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Abstract—Ternary Neural Networks (TNNs) compress network
weights and activation functions into 2-bit representation result-
ing in remarkable network compression and energy efficiency.
However, there remains a significant gap in accuracy between
TNNs and full-precision counterparts. Recent advances in Neural
Architectures Search (NAS) promise opportunities in automated
optimization for various deep learning tasks. Unfortunately, this
area is unexplored for optimizing TNNs. This paper proposes
TAS, a framework that drastically reduces the accuracy gap
between TNNs and their full-precision counterparts by inte-
grating quantization into the network design. We experienced
that directly applying NAS to the ternary domain provides
accuracy degradation as the search settings are customized for
full-precision networks. To address this problem, we propose (i) a
new cell template for ternary networks with maximum gradient
propagation; and (ii) a novel learnable quantizer that adaptively
relaxes the ternarization mechanism from the distribution of the
weights and activation functions. Experimental results reveal that
TAS delivers 2.64% higher accuracy and ≈2.8× memory saving
over competing methods with the same bit-width resolution on the
CIFAR-10 dataset. These results suggest that TAS is an effective
method that paves the way for the efficient design of the next
generation of quantized neural networks.

Index Terms—Quantization, Ternary Neural Network, Neural
Architecture Search, Embedded Systems

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have successfully
been adapted to various computer vision tasks. In general,
there is an increasing demand to deploy CNNs onto resource-
constrained edge devices due to energy efficiency, privacy,
and stable connectivity concerns [1]. However, the enormous
computational intensity of CNNs cannot be supported by
resource-constrained edge devices leading to failure of ex-
isting processing paradigms in affording modern application
requirements. Network quantization is a widely used tech-
nique that significantly amortizes the computational burden
of CNNs. A Ternary Neural Network (TNN) [2]–[6], where
both weights and activation functions are quantized to ternary
tensors, is a variation of network quantization techniques that
comes with the benefits of network compression and operation
acceleration. TNNs are reported to have up to 16× memory
compression ratio [2] and 20× speed-up on FPGA [7], in
comparison with full-precision networks. Furthermore, TNNs
yield a better trade-off between accuracy and network size
with 38× higher expressive abilities [2] compared to other
counterparts such as binary networks [8]. However, TNNs still
suffer from a substantial accuracy drop issue, hampering them
from being widely used in practice (up to ≈17% accuracy drop
compared to full-precision networks on ImageNet [8]).

As an orthogonal direction, there have been advances in
Neural Architecture Search (NAS) where we can automatically
design high-performance networks [1], [9]–[11]. Because of
this insight, we came up with the idea of integrating the
ternarization mechanism into NAS with the hope of reducing

the accuracy gap of TNNs. However, applying the same NAS
methods that have been used for full-precision networks to
the ternary domain is practically inefficient. We hypothesize
three reasons for this failure: (i) because of the particularities
of the ternarization mechanism, certain network characteristics
used in full-precision networks, such as separable convolutions,
may be undesired; (ii) it inherits from the DARTS [9] cell
template, where inefficient gradients propagation can result
in increasing quantization error, and (iii) prior works have
a naı̈ve assumption on the distribution of the weights and
activation functions, which makes the ternarization mechanism
less effective with real-world applications.

To tackle these challenges, we propose TAS, a gradient-
based NAS method that efficiently reduces the accuracy gap
between ternary and full-precision architectures, yet at the
same time providing a significant compression ratio by up
to ≈45×. Although several variations of NAS have been
developed for designing low-precision networks [10], [12], to
the best of our knowledge, TAS is the first attempt in the
literature that successfully develops a robust to quantization
design methodology for TNNs. Our main contributions are
summarized as follows:

1) We perform extensive experiments to identify limitations
of applying existing NAS methods to the ternary domain.

2) We develop a search method that is robust to quantization
error by adding inter-cell skip connections to the DARTS
cell template to effectively convey gradients propagation.

3) We propose a novel optimizer that ternarizes weights
and activation functions by relaxing the ternarization
mechanism from the data distribution assumption.

