance is bound to a
certain resource becomes especially interesting when working with multi-core
computers since it enables system architects to adjust the affinity of certain
applications which may not fit together on the same core. It is possible, for in-
stance, to assume that applications which are bound to the L1D-cache should
never be placed on the same core since it means these applications potentially
can replace each other’s cache lines.

Figure 8.2 shows our assumptions on applications allocated on the same core,
depending on their resource boundness. In the figure, we use three resources to

98

Figure 8.2: Illustration of the classic RISC pipeline

exemplify: branch-prediction unit (BPU), L1 data cache and L2 cache. Crosses
in the grid marks that the applications should not be allocated to the same core,
while check-marks show that they may. Our assumptions in figure are that it
is never a good option to keep two applications which are bound to the same
resource on the same core, due to risk of resource contention. For instance,
in a hyper-threaded system - where two applications running on two different
threads, but still on one core, utilize the same L1D-cache. If these two ap-
plications utilize the local L1D-cache heavily, they could potentially replace
the data of each-other due to the cache replacement mechanisms which cause
resource contention. Resource contention makes it a bad suggestion to map
L1D-cache-bound applications to the same core. Similarly, if two applications
heavily utilize branches, they put the branch predictor unit to stress since the
branch predictor looks at current branch trends and then makes predictions
based upon these trends. If two applications contest the branch predictor, there
is a risk that the branch predictor may get confused by the branches taken of
to independently running applications. The L2-cache has similar properties to
the L1D-cache, but hosts a greater amount of memory. Two applications bound
to the L2-cache should therefore not be allowed on the same core, unless we
are ready to accept relatively heavy losses in performance. We also argue that
it might be favourable to not allow for L1D-cache bound and L2-cache appli-
cations to co-exist on the same core, since L1D-cache misses directly lead to
accesses in the L2-cache. If the L2-cache is already working at maximum ca-
pacity, more L2-cache accesses which happens as a consequence of L1D-cache
misses means that the L2-cache will present even more L2-cache misses.

99

Similar considerations should be addressed about the inter-core shared re-
sources, such as the last level cache and the TLB. Since these resources are
shared across multiple cores, it is not possible to avoid resource contention
through executing applications with LLC- or TLB-related boundness on dif-
ferent cores. However, it is possible to enforce partitioning policies such as
cache coloring [13] and TLB coloring [10].

8.2.3 Profiling resource boundness

It is common for large scale industrial applications to have thousands up to mil-
lions of lines of code which makes them very hard to analyze in a white-box
manner. Therefore it is very temping instead to analyze such applications us-
ing a black-box perspective and assume that there is no prior knowledge of the
application behavior, and run from that perspective. It is possible to analyze
applications in such a manner by using performance counters, which are pow-
erful computer hardware peripherals that measure hardware triggered events,
such as branch mis-predictions, cache misses, TLB misses, etc. Using per-
formance counters enables us to create hardware profiles of the applications,
without any prior knowledge on their behavior.

8.2.4 Considered resources

Every resource within a multi-core processor can be the origin of shared re-
source contention. Some resources are, however, more prone to contention
than others. Our goal is to create a generalizeable method for characteriza-
tion of all different computer resources. In this paper we limit, though, the
approach to the resources contained within the internal memory subsystem of
a processor, due to the limited number of physical hardware counters. We
present the targeted resources in Table 8.1.

Performance counter Description
L1_TCM Total amount of level one cache misses
L2_TCM Total amount of level two cache misses
L3_TCM Total amount of level three cache misses
PAPI_TLB_DM Total amount of data TLB misses
PAPI_SP_OPS Single point floating operations
PAPI_BR_INS Amount of branch mispredictions

Table 8.1: Measured performance counters

100

We believe the items presented in table 8.1 represent some of the most impor-
tant ones when it comes to resource contented systems. The different perfor-
mance counters were selected as there are only a number of actual hardware
counters on each chip.

We use the instructions retired as our performance metric, measured by the
performance counter. This further means that it is possible to measure the per-
formance of applications completely ad-hoc, without any complex communi-
cation schemes or additional implementation within an application. Measuring
the instructions retired, however, limits the application usage, since instruc-
tions retired is only one of the relevant performance metrics of continuously
running applications, which are not dependent on wait states (such as waiting
for I/O’s).

8.2.5 Related work

Works including the Scarphase profiling tool [6] are closely related to our re-
search. There are two papers written by Sembrandt et al. [12] discusses how
applications can be split into several phases and show the resource usage over
time for different processes. In another paper, Sandberg et al. [11] discusses a
method for measuring the performance variability of applications due to cache
contention. Similarly to our work, they also utilize the performance counters
to identify the different phases and can as such visualize the resource usage
of specific applications over time. Our work takes this investigation one step
further, since we also account for the performance aspect of applications and
try to automatically determine how the performance of an application is bound
to a specific performance counter.

Other close related work is the characteristics monitor (Charmon), developed
by Jagemar et al. [7]. Charmon creates advanced profiles of applications us-
ing the perf interface performance counters and correlates them with a per-
formance metric called System Level Metric (SLM). SLM is a general term
for performance of an application, and works more on a system level, where
packets per second is an example. This approach is very accurate when the
definition of performance is clearly specified, the aim of the application is
single objective and also accounts for busy-wait application. Our approach
omits busy-wait applications but instead makes it easier to characterize multi-
objective applications.

101

8.3 Method

We propose a three-step methodology for automatically determining the
resource-boundness of an application. We describe the characterization
procedure in Alrogrithm 1.

Initialize_PAPI();
while forever do

/* Determine the required sampling frequency

*/
timestamp_before();
execute_process(application.elf);
timestamp_after();
sample_frequency = timestamp_before-timestamp_after;
/* Fork out process to different thread and

sample performance counters */
pid = fork(application.elf);
while pid==active do

measure_performance_counters(pid);
sleep(sample_frequency);

end
/* Calculate characteristics dependencies

and store them */
calculate_pearson_correlation(pid);
store_application_characteristics();

end
Algorithm 1: LLM-tool pseduocode

We base our algorithm on three steps: firstly identification of sampling fre-
quency; secondly sampling of certain performance counters; finally resource
boundness calculations, which quantify how much dependency an application
has on a certain performance counter. We list the steps in more detail as fol-
lows:

1. Identification of sampling frequency. In order to determine how the per-
formance of application moves with a performance counter event, we
need a certain amount of samples. We determine the sampling frequency
through running the application under test once, and thus determining
the execution time. We then divide the execution time with a quota de-
pending on how many samples we need.

102

Figure 8.3: Execution characteristics of a 512x512 matrix multiplication

2. Performance counter sampling. We sample the performance counters
events at the previously defined frequency. All performance counter
measurements are stored inside a struct, which will be used as a database
when calculating the resource boundness of an application.

3. Resource boundness estimation. We calculate the resource boundness of
an application in our final step using the Pearson correlation coefficient.

8.4 Characterizations

In this section, we present experiments to automatically visualize the charac-
terization of an application. Our test platform is specified in Table 8.2.

103

Feature Hardware Component
Processor 4xIntel® CoreTM i5-8850H CPU (Skylake)

2.6GHz
L1-cache 32 KB 8-way set assoc. instruction caches/core

+ 32 KB 8-way set assoc. data cache/core
L2-cache 256 KB 4-way set assoc. cache/core
LLC 9 MB 12-way set assoc. shared cache
MMU 64 Byte line size,

64 Byte Prefetching,
DTLB: 32 entries 2 MB/4 MB 4-way set assoc.
+
64 entries 4 KB 4-way set assoc.,
ITLB: 128 entries 4 KB 4-way set assoc.,
L2Unified-TLB: 1 MB 4-way set assoc.,
L2Unified-TLB: 512 entries 4 KB/2 MB 4-way
assoc.

Table 8.2: Hardware specifications Intel® CoreTM i578850H

We use a sample size of 500, which means the periodicity sampling frequency
of the performance counters is calculated according to Equation 8.1. We fur-
thermore use the unistd Linux library for the sleep timers, which means the
execution time of must be measured at the granularity of microseconds.

Frequency =
Execution_time(µs)

Sample_size
(8.1)

Our assumptions when executing a characterisation test is that an application
is only bound to a resource when the performance decreases - while the perfor-
mance counter of the resource increases. We present our definition of resource
boundness as follows.

Definition - Resource boundness The performance of an application is rep-
resented by the number of instructions retired from the pipeline.

A performance counter event is represented by an event occurring within a
resource of the computer.

When the application suffers performance degradation and at the same time
shows an increase in performance counter events, the performance degradation
is a direct consequence of the usage of that particular resource.

In previous works [5], we established that a matrix multiplication is bound
to the last-level cache and vulnerable to shared resource contention. Since

104

we know the boundness of a matrix multiplication, we use it as our visuali-
sation example in this paper. Figure 8.3 shows the execution characteristics
of a 512x512 matrix multiplication. Each sub-graph plots the instructions re-
tired on the left-hand side y-axis (which is our performance metric), marked
with blue crosses. The left-hand side y-axis plots the respective performance
counter, see table 8.1 for full description. The x-axis shows the sample number
from which these measurements were taken.

We plot the instructions retired on all different sub-graphs, to provide a better
visual representation on what resource the matrix multiplication is bound to.

Our definition of resource boundness makes it possible to exclude four mea-
surements as candidates for the resource boundness. The first and second sub-
graphs plot the L1D and L2 cache misses, respectively. These two metrics
show a direct correlation with the performance - when the performance of the
matrix multiplication decreases, the performance counter even also decreases.
This is called a positive correlation in statistical terms, and it is precisely what
happens when an application is not bound to this particular resource. When the
performance counter decreases with the performance, it means the resource is
currently operating at maximum capacity and is hindered to performing better
by overlying resources such as the L3-cache and TLB.

The TLB misses show another trend, with a significant spike in the starting
phase of the matrix multiplication execution. This spike, however does not last
or re-occur later in the program execution and can, therefore, be explained as
a new process requesting sufficient address space at the start.

Our most interesting metric is the L3-cache misses metric, which shows fre-
quent spikes throughout the entire program execution. While these spikes oc-
cur, we also see a significant drop in performance, which indicates that the
L3-cache usage has strong claims as being the primary resource bottleneck for
the matrix multiplication.

One very interesting data-point also presents itself at point 313 on the y-axis.
At this point, the millions of instructions retired has suddenly increased by
67% together with its respective cache metrics. This is an outlier value and
could have various explanations, including kernel interrupts, or measurement
error due to process suspension, or double value measurement, etc. It is pos-
sible to just filter this value out and as such just ignore it by using certain
thresholds. However, in our methodology, there is the risk that many of our
values can be seen as outliers which makes the threshold assignments too arbi-
trarily. Referring to the L3-cache misses graph in Figure 8.3, where there are
4 spike values in the beginning - these highly important values could also be

105

seen as outliers and if we ignore these important values, the resource bound-
ness calculation loses its purpose.

In the following sections we will evaluate how to approach outliers vs, impor-
tant data spikes.

8.5 Discussion of applicable methods

We have established that the performance of the matrix multiplication shows
most correlation to the amount of L3 cache misses produced. These conclu-
sions were however drawn using visual observations of data - not possible to
execute automatically in a computer. In order to automatically determine the
resource boundness, we will use statistical methods.

In the following, we discuss methods that can be utilized to confirm that the
matrix multiplication is L3 cache bound.

8.5.1 Distribution of data

It is important to discuss the data characteristics before analyzing what meth-
ods are applicable, because the shape of the curve can impact on how different
correlation methods can be used. The majority of the L3-cache misses mea-
surement data lies in an interval between 100-1000 L3-cache misses. Figure
8.4 plots the data distribution intervals, where the left-hand side bar shows
the amount of samples with a value less than 1000. The right-hand side bar
shows the number of samples with a value over 1000. The median amount of
L3-cache misses is 318 and has a standard deviation of 8225.

106

Figure 8.4: Distribution of L3-cache misses

The data distribution shows that the program execution is characterized by a
relatively low L3-cache misses value, which represents 84% of all measure-
ments. Measurements above 1000 cache misses only represent 16% of the
measured data points. The distribution of data means we have a relatively
smooth line with large value spikes at certain intervals which happens when
the cache memory becomes full. These large value spikes are significantly
higher than the median value, which is the reason for such high standard devi-
ation.

8.5.2 Filtering interesting data points

Filtering is a very powerful tool to smoothing out curves and can be very use-
ful when using correlation techniques, especially when there are outliers that
can make the correlation calculation inaccurate. Through filter usage, it is pos-
sible to ignore data-points which truly are outliers. However, filtering is also
something that must be used with utmost caution. Since we are interested in
the relationship between two curves with many potential abrupt values, there
is a risk that too heavy filtering may classify certain spikes as outliers and just
ignore them.

107

Figure 8.5: Segment divided L3-cache misses measurements

8.5.2.1 Segmenting the curve

Here, we discuss two filtering techniques, applicable to our case. We firstly
discuss partitioning the curve into several sub-curves and analyzing the sub-
curves individually. We also apply a moving average filter to smoothing out
the curve and filter out extreme outliers.

Our first technique to filter the curve is to split the measurements into sev-
eral different segments using threshold values. We use the standard devia-
tion of 8225 L3-cache misses as threshold value for identifying deviations of
the curve. Based on these, we then divide the curve into segments and can
thus investigate the segments individually rather than investigating the curve
as whole. A segment of the curve is characterized as follows.

Firstly, there is a "silent" phase, where the L3-cache misses lie below the stan-
dard deviation value. When the L3-cache misses measurement trespasses the
standard deviation, a burst phase starts, which shows a significant increase in
L3-cache misses. The burst phase ends once the L3-cache misses measures
under the standard deviation once again, and thus marks the end of a segment.

Figure 8.5 enlarges the L3-cache misses graph from Figure 8.3 and plots the
value intervals between different curve partitions.

The reason for employing this technique is to analyze smaller, key-parts of the
application execution, rather than the complete application behavior. Once all
key-parts are identified, we can calculate the correlation coefficient for each
individual key-part. We then use the correlation coefficients of all intervals to
calculate the average and median correlation coefficient values to represent the
whole curve.

108

8.5.2.2 Moving average

Smoothing out the curves could make correlation coefficients more suscep-
tible towards the data input, and less vulnerable to extreme outliers. Figure
8.6 plots the moving average for the instructions retired and L3-cache misses
respectively.

Figure 8.6: L3-cache curve divided into several segments

The idea of adding a moving average filter to the curve supports smoothing
out the rapid changes within the curve, such that the correlation coefficients
still recognize these changes. Applying moving average filters can however
become dangerous, since there is a risk that important deviations in the data-
set are ignored.

8.5.3 Relationship evaluation

In this section we evaluate the standard Pearson correlation coefficient [2] -
which is highly sensitive to outliers [8] - of our three different methods. There
are other correlation methodologies which potentially may be used in our case,
such as rank based correlations Kendall [1] and Spearman [9]. These correla-
tions are, however, not as sensitive to outliers as the Pearson correlation, and
therefore our approach only covers the Pearson correlation coefficient.

109

There are two types of correlations. Positive correlation means that the curves
of two data-sets move in the same direction. In our case, a positive correlation
is shown between the L1D-cache misses and the instructions retired - when
the amount of instructions decreases, the amount of L1D-cache misses also
decreases.

The second type is the negative correlation, which is shown in in the L3-cache
misses case. Negative correlation means that the curves of two-data sets move
in opposite directions - when the amount of L3-cache misses increases - the
amount of instructions retired decreases.

Correlation coefficients provide excellent values for for detecting such rela-
tionships and when used in conjunction with absolute values, it is also possible
to quantify the magnitude of the trend. An absolute correlation value between
0.2-0.3 is seen as low correlation, and a value of 0.3-0.5 gives a medium cor-
relation. A high correlation comes at values larger than 0.5.

Table 8.3 lists the calculated correlation coefficients using our baseline mea-
surement, segmented measurement and moving average curve. The baseline
correlation is just a straight-off correlation coefficient between the instructions
retired and L3-cache misses. The segmented correlation value is based on the
average and median correlation coefficients from all segments of the applica-
tion execution. The final measurement implements a moving average filter to
smooth out the curve. The table shows the correlation coefficient depending
on the size of the moving average window.

Type Correlation coefficient
Baseline -0,3664

Segmented Average -0,6751
Segmented Median -0,7695
Mov. Avg. Size 2 -0,4990
Mov. Avg. Size 3 -0,5452
Mov. Avg. Size 4 -0,5706
Mov. Avg. Size 5 -0,5874

Mov. Avg. Size 10 -0,6378

Table 8.3: Correlation coefficients for each method

The table presents the correlation coefficients for each methodology. The base-
line measurement, which is the untouched data-set presents a correlation co-
efficient of 0.3664, which is relatively low, considering how the performance
actually moves with the L3-cache misses. The explanation for this is the ex-

110

treme outlier in data-point 313, where both the L3-cache misses and the million
instructions retired peaks at an abnormal value.

The moving average calculation presents an increase of correlation, because
the worst outliers are smoothed out. A moving average with a window size
of 10 presents the highest correlation of 0.6, which is relatively a high value.
The question which arises with moving average is, however, to what extent is
important data filtered out? Through visual inspection, we come to the con-
clusion that a moving average of window size 10 has filtered out our worst
outlier(s), but many other spikes have also been removed.

Our segmented methodology presents the highest correlation with a value of
0.7695. Comparing it to the above, it would require a substantial increase of the
window size with the moving average approach, to reach the same correlation,
taking us to a point where values in the curve are almost meaningless.

We argue that using a segmented curve correlation is the best for analyzing
since it is usable for also analyzing applications which binds to multiple re-
sources. An example of such an application would be to find the highest value
inside a matrix after a matrix multiplication has been performed. The applica-
tion will firstly have a highly L3-cache dependent phase during the multipli-
cation of the matrices. Once the matrix multiplication is done, a comparison
phase will start, which instead will be highly dependent on the branch pre-
diction unit. It is possible to adapt the segmented correlation to detect such
shifts in resource boundness of multiple phases in an application, wherefore it
is favourable to use our segmented methodology.

8.6 Summary

We have shown how the performance of a matrix multiplication interacts with
several low level resources such as the caches, the TLB, the branch prediction
unit and the floating point unit. We have done an extensive evaluation using
correlation tests on our measurement data to determine how to filter out outliers
from these measurements. Both our filter methods show a significantly greater
relationship between the instructions retired and L3-cache misses compared
to just executing correlation coefficient calculations on baseline measurement
data. This means, it is favourable to process L3-cache boundness measure-
ment data with filter methods instead of just correlating the baseline values.
Our suggested method of partitioning the data into several segments revealed
to show the highest correlation relationship, since we are able to look at multi-
ple, smaller phases of an application and as such decreasing the granularity of
correlation calculations rather than just looking at the data set as whole.

111

8.6.1 Future work

In future work, we will focus on implementing the segmented curve combined
with a Pearson correlation coefficient to provide a fully-fledged automatic
resource-boundness analysis tool for workloads. Our aim is then to integrate
this tool with last level cache partitioning, such that only workloads which
need last level cache partitioning will receive cache partition slices. Other in-
teresting directions for future work would be to implement neural networks
into the determination process, which possibly could provide an even better
estimation of workloads. Our reason for not investigating neural networks in
this paper was that we not had precise definition on when an application is re-
source bound, and could therefore, not train the neural network properly. Now,
however, all the necessary tools are available.

112

Bibliography

[1] H. Abdi. The kendall rank correlation coefficient. Encyclopedia of Mea-
surement and Statistics. Sage, Thousand Oaks, CA, pages 508–510, 2007.

[2] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coef-
ficient. In Noise reduction in speech processing, pages 1–4. Springer,
2009.

[3] J. Danielsson, M. Jägemar, M. Behnam, T. Seceleanu, and M. Sjödin.
Run-time cache-partition controller for multi-core systems. In IECON
2019-45th Annual Conference of the IEEE Industrial Electronics Society,
volume 1, pages 4509–4515. IEEE, 2019.

[4] J. Danielsson, M. Jägemar, M. Behnam, M. Sjödin, and T. Seceleanu.
Measurement-based evaluation of data-parallelism for opencv feature-
detection algorithms. In 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), volume 1, pages 701–710.
IEEE, 2018.

[5] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and M. Sjödin.
Testing performance-isolation in multi-core systems. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 604–609. IEEE, 2019.

[6] https://github.com/uart/scarphase. Scarphase tool.

[7] M. Jägemar, S. Eldh, A. Ermedahl, and B. Lisper. Towards feedback-
based generation of hardware characteristics. In 7th International Work-
shop on Feedback Computing, 2012.

[8] M. Joseph. Pearson coefficient of correlation explained.

[9] L. Myers and M. J. Sirois. Spearman correlation coefficients, differences
between. Encyclopedia of statistical sciences, 12, 2004.

[10] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb color-
ing. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015 IEEE, pages 3–13. IEEE, 2015.

[11] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Mod-
eling performance variation due to cache sharing. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Sym-
posium on, pages 155–166. IEEE, 2013.

113

[12] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Phase behavior in
serial and parallel applications. In 2012 IEEE International Symposium
on Workload Characterization (IISWC), pages 47–58. IEEE, 2012.

[13] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[14] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[15] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

[16] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-
based multicore cache management. In Proceedings of the 4th ACM Eu-
ropean conference on Computer systems, pages 89–102. ACM, 2009.

114

Chapter 9

Paper C:
LLM-shark – A Tool for
Automatic Resource-boundness
Analysis and Cache
Partitioning Setup

Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris Behnam and
Mikael Sjödin. In 45th Computer Society Signature Conference on Computers,
Software and Applications (COMPSAC). IEEE, 2021.

115

Abstract

We present LLM-shark, a tool for automatic hardware resource-boundness de-
tection and cache-partitioning. Our tool has three primary objectives: First,
it determines the hardware resource-boundness of a given application. Sec-
ondly, it estimates the initial cache partition size to ensure that the application
performance is conserved and not affected by other processes competing for
cache utilization. Thirdly, it continuously monitors that the application per-
formance is maintained over time and, if necessary, change the cache partition
size. We demonstrate LLM-shark’s functionality through a series of tests using
six different applications, including a set of feature detection algorithms and
two synthetic applications. Our tests reveal that it is possible to determine an
application’s resource-boundness using a Pearson-correlation scheme imple-
mented in LLM-shark. We propose a scheme to size cache partitions based on
the correlation coefficient applications depending on their resource boundness.

117

9.1 Introduction

The internal memory subsystem of a processor is often limited, cache memo-
ries for instance, often host a memory area that ranges from two digit KB’s
to single digit MB. The small memory space means it is improbable that an
application’s entire memory footprint can fit within one of the caches. As
such, the caches will, at some point during application execution, become full.
When new memory is requested, and when the necessary memory block is
not present within the cache, it is instead fetched from the main memory and
brought into the cache, replacing old data. Fetching the DRAM data produces
a significant delay and will produce processor pipeline stalls while waiting for
the memory block to become available.

Modern computers often utilize multi-core processors to increase through-
put. The multi-core processors typically implement a shared cache policy,
where at least one cache is shared between all cores. When multiple appli-
cations execute on different cores while sharing the same cache, there is a
high risk that one application’s memory requests will repeatedly replace an-
other application’s data, causing a resource contention scenario called cache
contention. Cache contention causes execution-time jitters and performance
degradation [7].

