
NALABS: Detecting Bad Smells in Natural
Language Requirements and Test Specifications

Kostadin Rajkovic, Eduard Enoiu
Mälardalen University, Västerås, Sweden.

Abstract—In large-scale embedded system development, re-
quirement and test specifications are often expressed in nat-
ural language. In the context of developing such products,
requirement review is performed in many cases manually us-
ing these specifications as a basis for quality assurance. Low-
quality specifications can have expensive consequences during the
requirement engineering process. Especially, if feedback loops
during requirement engineering are long, leading to artifacts
that are not easily maintainable, are hard to understand and
inefficient to port to other system variants. We use the idea of
smells to specifications expressed in natural language, defining
a set of specifications bad smells. We developed a tool called
NALABS (NAtural LAnguage Bad Smells), available on https:
//github.com/eduardenoiu/NALABS and used for automatically
checking specifications. We discuss some of the decisions made
for its implementation, and future work.

I. INTRODUCTION

In many embedded system domains, requirement engineer-
ing is performed manually by engineers that are hand-crafting
those artifacts using natural or semi-structured languages and
using them for other stages of software development, such as
testing them against the system-under-test. Issues in natural
language artifacts (i.e., requirements), such as ambiguities or
vague specifications, can lead to higher costs during system
development [1]. Previous research found that test specifica-
tions written in natural language contain a rather high degree
of cloning and bad structure [2], [3] which can influence the
cost of maintaining and executing test cases. For requirements
[4], [4], [5] as well as for system test cases [3] written in
natural language, so called bad smells have been established as
indicators to identify poorly written natural language artifacts.

Based on several natural language smells observed in previ-
ous studies, we established a set of indicators for requirement
flaws and defined dictionary-based metrics to automatically
detect these smells in natural language artifacts. This paper
introduces NALABS, a new tool that aims at quick analysis
of requirements by detecting problematic requirements.

II. RELATED WORK

Related to quality assurance of other natural language ar-
tifacts such as requirements, several researchers have focused
on detection of clones [6], requirement similarity [7] and
ambiguity [8]. Femmer et al. [4] proposed to detect issues
based on requirement smells based on the quality attributes
of natural language requirements in ISO/IEC/IEEE 29148.
Hauptmann et al [3] is the first to study smells in natural
language test specification. Hauptmann [9] proposed several
natural language test smells to identify quality problems in test

cases as well as showing the results of applying this approach
on nine industrial test suites. We identified gaps in the previous
research which we are tackling in this paper. Firstly, the set of
smells for natural language artifacts used in some previous
studies is limited and mainly based on maintainability at-
tributes. We extend this list by tailoring requirement-based bad
smells to other metrics related to complexity. In addition, only
two studies apply their work on real industrial specifications.
The aim of NALABS is to help in bringing more evidence
on the industrial use of bad smells for detecting specification
quality defects.

III. NATURAL LANGUAGE SPECIFICATIONS SMELLS

In this section, we describe the quality of natural language
specifications, how we created the set of smells and the auto-
matic measurement of these smells using specific dictionaries.

• Vagueness is a common problematic property when it
comes to understanding requirements and requirements
complexity. Many papers are identifying this as an indi-
cator of quality problems, but we have found definitions
on how to measure it only in two papers [10], [11]. It
is interesting that the suggested lists of keywords are
completely different in these two papers. However, the
list of keywords found in [11] was incomplete and only
the definition found in [10] is used in NALABS. The
following list of keywords has been used: may, could,
has to, have to, might, will, should have + past participle,
must have + past participle, all the other, all other, based
on, some, appropriate, as a, as an, a minimum, up to,
adequate, as applicable, be able to, be capable, but not
limited to, capability of, capability to, effective, normal.

• Referenceability. Number of reference documents [10]
was found in a couple of papers under different names
(i.e., Directive Frequency [11], Directives [12]). This
is usually an indication of nesting in the requirements
documents or a need for additional reading in order
to understand the requirement that contains references.
The issue on how to measure this indicator it is not
well defined. In [10], [12] it was suggested to count
the overall occurrence of keywords that would indicate
referencing. In [11] the list of keywords was not provided,
but the authors suggested that the rate of pointers to
figures, tables, notes should be counted. We have decided
to implement the measures from [10] and [12] as two
separate measures (NR1 and NR2). The authors of [10]
have anticipated the need of adjusting this measure for

https://github.com/eduardenoiu/NALABS
https://github.com/eduardenoiu/NALABS


different writing styles of each company and therefore we
have decided to expand the list of keywords by adding
the keyword ”see”, since this is the most common writing
style of referencing noticed in requirements documents
in a large manufacturing company in Sweden. List of
keywords (NR1 [10]): defined in reference, defined in
the reference, specified in reference, specified in the ref-
erence, specified by reference, specified by the reference,
see reference, see the reference, refer to reference, refer to
the reference, further reference, follow reference, follow
the reference, see document. List of keywords (NR2
[12]): For example, Figure, Table, Note.

• Optionality. This metric was found in certain papers
[13] and [11] with similar definitions. Optional words
are giving the developers a latitude of interpretations to
satisfy the specified statements and their use is usually not
recommended in requirements documentation. Authors
have proposed different lists of keywords, but the list
found in [11] was incomplete and therefore we have
decided to select the measure found in [12]. List of
keywords: can, may, optionally.