TAS demonstrates its consistent effectiveness by achieving
2.64% accuracy improvement over counterparts with the same
bit-width resolution on the CIFAR-10 [13] classification task.
Meanwhile, TAS provides 2.84× memory saving on CIFAR-
10 in comparison with other competing methods. Compared
to full-precision ResNet-18 [14], TAS achieves up to 0.94%
higher accuracy while also delivers up to 45.73× compression
ratio. TAS provides the most accurate results on FPGA with
a fair enough acceleration for most of the state-of-the-art
CNNs. TAS generates similar results with STDEV=0.15%
demonstrating our results are reproducible.

II. RELATED WORK

In the following, we briefly discuss closely prior works
that try to mitigate the ternarization error. Ternary neural
networks (TNNs) provide a fair trade-off between accuracy
and complexity [2], [8]. TWN [2], known as one of the earliest
ternarization efforts, proposed {−α, 0,+α} as quantization
values to improve the accuracy of binary networks. TWN
utilized two symmetric thresholds (∆) alongside a scaling
factor (α) for each layer to quantize weighs into {−∆,+∆}.
However, there remains a significant performance gap between



TWN and the full-precision counterparts due to using sym-
metric thresholds. To solve this problem, TTQ uses two full-
precision scaling factors (αn, αp) for positive and negative
values [8]. TOT-Net [3] uses the same quantization method
as TWN, but it learns scaling factors for each kernel. TRQ
[4] claimed that the existing thresholding algorithms are not
accurate enough to map the full-precision to ternary values.
Therefore, TRQ introduced a recursive ternary quantization on
full-precision weights for a refined reconstruction rather than
directly thresholding. Although prior studies have improved
the ternarization mechanism, they all have a naı̈ve assumption
on the distribution of the weights and activation functions.
On the other hand, besides benefiting from TTQ and TOT-
Net, TAS learns quantization thresholds jointly trained with
the network parameters and is compatible with the distribution
of each kernel’s weights and activation functions.

III. TERNARIZED NEURAL ARCHITECTURE SEARCH

This section introduces our ternarized neural architecture
search, named TAS, which designs ternary architectures that
are robust to quantization error. In the following, we first
motivate why we need specialized NAS for ternary networks.
Afterward, we present our ternary quantization process and
how we integrate it into the NAS procedure.

A. Specialized Ternary NAS: Motivation
Cell-based NAS method optimized by the gradient descent

algorithm is highly popular in the community due to signif-
icantly reducing the computing cost of NAS methods [10].
Plus, the cell can be stacked any number of times to satisfy a
given resource budget of an edge device. TAS utilizes a cell-
based NAS method where the cell is ternarized in the first step
(Section III-D). Then, the cell is optimized by an enhanced
stochastic gradient descent (SGD) algorithm (Section III-E).
Finally, we retrain the designed network from scratch to
achieve maximum accuracy.

Using generic NAS methods for designing TNNs is not
efficient. To demonstrate this claim, we add ternarized op-
erations (using the TTQ ternarization mechanism [8]) to an
existing NAS method. In this paper, we used DARTS [9] as
the baseline NAS method. Then, we compare the performance
of TAS with the ternarized DARTS (DARTS+Ternarization).
Fig. 1 compares the learning curves of our proposed ternarized
method (TAS) with ternarized DARTS on CIFAR-10 dataset.
Disappointingly, the network designed by DARTS could not
be trained properly, implying that full-precision NAS methods
cannot trivially be extended to search ternary networks (TAS
delivers 5.91% and 6.04% higher accuracy in 250 and 600
epochs, respectively). According to our investigations, we find
three factors involved in the training failure of ternary DARTS:
(i) the separable convolutional layer repetitively accumulates
the ternarization error [10]; (ii) the cell template does not
propagate the ternary gradients properly, leading to the vanish-
ing gradient problem in the ternary domain; and (iii) existing
ternarization mechanisms assume distribution of the weights is
normal or uniform, which is a naı̈ve assumption for real-world
applications. Section III-B addresses the first issue, while the
second and the third issues are addressed in Section III-C and
Section III-D, respectively.