We can also find contention in other resources such as the Translation
Lookaside Buffer (TLB) [15], the memory bus [24] and even the DRAM [23],
but in this paper we focus on the cache related issues. Several mitigation
techniques for cache contention exist, including page coloring [22] (a memory
allocation scheme implemented in the memory management unit), cache
way-partitioning (provided by the hardware manufacturer), and cache locking
schemes [21]. The mitigation techniques improve the execution-time jitters, at
the cost of implementation complexity and/or execution-time overhead. Due
to the disadvantages, it is desirable to only use mitigation techniques when
necessary, i.e., when there is a risk for cache contention that would degrade
the performance of the system.

Determining the necessity of a mitigation technique is not a straight-forward
process, since engineers have to carefully investigate the run-time behavior of
each individual application and may also have to inspect the application code.
Due to the code complexity of many modern applications this can quickly turn
into a time-consuming procedure.

This paper describes our tool, LLM-shark, that determines partitioning tech-
niques and partitioning sizes. LLM-shark monitors the run-time behavior of

118

applications using hardware performance counters and creates a characteris-
tics profile of an application. We use the characteristics profile to determine
how much the performance of an application depends on a certain resource.
We make a resource-boundness estimations using the Pearson-correlation co-
efficient and then suggest the usage of specific mitigation techniques. We,
furthermore, utilize the correlation coefficient to determine how much mem-
ory the selected mitigation technique must assign to the application. The main
contributions in this paper are:

• A method to quantify resource-boundness automatically.

• An evaluation of how applications perform in a cache restricted envi-
ronment and how the results are in line with our resource-boundness
estimation.

• Automatic calculation of the amount of needed cache memory based on
the above estimation.

• An implementation of the above aspects in the tool LLM-shark, and a
proof of concept study showing the feasibility of the tool.

9.2 Background

9.2.1 Performance counters

Many architectures implement a performance monitoring unit (PMU) [1] to
monitor hardware resource usage. The PMU follows a large set of events,
including CPU pipeline resources, various internal memory events such as
cache/TLB events, and also off-core events such as DRAM accesses and in-
terrupts [25]. The PMU utilizes hardware-implemented performance monitor
counters (PMC) that increments each time a specific event occurs. Modern
processors typically contain several PMC’s to simultaneously measure a set
of different events. Our test environment processor is an Arm Cortex-a53
CPU, with capabilities for six simultaneous PMCs measuring six different
hardware events simultaneously. In this paper, we utilize the Performance API
(PAPI) [14] which is a front-end framework for the standard Linux API for
performance counters - Perf [9]. PAPI has extensive default support for the
branch unit and the last-level cache.

119

9.2.2 Resource-boundness

In the context of our paper, we define the performance of an application as the
number of instructions completed per unit of time. In Eq. 9.1, P denotes the
performance metric, It the number of instructions retired of an application and
t as the time interval.

P =
It
t

(9.1)

We use the definition from Eq. 9.1 to trace an application’s performance
through a PMU event called instructions retired, which increments each time
an instruction leaves the final write-back stage of the processor pipeline. Thus,
we define the application performance as the number of instructions retired at
a specific sampling frequency, a higher number meaning higher performance.
This definition is not suitable for all types of applications, such as network
applications that heavily utilize tight and small busy-wait loops, causing a
high instructions retired rate with no perceived system-level performance.
The performance metric for such applications instead is packets per second
or similar [11] system-level metrics. In this paper, we target non-I/O-bound
applications, for which the above performance definition is applicable.

An application is typically built of millions of instructions where each instruc-
tion takes at least one clock cycle to complete, assuming an in-order, non-
super-scalar processor. In ideal conditions, the processor executes an instruc-
tion without any delays, which means a one-cycle instruction will take one
cycle to finish, a two-cycle instruction will take two cycles to finish, etc. An
application running on a 1.2GHz processor, without any external disturbances
will thus execute instructions equivalent to 1.2 billion cycles per second.

It is however unrealistic for an application to execute instructions close to
the processor clock frequency, due to cycle-disturbances, such as branch mis-
predictions, structural data hazards, memory wait operations and also operat-
ing system overheads. All cycle-disturbances causes result in stall penalties
within the processor pipeline and means that an application’s instruction is not
allowed to execute for a certain number of clock ticks. One common source
for disturbance is the register memory itself, which is typically very small and
can therefore not host the complete application data set. When the register
memory does not contain requested data, the data needs to be fetched from
L1D-cache and a one cycle penalty stall will be inserted into the processor
pipeline, which halts the processor from executing the instruction. This cycle
stall penalty, thus, halts the application from executing an instruction, which

120

means that the application will suffer a performance degradation.

The cycle stall penalty varies depending on the hardware unit. Application
data that is not present within L1D-cache enforces an even greater pipeline
stall penalty (e.g., 10 cycles) and needs to be fetched from the L2-cache, etc,.
Similar stall penalties are also present in other various computer components
such as the branch predictor unit (BPU) and the Translation Lookaside Buffer
(TLB). An application with a high stall cycle penalty count is able to execute
less instructions per time interval than an application which contains few stall
cycle penalties. Thus, an application’s performance builds a dependency to-
wards the stalls, where more stalls infer a decrease in performance.

The resource that causes the most cycle stalls to an application causes
the greatest effect on the applications’ performance and therefore
presents the strongest resource-boundness. Identifying an applications’
resource-boundness becomes of great importance in multi-core systems, since
some resources are physically shared across different cores. Two applications
that display noticeable resource-boundness towards the same shared resource
such as the Last-level cache can lead to cache contention, causing both
applications to suffer from (potentially severe) performance degradation.

9.2.3 Cache partitioning

Page-coloring is a software approach to partition a cache for mitigating cache
contention. Page-coloring creates an allocation scheme for free pages and as-
signs the pages to a fixed position within the cache. Page coloring, thus, alters
an application’s data positioning within the cache. Fig. 9.1 demonstrates how
page coloring maps the pages of three applications (B, G, R) to different posi-
tions in the cache memory.

Figure 9.1: Cache coloring

121

Applications executing within a page-colored environment will not suffer from
shared cache contention since page coloring provides a clear border in the
cache between where applications are allowed to position data. Page-coloring
utilizes a cache’s set-associative and presents an additional overhead to mem-
ory allocations due to algorithm complexity. The trade-off with cache parti-
tioning, therefore, stands between performance and isolation.

9.2.4 Analyzing resource-boundness

We discuss here a statistical approach to quantify the resource-boundness using
the Pearson correlation coefficient.

The Pearson-correlation coefficient has three types of outcomes, 1 - which
means a complete positive correlation between two datasets; 0, which means
no correlation between the datasets; and -1, which means complete negative
correlation. We exemplify the three types of correlation in Figure 9.2.

Figure 9.2: Example of positive- (left) zero- (middle) and negative (right) correlation

We analyze resource-boundness by investigating negative relationships be-
tween the number of instructions completed and a resource event. Negative
relationships mean either the number of instructions completed increase while
the number of resource events decrease, or vice-versa. We utilize the PMU -
that consists of several performance monitor counters (PMCs) - to monitor an
applications’ performance. We monitor the Instructions retired event, which
counts the number of instructions that went through all processor pipeline
stages, as a quantifiable performance metric. The second metric defines the
kind of resource-boundness the user is interested in (e.g. if interested in cache
related boundness we count the cache misses - via counters such as L1D-cache-
misses, etc).

In this paper, we utilize the analysis part of LLM-shark to determine the neces-
sity of placing an application into a Last-Level Cache partition container [22].
Here, we mainly focus on the L2-cache misses as performance counter-event.

The resource-boundness analysis further covers three actions:

122

• Determine the event set. To determine the resource-boundness, we
first need to determine which counter events to sample. The complete
counter set (perf+PAPI) lists a total of 116 events. For this paper, we
chose to use only the 11 PAPI preset events.

• Sample performance counters. We sample selected performance coun-
ters during application execution at a fixed rate and save the data for
resource-boundness analysis.

• Assessment of the resource-boundness. We utilize the perfor-
mance counter samples from the previous step to calculate the
Pearson-correlation coefficient. We quantify the magnitude of the
resource-boundness according to the approach proposed by Mindrila
and Balentyne [13]: the coefficients are compared using positive and
negative values where 0-0.3 is considered none or weak, 0.3-0.5 weak,
0.5-0.7 moderate and greater than 0.7 is considered strong. Since the
L2-cache-misses provide a negative impact on the application, we are
only interested in negative correlations. We therefore only consider
applications for cache partitions if they present a correlation less than
-0.25

9.3 Methodology

In previous work, we discussed the definition of resource-boundness [6] and
also the consequences of running resource-bound loads simultaneously on dif-
ferent cores [4] [5]. The main take-away point is that resource-boundness is
an important factor to consider when partitioning a system since the resource-
boundness is an indicator of what resource an applications’ performance de-
pends on.

This section investigates the resource-boundness of six different applications,
four of them implementing feature detection algorithms (SUSAN, Harris,
SIFT, and FAST), and two presenting synthetic workloads (Matrix
multiplication and Bubblesort). We illustrate the effects of resource
contention on the execution of the six applications and discuss the relation to
the respective correlation coefficient values.

123

9.3.1 System model

The relevant characteristics of the six mentioned applications are presented in
Table 9.1.

Table 9.1: LLC-PC specifics

Application Data input type
Harris 2 MB bmp Corner detection

SUSAN 2 MB bmp Corner detection
FAST 12 MB bmp Corner detection
SIFT 256 KB pgm Object detection

Matmult 200x200 array Synthetic
Bubblesort 20000 elements array Synthetic

We use a variety of data input to showcase the usability of LLM-shark. The
purpose here is not to create a comparison study on which application executes
best in certain circumstances. Instead, our aim is to show that LLM-shark
works for a variety of applications, independently on the applications mem-
ory footprint. Each application runs within the execution context of the tool,
which starts an application, samples the desired performance events during the
application execution, calculates a resource-boundness estimation and finally
positions the application within a cache partition container. Figure 9.3 depicts

Figure 9.3: LLM shark execution flow

the respective core functionality and execution flow. It shows the seven major
execution steps of LLM-shark, which we describe in detail as follows:

124

1. Application identification phase - LLM-shark uses the filepath to an ap-
plication executable to run the application within an LLM-shark context.

2. Initialization phase - initializes the instructions retired performance
counter together with the desired counters.

3. Fork phase - LLM-shark executes a fork operation and runs the appli-
cation within the context of child process. During the child process’
execution, we monitor the performance counters of the child process
continuously at a sampling frequency.

4. Synchronization phase - when the forked application has stopped, we
store all the performance counter data from the child process and com-
pute the correlation.

5. Data store phase - store the resource-boundness of the application so
that appropriate actions such as cache partitions can be made.

6. L2-cache partition calculation phase - calculate the L2-cache partition
size for each application based on the application correlation.

7. L2-cache partition actuation phase - execute the applications within
their respective L2-cache partition containers.

LLM shark utilizes performance counters in a context of PAPI, a framework
that includes preset performance counter events and the native counters that
are specified by the Perf API. In this paper, we use a Xilinx zynq zcu102 eval-
uation kit which supports 13 preset PAPI counters and an additional 103 native
performance counters. For the sake of readability, we only include results
containing the preset PAPI counters, as data from 116 events are too much
to present in one paper. We list the PAPI preset counter events with a short
description in Table 9.2.

We limit this paper to only focus on non I/O-bound applications where the
perceived performance of an application is equal to the number of instructions
retired per time interval. As such, we omit the PAPI_HW_INT counter since
that counter-event defines an application type that we are not interested in.
PAPI_TOT_INS defines our performance metric and will be used in all corre-
lation calculations versus another hardware resource. We, therefore, omit this
counter from correlation calculation since correlating a value against itself al-
ways is one and will not be meaningful. We also omit PAPI_TOT_CYC since
it presents the number of active clock cycles for an application and does not
hold relevance to the internal memory hierarchy.

125

Table 9.2: PAPI preset counter events

Event name Brief explanation
PAPI_L1_DCM L1D-cache misses
PAPI_L1_ICM L1I-cache misses
PAPI_L2_DCM L2-cache misses
PAPI_TLB_DM DTLB misses
PAPI_TLB_IM ITLB misses
PAPI_TOT_INS Instructions retired
PAPI_HW_INT Hardware interrupts
PAPI_LD_INS Memory load instructions
PAPI_SR_INS Memory store instructions
PAPI_BR_INS Branch instructions
PAPI_TOT_CYC Processor cycles completed
PAPI_L1_DCA L1D-cache accesses
PAPI_L2_DCA L2-cache accesses

9.4 Application experiments

We have executed our experiment on two scenarios - baseline and contended.
The baseline scenario is defined by the target application running without any
deliberately disturbing load. The contended scenario presents the application
running simultaneously with a leech application causing artificial L2-cache
contention. We list our test platform in Table 9.3.

Table 9.3: Hardware specifications Xilinx Zynq UltraScale+ MPSoC

Feature Hardware Component
Core 4xArm Cortex A-53 @ 1.2GHz

L1I-cache 32 KB 2-way set assoc cache/core
L1D-cache 32 KB 4-way set assoc cache/core
L2-cache 1 MB 16-way set assoc. shared Last-level

Cache
MMU L1ITLB: 10 entries

L1DTLB: 10 entries
L2TLB 512 entries, 4-way set assoc.

126

9.4.1 Baseline scenario

Table 9.4 shows the median execution-time for each investigated application,
taken over 100 measurements. We illustrate the instructions retired and the
L2-cache misses of the Harris algorithm in Figure 9.4 and the FAST algorithms
in Figure 9.5 for demonstrative purposes.

Table 9.4: Application baseline execution-time

Application Median execution-time (ms)
Harris 306
SIFT 750

SUSAN 189
Matmult 224

FAST 133.8
Sort 797

Figure 9.4: Harris execution characteristics

Fig. 9.4 and Fig. 9.5 illustrates the Harris and FAST applications’ execution
profiles running within the context of LLM-shark at a 200Hz sampling fre-
quency, denoted by the x-axis. The left y-axis denotes the number of instruc-
tions retired with blue crosses, and the right y-axis denotes the number of
L2-cache misses with red diamonds. The execution profiles of these two ap-
plications are visibly different.The trend for the Harris application is that the
number of instructions retired decreases while at the same time the L2-cache

127

Figure 9.5: FAST execution characteristics

misses increases. This trend is most notable at the last four measurement val-
ues; a similar, weaker trend can also be detected in the rest of the measure-
ments. The FAST application do not have the same trend since the instructions
retired continuously increases while the L2-cache misses remaining the same
at a count of 5000 for most of the application. There are small trends between
sampling points 4 and 6. The majority of the application is, however, unaf-
fected by L2-cache misses. We list the correlation coefficients for all different
counters for our six applications in Table 9.5.

Table 9.5: Correlation between instructions retired and PAPI preset counters

Counter Harr SUS FAST Matm SIFT Sort
BR_INS 0.69 0.48 0.82 0.19 0.63 0.98
BR_MSP 0.77 0.36 0.71 0.28 0.63 0.04
L1_DCA 0.76 0.65 0.83 -0.89 0.85 0.86
L1_DCM -0.03 0.26 0.26 -0.80 0.75 0.23
L1_ICM -0.39 -0.29 0.68 0.49 -0.3 -0.06
L2_DCA -0.25 0.28 0.1 -0.83 0.49 0.15
L2_DCM -0.49 0.2 0.12 -0.84 -0.26 -0.08
LD_INS 0.71 0.61 0.83 -0.99 0.87 0.91
SR_INS 0.79 0.43 0.16 -0.06 -0.36 0.79
TLB_DM -0.56 -0.13 -0.05* 0.27 -0.01 -0.02
TLB_IM -0.53 -0.13 0.23 0.31 -0.06 0.02

The table shows the correlation between the preset PAPI counters and the num-

128

ber of instructions retired for each application. Our theory is that applications
that negatively correlate to a performance counter that implies pipeline stalls,
such as the L2-cache misses or DTLB misses will be sensitive in terms of
execution-time when other applications utilize the same resources. The sensi-
tivity depends on the correlation value magnitude; a higher correlation means
the application will be more prone to performance implications if other appli-
cations are using that same resource. We summarize the negative correlation
coefficients for each application in Table 9.6 since these counters show an in-
dication for resource-boundness.

Table 9.6: Correlation summary

Application Resource-boundness

Harris

L1I-cache misses (Weak)
L2I-cache accesses (Weak)
L2-cache misses (Moderate)
DTLB misses (Moderate)
ITLB misses (Moderate)

SUSAN L1I-cache misses (Weak)
FAST No resource-boundness

Matmult

L1D-cache misses (Strong)
L2-cache accesses (Strong)
L2-cache misses (Strong)
L2-cache misses (Strong)

Bubblesort No resource-boundness

SIFT
L1I-cache (Weak)
L2-cache misses (Weak)

Out of the six applications, three - SIFT, Harris and the Matrix multiplication -
display weak, moderate and strong negative boundness to the L2-cache misses
counter, respectively. Harris furthermore displays a moderate relationship ver-
sus both TLBs.

9.4.2 Resource contention

In this section, we empirically show the relationship between the correlation
coefficient and how our test applications’ execution-time is affected by simul-
taneously executing artificial loads that utilize the shared cache. We define our
hypothesis as follows.

129

Hypothesis The magnitude of the correlation coefficient indicates how closely
tied an applications’ performance is with a resource. Reducing this resource’s
size or capacity will affect the performance of applications with a high cor-
relation towards this resource to a greater extent than applications with a low
correlation towards this resource.

We chose to reduce the capacity of the L2-cache through the execution of
a memory-intensive program called leech [10]. The leech executes simulta-
neously as our our benchmark applications and is positioned on other non-
occupied cores to enforce shared cache contention. The leech is built as a
memory specific load and executes a read-then-write access pattern on an inte-
ger array of variable size. We run the leech using a specific stride pattern in the
array to force as many cache line evictions from our benchmark applications
as possible. To generate maximum L2-cache contention, we run three separate
instances of the leech on different cores (2,3,4) while the application runs on
core 1. Table 9.7 summarizes the leech specifics.

Table 9.7: Leech specifics

Property Value
Iteration sleep 0
Array size 2 MB
Core affinity Core 2,3,4
Stride Length 64 Byte
Access method read-then-write

Fig. 9.6 depicts the execution characteristics of the Harris application run-
ning on core 1 in a leech contented environment. The red diamonds plot the
L2-cache misses on the right-hand side y-axis, and the blue crosses plot the
instructions retired on the right-hand side y-axis.

There are two significant differences between the baseline Harris of Fig. 9.4
and the leech loaded Harris of Fig. 9.6. Firstly, the number of instructions
retired in the leech loaded version is significantly less per 50 µs than in the
baseline case. Since the number of instructions retired is considerably less, on
average 23.7% less per measurement point, the performance becomes signif-
icantly worse. The graph also shows an apparent increase in the number of
caches misses per time interval compared to the baseline Matrix multiplication
with an average of 28% increased cache misses per measurement point.

For comparative purposes, we depict the execution characteristics for the non-
L2-cache-bound application FAST running in a leech setting in Fig 9.7.

The baseline FAST version executes an average of 4.4% more instructions on

130

Figure 9.6: The Harris application running together with leeches

average per 50 µs than the leech-loaded version. The difference in L2-cache
is also not overwhelming, (on average 1.1% more) in our leech version versus
the baseline version. The small increase in execution-time, small decrease in
instructions retired and small decrease in L2-cache misses means FAST did
not suffer notably from heavy L2-cache contention. This goes in line with our
assertion of the previous section that FAST, in fact, is not L2-cache-bound.
Harris, on the other hand, displays notably different behavior; the instructions
retired are now jittery, especially in the middle sections of the execution. The
L2-cache misses are also more jittery and counts significantly more than the
baseline version. Table 9.8 summarizes the results from our leech tests and
shows the application execution-time from our leech loaded version (column
2) and the percentage difference in execution-time compared to the baseline
execution (column 3). The table also shows the percentage difference in in-
structions retired per 50 µs (column 4) and L2-cache misses (column 5) be-
tween the leech loaded version and the baseline execution of the applications.

The matrix multiplication suffered the worst execution-time losses due to re-
source contention, with a 42.1% increase in total execution-time, which is a
drastic performance decrease. The FAST application suffered a 2.96% increase
in execution-time, which is also in line with the low L2-cache correlation listed
in the previous subsection. Another stand-out measurement is the number of
increased cache misses for the sort application of 7600%. This measurement is
not an error but rather a natural consequence of the few misses in the baseline

131

Figure 9.7: FAST execution characteristics with leech

Table 9.8: Summary of performance loss due to L2-cache contention

Application Ex. [ms] Diff.[%] Instr.[%] L2.[%]
Harris 328 -7.41% -5.76% +64.14%
SUSAN 209 -7.3% -0.75% -16.62%
FAST 137.8 -3.02% -4.4% +1.1%
Matmult 381 -41.2% -31.7% +36.5%
SIFT 799.5 -6.6% -10.6% +6.3%
Sort 800.1 -0.38% -0.93% +7600%

case (1 L2-cache-miss on average) compared to the leech case (7600L2-cache-
misses on average). The increase is drastic, but the count is not enough to
significantly reduce the performance.

The second worst is the Harris application (moderate correlation), which
presents a 7.41% execution-time decrease. The third worst application
is SUSAN (no correlation), which also presents an interesting case - the
application displays no L2-cache-boundness according to the correlation
calculation. However, it still shows a notable performance decrease, while
displaying a less L2-cache misses average per 50 µs than the baseline case.
Since SUSAN shows a performance degradation while simultaneously
showing a decrease in L2-cache misses, it cannot be L2-cache-bound.

132

9.5 Partitioning experiments

In previous subsections, we show how we use the Pearson-correlation coeffi-
cient to determine the resource-boundness of an application and how L2-cache-
cache contention affects the application’s performance. Here, we apply the
knowledge of an applications’ resource-boundness for assigning L2-cache-
partition sizes.

9.5.1 Cache partitioning performance impacts

In this section, we present experiments on the effects of executing our differ-
ent applications within a cache partitioned environment. LLM-shark relies on
the Palloc framework to implement page-coloring, which replaces the default
buddy allocator algorithm in the Linux kernel. The page coloring algorithm
utilizes the cache set-associative addressing bit for determining the memory
location of new data. We list the L2-cache specifications in detail in Table 9.9.

Table 9.9: L2-cache specification of ARM cortex-a53

Property Size
Cache size 1 MB
Line length 64 Byte
Set-associativity 16
Set size 1024 Byte
Number of sets 1024
Replacement policy Pseduo-random

The number of available cache partitions (colors) on a platform depends on the
cache size, number of sets and the page size (4 KB), see Eq 9.2.

Nr. of Colors =
Cache_size

Cache_ways ∗ page_size
(9.2)

Our platform provides 16 colors according to the formula and each color pro-
vides a 64 KB memory area. We showcase the effects of cache partitioning
through a set of experiments where we measure our applications’ execution-
times under different color assignments, using 2-, 4-, 7-, 10-, 13-, and 16-
assigned slices for the application. We assign one color for LLM-shark so that
it can operate. We list the median execution-times of 100 measurements for
each application using different cache partition sizes in Table 9.10 with the
slices translated into the actual L2-cache partition size.