• Subjectivity. Subjectivity metric is measuring personal
opinions or feelings in sentences. It was proposed in
[11] with a list of keywords to be counted in text.
However, since one of the proposed phrases to detect
was ”as [adjective] as possible”, we have decided to
avoid detection of adjectives in text, and replace this
phrase and detect only the last part of this sentence.
List of keywords: similar, better, similarly, worse, having
in mind, take into account, take into consideration, as
possible

• Weakness [11] [12] is a metric that counts words and
phrases that may introduce uncertainty into requirements
statements by leaving room for multiple interpretations.
The metric was found in two mentioned papers, but we
have decided to use only the one found in [12], since the
list of keywords found in [11] was very similar to the
keywords used for the Optionality metric. List of key-
words: adequate, as appropriate, be able to, be capable of,
capability of, capability to, effective, as required, normal,
provide for, timely, easy to.

• Readability. Automated Readability Index (ARI) is cal-
culated using WS + 9× SW , where WS is the average
number of words per sentence and SW is the average
number of letters per word [11]. Readability is considered
by a couple of other papers as well, mostly by the use of
different readability indexes such as Flesch reading ease
index, Flesch-Kincaid, Coleman-Liau and Bormuth grade
level index. We have decided to use ARI for its simplicity
of implementation.

• Complexity Metrics. Measuring the size of the require-
ment was used in a couple of discovered papers and it is
defined differently in different papers [10], [12]. It can be
defined in many different ways such as the total number
of characters, number of words, paragraphs and lines of
text. We have decided to use the number of words as the

Fig. 1: Usage of NALABS from GUI.

measure of size to account for different writing styles. In
addition, we count the overall number of occurrences of
conjunctions. This measure was found to be a context-
independent measure and can show relations and actions.

IV. TOOL DESCRIPTION AND FUTURE WORK

Figure 1 shows the use of NALABS from a GUI interface.
Although NALABS is still in an early phase of development
(it was started in the late 2019), it has already been used to
successfully find several problems in requirements in existing
industrial projects [14]. NALABS is released under the MIT
open-source license, and it is freely accessible on GitHub1.
It is a desktop WPF application that depends on standard
.NET packages. The tool was developed in C# as a desktop
application for Windows OS and contains three essential
layers: (i) the pre-processing of requirement documents stored
as excel spreadsheets2, (ii) the configuration and application
of bad smells metrics and (iii) presenting these results to the
user. Future research should focus on exploring and proposing
new bad smells measures, combining the existing measures in
a single index of quality and complexity as well as exploring
new ways of applying such requirement checkers in industrial
systems.

V. ACKNOWLEDGEMENTS

NALABS has been funded by Bombardier Transportation
through a thesis project, by the European Union’s Horizon
2020 research and innovation program under grant agreement
No. 957212 and by the Swedish Innovation Agency (Vinnova)
through the XIVT project. This work was partially funded
from the Electronic Component Systems for European Lead-
ership Joint Undertaking under grant agreement No. 737494
and The Swedish Innovation Agency, Vinnova (MegaM@Rt2).

REFERENCES

[1] D. M. Fernández, S. Wagner, M. Kalinowski, M. Felderer, P. Mafra,
A. Vetrò, T. Conte, M.-T. Christiansson, D. Greer, C. Lassenius et al.,
“Naming the pain in requirements engineering,” Empirical software
engineering, vol. 22, no. 5, pp. 2298–2338, 2017.

1https://github.com/eduardenoiu/NALABS
2Many companies and tools (such as IBM’s Rational DOORS) use this

format for working with requirements.



[2] B. Hauptmann, M. Junker, S. Eder, E. Juergens, and R. Vaas, “Can clone
detection support test comprehension?” in 2012 20th IEEE International
Conference on Program Comprehension (ICPC). IEEE, 2012, pp. 209–
218.

[3] B. Hauptmann, M. Junker, S. Eder, L. Heinemann, R. Vaas, and P. Braun,
“Hunting for smells in natural language tests,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 1217–
1220.

[4] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality
assurance with requirements smells,” Journal of Systems and Software,
vol. 123, pp. 190–213, 2017.

[5] M. Unterkalmsteiner and T. Gorschek, “Requirements quality assurance
in industry: why, what and how?” in International Working Confer-
ence on Requirements Engineering: Foundation for Software Quality.
Springer, 2017, pp. 77–84.

[6] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,
S. Wagner, C. Domann, and J. Streit, “Can clone detection support
quality assessments of requirements specifications?” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 2. ACM, 2010, pp. 79–88.

[7] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an
industrial case study in retrieving equivalent requirements via natural
language processing techniques,” IEEE Transactions on Software Engi-

neering, vol. 39, no. 1, pp. 18–44, 2011.
[8] B. Gleich, O. Creighton, and L. Kof, “Ambiguity detection: Towards

a tool explaining ambiguity sources,” in International Working Confer-
ence on Requirements Engineering: Foundation for Software Quality.
Springer, 2010, pp. 218–232.

[9] B. Hauptmann, “Reducing system testing effort by focusing on com-
monalities in test procedures,” Ph.D. dissertation, Technische Universität
München, 2016.

[10] V. Antinyan and M. Staron, “Rendex: A method for automated reviews
of textual requirements,” The Journal of Systems & Software, vol. 131,
pp. 63,77, 2017-09.

[11] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An automatic quality
evaluation for natural language requirements,” in in Proceedings of the
Seventh International Workshop on RE: Foundation for Software Quality
(REFSQ’2001, 2001, pp. 4–5.

[12] N. Carlson and P. Laplante, “The nasa automated requirements mea-
surement tool: a reconstruction,” Innovations in Systems and Software
Engineering, vol. 10, no. 2, pp. 77,91, 2014-06.

[13] W. Wilson, L. Rosenberg, and L. Hyatt, “Automated analysis of require-
ment specifications,” pp. 161,171, 1997-05-01.

[14] K. Rajković, “Measuring the complexity of natural language require-
ments in industrial control systems,” 2019.


	Introduction
	Related Work
	Natural Language Specifications Smells
	Tool Description and Future Work
	Acknowledgements
	References