B. Search Space
Unlike full-precision NAS methods [1], [9], ternary NAS

should leverage a search space that is robust to quantization
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Fig. 1: Comparing
train and test
accuracies of the
ternarized search
using DARTS and
TAS on CIFAR-10.

error. Inspired by [10], we define a search space of different
convolutional operations that are robust to quantization error.
Note that although separable convolutions have been widely
used in resource-efficient floating-point networks such as Mo-
bileNet, they are not suitable for ternary networks due to large
quantization error [10]. Table I summarizes the operations of
TAS search space.

TABLE I: Operations of the TAS search space.
Operation Ternary Ternary Max Average Zeroise

Type Convolution Dilated Convolution Pooling pooling [9]
Kernel 3× 3 3× 3

3× 3 3× 3 N/ASize 5× 5 5× 5

C. Cell Template for TAS

The DARTS search space suffers from vanishing gradients
for training ternarized networks since the skip-connections
in the convolutional cell, i.e., intra-cell skip-connections, are
limited to be inside a single cell. Thus, the intra-cell skip-
connections do not properly propagate the gradients leading
to aggregate outputs with quantization error inside the cell.
To solve this problem, as inspired by ResNet [14], we add
skip-connections between multiple cells (red lines in Fig. 2).
This improves the gradients propagation between cells without
accumulating quantization error, leading to improving training
results (see the TAS curve in Fig. 1).
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Fig. 2: Cell templates of (a) ResNet, (b) DARTS and (c) TAS.
Conv. Cell indicates convolutional cell. c_(k) indicates the
output of kth cell.

D. New Ternary Quantization Method

In this section, we first propose a new ternarization mech-
anism. Then, we introduce new trainable parameters in the
search objective and learn them jointly with the network
parameters using SGD. For the sake of simplicity, we only
present our ternarization mechanisms for the weights.

1) Ternary Weights: For ternary quantization, the full-
precision weights W can be estimated with a non-negative
scaling factor α and the ternary weights Wt as follows:

W ≈ α · Wt (1)

To build a high-performance TNN, prior works [2], [15]
solve the optimization problem of minimizing the Euclidean
distance between W and Wt. Plus, [2] proposed a symmetric



threshold ∆ for each layer to quantize weights, which sets the
following constraint on ternary networks:

Wt
i = ft(Wi|∆) =


+α, if Wi > +∆

0 , if |Wi| ≤ ∆

−α, if Wi < −∆

(2)

Based on Eq. 2, the ternary quantization problem reduces
to calculating optimal α∗ and ∆∗. In TWN [2], these optimal
values are computed as follows:

α∗
∆ =

1

|I∆|
∑
i∈I∆

|Wi|; ∆∗ = argmax
∆>0

1

|I∆|
(
∑
i∈I∆

|Wi|)2 (3)

where I∆ = {i| |Wi| > ∆}. ∆∗ in Eq. 3 has no straightfor-
ward solution. Prior works assume Wi is from uniform or nor-
mal distribution. If the Wi is distributed uniformly in [−a, a],
the approximated ∆∗ is 2

3 · E(|W|). Thus, ∆∗ ≈ 0.7 · E(|W|)
in the case of Wi is normally distributed.

To investigate the admissibility of the weights distribution
assumption, Fig. 3.(a) shows the distribution of the weights for
each layer of the AlexNet trained on CIFAR-10. According to
our observations, the distribution of the weights in the last
fully-connected layer is not symmetric and significantly devi-
ates from the normal distribution (STDEV=6.9%), as depicted
in Fig. 3.(b) (Q-Q plot). The same pattern for seventy networks
trained on seven datasets is also observed in [16]. [17] also
shows the weight distributions are different even for kernels in
the same layer. Therefore, previous assumptions are not always
valid and often leads to inefficient ternarization.
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Fig. 3: (a) The distribution of the weights for each layer of
AlexNet. The red box shows a non-uniform weights

distribution. (b) Plotting the Q-Q-plot to pronounce the
non-normality of the distribution of the weights of the last

fully-connected layer of AlexNet (Empirical data).
To relax the distribution of the weights assumption, TAS

uses a learning parameter δw and kernel-wise thresholding
mechanism to compute ∆∗ as follows:

∆∗ = δw · E(|W|) = δw
n

·
n∑

i=1

|Wi| (4)

where n is the total number of weights in a kernel. To show the
expressive abilities of our method, we train a ternary AlexNet
network based on the TTQ [8] in two scenarios with the pro-
posed TAS thresholding and a fixed thresholding mechanism.
Fig. 4 plots the validation loss values for these two scenarios.
TAS mechanism improves the validation loss by 16.2%. The
average δw for the kernels in the last fully-connected layer of
AlexNet is 0.6 for our thresholding mechanism, which slightly
differs from 0.7 that is fixed in other methods. However, using
symmetric scaling factor α for both positive and negative
quantization intervals causes a significant accuracy loss [5],
[8]. In contrast, TAS use two trainable asymmetric scaling
factors (αn, αp) in Eq. 2 for negative and positive values.
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Following the chain rule for gradient descent, the derivatives
of loss w.r.t αn, αp, and δw are computed as follows:

∂L

∂αp
=

∑
j∈Ip

i

∂L

∂Wt
i(j)

,
∂L

∂αn
=

∑
j∈In

i

∂L

∂Wt
i(j)

∂L

∂δw
= (

∑
j∈Ip

i ,k∈In
i

∂L

∂Wt
i(j)

+
∂L

∂Wt
i(k)

) · (
n∑

i=1

|Wi|/δw)
(5)

where Ipi = {j|Wi(j) > +∆∗} and Ini = {j|Wi(j) <
−∆∗}. The gradients of full-precision weights is calculated
by using a scaled gradient for 32-bit weights by αn and αp.

E. Search Objective
The problem of ternary architecture search is defined as:

γ∗
t = argmin

γt∈At(St,Tt)

LS(D;θγt
) (6)

where LS(·) is the search objective that includes cross-
entropy loss and entropy-based regularizer to force selecting
diverse operations [10]. At is the feasible set of ternary
network architectures, Tt and St show TAS cell template and
search space, respectively. θγt

indicates all trainable parame-
ters of ternary network including {W, γt, δw, δv, αp, αn}. γ∗

t
is the best searched architecture parameters. The final network
architecture is retrained to find the optimal weights. Note that
the validation loss is unstable in early training epochs (is shown
by a gray ellipse in Fig. 4) since increasing the number of
learning parameters (δw, δv are proposed by TAS) can result
in overfitting on training data in some epochs.

IV. EXPERIMENTS

A. Experimental Setup
Details on Searching Networks. We split CIFAR-10 clas-

sification dataset [13] into 30k data points for training and
30k for validation. We train a network using SGD with 16
initial channels and eight cells for 50 epochs with a batch
size of 32. Each cell consists of seven nodes equipped with
a depth-wise concatenation operation as the output node. The
convolutional operations follow the ReLU+Convolution+Batch
Normalization order. The rest of the setup follows [9]. We use
weight decay=3×10-4 and momentum=0.9 with initial learning
rate of 0.025 using cosine annealing [18]. The search step takes
≈14 GPU hours on a single NVIDIA® RTX A4000.

Details on Training the Searched Networks. We split
CIFAR-10 into 50k data points for training and 10k for
validation. We train the best network for 600 epochs with a
batch size of 128. We use the SGD algorithm with weight
decay=3×10-6, momentum=0.9, and the learning rate= 5×10-2

to 4×10-4 with one-cycle policy [19].
Details on FPGA Implementation. We utilize the Xilinx

High-Level-Synthesis (HLS) tool to automatically deploy a
TNN represented in high-level APIs, such as Keras, to FPGA.
Unfortunately, HLS tools usually support OpenCL, C, or C++,
while neural network designers typically use high-level APIs



to describe the network. To solve this issue, we leverage
DeepHLS [20] conversion tool to convert Keras to ANSI
C. DeepHLS also verifies conversion results. For the imple-
mentations using HLS, we use Xilinx ZCU104 (XCZU7EV)
development board with 2-bit signed format.