133

Table 9.10: Application execution-times in milliseconds of applications using differ-
ent L2-cache partition sizes

Partition size (KB)
Application 128 256 448 640 832 1024
Harris 320 312 312 309 307 306
SIFT 780 778 777 775 774 771
Matmult 1214 1162 979 876 451 288
FAST 138 138 138 138 138 138
Sort 798 797 797 797 797 797
SUSAN 202 199 198 196 196 196

The table shows the difference in execution-time for each respective
application, using different cache partitions where Matmult displays the most
execution-time difference due to change in L2-cache partition size. We further
plot the number of instructions retired and the number of L2-cache misses
using different L2-cache partition sizes in Fig. 9.8 and Fig. 9.9 respectively.

Figure 9.8: Difference in L2-cache misses using different L2-cache partition sizes.

Fig. 9.8 plots the percentage difference in the number of instructions retired on
the y-axis when scaling up the cache partition size. A high percentage means
more instructions retired per 50 milliseconds and is preferable to a low per-
centage difference. Fig. 9.9 plots the percentage change in the number of
L2-cache misses on the y-axis when increasing the cache partition size. The
plots show an inverted scale, which means a positive percentage difference
points to a decrease in L2-cache misses compared to our reference measure-

134

Figure 9.9: Difference in instructions retired misses using different L2-cache partition
sizes.

ment. Since Fig. 9.9 only plots the difference in L2-cache misses, it is not
possible to conclude that higher percentages are preferable to low percentages.
Instead, the cache misses must be interpreted in an instructions retired context,
where a decrease in the number of cache misses leads to an increased amount
of instructions retired.

9.5.2 Initial cache partitions

Previously [3], we used a methodology called LLC-PC which tries to find the
best Last-level cache partition size for an application. The methodology is an
iterative process that continuously increases the Last-level cache partition for
the application until a desired performance has been met. The method utilizes a
run-time comparison scheme and measures an application’s performance while
increasing the cache partition size – if an increase in cache partition size posi-
tively affects the application’s performance, LLC-PC continues increasing the
partition size; if not, then then stop increasing the cache partition size. LLC-
PC uses the smallest possible cache partition size (which in our case is 64 KB)
for starting point to avoid over-saturation. LLC-PC then increases the cache
partition size by one (64 KB) for every iteration. Thus, it may take several
iterations before reaching the desired performance, since the starting point is
set at the smallest cache partition size possible.

135

Table
9.11:

L
2 -cache

Initialcache
partition

suggestions
com

parison

L
L

M
-shark

C
5
0
µ
s

C
to
t

E
xecution-tim

es
A

pplication
C

orr.
N

orm
.%

Size
M

edian
%

Size
N

um
ber

%
Size

L
L

M
C

5
0
µ
s

C
to
t

H
arris

-0.49
30.97%

5
11274

15.36%
2

8.7
∗

1
0
5

15.36%
2

309.2
313.9

313.9
M

atm
ult

-0.84
52.69%

8
23871

33.95%
5

2.2
∗

1
0
6

40.37%
6

897.5
1137.4

1075.3
SIFT

-0.26
16.34%

2
15401

21.9%
3

1.3
∗

1
0
6

23.86%
3

780
779

779
SU

SA
N

—
O

m
itted—

1*
2786

3.96%
1**

4.5
∗

1
0
5

7.95%
1

212
210

205
FA

ST
—

O
m

itted—
1*

16972
24.14%

4
7.0
∗

1
0
5

12.37%
2

145.1
138.9

138.8
SO

R
T

—
O

m
itted—

1*
6

0.01%
1**

4
∗

1
0
3

%
0.08%

1**
813.7

807.4
797.9

*E
xecuting

sim
ulatenously

on
differentcores

using
the

sam
e

cache
partition

**Percentage
notsufficientto

justify
a

standalone
partition,instead

use
a

shared
container

136

Our optimization proposal is to have a “reasonable" starting point, i.e., an ini-
tial L2-cache partition size from where to start scaling the partition sizes. Here,
we illustrate the usage of the correlation coefficient to determine the size of
an initial cache partition: applications with high correlations should receive
more spacious partitions while low correlation applications should receive less
space. In our methodology, we normalize all the correlation coefficient values
with a magnitude ≥ to weak and partition assign partitions according to the
percentage value of our 15 available colors. The initial correlation approach
for determining resource-boundness was presented in [6], in here we apply
that methodology to assign cache partitions. The normalized values gives a
percentage and is used to calculate the cache partition sizes. Since the cache
partition space only provides 15 colors, we also need to round-off decimal val-
ues to the closest integer values find an appropriate cache partition. E.g., an
application that displays a normalization percentage of 30% (15 ∗ 0.3 = 4.5)
will result in a cache partition size of 4.5 – we round-off 4.5 to the closest
integer value, 5, since it is not possible to use fraction numbers as a cache
partition.

We discard applications with a lower than weak correlation since additional
cache partitions since our assessment is that these application will receive lit-
tle to no performance benefits from increased cache partition size. We instead
execute these applications within a "Junk" container - a partition with space
of (64 KB) that holds all low correlation applications, and as such, we do not
waste L2-cache space on these applications. We argue our L2-cache partition
distribution methodology is preferable to other methodologies, such as assign-
ing L2-cache partitions based on L2-cache misses or L2-cache accesses [22]
since our methodology includes the resource-boundness factor. We compare
our correlation methodology versus two L2-cache misses distribution policies
(C50µs and Ctot). The table contains results using three methodologies, speci-
fied as follows:

1. LLM-shark (column 2-4) – distributes L2-cache partitions based on cor-
relation.

2. C50µs (column 5-7) – distributes L2-cache partition size based on the
median number of L2-cache misses per 50µs.

3. Ctot (column 8-10) – distributes L2-cache partitions based on the total
number of L2-cache misses per given application.

The table shows the execution-time results and cache partition sizes of the

137

three different methodologies, LLM-shark, C50µs and Ctot. The most signif-
icant difference is seen from the Matrix multiplication perspective, which re-
ceives the most spacious L2-cache partition size, followed by Harris. SUSAN,
SORT and FAST are all assigned to share “Junk" L2-cache partition container.
An application must utilize the locality of reference [20] principle to benefit
from the L2-cache and as such be L2-cache-bound. Through code inspection of
FAST [17], we conclude that FAST cannot be L2-cache-bound due to a lack of
locality utilization – even though the performance counters show a high count
(relative to the other applications) of L2-cache misses. Due to FAST’s high
L2-cache count, it receives L2-cache using the cache miss-based policies, and
can be seen as a waste of L2-cache partition space since it’s performance is
not affected notably. Due to FAST’s low correlation, it does not receive any
individual L2-cache partition space but is instead assigned to the Junk con-
tainer. We summarize the comparison between the different methodologies
in Table 9.12. The columns marks the best solution and specifies to perfor-
mance degradation for each application compared to the best results. A higher
value means an increase in execution time and is therefore a more significant
performance degradation than a low value.

Table 9.12: Comparison summary

Execution-time comparison (ms)
Application LLM-shark C50µs Ctot
Harris Best +4.7 +4.7
Matmult Best +239.9 +177.8
SIFT +1 Best Best
SUSAN +7 +5 Best
FAST +6.2 Best +0.1
SORT +15.8 +9.8 Best

Our correlation-based methodology achieved the best execution-times for the
matrix multiplication and the Harris applications. SORT displays the most
significant downgrade using our approach, which is a fifteen milliseconds per-
formance degradation, comparatively the cache-based distribution policies that
display a 239.9ms (C50µs) and (+177.8 Ctot) for our most cache heavy load, the
matrix multiplication. The cache misses distribution policies instead focuses
on

138

9.5.3 Discussion

The comparison shows that our correlation-based methodology assigns most
cache partitions to the matrix multiplication than the cache misses distribution
policies due to its high resource-boundness. The Harris application also re-
ceives most cache partitions using our correlation-based approach due to its
resource-boundness, resulting in the best performance. SIFT suffers a 1ms
performance degradation using LLM-shark. The junk cache partition displays
a slight performance degradation for FAST, SUSAN, and SORT, indicating
that cache contention occurs within this specific cache partition. However,
the performance degradation of these three applications is slight compared to
the performance gains of the matrix multiplication in LLM-shark compared to
the cache-misses-based distribution policies. The matrix multiplication perfor-
mance results display the main take-away point from this paper; it is not how
frequently an application utilizes the cache that determines how the application
responds to a change in cache partition size, but rather how an application use
the cache. The matrix multiplication has a high data-reusage and tries to access
the same cache memory several times during execution. If the cache space is
reduced, the matrix multiplication cannot re-use data to the same extent since
the cache is smaller and will suffer a significant performance penalty. Com-
paratively, FAST does not show cache-boundness due to low cache re-usage
but still maintains a high cache-miss count. FAST fetches data from the main
memory, leading to cache misses, but does not re-access the same data again;
therefore, FAST is not cache-bound and does not benefit from increased cache
partition space.

We argue that it is more beneficial to assign cache partitions based on their
resource boundness rather than the cache-miss count since an increase in cache
partition space provides more significant performance benefits to the highly
cache-bound applications than non-cache bound applications.

9.6 Related Work

Related work includes papers directed towards investigating the resource-
boundness. Work such as Cache Pirating [7] and Bandwidth Bandit [8] are
tools for generating shared resource contention and and can empirically
pinpoint how much an application suffers from shared resource contention,
which is similar to our leech methodology. Even though these works provide a
structured methodology for pinpointing resource contention in one particular

139

resource, the process can become time consuming since a bandit, a pirate or
even a leech has to be designed specifically for each individual resource in
order to generate and measure contention. Our opinion is that our correlation
methodology can significantly decrease the complexity of such tests.

Other works such as Scarphase [19] divides program execution into phases and
proposes a method for identifying how the resource usage changes over time in
applications using the perf interface for measuring the performance counters.
Sembrandt et al. [18] expands on the same direction topic and explains the
differences in phase behavior between serial and parallel applications.

The body of cache partitioning papers is relatively large [12]. Coloris [22] is
an excellent example, with an approach that splits the cache partitions accord-
ing to how many cache misses one process is responsible for. As we show in
our paper, it is not necessary that the application with the most cache misses
benefits the most from cache partitioning, instead we have to look at the sig-
nificance of the cache misses and take it into relationship on how it affects
the performance. Brock et al. [2] discusses how to optimally allocate cache
partitions to different processes through exhaustive searches.

Perarnau et al. [16] argue that the cache partition size is best left to the user
since it is the user that in the end knows what performance the application re-
quires. The last level cache is, however, a very complex hardware resource
due to the contention factor and also due to the limited size. This means the
user needs expert knowledge on how the system applications utilizes the cache.
Our solution eliminates the need for expert knowledge, through our partition-
ing scheme.

With LLM-shark, we cover all the aspects of performance improvements based
on cache usage: i) we analyze the behavior of an application; ii) we assert po-
tential problems such as resource contention; iii) we actuate mitigation strate-
gies to avoid resource contention before it happens. While all the other similar
approaches perform only one or two of these actions, we even provide an au-
tomated solution.

9.7 Summary

We show that the LLM-shark tool can assign cache partitions automatically to
applications based on their hardware resource-boundness. We have conducted
a series of tests to assess the usability of the Pearson correlation coefficient as
a tool for determining resource-boundness. We then verify that resource bound

140

processes benefits to various extent depending on cache partitioning sizes and
the level of hardware resource-boundness. Finally, we propose a normalization
scheme to assign initial cache partitions to a system, based on the magnitude
of the Pearson correlation coefficient. Our tool thus answers the following
questions:

1. Which hardware components are limiting factors to application perfor-
mance?

2. Which hardware resources are potential contention bottlenecks to the
application?

3. How spacious should initial cache partitions be?

We focus only on the L2-cache as a test subject. However, we argue that the
correlation methodology is generalizable to all hardware events which imply
a negative performance impact, such as TLB-, L1D-cache-, L1I-cache-misses
and page-misses etc.

9.7.1 Future work

For future work, we plan to integrate our tool to different architectures that
provide a more sizeable cache memory. Since our Last-Level Cache (the
L2-cache) is relatively small, the number of the available cache partitions is
also small. More spacious cache memory will leave more room for flexibility
in the cache partition assignments and, therefore, the execution-times of our
L2-cache-bound applications.

In the paper, we mention several mitigation techniques such as bandwidth
reservation and TLB coloring which also can benefit from correlation
based resource-boundness estimation. For future work, we intend to
implement more mitigation techniques for LLM-shark, utilizing the same
correlation-based scheme for determining parititon sizes. We furthermore
plan to integrate LLM-shark with LLC-PC [3] to enable the dynamic
adaptation of partition sizes once we have them assigned. Other future work
includes investigating other metrics for formulating initial partition sizes. Our
current strategy only looks at the magnitude of the correlation, which serves
as a reasonable starting point. However, to provide an even more accurate
partition estimation, it could be possible to model how much instructions
retired can be gained from one single cache partition.

141

Bibliography

[1] ARM. Cortex-a53. https://developer.arm.com/
ip-products/processors/cortex-a/cortex-a53. 2021-
01-06.

[2] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal cache
partition-sharing. In 2015 44th International Conference on Parallel Pro-
cessing, pages 749–758. IEEE, 2015.

[3] J. Danielsson, M. Jägemar, M. Behnam, T. Seceleanu, and M. Sjödin.
Run-time cache-partition controller for multi-core systems. In IECON
2019-45th Annual Conference of the IEEE Industrial Electronics Society,
volume 1, pages 4509–4515. IEEE, 2019.

[4] J. Danielsson, M. Jägemar, M. Behnam, M. Sjödin, and T. Seceleanu.
Measurement-based evaluation of data-parallelism for opencv feature-
detection algorithms. In 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), volume 1, pages 701–710.
IEEE, 2018.

[5] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and M. Sjödin.
Testing performance-isolation in multi-core systems. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 604–609. IEEE, 2019.

[6] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and M. Sjödin. Re-
source depedency analysis in multi-core systems. In 2020 IEEE 44th An-
nual Computers, Software, and Applications Conference (COMPSAC),
pages 87–94. IEEE, 2020.

[7] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache pi-
rating: Measuring the curse of the shared cache. In 2011 International
Conference on Parallel Processing, pages 165–175. IEEE, 2011.

[8] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Bandwidth
bandit: Quantitative characterization of memory contention. In Proceed-
ings of the 2013 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), pages 1–10. IEEE, 2013.

[9] T. Gleixner. Linux Performance Counter announcement, 2008.

142

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53

[10] M. Jagemar, A. Ermedahl, S. Eldh, M. Behnam, and B. Lisper. Enforcing
quality of service through hardware resource aware process scheduling.
In 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), volume 1, pages 329–336. IEEE, 2018.

[11] R. Jain. The Art Of Computer Systems Performance Analysis: Techniques
For Experimental Measurement, Simulation, And Modeling. john wiley
& sons, 2008.

[12] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 1–14.
IEEE, 2019.

[13] D. Mindrila and P. Balentyne. Scatterplots and Correlation.

[14] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

[15] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb color-
ing. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015 IEEE, pages 3–13. IEEE, 2015.

[16] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache utiliza-
tion of hpc applications. In Proceedings of the international conference
on Supercomputing, pages 295–304. ACM, 2011.

[17] E. Rosten and T. Drummond. Fusing points and lines for high perfor-
mance tracking. In Tenth IEEE International Conference on Computer
Vision (ICCV’05) Volume 1, volume 2, pages 1508–1515. Ieee, 2005.

[18] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Phase behavior in
serial and parallel applications. In 2012 IEEE International Symposium
on Workload Characterization (IISWC), pages 47–58. IEEE, 2012.

[19] A. Sembrant, D. Eklov, and E. Hagersten. Efficient software-based online
phase classification. In 2011 IEEE International Symposium on Workload
Characterization (IISWC), pages 104–115. IEEE, 2011.

[20] W. Stallings. Computer organization and architecture: designing for
performance. Pearson Education India, 2003.

143

[21] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program
predictability. In ACM SIGMETRICS Performance Evaluation Review,
volume 31, pages 272–282. ACM, 2003.

[22] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[23] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[24] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

[25] G. Zellweger, D. Lin, and T. Roscoe. So many performance events , so
little time. APSys ’16, 2016.

144

Chapter 10

Paper D:
Testing Performance-Isolation
in Multi-Core Systems

Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris Behnam, and
Mikael Sjödin. Testing Performance-Isolation in Multi-Core Systems In 2019
IEEE 43rd Annual Computer Software and Applications Conference (COMP-
SAC). Vol. 1. IEEE, 2019

145

Abstract

In this paper we present a methodology to be used for quantifying the level of
performance isolation for a multi-core system. We have devised a test that can
be applied to breaches of isolation in different computing resources that may
be shared between different cores. We use this test to determine the level of
isolation gained by using the Jailhouse hypervisor compared to a regular Linux
system in terms of CPU isolation, cache isolation and memory bus isolation.
Our measurements show that the Jailhouse hypervisor provides performance
isolation of local computing resources such as CPU. We have also evaluated if
any isolation could be gained for shared computing resources such as the sys-
tem wide cache and the memory bus controller. Our tests show no measurable
difference in partitioning between a regular Linux system and a Jailhouse par-
titioned system for shared resources. Using the Jailhouse hypervisor provides
only a small noticeable overhead when executing multiple shared-resource in-
tensive tasks on multiple cores, which implies that running Jailhouse in a mem-
ory saturated system will not be harmful. However, contention still exist in the
memory bus and in the system-wide cache.

147

10.1 Introduction

While great advancements in virtualization and partitioning techniques nowa-
days allow logical and functional partitioning of a system into a set of indepen-
dently executing subsystems (referred to as partitions) [2], there exists no prac-
tical and efficient methods to guarantee that different partitions have no neg-
ative impact on each other’s performance. That is, contemporary techniques
give logical isolation but not performance isolation. In this paper we pro-
pose a method for testing the performance isolation between different subsys-
tems running on different cores in a multi-core architecture. Furthermore, the
method tests isolation of different computing resources such as CPUs, caches
and memory-system. Thus, it allows to pinpoint any sources of breached iso-
lation and it enables mitigation of such breaches by introduction of specific
isolation techniques for specific resources. With the introduction of multi-core
architectures as the standard platforms for performance-critical application-
domains like embedded systems and real-time systems, the issues of perfor-
mance guarantees on these architectures becomes paramount. In multi-cores,
isolation is hampered since a wealth of computing resources are shared be-
tween cores, such as caches, TLBs (Translation Lookaside Buffers), memory
controllers and memory banks.

Our work is a step towards allowing empirical evaluation of performance isola-
tion in complex multi-core architectures. We demonstrate the use of our model
by evaluating performance isolation obtained by the Jailhouse hypervisor [15]
and comparing it with running a non-partitioned Linux system.

Isolation is a complex topic and a clear terminology needs to be defined, for
example: what is shared resource isolation?

The performance isolation is defined here by the slowdown in execution of an
application while running in a context where access to resources is contended
by other applications, too. An application that runs with a specific performance
without any disturbing processes (in isolation) runs at a baseline performance.
An application running with deliberately disturbing processes is running at a
loaded performance. If the loaded version runs with the same performance as
the baseline version, the application is performance isolated. Performance iso-
lation of applications targeting specific hardware can be accomplished by us-
ing methods such as page coloring [10], hypervisors [6], bus-scheduling [19].
Many different techniques are available for isolating hardware from distur-
bances generated by other processes, but most techniques cover only one or
two parts of the hardware resources. The resource partitioning hypervisor Jail-

148

house developed by Siemens can become one significant step towards achiev-
ing full isolation in multi-core systems. Due to its small code size, it is now
much easier to understand the hypervisor and therefore implement new parti-
tioning strategies into it.

The main contributions of this paper are:

• We present a methodology for measuring performance isolation of a sys-
tem.

• A study on the performance isolation gained using the Jailhouse hyper-
visor.

Related work. We here identify previous studies that analyze shared resource
contention caused by multiple cores, or address performance measurements
on the Jailhouse hypervisor on ARM processors. Bansal et al. [1] investi-
gated resource contention of the memory subsystem of the Xilinx ZCU 102
and proposes a Jailhouse based architecture to solve the contention. The au-
thors effectively show a latency performance degradation of their benchmark
when using multiple cores and propose mitigation techniques. In our work,
we employ a different methodology, using the performance counting unit as a
tool for identifying the sources of the performance degradation. Toumassian et
al. [16] investigate the overhead of the Xen and Jailhouse hypervisors, where
overhead is defined as Hypervisor performance/Linux performance. We com-
plement this work, by deliberately adding the disturbing loads for estimating
resource contention effects, while looking for application performance isola-
tion. As listed by Deshane et al. [3], there exist a large body of reporting the
impact of hypervisors on performance. However, since the Jailhouse hypervi-
sor is relatively new, there is not so much research done on this subject. Up
to our knowledge, there is no reporting of work investigating cache contention
and memory bus contention in a Jailhouse environment, such effects being de-
scribed as "yet to be measured" in a Linux Journal article [15]. Furthermore,
there is no reported work trying to verify what Jailhouse can accomplish in the
area of task isolation, wherefore we research here the performance degradation
on a Linux system caused by CPU sharing.

149

10.2 Background

Shared resource contention has become an increasingly important topic due
to the phasing out of single-core systems and the adoption of multi-core sys-
tems. Important shared resources can be divided into three categories: CPU,
memory, and I/O [17] which may all be subject to contention. The CPU shar-
ing takes place in the scheduling level, where two or more processes share the
execution capacity of the same CPU. If one process executes and a higher pri-
ority task interrupts, the swapped out process will not get to execute anymore,
and may, therefore, expose an increased latency. The second level of resource
contention occurs in the memory layer of a computer and can come in the form
of thrashing - a state where much of the processing time is spent on handling
cache misses or page faults due to several processes/threads continuously re-
placing each other. The third level of resource contention occurs in the I/O
layer and can be illustrated very well by the ARM v8 case where a generic in-
terrupt controller (GIC) handles all general purpose interrupts (such as general
purpose I/O interrupts).

Partition-based virtualization is one of the solutions that addresses the sharing
of resources across multiple processes [17], [5], [12]. Hypervisors such as
Xen [2] and KVM [6] can effectively partition the cores of a system such
that the resource is protected from usage of processes which do not belong
to the specific partition. These hypervisors come with an overhead [8] and
a significant code size. New virtualization techniques such as the Jailhouse
hypervisor give promise of better task isolation through statically disallowing
inter partition sharing of resources and also come with a relatively small code
size.

10.2.1 Jailhouse hypervisor

The Jailhouse hypervisor (version 0.1 released in august 2014) partitions hard-
ware resources through virtualization, and enables asymmetric multiprocess-
ing on top of the Linux system [14]. It also enables the insertion of cells
through a kernel module. A cell is a virtual machine that is created in a parti-
tioned environment. Once created, the host operating system loses knowledge
of the core where the cell is created. In a similar fashion, programs running
within the Jailhouse cell do not know that they run within a virtual machine,
nor have they any knowledge of cores outside of the cell.

Fig. 10.1 shows a regular Linux system - a) and a Jailhouse partitioned system

150

which runs one Linux partition (core 0, 1, 2) and one real-time (RT) partition
(core 3) - b).

Figure 10.1: a) Usual Linux deployment. b) Linux with Jailhouse configuration [15].

10.3 Shared resource contention

We describe the performance degradation of a process in Equation 10.1, where
performance is equal to the execution time of an application.

I =
P

C
− 1 (10.1)

We denote I as the isolation coefficient, representing the resulting slow-down
of the execution of a task in the presence of other tasks. P denotes the loaded
performance of an application, and C is the baseline performance. Both C
and P values are measured in time units; moreover, it is expected that the
P will always be higher than C, that is, the execution time of an application
will always be longer in the presence of additional load as compared to the
“ideal" case when the application executes alone on the computing platform.
It is also important to note that the measured values of both C and P are
platform dependent. Measurements are relying on processor specifics such as
cache memory mechanisms, clock frequency and bus bandwidth, but also on
the operating system. Therefore, C should not be seen as an absolute value
of the best achievable performance (that is, cross-platform), but instead, the

151

highest performance achievable using the respective setup. We refer to C as
baseline in subsequent sections of the paper.

As an example, consider an application running on one core of a multi-core
processor, exposing a baseline of 100ms. To perform tests on cache memory
isolation, we apply a heavy cache intensive load, which runs on a different
core than the application, and re-execute the application in these conditions.
Both cores have a shared LLC. In case the loaded performance is observed to
be 100ms, the isolation coefficient I = 100ms/100ms − 1 = 0. Hence, and
the application is isolated from LLC disturbances. Alternatively, if the loaded
performance is 110ms (for exemplification purposes), the isolation coefficient
becomes I = 110ms/100ms− 1 = 0.1 = 10% which means that the applica-
tion has suffered a 10ms performance penalty due to cache contention.

In the following subsections, we will discuss resource contention on shared
resources, including CPU, cache, memory bus. We will discuss each shared
resource in the context of a Xilinx Zynq UltraScale+ MPSoC ZCU102 Evalu-
ation Kit using 4 Cortex A-53 cores, specified in Table 10.1.

Feature Hardware Component
Core 4xArm Cortex A-53 @ 1.5GHz

2xArm Cortex-R5 @ 1.4GHz
L1I-cache 32 KB 2-way set assoc cache/core
L1D-cache 32 KB 4-way set assoc cache/core
L2-cache 1 MB 16-way set assoc. shared platform cache
MMU L1ITLB: 10 entries

L1DTLB: 10 entries
L2TLB 512 entries, 4-way set assoc.

Table 10.1: Hardware specifications Xilinx Zynq UltraScale+ MPSoC

10.3.1 CPU utilization

Two applications sharing the same CPU can have dramatic effects on either
applications response time. When sharing the CPU, one task may get to exe-
cute up to 50% of compared to the non-shared situation. Thus, the response
time of the application could increase to at least the double of the baseline.
We can avoid the CPU sharing effect by not scheduling other applications to
the same core. However, if all cores are currently loaded, it is not possible to
enforce such a policy, since the newly created application needs an execution
environment. Consider our ARM system with 4 cores, running App1..App4 on

152

core 0..3 respectively. In case a 5th application, App5, enters the scheduling
queue, there is no un-occupied core, which means App5 has to share one of the
cores with one of the other applications. This will increase the response time
of both applications. This situation may not become a problem in real-time
systems since tasks with high importance often are given a higher priority and
will therefore not share execution time with other tasks during their respective
time quanta. Thus, scheduling applications properly is usually a solution to this
problem. Another solution can be static partitioning of the system, where the
cores of one partitioned sub-system are hidden from another partitioned sub-
system [11], disallowing partitions from using each other’s designated cores.

10.3.2 Internal Memory Contention

The internal memory is often a source of execution time unpredictability - the
so-called jitter - in multi-threaded systems [4]. Whenever the data requested
by applications is not in the L1D-cache or the L2-cache, we need to fetch the
data from the main memory. If the L2-cache is already full, a cache-line is
evicted from the cache to make space for the incoming data. Since the L2-
cache is shared between multiple cores, processes scheduled on different cores
can evict the cache-lines of each other whenever the shared cache becomes
full.

Within our ARM system, with a 1 MB L2-cache, cache contention is exem-
plified as follows: App1 and App2 with a memory footprint of 1 MB each
are executing on core 0 and 1 respectively. The applications are each using
1 MB of data, which, combined, is above the limit of L2-cache - 1 MB. If the
tasks are continuously running on different cores, App1 will continuously try
to write 1 MB of data into the shared cache. Since the cache is not large enough
to contain the total amount of 2 MB data requested by both tasks, 1 MB of data
will continuously have to be replaced according to the cache replacement pol-
icy. Cache coloring can be applied here, to restrict cache access of different
applications to assigned cache lines only. Thus, one may mitigate problems
such as performance losses [10], jitter [18], and even energy efficiency [9]. In
our example though, this limits the amount of L2-cache available to either of
the applications.

153

10.3.3 Memory bus contention

The memory bus that interconnects the cache memory with the main memory
is also a subject for contention. It is used for serving read and write requests
from each core, which can become problematic when multiple memory in-
tensive tasks are running on several cores. The bus can become a significant
bottleneck concerning throughput, and a source of jitter.

Once again, consider the ARM system which has a measured bandwidth ca-
pacity of roughly 4.7 GB/s. The system hosts four applications (App1, ...,
App4 running on core 1..4 respectively) which executes write operations at
2 GB/s individually. If the data is not present in the cache, it has to be fetched
from the main memory via the memory bus. The bus, however, can only han-
dle a certain amount of writes per second, as specified. Since we use multiple
cores executing writes at 2GB/s, the bus bandwidth will be fully saturated. If
any of the applications were the only one executing memory transactions, it
could operate at the intended 2MB/s capacity. However, since multiple ap-
plications are executing, the bus has to distribute the capacity over the set of
cores, which can dramatically decrease the individual memory throughput and
increase the jitter of each application. It is possible to limit the effects of bus
contention by restricting processes to execute under a certain memory band-
width budget [19] [20] - with potential important overhead for each budgeted
application.

10.4 Performance isolation

We have used a matrix multiplication of various sizes as the application to
benchmark the isolation that can be achieved using the Jailhouse hypervisor.
The execution time of the application is measured by inserting wall-clock time-
stamps at the start and at the end of the multiplication. Further, the matrix
multiplication is co-executed with additional load programs denoted leeches to
enforce shared resource contention. We use the previously defined Xilinx Zynq
ZCU 102 platform (Table 10.1) running a Petalinux 4.9 kernel and reserving
2 GB of RAM for the Jailhouse hypervisor using the mem kernel argument.

In the following subsections we show isolation measurements for the CPU,
L2-cache and memory bus resources with the matrix multiplication running in
unfavourable (leech-disturbed) execution environments and compare them to
the baseline executions.

154

10.4.1 CPU isolation test

We devised a test including a kernel module to serve as a CPU stealing leech
and a matrix multiplication to show the contention problems in a CPU. We ex-
emplify the problems using the following scenario, assuming equal application
priority.

1. Applications P0, P1, P2 and P3 are ready to execute.

2. The applications are pinned as followingP0 → C0, P1 → C1, P2 → C2,
P3 → C3.

3. Kernel application KP5 becomes ready to execute, all cores are cur-
rently occupied.

4. The kernel has to chose one available core for KP5, in this case, C3 is
chosen.

5. P4 and P5 now share the same core and execute

To instantiate the above contention scenario, we co-run a 256x256 matrix mul-
tiplication as workload together, with a calculation-heavy program called a
CPU leech, implemented as a kernel module. Kernel modules often are exe-
cuted at seemingly random times and also at a higher priority than user-space
modules. The CPU-stealing leech performs 100000 random number calcula-
tions, searches for the highest value read and then goes to sleep for a specified
amount of time. This process takes between 79-80 milliseconds to execute.
Since the time measurement of the matrix multiplication is dependent on con-
text switches from another workload, we will call the time measurement re-
sponse time in this test case. We statically set the core affinity of the matrix
multiplication and the CPU leech to the same core C3.

We also execute the same tests using the Jailhouse hypervisor, where the matrix
multiplication is run within a Jailhouse Linux cell executing onC3. The results
of the CPU isolation tests are depicted in Fig. 10.2 where the y-axis shows
the response time of the matrix multiplication run under Linux (blue dash)
compared to a matrix multiplication run within a Jailhouse Linux cell (orange
dash). Each data point is the median response time of 50 executions. The
y-axis is a logarithmic scale of the response time measured in milliseconds,
and the x-axis shows the sleep timer of the kernel module - the period between
executions. A low value on the Y-axis - meaning a low response time - would
be better than a high value. The calculated isolation coefficient of the matrix
multiplication is listed in Table 10.2.

155

Figure 10.2: CPU isolation test

Sleep ILinux IJhouse Sleep ILinux IJhouse
200 41,22% 0,62% 100 81,99% 0,79%
175 38,25% 0,15% 75 124,00% 0,50%
150 40,76% 0,57% 50 166,47% 0,86%
125 59,88% 0,57% 25 250,79% -0.15%

Table 10.2: I coefficient in CPU contention test (percentage)

Fig. 10.2 shows a Linux matrix multiplication which suffers heavily from the
CPU stealing caused by the leech, even at the relatively large sleep periods of
200 ms. In these conditions, according to Table 10.2 and using Equation 10.1,
Linux alone offers an isolation coefficient of 0.40, which is an indicator of sig-
nificant resource contention. The CPU leech will always get a high priority
when ready to execute, running with kernel priority. Hence, when the asso-
ciated sleep period goes under a certain value, the isolation coefficient even
surpasses 0.50. When running the matrix multiplication within a jailhouse
partition, however, the response time is almost constant, with an isolation co-
efficient of 0.0086, which is in the range of an error margin.

Concluding, the Jailhouse hypervisor performs as promised regarding the CPU
isolation, while the Linux system shows a significant downgrade in the perfor-
mance of the matrix multiplication, as expected, too.

156

10.4.2 L2-Cache isolation test

Here, we intend to provide a measurement of the isolation coefficient for the
matrix multiplication, verifying to what extent it suffers of L2-cache cache
contention.

We use a 512x512 matrix multiplication for benchmarking workload, and a
tweaked version of a maximum bandwidth benchmark called Tinymembench
[13] as a leech, for loading the L2-cache. The Tinymembench load continu-
ously reads 32-bit integers from a N-sized buffer and writes them into another
N-sized buffer. The isolation test was conducted as follows.

1. Run baseline execution of the matrix multiplication

2. Initialize cache load process with size N (initially 64 KB)

3. Assign cache load process to C0

4. Start matrix multiplication on C3

5. Re-iterate from step 1 and multiply size N by 2

The results of the matrix multiplication running within a regular Linux en-
vironment are depicted in Fig. 10.3, and the results of running it within a
Jailhouse Linux cell are shown in Fig. 10.4. The graphs point the execution
time (blue dash) on the left-hand side y-axis and the L2-cache misses (orange
dash) on the right-hand side y-axis. The x-axis marks the leech buffer size.
The graphs also include error bars where the upper dash shows the maximum
value, and the lower dash shows the minimum value of 50 measurements. As
previously, low values are better than high values of the execution times. Also,
a large error bar is worse than a small one, since small variability in both L2-
cache misses and execution time is preferable. Table 10.3 lists the calculated
isolation for the matrix multiplication when co-run with the Tinymembench
load.

We observe a typical "knee" effect, i.e., the performance degradation of the
matrix multiplication halts at a certain point. This halt occurs when the ma-
trix multiplication co-run with a L2-cache leech cannot produce more cache
misses, as every cache line request will be a miss. This comes to a full effect
when N is 1 MB, which is aligned with the 1 MB-sized L2-cache. From the
isolation coefficient values- Table 10.3, we see almost no difference between
the Jailhouse measurement and the Linux measurement. This is motivated by
the fact that the Jailhouse hypervisor (in the reported version) does not mitigate

157

Figure 10.3: Linux L2-cache isolation test

Size ILinux IJhouse
128 KB 7,17% 7,74%
256 KB 15,27% 15,84%
512 KB 22,78% 22,33%
1 MB 26,62% 26,69%
2 MB 26,92% 26,87%
4 MB 25,14% 25,51%

Table 10.3: I coefficient in L2-cache contention test (percentage)

this problem. Also, there is almost no difference in execution time, nor cache
misses. This suggests that it is potentially is possible to migrate tasks from
regular Linux system to a Jailhouse partition without having to re-calculate the
execution characteristics of the algorithm.

10.4.3 Memory bus isolation test

In this section, we describe memory bus contention which occurs due to mul-
tiple processes on different cores requesting non-cached memory. In the pre-
vious test, we discovered the knee effect occurring at a buffer size of 1 MB,
which means all data requested by a process will be a cache miss and it has to
be fetched from the main memory through the bus. If multiple processes from
different cores request data from the main memory, the bus has to arbitrarily

158

Figure 10.4: Jailhouse L2-cache isolation test

chose which process gets the access. This may lead to further performance
degradation. To investigate memory bus contention, we run a test as follows,
where we employ the same kind of leech as previously, with a buffer size of
8 MB (or any size larger than the 1 MB limit described above).

1. Start a 512x512 matrix multiplication on C3

2. Insert one memory bus leech on a non-occupied core

3. Repeat step 3 until all cores are occupied

To ensure that full cache contention occurs during the entire execution of the
test, we measure the L2-cache misses of the system. Their number should re-
main constant - any change reflecting the fact that there were also some cache-
hits, which is to be avoided.

Fig. 10.5 depicts the results of the regular Linux matrix multiplication execu-
tion, and Fig. 10.6 depicts the results of the execution under Jailhouse protec-
tion. The left-hand side y-axis plots the calculated median execution time of
50 measurements, the x-axis shows the number of leeches inserted into the sys-
tem and the right-hand side y-axis shows the L2-cache misses of the system.
The graphs also include error bars where the upper dash shows the maximum
value and the lower dash shows the minimum value of the 50 measurements.

159

Figure 10.5: Linux memory bus isolation test

We list the calculated isolation coefficient for the matrix multiplication using
regular Linux and Jailhouse in Table 10.4.

The graphs show a significant performance degradation of the matrix multipli-
cation due to memory bus contention running in Linux as well as in Jailhouse.

The baseline execution time remains the same as in the matrix L2-cache iso-
lation case, since we used the same matrix size. Furthermore, the observed
effects when using one leech are also similar to the L2-cache isolation test, as
the cache is fully loaded. However, the interesting effects on execution times
occur when inserting two or more leeches. Firstly, we can read an isolation
coefficient of 0,3168 and 0,326 for the Linux and Jailhouse matrix multipli-
cations, respectively. The values mean that the Jailhouse hypervisor does not
provide any sorts of bus isolation, as expected. In addition, the execution time
of the matrix multiplication will be increased with any added leech. Once
again, the performance impact of using the Jailhouse hypervisor is within a
measurement error margin, suggesting that using the Jailhouse hypervisor does
not come with any overhead penalties.

Table 10.4: I coefficient in Memory bus contention test, (Percentage)

Size ILinux IJhouse
1 Leech 28,91% 25,96%
2 Leeches 31,75% 34,12%
3 Leeches 41,30% 43,50%

160

Figure 10.6: Jailhouse memory bus isolation test

10.5 Conclusion

We have measured the effects of contention on computing resources such as
CPUs, L2-cache and memory bus. As an example of an application with high
need for both CPU and memory, we used a matrix multiplication. We executed
the application in a standard Linux context and compared it with the execution
in a Jailhouse hypervisor cell context. In order to test the isolation, we dis-
turbed the application by executing leeches designed to consume particular
computing resources.

Our measurements focusing on the CPU resource show that the Jailhouse hy-
pervisor provides isolation between different partitions, enabling the applica-
tion to exhibit a performance very close to the baseline even in the presence
of leeches. Jailhouse does not, however, provide any memory bus or L2-cache
isolation. These said, there is a very small difference in performance degra-
dation for the application execution between the Jailhouse hypervisor and a
standard Linux system during heavy shared resource congestion. This further
suggests that using Jailhouse in a heavily loaded shared resource environment
provides an at least as performant execution context as Linux.

We leave investigating TLB, DRAM bank and I/O contentions for future work.
There also exists a newly published patch [7] for Jailhouse which provides a
cache coloring configuration for Jailhouse cells. Investigating the Jailhouse’s
page coloring mechanisms using our methodology is also relevant future work.

161

Bibliography

[1] A. Bansal, R. Tabish, G. Gracioli, R. Mancuso, R. Pellizzoni, and
M. Caccamo. Evaluating the memory subsystem of a configurable het-
erogeneous mpsoc. OSPERT 2018, page 55, 2018.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In ACM
SIGOPS operating systems review, volume 37, pages 164–177. ACM,
2003.

[3] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao. Quantitative comparison of xen and kvm. Xen Summit, Boston,
MA, USA, pages 1–2, 2008.

[4] FAA. Addressing cache in airborne systems and equipment. accessed:
2019-11-04.

[5] S. Han and H.-W. Jin. Full virtualization based arinc 653 partitioning.
In Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th,
pages 7E1–1. IEEE, 2011.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
linux virtual machine monitor. In Proceedings of the Linux symposium,
volume 1, pages 225–230. Dttawa, Dntorio, Canada, 2007.

[7] J. Kizka. Jailhouse google groups. accessed: 2019-11-04.

[8] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu. Performance
overhead among three hypervisors: An experimental study using hadoop
benchmarks. In Big Data (BigData Congress), 2013 IEEE International
Congress on, pages 9–16. IEEE, 2013.

[9] S. Mittal, Z. Zhang, and Y. Cao. Cashier: A cache energy saving tech-
nique for qos systems. In VLSI Design and 2013 12th International Con-
ference on Embedded Systems (VLSID), 2013 26th International Confer-
ence on, pages 43–48. IEEE, 2013.

[10] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache utiliza-
tion of hpc applications. In Proceedings of the international conference
on Supercomputing, pages 295–304. ACM, 2011.

[11] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look mum, no
vm exits!(almost). arXiv preprint arXiv:1705.06932, 2017.

162

[12] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor. A portable
arinc 653 standard interface. In Digital Avionics Systems Conference,
2008. DASC 2008. IEEE/AIAA 27th, pages 1–E. IEEE, 2008.

[13] S. Siamashka. https://github.com/ssvb/tinymembench. Retrieved Jan-
uary, 2019.

[14] V. Sinitsyn. Understanding the jailhouse hypervisor, part 1.
https://lwn.net/Articles/578295/, 2014.

[15] V. Sinitsyn. Get to know jailhouse.
https://www.linuxjournal.com/content/jailhouse, 2015.

[16] S. Toumassian, R. Werner, and A. Sikora. Performance measurements
for hypervisors on embedded arm processors. In Advances in Computing,
Communications and Informatics (ICACCI), 2016 International Confer-
ence on, pages 851–855. IEEE, 2016.

[17] S. H. VanderLeest. Arinc 653 hypervisor. In Digital Avionics Systems
Conference (DASC), 2010 IEEE/AIAA 29th, pages 5–E. IEEE, 2010.

[18] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[19] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

[20] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory band-
width management for efficient performance isolation in multi-core plat-
forms. IEEE Transactions on Computers, 65(2):562–576, 2016.

163

Chapter 11

Paper E
Automatic Quality of Service
Control in Multi-core Systems
using Cache Partitioning

Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris Behnam, and
Mikael Sjödin. In 45th Annual Conference of the IEEE Industrial Electronics
Society (IECON) IEEE, 2019.

165

Abstract

In this paper, we present a last-level cache partitioning controller for multi-
core systems. Our objective is to control the Quality of Service (QoS) of ap-
plications in multi-core systems by monitoring run-time performance and con-
tinuously re-sizing cache partition sizes according to the applications’ needs.
We discuss two different use-cases; one that promotes application fairness and
another one that prioritizes applications according to the system engineers’
desired execution behavior. We display the performance drawbacks of main-
taining a fair schedule for all system tasks and its performance implications
for system applications. We, therefore, implement a second control algorithm
that enforces cache partition assignments according to user-defined priorities
rather than system fairness. Our experiments reveal that it is possible, with
non-instrusive (0.3-0.7% CPU utilization) cache controlling measures, to in-
crease performance according to setpoints and maintain the QoS for specific
applications in an over-saturated system.

167

11.1 Introduction

Hardware resources are often limited for automotive control-systems. Es-
pecially when executing multiple applications on electronic control-unit, re-
source allocation must be carefully considered before deployment to achieve
the desired Quality of Service (QoS). Multi-core computers are gaining in-
creased popularity for the automotive industry due to increased available re-
sources (processor cores) on the same chip. Multi-core processors offer higher
computational capacity than their single-core predecessors while utilizing less
size, weight, and power (SWaP) than older single-core ones. Multi-core com-
puters often utilize a shared resource principle, where the ownership of multi-
ple resources such as cache memories and the memory bus are shared simul-
taneously across different cores. The resource-sharing principle makes multi-
core’s prone to a state called shared resource contention, which causes severe
execution-time fluctuations for applications and is seen as one of the major
bottlenecks for bringing multi-core’s into time-critical computing.

It is possible to counter shared resource contention using partitioning tech-
niques such as cache coloring for the cache [12] and thus make multi-core
systems more time-predictable. However, the partition boundaries are hard to
assign appropriately at system boot since an application can change run-time
behavior during the lifespan of the system. As such, too small partition sizes
can cause an application to display lower QoS than desired, and a too large
partition sizes wastes hardware resources without any QoS gain.

In this work, we try to automate the allocation of cache memory to meet QoS
needs. We present experiments containing two different distribution policies;
fair and prioritized. Fair distribution prioritizes assigning cache partitions
based on the current performance of all system applications and tries to op-
timize the allocated cache size such that all applications reach as close as pos-
sible to their maximum performance. Priority distribution instead distributes
cache memory based on an application’s setpoint QoS and prioritizes this ap-
plication to receive cache partition space while the setpoint QoS is not met.
Our experiments are done for over-saturated systems where it is impossible to
reach maximum QoS for all applications. We demonstrate that our controller
can instead reach and maintain a setpoint QoS for our system using our fair
strategy. We further demonstrate how to prioritize an application and meet
QoS needs for one specific, prioritized application. We list our contributions
as follows:

168

• An automated process of monitoring application performance continu-
ously, without the need of a complex communication scheme.

• A cache partitioning control scheme that automatically adjusts the cache
partition size of monitored applications to meet their respective QoS.

• A working implementation in Linux using the above mentioned contri-
butions.

11.2 Background

11.2.1 Application Quality of Service

We define QoS as a function of the number of instructions retired in a time
interval. One instruction retired means that the instruction has passed through
all stages within the processor pipeline. This means that for higher QoS, an ap-
plication will execute/retire a higher number of instructions. We can configure
the performance monitor counters (PMC) of a CPU to monitor the instructions
retired rate for a process ID (pid), and thus monitor the performance of an
application online. However, the measurement approach means that we put
requirements on the application’s functionality – network and I/O applications
that utilize busy-wait loops typically display a high number of instructions
retired in the loops but not doing practical work. The prerequisites for our
performance measurement approach to work is that the applications are not
utilizing busy-wait loops but instead continuously doing "actual" processing.
We assume our the QoS of our applications is correlated to the number of in-
structions retired, where an increase in number of instructions retired leads to
a decrease in response time.