Details on Architecture Configuration. We stack the best
cell searched by TAS to build the final network. We have 18
normal cells with two reduction cells, where every six normal
cells are followed by one reduction cell.

B. Results on CIFAR-10
Table II compares TAS against state-of-the-art ternarization

approaches, binary NAS, and DARTS on CIFAR-10 dataset.
Note that the compression ratio is determined by measuring
memory utilization. Consider q is quantization resolution (q-
bit) of layer l, L is the maximum number of layers in each
network, #Wl and #W t

l are the number of weights in layer
l for full-precision (32-bit) and ternary networks, respectively.
Hence, the compression ratio is expressed as

∑L
l=1 #Wl×32∑L
l=1 #W t

l ×q
.

ResNet-18 [14] is selected as the compression ratio baseline
in our experiments.

TAS significantly outperforms all existing methods in terms
of accuracy and compression ratio. TAS obtains a 0.94%
accuracy improvement with a 45.73× higher compression ratio
compared to full-precision ResNet-18. In comparison with
TRQ [4] with the same quantization resolution, TAS achieves
2.64% accuracy improvement with 2.84× higher compression
ratio. We can see that trivially extending DARTS to design
TNNs (DARTS+Ternarization) results in a 6.04% accuracy
degradation. Compared to binary NAS [10], TAS provides
1.28% higher accuracy without compromising memory saving.
TABLE II: Comparing the TAS results with state-of-the-art
methods on CIFAR-10 dataset.

Method # bits Compression Top-1 Accuracy
(Backbone Arch.) (W/A)‡ Ratio (×)† (%)

Full-precision (ResNet-18) [14] 32/32 1 91.0
TBN (VGG-7) [6] 2/32 1.33 90.85

TWN (ResNet-18) [2] 2/32 16.06 92.56
TRQ (ResNet-18) [4] 2/2 16.06 89.3
Binary NAS (A) [10] 1/1 45.73 90.66∗

DARTS+Ternarization [9] 2/32 - 85.9
TAS (Ours) 2/2 45.73 91.94

† The baseline for comparing the compressing ratio is ResNet-18.
‡ (Weights/Activation Function).

∗ Experiments obtained by re-running the official implementation.

C. Results on FPGA Implementation
To evaluate the TAS performance on real hardware, we

deploy the best TAS architecture for CIFAR-10 on FPGA
(Table III). These results suggest that TAS is effective for
accurate implementation of TNNs on FPGA by providing up
to ≈2.8% higher accuracy. Note that we did not perform any
optimization in the FPGA compilation level, and the utilized
HLS tool is far slower than super optimized accelerators [21].
Nevertheless, TAS provides a fair enough acceleration for most
existing CNNs (up to 90 frames-per-second throughput).

TABLE III: Comparing the FPGA implementation results of
TAS with state-of-the-art methods on CIFAR-10.

Work # bits Freq. Latency Resource Accuracy (%)
(FPGA Device) (I/W)‡ (MHz) (ms) Utilization (%) (Network)

T-DLA [7] 8/2 125/250 2.188 LUT:78.71, FF:37.76 89.08
(Zedboard) (Logic/Adder) BRAM:75.0, DSP:49.55 (VGG-like)

[22] 8/2 250 0.036 LUT:35.8 86.71
(VC709) BRAM:23.1 (VGG-like)

TAS 32/2 300 10.88 LUT:52, FF:8
(XCZU7EV) BRAM:81, DSP:2 91.94

‡ (Input Image/Weights).

V. CONCLUSION

This paper proposed TAS, a variation of NAS for TNNs.
TAS significantly improves the performance of TNNs by: (i)
proposing a new cell template for ternary networks; and (ii)
adaptively relaxing the network quantization process from the
distribution assumption of weights and activation functions.
According to experimental results, TAS yields 45× higher
compression ratio while significantly reduces the accuracy gap
between TNNs and full-precision counterparts on CIFAR-10.
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