11.2.2 Cache contention

Cache memories are relatively small, temporary memory storage units that
affects the system’s overall performance. Cache memories in multi-core sys-
tems are prone to reach a state called cache contention, which causes dramatic
execution-time fluctuation of system applications [3] and can cause problems
to a system that expects execution-time predictability. The main reason for
cache contention is the small memory size of the cache combined with simul-
taneous utilization from multiple tasks on different cores. The cache’s are so
small that it is very improbable that an entire application’s memory foot-print

169

fits within the cache and it is almost a certainty that the cache will become full
at some point during an application’s execution.

Cache memories implement a data eviction policy to mitigate out-of-cache
memory scenarios and replaces old data with new data when the cache is full.
The cache selects one data block (cache line) according to a policy (e.g., LRU,
random), evicts the selected cache line from the cache and then finally inserts
the new data onto the address of the previously evicted data. Data replacement
is necessary to counter the small memory space of a cache, but is also the main
reason for severe execution-time fluctuations and QoS decrease.

Execution-time fluctuation often appears when two or more cache dominant
applications utilize the same cache memory [2]. Consider the following sce-
nario; two applicationsApp1 andApp2 executes simultaneously in a dual-core
system with a 4 MB cache. App1 runs on core 1 and App2 runs on core 2.
Both applications require a memory footprint of 4 MB– i.e. the same size as
the available cache and both application have a cache usage that is linear with
the execution. The cache will be full and start to evict data that belongs to
either App1 or App2 once the applications have executed roughly half of their
execution. The data evictions means the data is no longer present within the
cache and needs to re-fetched from the main memory into the cache if refer-
enced again, which has a significant latency.

Cache contention causes dramatic execution-time fluctuations for applications
in multi-core systems [2] and is one of the major bottlenecks for introducing
multi-core chips in to time-critical computing. In this paper, we focus of the
shared last-level cache (LLC) as the location of the contention which can be
partitioned according to the page-coloring algorithm that mitigates cache con-
tention [12].

11.2.3 Cache partitioning

The main idea behind cache partitioning is to reserve a portion of the cache
memory to only certain processes such that shared cache contention never oc-
curs. There exist a variety of solutions to implements cache partitioning, in-
cluding the static, hardware-supported cache way-partitioning, MMU-based
page coloring [12] [5] and also the programmatic cache locking solution [10].
In this paper, we utilize page coloring; an MMU-implemented a policy that
redirects how page addresses are translated into the cache memory. There
exists a large body of variations on page coloring including Palloc [13], Col-
oris [12], Jailhouse hypervisor adaptation [5] etc. Page coloring creates bor-

170

ders in the cache memory disqualifying processes from accessing certain data
blocks in the cache memory (cache-lines).

We exemplify page coloring using three applications (A,B, and C) in Fig-
ure 11.1 with a cache that contains nine cache-lines. The figure shows how the

Figure 11.1: Cache coloring

MMU maps addresses to the cache in a page-colored environment. Memory
requests that belong to application 1 are only allowed to access cache lines 1-3
while application 2 is only allowed to access the cache lines 4-6. Page-coloring
thus means an application can only evict its’ data from the cache memory and
not by other applications on different cores.

We showcase the effects of cache contention in Fig. 11.2 and illustrate how
these effects are countered using page coloring. The figure shows two experi-
ments that runs 150 executions of one 256x256 matrix multiplication on core
0. The blue squares marks the execution time of a matrix multiplication run-
ning in a non-isolated environment, while the orange crosses marks the the
execution time of a matrix multiplication running in a cache partitioned envi-
ronment. We generate cache contention by starting another 256x256 matrix
multiplication at iteration 75 on core 1.

Cache contention has a dramatic effect on the non-isolated matrix multiplica-
tions’ (blue squares) execution time. The figure shows how the execution-time
for the matrix multiplication increases by 17 milliseconds, just from running
another matrix multiplication on another core. The cache partitioned version
is roughly 5-6 milliseconds slower than our un-partitioned case, but remains
unchanged when the new matrix multiplication. Cache partitioning however
comes with drawbacks in terms of complexity which causes execution-time
overhead as (5-6 ms in the example). The cache memory is also very small,
which means the partition sizes for different applications must be handled with
utmost care to avoid wasting a valuable resource. The total number of available

171

Figure 11.2: Cache contention

colors depends on the way-set associativity and also the total amount of cache
space. The number of available cache partitions for a processor is calculated
according to Equation 11.1 [12].

Nr. of Colors =
Cache_size

Cache_ways ∗ page_size
(11.1)

11.2.4 Related work

There exists a large body of dynamic cache partitioning studies [12, 13, 6, 8, 9]
that investigates how to optimize cache partitions to achieve maximum per-
formance of the SPEC CPU benchmark suite. However, it is hard to reach
maximum performance in an over-saturated system where all cache-partitions
are assigned; wherefore, we focus on creating a controller that lets the system
engineer decide the performance thresholds. Other related works focuses on
enforcing quality of service [4] and isolation [14] through bandwidth restric-
tions. Kloda et al [5] introduces page-coloring into the Jailhouse hypervisor,
which also introduces an entirely new dimension to solving cache contention
as the cache partitioning spans overall application that belongs to a specific
guest OS. However, the solution is limited to re-partitioning at guest OS boot,
which makes it dynamic but less flexible. Our work differs from the previous
work since we introduce a priority fashion-based assignment policy into the

172

cache allocation policy. Our goal is not to optimize overall system through-
put but to provide isolation for applications while prioritizing performance for
specific applications. Xu et al. [11] presents CaM, a resource partition allo-
cation scheme using the intel’s built-in cache partition utility called CAT and
combines it with the memory bus reservation scheme memguard [14]. CaM
proposes an algorithm that contains multiple procedures that optimizes task
schedulability in a system. The main similarities between our work and CaM
lie in resource allocation and load balancing. CaM takes the approach of al-
locating the minimum partition size to tasks executing on different cores and
then re-allocates partitions until all tasks are schedulable. CaM also executes
load balancing by migrating tasks from unschedulable cores to schedulable
cores. CaM presents WCET guarantees and focuses on the schedulability of
tasks. Our work instead focuses on tweaking the performance of specific ap-
plications in an oversaturated system in an online fashion. Our controller does
not evaluate all possible task permutations in a system but instead focuses on
tweaking the cache partition size of already running applications to satisfy per-
formance needs.

11.3 Cache partition distribution

Cache partitioning offers isolation and counters execution-time fluctuations
that happen as a consequence of cache contention. Cache partitioning, how-
ever, comes at the expense of performance degradation due to a complex mem-
ory management mechanism. Allocating cache partitions statically to appli-
cations is the most simplistic distribution policy. However, it can be very
non-optimized as it is hard to assign suitable partition sizes beforehand un-
less performing time-consuming exhaustive searches [1]. Various online ap-
proaches instead tune the cache partition sizes to optimize application execu-
tion time [12] and maximizes system throughput.

There are industrial use-cases where the maximum throughput of the entire
system is not the primary goal but is to instead maintain the QoS for one or
perhaps two particular applications. Additional performance benefits to the
system are just bonuses. Consider a simplistic multi-core system for an au-
tonomous vehicle that contains three applications executing on different cores
on the same chip; App1 – feature detection algorithm that detects visual obsta-
cles; App2 – stores log-metrics in a database. App3 – DPDK that sends and
receives log-data packets over the network.

App1 has the most critical task in detecting obstacles for the autonomous ve-

173

hicle, while App2 and App3 posts log data. These applications, however, run
in the same multi-core system and thus share the same cache. Assigning cache
partitions based only on increasing system overall performance (that is, in-
creasing the number of instructions retired in a time interval) can lead to a
scenario where App2 and App3 reserves all available cache partitions, while
App1 only gets one cache partition. Distributing the system fairly based on
cache usage can also lead to the same scenario if App2 and App3 utilizes the
cache more than App1. Both scenarios will lead to a decreased QoS for the
feature detection algorithm while the system’s overall performance increases.
We target our use-case towards systems that prioritizes QoS for specific appli-
cations above an overall system throughput.

11.4 Implementation

We implement our QoS cache partitioning controller in C using a petalinux
4.14 kernel. The controller utilizes the performance API (PAPI) [7] for moni-
toring the PMC; the cgroup interface for controlling an application’s core affin-
ity, and also the palloc [13] interface for adjusting the cache partition sizes.
Our primary focus lies not in optimizing performance but to meet a specific
application’s QoS. We present our controller architecture in Fig 11.3.

Figure 11.3: Cache partition controller architecture

The controller samples the number of instructions retired (QoS) of all system
applications (M1..Mx) every 20 ms and calculates the average QoS every 100
values. We assume each application to run in parallel on different cores. Our
controller utilizes a QoS database to provide an estimate setpoint for the con-

174

troller. The QoS database contains instructions retired measurements of all
system applications and is measured pre-execution. However, the purpose of
the QoS database is only to provide estimates for QoS setpoints, as they might
not be theoretically achievable due to the limited cache space on-chip. The
system engineer has to make the final verdict for each application on valid set-
points and use the database values as a reference for deciding a setpoint QoS.
The controller compares the setpoints (S) of all running applications to the
current QoS and selects two applications, one application that receives cache
partition space and one application that loses cache partition space in step C.
We implement two different controller modes that select applications for cache
partition re-distribution; fair-oriented and priority-oriented.

Fair-oriented In this mode, we compare the differences between an applica-
tion’s current performance and its setpoint. The controller will increase the
cache partition size for the application that displays the greatest difference
between the setpoint and the current performance and decrease the cache par-
tition size for the application that displays the least difference.

Priority-oriented In this mode, the system engineer needs to assign priorities
to each application actively. The application that has the highest priority will
always receive cache partition size first-hand. The controller will assign cache
partition space to lower priority applications only when the higher priority
applications display a QoS equal to the setpoint.

The change in cache partition size for the two selected applications is always
1 and the minimum cache partition is one for each application. If an appli-
cation already has the minimum cache partition size, another application will
instead be selected. The controller actuates the cache partition space of the
two selected applications in step E utilizing the palloc API. The outcome from
the cache partition actuation is a cache partition space for each application
(P1..Px).

11.5 Experiment setup

We utilize the Xilinx-zynq zcu102 evaluation kit as testbed platform, with the
processor specifics as of Table. 11.1. Our chip provides a 16-way set associa-
tive cache, which means we may consider 16 (1 MB/16∗4 KB = 16) available
colors in the system according to equation 11.1.

175

Table 11.1: Hardware specifications Xilinx Zynq UltraScale+ MPSoC

Feature Hardware Component
Core 4xArm Cortex A-53 @ 1.2GHz
L1I-cache 32 KB 2-way set assoc cache/core
L1D-cache 32 KB 4-way set assoc cache/core
L2-cache 1 MB 16-way set assoc. shared Last-level

Cache
MMU L1ITLB: 10 entries

L1DTLB: 10 entries
L2TLB 512 entries, 4-way set assoc.

11.5.1 Test applications

Our execution scenario is inspired from industrial use-cases that execute appli-
cations on different cores. The system contains resource draining applications,
that will drain the entire cache and as such cause severe execution-time jitters
for other applications in the system. We exemplify the industrial use-case with
three continuously running applications, two cache draining matrix multiplica-
tions that are common in computer graphics as synthetic loads and one feature
detection algorithm, SUSAN to serve as a realistic load, listed as follows:

1. Matmultijk (200x200) - Naïve implementation of the matrix multiplica-
tion that utilizes the traditional IJK traversion strategy.

2. Matmultikj (100x100) - Cache prefetcher friendly traversing strategy of
a matrix multiplication, designed to generate a higher cache hit rate than
the naïve version. We chose a different size of this matrix multiplication
to show more diverse results.

3. SUSAN - This application represents our realistic application and is used
to detect corners in a frame. It is commonly used combination with other
algorithms to identify visual obstacles for autonomous vehicles.

11.5.2 Controller setup

The controller is run as a standalone process that is running on its own core.
It continuously monitors the applications’ performance counters (instructions
retired and L2-cache misses) every 20 milliseconds – the sampling rate is a
trade-off value. More frequent sampling rate reduces the controller’s sleep

176

time and thus results in a significant CPU utilization increase. Less frequent
values will instead decrease the controller’s responsiveness since we are de-
pendent on average samples to estimate the current performance. In this paper
we wanted to maintain a CPU utilization below 1% while still being able to
re-partition on a second basis, wherefore we chose 20ms. The controller stores
the performance counters in a history database, which is used for calculating
the average readings. We calculate the average performance counter readings
based on 100 samples from the history database and use these average readings
as basis for the re-partitioning decision. Table 11.2 summarizes the controller
variables for our tests.

Table 11.2: Controller configuration

Property Value
Sampling frequency 50HZ
Average window size 100

11.6 Partitioning experiments

In this section, we perform several experiments to show the benefits of an on-
line partitioning controller. We perform four different experiments, including
a baseline experiment, a proof-of-concept experiment focusing on application
fairness, a QoS-focused cache distribution policy, test and finally a priority-
based cache distribution policy. We affine each application to different cores;
Cache partition controller (core 0), Matmultijk (core 1), Matmultikj (core 2)
and SUSAN (core 3). The controller has a CPU utilization of 0.3-0.7% and
always runs using one cache partition. Due to the controller’s CPU low utiliza-
tion, it is possible to run other other applications on the same core as the con-
troller if 0.3-0.7% loss of CPU utilization is acceptable. In this paper we focus
only on partitioning the cache, wherefore we opt out of optimizing scheduling
applications together with the controller.

11.6.1 Initial experiment

Here, we present the setpoint QoS of the applications utilizing the maximum
available cache partitions for each application. This value will be our reference
QoS and used to compare the quality of a cache partition. We measure the max-
imum QoS by monitoring the number of instructions retired while all available

177

partitions are assigned to an application running in isolation. We sample the
instructions retired every 20ms for 10 seconds and then calculate the average
instructions retired. We use 10 seconds as interval to capture PMC events of at
least 10 full iterations of each application. We present the reference values in
Table 11.3.

Table 11.3: Cache partition maximum configuration

Application Partition size Reference QoS
Matmultijk 15 5.4 ∗ 106

Matmultikj 15 8.22 ∗ 106

SUSAN 15 10.4 ∗ 106

The table shows the average number of instructions retired per 20 millisec-
onds of our applications, we denote this metric as reference QoS. However,
the conditions of this experiment are not possible in a real system with concur-
rently running tasks, as we only have 15 available cache partitions and cannot
distribute 15 colors to all concurrently running tasks without risking cache
contention through cache-partition sharing.

11.6.2 Naïve cache partitioning

We can statically assign cache partitions in a naïve fashion by distributing the
available cache partition space equally to all concurrently running applications,
see Table 11.4.

Table 11.4: Initial setup

Application Partition
Controller 1
Matmultijk 5
Matmultikj 5

SUSAN 5

In our naïve scenario, we split all available cache partitions among our differ-
ent applications, which means our test applications receives 5 cache partitions
while the controller receives 1. Table 11.5 shows the number of instructions
retired per 20 ms (denoted as QoS), the L2-cache misses per 20 ms, and the
difference in QoS compared to the reference QoS for each application.
The table shows how an initial cache partition setup changes the QoS of
our applications compared to the reference QoS in our previous experiment.
Matmultijk performs worst (due to nature of the naïve traversion strategy)
comparing to the reference QoS, and SUSAN performs best.

178

Table 11.5: Performance comparison: reference versus equal partitions

Application QoS L2-cache misses Diff
Matmultijk 3.23 ∗ 106 27901 41 %
Matmultikj 7.19 ∗ 106 45380 13%

SUSAN 9.83 ∗ 106 81073 6.2%

11.6.3 Fair distribution

The equally shared cache distribution experiment shows a significant QoS
degradation as compared to the reference QoS. We introduce a control mech-
anism to regulate the cache partition sizes according to the distance to the ref-
erence QoS. The controller balances the QoS of the applications to minimize
the difference between the application’s current QoS, and their reference QoS.
We list the controller steps as follows:

1. Monitor current QoS of all applications in the system

2. Select application with highest difference compared to the reference
QoS (Apphigh)

3. Select application with lowest difference compared to the reference QoS
and cache partition size > 1 (Applow)

4. Increase partition size of (Apphigh) by one and decrease partition size of
(Applow) by one

5. Go to step 1

The above algorithm embraces fairness, prioritizing poorly performing appli-
cations over better-performing applications. Figures 11.4, 11.5 and 11.6 de-
picts the cache partitioning assignments done by the controller over a time-
period of 90 seconds. The red line marks the current average QoS on the
left-hand side y-axis, the green line marks the reference QoS as measured in
the initial experiment, and the blue line marks the cache partitioning sizes on
the right-hand side y-axis.

179

Figure 11.4: Susan fair cache partitioning

Figure 11.5: Matmultijk fair cache partitioning

Figure 11.6: Matmultikj fair cache partitioning

180

The three figures show an example of an over-saturated system as the con-
troller cannot assign partitions that meets any reference QoS. The difference
of Matmultijk remains the highest until a cache partition size of 11. Once this
mark is met, the controller starts continuously change partition size between
Matmultijk and Matmultikj . The algorithm partitions the system fairly, but
fails to meet the QoS requirements of any application. Figure 11.6 displays
high performance fluctuations due to the sensitivity of the performance to the
cache size, we discuss this further in Section 10.5.

11.6.4 Reference distribution

An application’s desired QoS does not necessarily have to be the maximum
achieve-able QoS. A system engineer can, for example, decide that it is ac-
ceptable that a task is operating at a percentage value of its maximum capacity
when cache isolation is more prioritized. In this subsection, we tune down
the expectations of our two matrix multiplications and instead use a "desired
QoS" as metric for the controller to chase. We leave SUSAN’s desired QoS
unchanged at 10.4 million instructions per 20 ms. We show these new desired
QoS values in Table 11.6 and compare them with our reference values.

Table 11.6: Initial setup

Application Reference Desired % Difference
Matmultijk 5.4 ∗ 106 3 ∗ 106 55%
Matmultikj 8.22 ∗ 106 7.5 ∗ 106 91%

SUSAN 10.4 ∗ 106 10.4 ∗ 106 100%

The table shows that we have tuned down the QoS requirement of Matmultijk
by 45% to an average of 3 million instructions per 20ms. We have also tuned
down the requirement of Matmultikj by 9%, to 7.5 million instructions per
20ms. In Figures 11.7, 11.8 and 11.9 we show how our controller operates
with these new QoS requirements.

181

Figure 11.7: SUSAN 100% target performance

Figure 11.8: Matmultijk 55% target performance

Figure 11.9: Matmultikj 91% target performance

182

The figures show how the controller adapts the partitions according to the new
desired QoS values. SUSAN still gets the minimum number of partitions,
but Matmultijk and Matmultikj present a different scenario. Matmultijk gets
priority on receiving partitions first-hand since the distance to the desired QoS
is highest. Matmultikj starts to receive partitions from Matmultijk at controller
iteration six.

11.6.5 Priority distribution

Different applications in a system can be of different importance. Our system
utilizes two matrix multiplications as synthetic loads and one "real" scenario
application, SUSAN. In this experiment, we assign priorities to our applica-
tions to force partitions into a specific application. We chose SUSAN to receive
the highest priority, Matmultikj to receive medium priority, and Matmultijk to
receive low priority. Introducing priorities means we also shift our distribution
rules, presented as follows:

1. Monitor the QoS of active tasks in the system

2. Select the highest priority application (Apphigh) that does not have a
current QoS higher than a desired QoS

3. Select the lowest priority application that has cache partition size > 1
(Applow)

4. Distribute one cache partition from Applow to Apphigh

5. Go to step 1

Once the high-priority application meets its target QoS, the controller will ac-
tively shift focus to the second-highest priority task and so on. Our priority
policy means a medium priority task will only get partitions once the high pri-
ority task has its QoS requirements fulfilled etc. We exemplify the priority
distribution policy using a QoS threshold in our applications. The controller
will shift cache distribution focus once an application runs at a higher QoS
than its threshold. Table 11.7 presents the experiment setup and contains ap-
plication priorities and QoS threshold values. Matmultijk has a non-applicable
threshold since it is the lowest priority.

SUSAN has the highest priority, Matmultikj has medium priority and
Matmultijk has low priority. Once SUSAN counts a presents a higher count

183

Table 11.7: Initial setup

Application Priority Threshold Value
Matmultijk Low N/A N/A
Matmultikj Medium 95% 7.5 ∗ 106%

SUSAN High 95% 9.95 ∗ 106

of instructions retired than 7.5 ∗ 106 (95% of measured max), Matmultikj
will start to receive partitions. Figures 11.10, 11.11 and 11.12 shows the
cache partition distributions for SUSAN, Matmultijk and Matmultikj using
our prioritization policy.

Figure 11.10: SUSAN high priority

Figure 11.11: Matmultijk low priority

184

Figure 11.12: Matmultikj medium priority

These experiments show a different cache partitioning distribution compared
to the previous two experiments. SUSAN, now on high priority,receives a
size increase at the first controller iteration, which increases the QoS to above
the threshold. Since SUSAN now is above the threshold, Matmultikj receives
cache partitions from Matmultijk for two iterations while also increases the
QoS above the desired threshold. SUSAN, however, displays a QoS degra-
dation during this time and is prioritized once again for cache partitions. This
time, SUSAN takes cache partition size from Matmultijk for six iterations, and
the QoS finally hits the QoS threshold again. At iteration 30, SUSAN’s QoS
once again is below the threshold and thus receives another cache partition
from Matmultijk. From this point, the controller does not change the cache
partition distribution.

11.6.6 Equal priority distribution

Our last experiment presents our prioritization policy when applications run
the same priority. This policy presents the most complex problem since we
here combine both fairness and priority. When two applications have the same
priority, we trigger the fairness calculation and calculate the application’s dis-
tance to its desired QoS. In this experiment, we assign SUSAN the same pri-
ority as in the previous experiment (high), but we lower the threshold by 0.2%
to create a more interesting execution scenario. We furthermore lower the pri-
ority of Matmultikj to low, see Table 11.8 for experiment specification. We
maintain the desired QoS from our previous experiment.

185

Table 11.8: Initial setup

Application Priority Threshold Value
Matmultijk Low N/A N/A
Matmultikj Low N/A N/A

SUSAN High 93% 9.95 ∗ 106

Figure 11.13: SUSAN high priority

Figure 11.14: Matmultijk low priority

Figure 11.15: Matmultikj low priority

186

The graphs show the re-distribution policy when Matmultijk and Matmultikj
run with the same priority (low). The controller immediately assigns one cache
partition to SUSAN, which increases SUSAN’s QoS to above the 93% thresh-
old. The controller then triggers the fairness calculation for both matrix mul-
tiplications. Matmultijk has the most significant distance to the desired QoS
and gets cache partitions from Matmultikj for five controller iterations. The
increased cache space results in an increased QoS for Matmultijk but also a
decreased QoS for Matmultikj . The controller starts to fluctuate at iteration 8,
since Matmultikj has now the furthest distance to its desired QoS. The con-
troller thus assigns one cache partition from Matmultijk to Matmultikj , a be-
havior maintained throughout the rest of the experiment execution.

11.6.7 Discussion

Our results show that it possible with relatively non-intrusive algorithms (0.3-
0.7& CPU utilization) to control an application’s QoS using only the means
of cache re-partitioning. The first and most engaging discussion point is when
to stop assigning cache partitions. All of our experiments, except for the all-
different priority case, display a self-fluctuating state of the controller, which
repeatedly decreases/increases the partition size of the same two applications.
The fluctuating behavior is a consequence of a traditional constant controller
that is working, but that case might not be practical. It is possible to add
sanity checks within the controller that detects such behaviors since we have
access to historical data and stop the re-partitioning procedure once detecting
a fluctuating behavior. Stopping the re-partitioning procedure will increase
the complexity of the controller significantly, since we then also need to add
decision making for starting a stopped controller again.

The SUSAN’s fluctuating performance - Fig. 11.10 - can be explained as fol-
lows. SUSAN trespasses the performance threshold setpoint already at con-
troller iteration 1. SUSAN reaching the performance threshold mark this early
is however an outlier and could be a result of SUSAN executing a couple of
"lucky" executions. SUSAN goes below the threshold QoS setpoint again at
controller iteration 4, wherefore the controller re-starts to assign partitions to
SUSAN. Implementing a freezing functionality for the controller could, in this
particular case, have led to a scenario where the controller freezes the parti-
tions for SUSAN at partition size 1, while the current detected performance
was a result due to a measurement anomaly.

187

11.7 Summary

We presented here the idea of building an online cache partitioning controller
that focuses on maintaining QoS for prioritized applications. We presented
two primary cases; maintaining QoS based on a user-defined reference value
and maintaining QoS through prioritization. Our results show that it is possible
to control the execution time of several cache-bound tasks in a multi-core sys-
tem by adjusting cache partition sizes. We introduced two controller modes:
fair and prioritized and execute experiments using three applications. Our fair
partitioning algorithms display favoritism towards the matrix multiplications
because the difference between their current QoS and their setpoint perfor-
mance is always greater than SUSAN’s. The two matrix multiplications also
show a more significant sensitivity towards an increased cache space which
results in SUSAN never receiving cache partition space according to the fair
policy. We therefore implement a priority policy that will assign partitions
for applications with higher priority on first-hand. We show that our priority
scheme prioritizes the QoS of SUSAN and increases its performance by 5%
compared to a fairly partitioned system.

11.7.1 Future work

Our controller uses a minimum cache partition size of one, but there is also the
possibility of investigating cache partition sharing such that applications which
are not important share the same cache partition. Sharing the same cache parti-
tions will cause cache partition contention and reduce the QoS dramatically for
the affected applications but will on the other hand free more cache partitions
for the applications that do not share cache partitions. We also envision us-
ing more sophisticated controller techniques with other hardware that provides
more available cache partitions. More available cache partitions means it can
be possible to include a proportional element to the controller and change the
cache redistribution to more than just one per iteration. Other interesting works
include investigating effective ways to freeze the system and thus counter the
self-fluctuating effect resulting from our controller operating and mechanisms
that unfreezes the system once again at appropriate points.

188

Bibliography

[1] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal cache
partition-sharing. In 2015 44th International Conference on Parallel Pro-
cessing, pages 749–758. IEEE, 2015.

[2] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and M. Sjödin.
Testing performance-isolation in multi-core systems. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 604–609. IEEE, 2019.

[3] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache pi-
rating: Measuring the curse of the shared cache. In 2011 International
Conference on Parallel Processing, pages 165–175. IEEE, 2011.

[4] M. Jagemar, A. Ermedahl, S. Eldh, M. Behnam, and B. Lisper. Enforcing
quality of service through hardware resource aware process scheduling.
In 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), volume 1, pages 329–336. IEEE, 2018.

[5] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 1–14.
IEEE, 2019.

[6] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gain-
ing insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In 14th International Symposium on High
Performance Computer Architecture, pages 367–378. IEEE, 2008.

[7] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

[8] S. Muralidhara, M. Kandemir, and P. Raghavan. Intra-application cache
partitioning. In International Symposium on Parallel & Distributed Pro-
cessing (IPDPS), pages 1–12. IEEE, 2010.

[9] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In 39th Annual International Symposium on Microarchitecture
(MICRO’06), pages 423–432. IEEE, 2006.

189

[10] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program
predictability. In ACM SIGMETRICS Performance Evaluation Review,
volume 31, pages 272–282. ACM, 2003.

[11] M. Xu, L. T. X. Phan, H.-Y. Choi, Y. Lin, H. Li, C. Lu, and I. Lee. Holistic
resource allocation for multicore real-time systems. In 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 345–356. IEEE, 2019.

[12] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[13] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[14] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

190

Chapter 12

Paper F
Run-Time Cache-Partition
Controller for Multi-Core
Systems

Jakob Danielsson, Marcus Jägemar, Moris Behnam, Tiberiu Seceleanu and
Mikael Sjödin. In 45th Annual Conference of the IEEE Industrial Electronics
Society (IECON) IEEE, 2019.

191

Abstract

The current trend in automotive systems is to integrate more software appli-
cations into fewer ECU’s to decrease the cost and increase efficiency. This
means more applications share the same resources which in turn can cause
congestion on resources such as such as caches. Shared resource congestion
may cause problems for time critical applications due to unpredictable interfer-
ence among applications. It is possible to reduce the effects of shared resource
congestion using cache partitioning techniques, which assign dedicated cache
lines to different applications. We propose a cache partition controller called
LLC-PC that uses the Palloc page coloring framework to decrease the cache
partition sizes for applications during run-time. LLC-PC creates cache par-
titioning directives for the Palloc tool by evaluating the performance gained
from increasing the cache partition size. We have evaluated LLC-PC using 3
different applications, including the SIFT image processing algorithm which
is commonly used for feature detection in vision systems. We show that LLC-
PC is able to decrease the amount of cache size allocated to applications while
maintaining their performance allowing more cache space to be allocated for
other applications.

193

12.1 Introduction

Recent trends in the automotive industry show an increasing interest in high-
performance computational machines. A common way to address the in-
creased demand for computational capacity is the use of multi-core CPUs,
which is a significant benefit to the autonomous industry due to the reduced
size, weight, and power (SWaP) area [3]. Increasing the number of cores adds
additional computational capacity, however, it also increases the system com-
plexity. Multi-core systems are infamous for performance variations, which
can become problematic in time-sensitive systems [8]. These variations of-
ten occur due to inter-core resource sharing, such as shared caches, shared
memory bus, Translation Lookaside Buffers (TLB), shared DRAM-banks and
others. These resources can be shared between cores, which means an appli-
cation (e.g. app0), executing on one core, does not have exclusive ownership
of a single resource, instead it shares the resource with another application,
(e.g. app1), executing on an adjacent core. Such scenario can lead to shared
resource contention where app0 unexpectedly stalls, since app1 has access to
the resource.

The shared last level cache (LLC) has been a performance bottleneck in multi-
core systems for a long time because of simultaneous accesses from multiple
cores. In recent years, several studies have proposed methods aiming to miti-
gate LLC contention through isolation. Some examples are cache partitioning
which partition the LLC so that accesses from one application do not affect the
performance of another [11]. An additional technique is cache locking [12],
that forces applications to use only certain cache lines. Another example is
cache scheduling [6] that schedules applications to minimize conflicts in the
cache memory. Isolating the cache memory can however be a costly process
in terms of lost memory space and increased overhead.

We have devised a new way to optimize LLC partition allocation, during run-
time. We implement a controller that continuously reads the instructions re-
tired event from the Performance Monitoring Unit (PMU) [5] to estimate the
application’s performance. This paper focuses on the LLC, but the PMU sup-
ports a broad set of events [15], and our method can be applied to other shared
resources as well - to be investigated in the future. The controller correlates the
performance metrics and the cache partition size, and decides if an application
needs more cache memory to achieve the desired performance or Quality of
service (QoS). Our main contribution is:

• Propose a method to automatically select the minimum cache-size to be

194

allocated to an application for achieving a desired QoS.

The rest of the paper is structured as follows. We give background information
in Section 12.2 and describe the LLC partition controller we have implemented
in Section 12.3. An empirical study of the correlation coefficient and also
a comparison study of our LLC partition controller versus statically assigned
LLC partitions is described in Section 12.4. Section 12.5 describe work related
to ours and we conclude the paper in Section 12.6.

12.2 Background

In the following, we discuss cache partitioning and it’s relations to application
performance.

12.2.1 Partitioning to avoid LLC contention

LLC contention occurs when multiple applications compete for the same cache
lines. This can drastically degrade the execution time. Page-coloring, a.k.a
cache coloring [13] or cache partitioning, is a way of disqualifying applica-
tions from using certain cache lines. LLC partitioning in Linux can be done
by replacing the standard Buddy allocator [14], forcing applications to take
a subset of the total number of cache lines. Forming LLC partitions is often
done by assigning colors to an application. The colors are then used to control
where data requests from the physical memory should be put in the cache, see
Fig 12.1.

Figure 12.1: Cache coloring

The Figure shows three applications which split the cache memory equally.

195

The applications are assigned three different colors in the physical memory
which are then used to map memory rows to cache line locations. Cache colors
are referenced using the set-associative bits of the LLC, calculated according
to Equation 12.1 [13].

Nr. of Colors =
Cache_size

Cache_ways ∗ page_size
(12.1)

We have used the combined DRAM-bank partitioning and LLC coloring tool
called Palloc [14] to create LLC partitions. Palloc is a kernel module which
runs partitions at the granularity of a page and replaces the regular Linux
Buddy allocator with a colored page approach.

12.2.2 Cache partitioning effect

Page coloring can be very efficient for reducing the execution time oscilla-
tions of applications executing in a memory contentious environment [13]. We
have illustrated such environment in Fig. 12.2 where one 512x512 matrix mul-
tiplication application runs iteratively 100 times on core 0. The blue pluses
show 100 iterations of the matrix multiplication without page coloring. The
red crosses show 100 iterations of the matrix multiplication using palloc page
coloring with a cache partition size of 60. Another matrix multiplication starts
at iteration 20, running on core 1. The purpose of the newly inserted matrix
multiplication is to cause LLC contention, which happens as a consequence of
sharing the same LLC.

Figure 12.2: Matrix multiplication - isolation example

Fig. 12.2 depicts a typical LLC contention scenario, where the execution time

196

of the no-page-colored matrix multiplication starts to oscillate, after inserting
the leech. The page-colored matrix multiplication is, on the other hand, undis-
turbed by the leech. It is, however, apparent that page coloring comes with an
increased overhead due to extra latency in page allocations. Such trade-off can
be worthwhile in time-critical systems when application time-predictability is
essential. Overhead evaluations and Real-time performance impacts of the
Palloc tool using bank partitions is extensively discussed in the Palloc paper.

Dimensioning the LLC partition sizes is one of the critical aspects when run-
ning multiple applications simultaneously. Assigning too small LLC parti-
tions can significantly decrease the application performance. Fig. 12.3 shows
the performance difference of the same matrix multiplication using various
amount of LLC partition size.

Figure 12.3: Matrix multiplication using different cache partition sizes

Assigning only 1 LLC partition to the matrix multiplication significantly re-
duces the performance, compared to the execution in Fig. 12.2, which uses
60 LLC partitions. Increasing the LLC partition size to 2, significantly in-
creases the performance compared to the 1 LLC partition assignment and so
on. Fig. 12.3 also illustrates an "above LLC saturation point" scenario - when
an application does not gain performance from being assigned more cache
memory, which is a consequence of fully saturating the temporal locality of
the matrix multiplication. For this dataset size, the number of cache misses
cannot be reduced anymore and all data which can be re-used is being re-used.
Thus, there is no increase in performance from increasing the LLC partition

197

size further. In this case, the saturation point occurs at the 12 LLC partitions
assignment. Further increasing the available LLC partitions, does not produce
a significant performance impact on the application. Increasing the LLC size
for this application will only allocate unnecessary resources. As a comparison,
we could adopt a static partitioning strategy: for instance, assigning a 4th of
all cache partitions to each core in a 4 core system. In many cases, this may be
a waste of valuable resources. Thus, we argue that it is beneficial to find the
LLC saturation point at run-time, rather than statically assigning partitions.

12.3 Cache partition decision

There are many ways to create efficient LLC partitions. One possibility is
to use exhaustive offline profiling for tasks, distributing the available cache
partitions optimally to different tasks [2]. Offline profiling, however, needs
complete knowledge of the applications running in the system. Changing the
application set requires a complete re-profiling procedure before deploying
new cache partitions. These limitations make offline cache partitioning not
feasible for most dynamic systems. In addition, some applications may also
change their respective workload during execution, which can be very difficult
to foresee at design-time.

This paper focuses on LLC-bound workloads, meaning that the respective per-
formance is bound tightly with the amount of LLC misses, where more LLC
misses equals less performance. It is possible to assume that an LLC-bound
workload will benefit from receiving more LLC partitions and opens up ways
for constructing re-partition methodologies.

For an app0, the performance is denoted by the number of retired (reached the
final step in the instruction pipeline) instructions. In the context of the used
example, our theory is that:

• The performance of an LLC-bound process is strongly correlated to the
number of LLC misses.

• Enlarging the corresponding partition size available for app0 increases
the performance and decrease the LLC misses.

• The correlation between performance and increased LLC partition size
decreases as the number of LLC partitions increase, until a LLC satura-
tion point, where other resources (may) become the bottleneck

198

Based on our theory, we propose a correlation-based cache partition controller,
LLC-PC, that tries to find the LLC saturation point - Fig. 12.4.

Figure 12.4: LLC-PC

The cache controller is a correlation based control loop which regulates the
cache partition size according to the correlation between a performance metric
and the increase in cache size for a specific application. The controller will
continuously increase the cache size for as long as the correlation between
the increase in amount of cache partition size and the performance metric is
high. Once the correlation starts to decline and reaches a certain threshold,
an LLC saturation point has been found and the controller will stop assigning
additional cache partitions to the specific application.

The correlation scheme to find the LLC partition saturation point is based on
the Pearson correlation coefficient [1] - a statistics methodology to quantify
the relationship between two datasets. The pearson correlation coefficient is
calculated according to Equation 12.2, where r is the pearson correlation co-
efficient estimate, n is the number of samples, x is the first sample vector, x
is the mean of the first sample vector, y is the second sample vector, y is the
mean of the second sample vector and i is the iterator.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(12.2)

The correlation coefficient ranges from values between -1 and 1. The absolute
value of the correlation coefficient represents how strong the correlation is,
where a higher value represents a stronger correlation. Correlation coefficients
between 0.1 to 0.3 generally show a weak correlation, 0.4-0.5 show a medium
correlation and greater than 0.5 show a strong correlation [4].

199

12.3.1 Controller implementation

We have implemented the LLC partition controller - LLC-PC - as a user-space
application in the Linux operating system. LLC-PC employs the Palloc page-
coloring interface, described in Fig. 12.5.

Figure 12.5: System connections

LLC-PC handles application connections through message queues and assigns
LLC partitions to the connected applications using the cgroup interface.
The cgroup interface has an implemented file-system called palloc,
which uses the LLC set associative bits for configuring LLC boundaries.
The palloc kernel implementation creates the cache colors based on
the information provided by the cgroup file-system. LLC-PC has also a
connection to the palloc kernel space user interface to enable palloc.

The controller, see Fig. 12.4, consists of three parts. The monitor part, the
correlation part and the partition computation part. The controller implemen-
tation is described in Algorithm 2. The first forall block of the algorithm shows
the connectivity part of LLC-PC, i.e., how the program deals with connected
applications through message queues. Applications connect to LLC-PC by
sending the application pid to a message queue. Applications furthermore no-
tify LLC-PC of execution iteration ends by sending a "done" message to the
same message queue. If the system does not currently recognize the pid posted
by an application, the create_application function is triggered. This function
initializes an application variable and stores the newly created application to
an array. If an "end" message is received, an average value of instructions re-
tired for the application is calculated, and the amount of average samples for
the application is increased by 1.

200

Initialize_palloc();
Initialize_PAPI();
while forever do

/* Handle application connections */
forall messages in message_queue do

if message == new_application then
initialize_application();
tasks_in_system++;

end
if message == task_iteration_ended then

calculate_avg_instructions_retired();
avg_samples++;
done = 1;

end
end
/* Control loop segment */
forall applications in tasks_in_system do

/* Monitor application characteristics */
instr_retired = read_pmu(pid);
if avg_samples <= 3 then

/* Calculate correlation */
correlation = pearson(avg_instructions_retired[i..end],
cache_partition_size[i..end]);
/* Make partition decision */
if correlation > 0.8 then

partition_size++;
end

else
/* Insufficient amount of data to

calculate correlation */
partition_size++;
done = 0;

end
resize_cache_partition();

end
sleep();

end
Algorithm 2: LLC-PC pseduocode

201

The second forall block shows the actual LLC-PC controller part and starts
with an application monitor part. The monitor continuously reads the instruc-
tions retired PMU event for all application pids which exists within the appli-
cations array. The instructions retired event is stored within another array, used
for calculating the average instructions. If the amount of average samples for
an application is less than 3, a correlation calculation will not be performed,
since it is not possible to detect trends with so few values. Thus, if there are
less than three available average samples, LLC-PC will increase the partition
size by 1. If on the other hand, the amount of average samples is at least
3, LLC-PC will start to perform the correlation calculation. The correlation
calculation uses the average instructions retired and partition history for one
application as input data and provides a Pearson correlation coefficient as out-
put data. The application input data to the Pearson calculation is provided as
a sliding window filter ranging from i to the end of the vector. This window
is implemented to ensure that only the most recent values are accounted for
in the Pearson calculation, to provide a faster response of LLC-PC. Once the
correlation calculation is complete, a partition decision can be made. If the
correlation is over 0.8, the partition size of the application is increased by one.
If not, the saturation point of the application has been found, and LLC-PC will
not increase the partition size further.

The third step is to actuate the resize cache partition method, which goes
through all currently active applications in LLC-PC and calls cgroup/palloc
to create partitions accordingly. Finally, the sleep variable dictates the period-
icity of the monitor loop and therefore controls the number of values given as
input to the average performance calculations — the average overhead of the
LLC-PC monitor- and control loop averages at 73 µs. Decreasing the sleep
timer will increase the amount of control-loop iterations per application sam-
ples and will thus increase the overhead while expanding the sleep timer will
reduce overhead.

12.4 Experiments

We here describe the experiment on the identification of a feasible correlation
threshold, to be used to determine the LLC saturation point. We evaluate how
well LLC-PC perform compared to a static LLC partitioning.

Our experiment platform is a desktop Intel® CoreTM i5 computer, with speci-
fication details as in Table 12.1.

202

Feature Hardware Component
Processor 4xIntel® CoreTM i5-8850H CPU (Skylake)

2.6GHz
L1-cache 32 KB 8-way set assoc. instruction caches/core

+ 32 KB 8-way set assoc. data cache/core
L2-cache 256 KB 4-way set assoc. cache/core
LLC 9 MB 12-way set assoc. shared cache
MMU 64 Byte line size,

64 Byte Prefetching,
DTLB: 32 entries 2 MB/4 MB 4-way set assoc.
+
64 entries 4 KB 4-way set assoc.,
ITLB: 128 entries 4 KB 4-way set assoc.,
L2Unified-TLB: 1 MB 4-way set assoc.,
L2Unified-TLB: 512 entries 4 KB/2 MB 4-way
assoc.

Table 12.1: Hardware specifications Intel® CoreTM i578850H

12.4.1 Point of saturation - Correlation threshold

Finding the right correlation threshold value is essential to LLC-PC, since a
too low threshold value can cause the LLC-PC to act too slowly and there-
fore assign too many LLC partitions to an application. A too high threshold
value may, on the other hand, force LLC-PC to act too quickly, and to assign
not-enough LLC partitions to an application. The following experiments de-
scribe how the correlation coefficient between performance and LLC partition
size changes over time, using different workloads while increasing the LLC
partition size.

The correlation-based approach is able to identify which resource has the dom-
inant effect on the performance of the applications, and this might change after
allocating a certain amount of that particular resource, such as the LLC. Due
to the space limitation, we will leave the management of multiple resources as
future work and focus on a single resource which is the LLC.

Matrix multiplication. This experiment exemplifies what happens when a
cache intensive workload runs on different partition sizes. We chose a 512x512
matrix multiplication, which is a well-known cache optimization problem [7]
to run, using an increasing amount of LLC. Fig. 12.6 depicts the matrix mul-
tiplication instructions retired on the left-hand side y-axis and the correlation
relationship between the instructions retired and the cache partition size on the
right-hand side y-axis.

203

Figure 12.6: 512x512 matrix multiplication execution

The figure shows a gradually decreasing correlation curve and also a clear
relationship between increased LLC partition size and instructions retired. The
matrix multiplication reaches saturation at a partition size of 10.

SIFT. We test the SIFT algorithm, a commonly used feature detection al-
gorithm to illustrate that our correlation theory works for not only synthetic
workloads. Fig. 12.7 show as an execution of the SIFT algorithm run on a
4MB image with different cache partition sizes from 1 to 40.

Figure 12.7: 4 MB SIFT execution

The figure shows an upwards going performance curve, with an absolute peak
when assigned 37 cache colors. This peak is however very minor and can be
explained as local deviation due to "lucky" executions. The majority of the
peak values are, however, within the 405 million - 425 million instructions

204

retired interval, which is reached at a correlation coefficient of roughly 0.9 and
continues to scale down.

Random Calculation. The purpose of this experiment is to exemplify what
happens when a load is not LLC-bound. The random calculation program
executes a set of random number requests and stores the random value into a
variable. The variable is compared with another variable to find the highest
value gained from the random number requests. We set the random number
requests to 108 random number requests with a modulo of 5∗105 and increase
the number of cache partitions assigned to this application by one each time the
application is finished executing. Fig. 12.8 depicts the correlation coefficients
from the random calculation test.

Figure 12.8: Random calculation execution

The figure shows an entirely different result from the matrix multiplication cor-
relation graph. Instead of a continuously decreasing correlation, the correlation
values are irregular at first but then saturates on iteration 13 to a correlation co-
efficient of 0.

12.4.2 Summary of experiments

There are two common nominators for the LLC-bound applications in these
experiments. Firstly, the number of instructions retired increase when increas-
ing the LLC partition size. The increase in instructions retired is reasonable
since the application gets significantly more LLC. Secondly, there is a point
where the instructions retired curve levels off to a stable state. The curve lev-
els out when the application is assigned a certain number of LLC partitions.

205

Thus, we have found the LLC saturation point for this given application. We
can conclude that in our experiments, the LLC saturation point of the curve
is a certainty at a correlation coefficient of 0.8. Using this conclusion, we set
the correlation threshold to 0.8 in the subsequent LLC-PC experiments, which
is the point from which LLC-PC will not assign more cache partitions to an
application. Using a correlation over the entire dataset at all time, however,
makes LLC-PC slow to saturate. The saturation of the system can, however,
be hastened through introducing a sliding window, which only tracks the most
recent cache partition and instructions retired measurements. Using a sliding
window means the system will only react to current execution trends, not con-
sidering the earliest stages of the system execution.

12.4.3 LLC-PC evaluation

One static way of assigning LLC partitions is to split all available LLC par-
titions equally between the cores. Our test environment has 4 cores and 128
available cache partitions, thus each core gets 128/4 = 32 static LLC parti-
tions as a first reference value. We also use 16 partitions per core as a second
reference value. Below, we show an evaluation of static partitioning vs. LLC-
PC, using different sizes of the previously introduced LLC-bound workloads.
We ran each test a total of 5 times. LLC-PC runs the experiment setup listed
in Table 12.2.

Property Value
Available LLC partitions 128
Correlation window size 5
Correlation threshold 0.8
Control loop sleep 50ms

Table 12.2: LLC-PC specifics

For the sake of test simplicity, re-partition regulations are made once each ap-
plication iteration, however, in theory a re-partition decision could be made
each time a memory manager call is made. We execute each test sequentially
for a more straightforward interpretation of the results. The control loop ad-
dress each task individually, which means that it is possible for the controller
to handle multiple tasks concurrently at the same time. It can also be argued
that the control loop sleep time would be a coefficient of the execution time
such that the sampling occurs only a certain amount of times every iteration,
however since the execution time can be very hard to predict, we chose to go

206

for a statically set sleep timer. Such a solution, however, requires accurate
execution time prediction of an application, which becomes very troublesome
since the execution time of each application can change dramatically due to
cache re partitioning and would possibly mean more overhead to LLC-PC. We
chose 50 ms as control loop sleep in order to get at least 100 measurement
values for the average calculation for all application variations.

Matmult and SIFT running under LLC-PC. We evaluate LLC-PC versus
a static partition based solution which uses a LLC partition size of 16 and
32. Fig. 13.6 and Fig. 12.10 depicts the execution flow of a 756x756 matrix
multiplication and a 8MB sift execution respectively, using LLC-PC. The left-
hand side y-axis of the graphs plots the median instructions retired (i.e., perfor-
mance) per 50 milliseconds of the application using LLC-PC (blue squares),
16 statically assigned cache partitions (orange cross) and 32 statically assigned
cache partitions (yellow plus). The right hand-side axis show the correlation
over time using LLC-PC. A higher value on the left-hand side axis means more
instructions executed per 50 milliseconds and is, therefore, better than a low
value. The x-axis shows the number of partitions used, where a lower value is
preferred since more cache partitions can be given to other applications.

Figure 12.9: Comparison of 756x756 matrix multiplication executions

Fig. 13.6 shows a full LLC-PC run of a 756x756 matrix multiplication, where
the system saturates at 16 partitions, with comparable performance to that of
the static partitions. For this particular matrix multiplication size, the static
partition size was equal to the correlated size. Statically increasing the LLC
sizes to 32 does not improve the matrix multiplication performance signifi-
cantly. Furthermore, Fig. 12.10 show SIFT operating within the LLC-PC, with
a final assignment of 13 LLC partitions at which point the correlation value has

207

Figure 12.10: Comparison of 8MB SIFT executions.

dropped from 0.89 to 0.72. The correlation-based methodology almost reaches
the same performance achieved by the static LLC partition allocations.

Table 12.3 and Table 12.4 further compares LLC-PC with a static partitioning
strategy using different sizes of the workloads. Wsize is the workload size and
Csize is the LLC partition size assigned to the application, Cinstr, S16 and S32
show the median million instructions retired per 50 milliseconds of the matrix
multiplication using LLC-PC, 16 statically allocated LLC partitions and 32
statically allocated LLC partitions respectively.

Wsize Csize Cinstr S16 S32

256x256 7 432.73 428.17 419.49
512x512 13 420.11 432.78 428.54
756x756 16 414.36 424.63 428.39

Table 12.3: Matrix multiplication tests

Wsize Csize Cinstr S16 S32

1MB 6 395.38 406.56 408.79
2MB 7 384.96 413.01 405.85
4MB 9 387.80 410.61 405.87
8MB 13 385.53 406.31 402.58

Table 12.4: SIFT tests

Table 12.3 shows the benefit of LLC-PC, especially using the smallest matrix
multiplication size of 256x256, which saturates at a partition size of 7. Increas-

208

ing LLC partition size to 16 and 32 does not increase the performance, and
would thus be a wasteful LLC assignment since other applications could have
used the LLC partitions. The larger 512x512 matrix multiplication size satu-
rates at an LLC partition of 13, which is 3 LLC partitions less than the static
16 allocation, which does not notably change performance. Table 12.4 further
compares LLC-PC with the static partitioned strategy using different image
sizes, where Wsize is the image size used by the SIFT application and Csize
is the LLC partitions assigned to SIFT by LLC-PC. Cinstr, S16 and S32 show
the median million instructions retired per 50 milliseconds for using LLC-PC,
16 statically allocated LLC partitions and 32 statically allocated LLC parti-
tions respectively. The table shows a close-to static performance for all differ-
ent image sizes using less LLC partitions. The 8MB image receives 13 LLC
partitions from LLC-PC and is which is relatively close to the S16 allocated
partitions, which saves 3 LLC partitions from waste. Increasing the image
size further could potentially trespass the S16 allocation using the correlation
controller.

12.5 Related Work

Our work is based on the PALLOC [14] page coloring framework, which can
be used for partitioning both the cache and DRAM banks. While the authors
show that Palloc efficiently can be used to counter resource contention where
all cores gain the same amount of cache partitions, they do not consider to opti-
mize the cache assignments for each application. We aim to further extend this
approach by using correlation-based partitioning decisions and therefore gain
more efficient cache partitions. Ye et al. [13] presented the Coloris cache col-
oring engine which uses a threshold scheme, based on performance counters.
The Coloris approach forms cache partitions based on how many cache misses
one process contributes to the total amount of cache misses of all processes.
Our approach differs from Coloris, as we look at how the performance of a
process correlates to the cache misses of the same process. Perarnau et al. [10]
presents another cache coloring scheme and argues that creating feasible cache
memory partitions is best left to the user, since they have most knowledge of
the application. We argue that it is difficult to know beforehand how much
cache an application needs, in order to achieve a certain performance level. It
is therefore beneficial to use a method that makes the cache partition decision
automatically at run-time.

209

12.6 Conclusion

We have created a correlation based LLC partition controller, called LLC-PC,
which can be used to find LLC partition sizes for workloads with unknown
cache usage. We evaluate LLC-PC using two LLC heavy loads, a Matrix mul-
tiplication, and a SIFT feature detection algorithm. The results show that LLC-
PC can be used for this set of workloads to reduce the amount of cache size
given to an algorithm compared to a static 32 cache LLC partition assignment,
and also in most cases a 16 LLC partition assignment - while still maintain-
ing similar performance. We can probably find better cache partitions through
thorough offline measurements and code analysis; however, our aim is not to
find the absolute optimal cache partitions but rather find sufficient cache parti-
tion sizes during runtime of an algorithm.

Our prime focus has been to create a generalizable correlation model. We can
apply the correlation model on any shared resource that has a performance
counter event and a partitioning strategy which affect the shared resource, e.g.,
TLB partitioning [9]. Our future work includes introducing new partitioning
strategies. We would also like to create a methodology for solving the multi-
objective control problem when balancing multiple shared resources usage.

210

Bibliography

[1] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coef-
ficient. In Noise reduction in speech processing, pages 1–4. Springer,
2009.

[2] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal cache
partition-sharing. In 2015 44th International Conference on Parallel Pro-
cessing, pages 749–758. IEEE, 2015.

[3] A. Bucaioni, S. Mubeen, F. Ciccozzi, A. Cicchetti, and M. Sjödin.
Technology-preserving transition from single-core to multi-core in mod-
elling vehicular systems. In European Conference on Modelling Founda-
tions and Applications, pages 285–299. Springer, 2017.

[4] J. Cohen. Statistical power analysis for the behavioral sciences. Rout-
ledge, 2013.

[5] T. Gleixner. Linux Performance Counter announcement, 2008.

[6] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and
analysis for multicores. In Proceedings of the seventh ACM international
conference on Embedded software, pages 245–254. ACM, 2009.

[7] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In ACM SIGARCH Computer
Architecture News, volume 19, pages 63–74. ACM, 1991.

[8] A. Mazouz, D. Barthou, et al. Study of variations of native program
execution times on multi-core architectures. In 2010 International Con-
ference on Complex, Intelligent and Software Intensive Systems, pages
919–924. IEEE, 2010.

[9] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb color-
ing. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015 IEEE, pages 3–13. IEEE, 2015.

[10] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache utiliza-
tion of hpc applications. In Proceedings of the international conference
on Supercomputing, pages 295–304. ACM, 2011.

[11] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. The Journal of Supercomputing, 28(1):7–26, 2004.

211

[12] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program
predictability. In ACM SIGMETRICS Performance Evaluation Review,
volume 31, pages 272–282. ACM, 2003.

[13] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[14] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[15] G. Zellweger, D. Lin, and T. Roscoe. So many performance events , so
little time. APSys ’16, 2016.

212

Chapter 13

Paper G
Modelling Application Cache
Behavior using Regression
Models

Jakob Danielsson, Janne Suuronen, Marcus Jägemar, Moris Behnam, Tiberiu
Seceleanu and Mikael Sjödin. In 45th Annual Conference of the IEEE Indus-
trial Electronics Society (IECON) IEEE, 2019.

213

Abstract

In this paper, we describe the creation of resource usage forecasts for appli-
cations with unknown execution characteristics, by evaluating different re-
gression processes, including autoregressive, multivariate adaptive regression
splines, exponential smoothing, etc. We utilize Performance Monitor Units
(PMU) and generate hardware resource usage models for the L2-cache and the
L3-cache using nine different regression processes. The measurement strategy
and regression process methodology are general and applicable to any given
hardware resource when performance counters are available. We use three
benchmark applications: the SIFT feature detection algorithm, a standard ma-
trix multiplication, and a version of Bubblesort. Our evaluation shows that
Multi Adaptive Regressive Spline (MARS) models generate the best resource
usage forecasts among the considered models, followed by Single Exponential
Splines (SES) and Triple Exponential Splines (TES).

215

13.1 Introduction

Cache memories in multi-core systems are prone to resource contention, most
notably the last-level cache since it is commonly shared across multiple cores
and allows for simultaneous usage [13]. The cache is a small, finite mem-
ory storage area and will evict data when its’ capacity limit is met; the evic-
tions are called cache misses. In contrast, references to a cache memory block
are called cache accesses. Resource contention typically occurs when two
memory-intensive applications execute on different cores, continuously exe-
cuting cache accesses to new memory blocks. The cache memory will become
full at some point during execution and, therefore, needs to evict cache lines to
make space for new data requests. A vicious cycle can in the worst cases occur,
where the applications’ cache accesses continuously triggers cache evictions
from each others’ data, leading to performance degradation’s and execution
time fluctuations. One popular way to avoid such a scenario is to disqualify
simultaneous usage of certain cache blocks through page coloring, also known
as cache partitioning [30]. Page coloring removes resource contention through
assigning specific cache blocks to specific processes at the cost of overhead
performance penalties [9].

The execution characteristics of applications different depending on the appli-
cation functionality. Applications are typically split into several phases [23],
such as cache-heavy phases, arithmetic-heavy phases and floating-point heavy
phases. A cache-heavy phase means the majority of the instructions leads to
an access in the cache memory. In contrast, an arithmetic phase means the ma-
jority of the instructions causes an operation within the Arithmetic Logic Unit
(ALU), etc. The most vicious scenario for cache contention is when two appli-
cations run simultaneously on different cores while executing their most cache
heavy phases and stresses the cache to the capacity limit. We should not run ap-
plications that execute their most cache heavy phases simultaneously because
of resource contention. Instead, we should schedule applications according to
their shared resource usage, so the resource-specific phases (e.g., cache-heavy
phases) never collides with each-other, thus mitigating the resource contention
to a small degree. Making such a schedule requires modelling techniques that
estimate the applications’ resource usage trends for offline scheduling. To fur-
ther adapt the methodology for reactive, run-time scheduling, we also need the
model to predict the future resource usage.

Regression modelling is a mathematical process used to analyze trends in time-
varying processes such as stock prices. In this paper, we benchmark different
regression models with respect to the computing realm. We aim to create suit-

216

able regression models that can formalize an application’s resource usage and
create a prediction model for future resource usage.

We use the computer’s performance counters to generate resource usage mod-
els. Our models look at what hardware is triggered by a software applica-
tion and estimate its future resource usage. Performance counters are widely
used in modern computers, making the modelling approach scale-able to all
hardware that has the performance counter utility. In this paper we exemplify
the modelling process using a set of three applications, including Bubblesort
(non-cache heavy), matrix multiplication (cache heavy) to serve as synthetic
workloads, to show resource forecasting applicability. We also use the Feature
detection algorithm Scale Invariant Feature Transform (SIFT) [17] to serve as
a realistic workload for resource forecasting.

Our contributions are:

• Resource forecast modelling on the three previously mentioned
algorithms using the forecast models available in the Statsmodel
module [22].

• A comparison evaluation on the accuracy of the different forecast mod-
els using the Root Mean Square Predicted Error (RMSPE) as a compar-
ison metric.

The rest of this paper is organized as follows: Section 13.2 presents relevant
notions, including measurement strategy, computer resource usage, and regres-
sive performance analysis. Section 13.3 introduces our method for evaluating
different regression processes. In section 13.4 we show the comparison results
of the nine regression processes and discuss the results. Section 13.6 concludes
the paper and presents opportunities for future work.

13.2 Background

It is challenging to predict bottlenecks for a particular hardware resource (such
as L1-cache, L2-cache or similar) since the hardware resource usage may vary
significantly during the execution time. For demonstrative purposes, we show
the L3-cache usage for the SIFT algorithm using an 8MB image executed on
a single CPU, Figure 13.1. The y-axis plots the total number of L3-cache
accesses, while the x-axis shows the measurement points over the entire exe-
cution.

217

Figure 13.1: Illustration of SIFT using an 8MB image.

The L3-cache usage of the SIFT algorithm varies by a significant amount over
time. The L3-cache usage is low at the start of the algorithm and rapidly in-
creases after 0.5 seconds. The L3-cache accesses count is significantly reduced
at the 6-second mark.

The SIFT application takes 9.1 seconds to execute, which itself is not a very
long time. Still, a complete software system often consists of 10’s to 1000’s
of tasks, which could have similar execution time to that of SIFT. Accurately
forecasting resource usage can significantly decrease run-time applications’
testing time since they do not need to run for their full duration.

Forecasting and predicting the hardware resource usage also helps system de-
signers in making three significant decisions, listed as follows:

• Hardware evaluation: The system designer will be able to distinguish
sooner if a specific platform has enough capacity to run the software.

• System scheduling: Forecasting will enable scheduling the system run-
time in a resource-efficient way so that hardware resources can be uti-
lized at their maximum capacity without interference from other tasks.

• Resource bottlenecks: Accurate resource usage forecasting can also in-
dicate if an application will be affected by resource capacity limits in the
future casing resource bottleneck.

218

In the following sections, we discuss how different resources affect an applica-
tion’s performance and how to measure interesting resources using the Perfor-
mance Monitor Unit (PMU). We also discuss different regressive models for
forecasting application resource usage.

13.2.1 Computer resource usage

Computers consist of a vast set of resources, such as cache’s, memory man-
agement unit (MMU), main memory (DRAM), I/O’s, etc. These resources
add functionality to the processor, such as memory access speed through tem-
porary memory storage areas (cache’s), increase instruction-level parallelism
(processor pipeline), increase process parallelism (processor cores), etc. All
applications utilize at least one computing resource during execution and are
therefore dependent on this resource to complete their execution - we call this
resource boundness [10]. However, many applications are often complex and
thus bound to several resources simultaneously - a memory-bound application,
for instance, typically utilizes the entire spectra of the memory chain: TLB’s,
cache’s, DRAM, and instruction memory.

In this paper, we mainly investigate how to generate and forecast cache re-
source usage models. We limit ourselves to constructing resource usage fore-
casting models of cache for memory-bound applications, and, at the moment,
we exclude other resource boundness situations.

13.2.2 Measurement strategy

Measuring the resource usage of applications can be done using the Perfor-
mance Monitor Unit (PMU), which is included in most modern hardware. The
PMU hosts a large set of counters - the Performance Monitor Counters (PMC),
which are event-triggered hardware counters that trace the various resource
usage within a computer. We use here the Performance API (PAPI) [18], a
performance counter library that utilizes the built-in Linux perf headers [26]
for measuring the performance counters. Further, we take a sampling-based
approach to generate resource forecasts of applications. This means that we
continuously measure the performance counters during runtime of an applica-
tion with a certain frequency, instead of measuring the total count. Figure 13.2
depicts our measurement strategy.

In this way, we can generate resource usage forecasts on the individual appli-
cation, since we have multiple sampling points of the cache resource usage.

219

Figure 13.2: Periodic measurement of performance counters.

13.2.3 Regressive performance analysis

Regressive analysis is a method for modeling relationships between dependent
and independent variables through a statistical process. Dependent variables
are what a regressive model tries to predict or model. Independent variables
are factors that have an impact on the dependent variables we are investigat-
ing. For example, a dependent variable can correspond to the execution time
of any given process. A potential independent variable is the number of cache
misses within that process, which may negatively impact that process’s execu-
tion time.

There exists a broad spectrum of different regression tests, e.g., autoregressive
and spline modeling processes [19]. Regressive modeling requires a dataset to
construct models and approximate dependent variables by estimating indepen-
dent variables’ functions alongside an error term. The result of this procedure
is an estimation model of the relationship between different variables of inter-
est. The final product of estimating a mathematical function is the ability to
forecast dependent variables.

We list here the major steps to construct a regressive model:

1. Select a modelling process suitable for the observed patterns in the data

2. Fit the parameters of a model to training data according to what is dic-
tated by the modelling process.

3. Evaluate the prediction accuracy, for example by examining Root Mean
Square Prediction Error (Equation 13.4), of the fitted model using a val-
idation dataset.

220

There are two types of models that regressive modeling processes estimate:

• Parametric models consist of a finite number, specified before the model
is generated, of parameters.

• Non-parametric models can theoretically include an infinite number of
model parameters.

We limit this work only to include first-order parametric models. Which means
the number of parameters (i.e., the amount of variables within the model) is
limited to only one. The quality of the generated model is measured by eval-
uating how the polynomial function of the model “fits" the measured dataset.
There exists three outcomes, good fits, overfits and underfits. Good fits accu-
rately describe the shape of the dataset and can also detect the trends in the
dataset. Therefore, they can forecast future values of the dataset. Overfits
means the model has generated too many parameters and will be an almost
exact representation of the dataset. Overfits also means that it is impossible
to make any forecasts of the dataset since the model is an exact representation
of the values in the current dataset. Underfit means the model has too few pa-
rameters to make any forecast prediction. Sharma et al. [24] exemplify over-,
under- and good-fitting in Fig. 13.3:

Figure 13.3: Example of under- (left), good- (middle) and over-fitting (right) [24]

Other than the problems of over-and under-fitting curves, adopting regressive
analysis to construct forecasting models of hardware resource usage is a rela-
tively straightforward process. Regressive models require datasets to be avail-
able at the moment of construction. Thus, we sample the cache resource usage
of processes before initiating the model construction step and feed the dataset
to our regressive models once the sampling is finished. Our regressive resource
usage models are, therefore, offline representations of resource usage.

221

13.2.4 Related work

Existing research addresses methods that investigate how to create hardware
resource usage models and how they can be applied to predict application
performance. Several studies evaluate statistical regression models as suit-
able candidates for building performance forecasts [25, 14]. These works
show how different performance values can be predicted using different re-
gressive models. Other related work which is closest to our investigates re-
source usage through a novel autoregressive model called Threshold Autore-
gressive (TAR) [6]. The authors show that it is possible to create resource
usage forecasts of any given application using regressive models, with a rela-
tively low prediction error. Our research expands on this topic, and we evaluate
the applicability of resource forecasting on different regressive models in the
Statsmodel module [22] and pyearth for MARS models. Other results on pre-
dicting software performance and resource usage using autoregressive models
are presented by Schneider et al. [8].

While some of the previously listed works employ similar regressive models to
ours, we introduce the use of hardware performance counters’ in conjunction
with regressive models. To the best of our knowledge, no other research works
utilize performance counters as a mean for forecasting and detecting hardware
capacity bottlenecks.

Other relevant works investigate how to use PMU’s to evaluate application
performance models without in-depth knowledge of application code [27, 2, 7,
15, 12, 21]. However, these current methodologies strictly rely on measured
data, which requires an application to be run until completion at least once
to completion. Resource bottlenecks can only be discovered offline after ap-
plication execution. Since our paper targets forecasting, our additions to this
domain enable us to discover potential hardware resource bottlenecks before
they occur.

13.3 Method

13.3.1 Model System Behaviour

We primarily focus on constructing forecast models of an application L2-cache
and L3-cache usage. We start by gathering hardware resource usage samples
during the application runtime to generate forecast models. We use a time slot
sampling strategy which is similar to a frequency based measurement strategy.

222

One PMU measurement sample is taken at the end of each sampling timeslot.
We determine the time-length of a time slot according to Equation 13.1, where
T is the time slot length in a time unit, appe is an applications’ execution time
and s is the desired number of samples.

T =
appe
s

(13.1)

Assuming an application execution time (appe) of 1 second and the desired
number of samples (S) is 100, the timeslot length (T) is equal to 10 millisec-
onds, which means a sampling rate of 100Hz. We denote the set of all mea-
surement samples as yc. Here, y denotes the application, and c denotes the
performance counter. In this paper, we focus only on L2-cache and L3-cache
accesses, thus, c will indicate either the L2-cache or L3-cache accesses. We
furthermore denote the individual performance counter sample of an applica-
tion y as t, we can have the complete execution characteristics of c, with 100
samples, given in Equation 13.2.

yc = {t0, .., t100} (13.2)

Next, we use yc set to generate the forecast model ŷc, see Equation 13.3, where
model represents a regressive model process.

ŷc = model(yc) (13.3)

The populations yc and ŷc describes the actual (yc) and modelled (ŷc) cache
resource usage at specific time points. We access data within the respective
population using discrete time points t. yc(t) returns the actual cache resource
usage at timepoint t and ŷc(t) returns the modelled cache resource usage at
timepoint t.

We exemplify a resource usage forecasting scenario using matrix multiplica-
tion as a test application and a MARS model as forecasting generation model,
Figure 13.4. The first 50 samples in the model show a tendency of overfitting
but still generates a close estimation of the measured L2-cache usage in the last
100 samples. The y-axis shows the amount of L2-cache accesses, and the x-
axis shows the sample number. One blue dot corresponds to the data samples
at a specific time point (ti), which means all blue dots builds the population
yc where c is equal to L2-cache accesses. The green line depicts the MARS
model’s fit, and the red line depicts the forecast model produced by MARS

223

(ŷc). The figure visualizes the purpose of resource forecasting, i.e., the ability
to forecast the L2-cache usage.

Figure 13.4: Example of an L2 cache usage function estimated using a MARS model
[19].

The figure shows the model generation of MARS, where the red line de-
picts the actual forecast model. We then evaluate the model’s applicability
using RMSPE, see Section 13.3.2. In this work, we investigate the appli-
cability of multiple different regression models, including Auto-regressive,
Auto-regressive Moving Average, Auto-regressive Integrated Moving Aver-
age, and Spline (Natural, B- and MARS) Regressive modeling processes [19]
and their applicability for forecasting applications’ usage of L2-cache and
L3-cache memory. We list all the modelling that we consider in Table 13.2.

13.3.2 Evaluation Methodology

We use the Root Mean Square Prediction Error (RMSPE) to evaluate our re-
gressive models’ accuracy. The RMSPE metrics describe the difference be-
tween predicted values and actual observation values of the data set. This
paper uses RMSPE as a model comparison metric; the lower RMSPE value

224

means the difference between the actual data and the forecast model is smaller
and is preferable over a high RMSPE value. Equation 13.4 describes the RM-
SPE calculation, which is the root square value of the difference between all
values in population ŷc and yc divided by the number of samples n.

RMSPE =

√
ŷc − yc
n

(13.4)

Equation 13.4 gives the prediction error by squaring the sum of the averaged
difference between predicted (ŷc) and actual (yc) values, where n is the number
of samples considered. In this paper, we exclusively use 400 as the number of
samples, and therefore, n will always be equal to 400 in our experiments.

13.4 Experiments

We generate resource usage forecast models and evaluate the RSMPE value
using the platform in Table 13.1.

Feature Hardware Component
Processor 4xIntel® CoreTM i5-8250U CPU (Kabylake)

1.6GHz
L1-cache 32 KB 8-way set assoc. instruction caches/core

+ 32 KB 8-way set assoc. data cache/core
L2-cache 256 KB 4-way set assoc. cache/core
LLC 6 MB 12-way set assoc. shared cache

Table 13.1: Hardware specifications Intel® CoreTM i5-8250U

In addition to the hardware setup, we set the desired number of samples (s)
to 400 for all experiments. We use 400 for all applications since it provides
the best trade-off between over- and under-fitting of the curves for our test
applications. In the following subsections, we discuss the applications put
under test, the software execution environment and also the different regressive
models that we use.

13.4.1 Execution scenario

We use three different applications including, a traditional bubblesort of an ar-
ray, a conventional matrix multiplication of two randomly generated matrices,

225

and finally, an application containing the SIFT algorithm [20] for detecting
features within an image. We use a matrix multiplication and bubblesort due
to the simplicity in following their execution characteristics. Furthermore, we
use SIFT to display resource forecasting usage in a more realistic non-synthetic
scenario. In the following subsections, we discuss the basic mechanics and the
resource usage of our applications.

13.4.1.1 BUBBLESORT

The BUBBLESORT algorithm compares two adjacent values within an array,
the left-hand side value, and the right-hand side value. If the right-hand side
value is lower than the left-hand side value, these values swap location within
the array. The bubble sort application’s main mechanic utilises comparisons
mainly, which means it is a heavily branch-predictor dependent application.

13.4.1.2 Matrix multiplication

We use a standard ijk matrix multiplication, famous for loading the cache in
a very suboptimal way. Our matrix multiplication multiplies the columns of
one matrix A with the row of matrix B. The result value is stored in matrix
C. The procedure of loading values from a matrix and storing new values into
another matrix is very memory intensive, which means its a memory-bound
application, including caches and DRAM.

13.4.1.3 SIFT

SIFT is a complex feature detection algorithm containing several mathemat-
ical operations such as the difference of Gaussian, nearest neighbor, hough
transform voting, linear least squares, and more. The mathematical operations
mean the SIFT application performs multiple steps and may depend on several
different resources during the algorithm’s different phases.

13.4.2 Environment

We collect data using the platform specified in Table.13.1) running the 64-bit
desktop version of Ubuntu 18.04 LTS in an unmodified state with Linux ker-
nel version 5.3.0-46-generic. As a measure to lessen stalls due to user-related
interface interaction, we disable the graphical interface. We reboot our test

226

platform for each test run to clear cache levels and ensure each test runs with
a cold cache and comparable circumstances. Our experiments run on an as-
is Intel® CoreTM i5 8250U(Kaby Lake architecture) with four homogeneous
cores clocked at a base frequency of 1.60 GHz and a three levelled cache hier-
archy. We list all the details on our test platform in Table 13.1.

13.4.3 Execution

For each test application, we collect L2-cache and L3-cache resource usage
data at a sampling rate specified in Equation 13.1. The resulting three datasets
are each individually split according to a 75/25% ratio which yields data sub-
sets of 300(75%) and 100(25%) measurements for model training and testing.
The values of hyperparameters is a crucial factor to consider when fitting re-
gressive models. Regarding Auto-Regressive models(AR, ARMA, ARIMA),
the adjustable hyperparameters are the Auto-Regressive(AR) and Moving Av-
erage(MA) orders. In our case, all Auto-Regressive-based models are of the
first order. The Exponential Smoothing models(SES, DES and TES) are tun-
able by modifying the weights applied to previous observations(α), trends(β)
and seasonality(γ). We optimize α in SES and α, β, γ in TES using maxi-
mum log-likelihood. α and β in DES are set to 0.8 and 0.2 respectively as this
procured better results compared to maximum log-likelihood optimization. Fi-
nally, the Spline-based models are tunable by the number of knots, Degree of
Freedom(DF), and the maximum polynomial degree of each spline. Both B-
spline and N-spline DFs are set to 10, whilst the maximum polynomial degree
is set to five. In MARS, only the maximum polynomial degree is adjustable by
design and is set to 3.

A key aspect concerning regressive models is their data demands to avoid
over-and underfitting. Thus we set the sampling frequency to capture enough
measurements without compromising the significance of the observed usage.
Adopting a higher sampling rate could provide unrepresentative usage
data since the overhead of measuring the performance counters becomes
overwhelming compared to the actual measurement samples.

We run the SIFT algorithm on an 8MB image. BUBBLESORT sorts a 6MB
array of randomly generated values. The MATMULT workload multiplies two
matrices summing up to a workload size of 1MB. We sample the L2-cache, and
L3-cache accesses during each application’s execution. Figures 13.5, 13.6 and
13.7 plots the execution profiles for the SIFT, MATMULT and BUBBLESORT
respectively. Orange dots mark the quantity of L2 accesses and blue crosses,
which marks the number of L3 cache accesses over 400 measurements.

227

Figure 13.5: Memory usage illustration of SIFT using an 8MB image.

Figure 13.6: Memory usage illustration of a matrix multiplication using a 1MB
dataset.

All three applications show very different execution profiles. The BUBBLE-
SORT application shows a contiguous decrease in both L2 and L3 cache ac-
cesses. The matrix multiplication instead has a ramp phase, where the cache
accesses rapidly increase in the beginning while saturating at measurement
sample 80. SIFT shows stage-alike patterns in cache accesses, where there is
first a dormant stage with almost no cache accesses. At sample 30, the cache
accesses increase rapidly and remains high until sample 100, where the ac-
cesses starts to decrease gradually.

228

Figure 13.7: Illustration of SIFT using an 8MB image.

13.4.4 Model Comparison

Once the measurement phase finalizes, we create resource usage models us-
ing the regression processes listed in table 13.2 of each application, using the
sample measurements.

Modelling process Type
Auto Regressive (AR) [1] Non-param
Auto Regressive Moving Average (ARMA) [28] Non-param
Auto Regressive Integrated Moving Average (ARIMA) [3] Non-param
Regressive B-spline [11] Param
Regressive Natural Spline [5] Param
Multivariate Adaptive Regressive Spline(MARS) [14] Non-param
Simple Exponential Smoothing(SES) [4] Non-param
Double Exponential Smoothing(DES) [16] Non-param
Triple Exponential Smoothing(TES) [29] Non-param

Table 13.2: Modelling processes evaluated in this work.

Our complete regression model suite generates a total of 54 forecasting models
for our three example applications; 18 different models for each application, 9
different models for each cache level. For each of the 54 models, we calculate
the RMSPE according to Equation 13.4. The RMSPE score describes how
accurate forecasts made by a model are through calculating the the error size
of the predictions. Thus, a lower RMSPE score is preferable over a higher
one. Figures 13.8 and 13.9 shows the RMSPE scores for the SIFT application.
Figures 13.10 and 13.11 the same for BUBBLESORT and Figures 13.12 and

229

13.13 the corresponding for MATMULT.

13.4.4.1 SIFT models

The first application we examine executes the SIFT on an 8MB image. The
MARS models notably achieve the lowest RMSPE score for both cache levels.
Figures 13.8 and 13.9 lists the RMSPE value of each different regression pro-
cess on the left-hand side y-axis. Smaller RMSPE value means the prediction
error is lower and is, therefore preferable to a high RMSPE value.

Figure 13.8: RMSPE score of L2-cache usage models from data collected during
execution of the SIFT algorithm with a 8MB image.

Figure 13.9: RMSPE score of L3-cache usage models from data collected during
execution of the SIFT algorithm with a 8MB image.

230

The SIFT workload identifies edge features in an 8MB image. On the other
side of our SIFT RMSPE spectrum, the ARIMA models stand out with the
highest RMSPE scores out of the calculated model scores. The remaining
modeling processes achieve similar scores within the respective modeling pro-
cess family. That is, B- and Natural splines models achieve similar RMSPE
scores; the same applies to the Exponential Smoothing family of modeling
processes (SES, DES and TES).

13.4.4.2 BUBBLESORT models

Our second application performs a traditional bubble sort on an unsorted inte-
ger array 6MB in size with random values. Figures 13.10 and 13.11 presents
the RMSPE scores of each successfully constructed model.

Figure 13.10: RMSPE score of L2-cache usage models from data collected during
execution of the BUBBLESORT algorithm with a 6MB array.

The BUBBLESORT RMSPE show MARS, SES, and TES outperform the
other regression processes in prediction error. Furthermore, ARMA and
ARIMA models failed to construct models from the dataset, due to lack of
invertibility in the Moving Average(MA) component. We were, thus, unable
to calculate RMSPE values for these modeling processes.

13.4.4.3 MATMULT models

Our third and final application performs a matrix multiplication between two
square matrices with a working set size of 1MB for each matrix. Amongst

231

Figure 13.11: RMSPE score of L3-cache usage models from data collected during
execution of the BUBBLESORT algorithm with a 6MB array.

the L2-cache models, the SES and TES models achieve, nearly identical, the
lowest RMSPE scores, as seen in Figure 13.12. The B-spline L2-cache model
achieves the highest RMSPE score, and the ARIMA model fails to construct
due to lacking data invertibility for the MA component. The RMSPE scores
calculated for the L3-cache usage models show a different outcome. Dou-
ble Exponential Smoothing achieves a significantly higher RMSPE score, as
visualized in Figure 13.13, while SES and TES models provide the smallest
RMSPE scores.

Figure 13.12: RMSPE score of L2-cache usage models from data collected during
execution of the MATMULT algorithm with a 1MB working set.

232

Figure 13.13: RMSPE score of L3-cache usage models from data collected during
execution of the MATMULT algorithm with a 1MB working set.

13.5 Dicussion of applicable methods

We examine several regressive modeling processes with the purpose of fore-
casting L2-cache, and L3-cache usage, expressed as the number accesses done
per unit of time performed to a given cache level.

We examine both parametric and non-parametric modeling approaches. We
state that parametric processes are too inflexible to model cache usage, as
shown by the relatively high RMSPE scores of B- and Natural Spline mod-
els. Parametric models require set parameters before construction, requiring
users to learn the resource usage pattern before setting optimal parameters.
Setting parameters before-hand means additional testing time for finding the
optimal parameters rather than actual testing, which contrasts our goal of re-
ducing testing costs. As such, non-parametric models are preferable since they
are more flexible compared to parametric alternatives.

Flexibility is a desired trait as cache usage patterns are not uniform across all
applications. However, despite a higher degree of flexibility, non-parametric
models are not fault-free since there is difficulty finding good fits when the
measurement values are highly fluctuating [19]. Our work models three ap-
plications which do not have fluctuating resource usage characteristics to that
extreme extent, and as such, we did not encounter the issue. A method of
combating irregular usage patterns is adjusting the frequency to minimize the
difference between each measurement. This solution is not without its prob-

233

lems, as some applications might have mixed and periodical resource bound-
ness. Thus, measuring too frequently becomes an issue, as some applications
might not finish a viable amount of work between each measurement.

In four out of six cases, MARS achieves the lowest RMSPE values of the non-
parametric regression processes evaluated in this paper. TES and SES present
a considerably lower RMSPE value, modeling the matrix multiplication appli-
cation than MARS. These lower RMSPE values are visible in figures 13.12
and 13.13. The difference in low RMSPE values, depending on the different
applications we use, suggests the best regression processes is dependent on the
sample characteristics. Since MARS provides the best overall RMSPE value,
it will be the best when forecasting resource usage of an application with com-
pletely unknown execution characteristics.

There is an inability to construct some of the regressive models with a mov-
ing average component, including ARMA and ARIMA, which happens as a
consequence of wrongful tuning of the moving average component input pa-
rameter. Fine-tuning the input parameters of our models, however, means we
need to add additional parameters into the model, which goes outside of the
limitation of using only first-order models. As a final remark, referring back
to this paper’s original question: Can we predict a given application’s resource
usage using regression models? We argue that this is doable, as indicated by
our results.

Since most CoTS hardware typically implements a broad set of performance
counters, there are opportunities for complete resource usage forecasts. Our
approach using frequency-based measurements on individual applications
makes resource usage forecasts possible for any application as long as the
hardware implements the performance counters, which are of interest.

13.6 Summary

In this paper, we evaluate methods for forecasting the resource usage of 3
different applications. We evaluate auto-regressive, spline regressive, and ex-
ponential smoothing as approaches for modeling applications and their usage
of CPU L2-cache L3-cache. We compare the modeling fitness using RMSPE
against each other to single out an ample modeling process. Our evaluation
shows that MARS shows the most promise for forecasting application resource
usage among the nine different evaluated regression processes.

234

13.6.1 Future work

We want to extend the MARS-work presented in this paper with resource
scheduling forecasting using MARS processes making it possible to sched-
ule processes in a cache-aware fashion. The processes do not interfere with
each other, thus decreasing the risk for cache contention.

The three workloads we use in this paper are traditional Bubble Sort, Matrix
Multiplication and Scale-invariant feature transform(SIFT). These commonly
appear in larger applications and are thus representative for small chunks of
code within a system. Future work includes examining our approach in con-
junction with large-scale system solutions which include more complex ap-
plications with different resource usage profiles. Future work also includes
conducting the resource forecasts in a scheduling environment where we test
our hypothesis on resource contention. Ideally, two applications executing
their most cache heavy phases should not run simultaneously since it builds
a perfect environment for resource contention. Since we build resource usage
profiles, the final goal is to create a new scheduling technique to mitigate cache
contention through analysis of the cache access patterns.

The resource usage profiles will be different using different hardware and com-
piler flags. Our approach is agnostic since it only uses events produced from
the performance counters. We would like to verify the RMPSE calculations
against other hardware with different cache configurations.

235

Bibliography

[1] H. Akaike. Fitting autoregressive models for prediction. Annals of the
institute of Statistical Mathematics, 21(1):243–247, 1969.

[2] R. Azimi, D. K. Tam, L. Soares, and M. Stumm. Enhancing operating
system support for multicore processors by using hardware performance
monitoring. SIGOPS Oper. Syst. Rev., 43(2):56–65, Apr. 2009.

[3] G. E. Box and G. M. Jenkins. Time series analysis: Forecasting and
control san francisco. Calif: Holden-Day, 1976.

[4] R. G. Brown. Exponential smoothing for predicting demand. In Opera-
tions Research, volume 5, pages 145–145, 1957.

[5] J. Cao, M. Valois, and M. S. Goldberg. An s-plus function to calcu-
late relative risks and adjusted means for regression models using natural
splines. Computer methods and programs in biomedicine, 84(1):58–62,
2006.

[6] X. Chen, Q. Quan, Y. Jia, and K. Cai. A threshold autoregressive model
for software aging. In 2006 Second IEEE International Symposium on
Service-Oriented System Engineering (SOSE’06), pages 34–40, 2006.

[7] Y. Cho, Y. Kim, S. Park, and N. Chang. System-level power estimation
using an on-chip bus performance monitoring unit. In 2008 IEEE/ACM
International Conference on Computer-Aided Design, pages 149–154,
Nov 2008.

[8] M. Courtois and M. Woodside. Using regression splines for software
performance analysis. In Proceedings of the 2nd International Workshop
on Software and Performance, WOSP ’00, page 105–114, New York,
NY, USA, 2000. Association for Computing Machinery.

[9] J. Danielsson, J. Marcus, T. Seceleanu, M. Behnam, and M. Sjödin. Run-
time cache-partition controller for multi-core systems. In In 45th Annual
Conference of the IEEE Industrial Electronics Society (IECON), 2019,
2019.

[10] J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam, and M. Sjödin.
Testing performance-isolation in multi-core systems. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 604–609. IEEE, 2019.

236

[11] C. De Boor. On calculating with b-splines. Journal of Approximation
theory, 6(1):50–62, 1972.

[12] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra. Using papi
for hardware performance monitoring on linux systems. 08 2009.

[13] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache pi-
rating: Measuring the curse of the shared cache. In 2011 International
Conference on Parallel Processing, pages 165–175. IEEE, 2011.

[14] J. H. Friedman. Multivariate adaptive regression splines. The Annals of
Statistics, 19(1):1–67, 1991.

[15] M. Hatzimihail, M. Psarakis, D. Gizopoulos, and A. Paschalis. A
methodology for detecting performance faults in microprocessors via
performance monitoring hardware. In 2007 IEEE International Test Con-
ference, pages 1–10, Oct 2007.

[16] C. C. Holt. Forecasting seasonals and trends by exponentially weighted
moving averages. International journal of forecasting, 20(1):5–10, 2004.

[17] G. Lowe. Sift-the scale invariant feature transform. Int. J, 2:91–110,
2004.

[18] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

[19] omitted for blind review. Master’s thesis.

[20] Robertwgh. Ezsift. accessed: 2020-10-12.

[21] F. T. Schneider, M. Payer, and T. R. Gross. Online optimizations driven
by hardware performance monitoring. SIGPLAN Not., 42(6):373–382,
June 2007.

[22] S. Seabold and J. Perktold. statsmodels: Econometric and statistical mod-
eling with python. In 9th Python in Science Conference, 2010.

[23] A. Sembrant, D. Eklov, and E. Hagersten. Efficient software-based online
phase classification. In 2011 IEEE International Symposium on Workload
Characterization (IISWC), pages 104–115. IEEE, 2011.

[24] R. Sharma, A. Nori, and A. Aiken. Bias-variance tradeoffs in program
analysis. volume 49, pages 127–137, 01 2014.

237

[25] S. Shimizu, R. Rangaswami, H. A. Duran-Limon, and M. Corona-Perez.
Platform-independent modeling and prediction of application resource
usage characteristics. Journal of Systems and Software, 82(12):2117 –
2127, 2009.

[26] L. Torvalds. Perf tools. accessed: 2020-07-07.

[27] S. Vogl and C. Eckert. Using hardware performance events for
instruction-level monitoring on the x86 architecture. 01 2020.

[28] P. Whittle. Hypothesis testing in time series analysis, volume 4. Almqvist
& Wiksells boktr., 1951.

[29] P. R. Winters. Forecasting sales by exponentially weighted moving aver-
ages. Management science, 6(3):324–342, 1960.

[30] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache parti-
tioning system using page coloring. In 2014 23rd International Confer-
ence on Parallel Architecture and Compilation Techniques (PACT), pages
381–392. IEEE, 2014.

238

	I Thesis
	Introduction
	Scope of the thesis
	Thesis outline

	Background
	Internal memory subsystem of a computer
	Address management
	Translation lookaside buffer
	Registers
	Cache memories

	Performance monitoring unit
	Application performance
	Resource-boundness

	Resource sharing
	Memory sharing

	Resource isolation
	Cache coloring – an example of an isolation technique

	Research Overview
	Problem formulation
	Identification of resource contention
	Resource management

	Research methodology
	Research approach
	Delimitations

	Related work
	Resource-boundness
	Understanding cache contention
	Utilization of isolation techniques

	Performance evaluation

	Thesis contributions
	TC1 – Ad-hoc monitoring of performance
	TC2 – Automatic resource-boundness determination
	TC3 – Methods for measuring the degree of resource-isolation in a system
	TC4 – Dynamic allocation of cache memory
	Summary of papers
	Overview of included papers
	Paper A: Measurement-based evaluation of data-parallelism for OpenCV feature-detection algorithms
	Paper B: Resource Dependency Analysis in Multi-core systems
	Paper C: LLM-shark – A Tool for Automatic Resource -boundness Analysis and Cache Partitioning Setup
	Paper D: Run-Time Cache-Partition Controller for Multi-Core Systems
	Paper E: Automatic Quality of Service Control in Multi-core Systems using Cache Partitioning
	Paper F: Run-Time Cache-Partition Controller for Multi-Core Systems
	Paper G: Modelling Application Cache Behavior using Regression Models

	Conclusions and Future Work
	Future Work

	Bibliography

	II Included Papers
	Measurement-based evaluation of data-parallelism for OpenCV feature-detection algorithms.
	Introduction
	Background
	Feature detection
	Parallel programming
	Shared memory

	Approach
	OpenCV feature detection
	Performance Monitoring

	Experiment
	Data partitioned measurements
	Keypoints detected
	Execution time differences
	Execution Characteristics

	Conclusions
	Future work

	Paperf
	Introduction
	Background
	Application performance
	Resource boundness
	Profiling resource boundness
	Considered resources
	Related work

	Method
	Characterizations
	Discussion of applicable methods
	Distribution of data
	Filtering interesting data points
	Relationship evaluation

	Summary
	Future work

	Paper C: LLM-shark – A Tool for Automatic Resource-boundness Analysis and Cache Partitioning Setup
	Introduction
	Background
	Performance counters
	Resource-boundness
	Cache partitioning
	Analyzing resource-boundness

	Methodology
	System model

	Application experiments
	Baseline scenario
	Resource contention

	Partitioning experiments
	Cache partitioning performance impacts
	Initial cache partitions
	Discussion

	Related Work
	Summary
	Future work

	Paper D: Testing Performance-Isolation in Multi-Core Systems
	Introduction
	Background
	Jailhouse hypervisor

	Shared resource contention
	CPU utilization
	Internal Memory Contention
	Memory bus contention

	Performance isolation
	CPU isolation test
	L2-Cache isolation test
	Memory bus isolation test

	Conclusion

	Paper E: Automatic Quality of Service Control in Multi-core Systems using Cache Partitioning
	Introduction
	Background
	Application Quality of Service
	Cache contention
	Cache partitioning
	Related work

	Cache partition distribution
	Implementation
	Experiment setup
	Test applications
	Controller setup

	Partitioning experiments
	Initial experiment
	Naïve cache partitioning
	Fair distribution
	Reference distribution
	Priority distribution
	Equal priority distribution
	Discussion

	Summary
	Future work

	Paper F: Run-Time Cache-Partition Controller for Multi-Core Systems
	Introduction
	Background
	Partitioning to avoid LLC contention
	Cache partitioning effect

	Cache partition decision
	Controller implementation

	Experiments
	Point of saturation - Correlation threshold
	Summary of experiments
	LLC-PC evaluation

	Related Work
	Conclusion

	Paper G: Modelling Application Cache Behavior using Regression Models
	Introduction
	Background
	Computer resource usage
	Measurement strategy
	Regressive performance analysis
	Related work

	Method
	Model System Behaviour
	Evaluation Methodology

	Experiments
	Execution scenario
	Environment
	Execution
	Model Comparison

	Dicussion of applicable methods
	Summary
	Future work

