AutoDeepHLS: Deep Neural Network High-level Synthesis

using fixed-point precision
Mohammad Riazati, Masoud Daneshtalab, Mikael Sjodin, and Bjorn Lisper

Heterogeneous Systems Research Group, Milardalen University, Visteras, Sweden
{mohammad.riazati, masoud.daneshtalab, mikael.sjodin, bjorn.lisper} @mdh.se

Abstract—Deep Neural Networks (DNN) have received much attention
in various applications such as visual recognition, self-driving cars, health
care, etc. Hardware implementation, specifically using FPGA and ASIC
due to their high performance and low power consumption, is considered
an efficient method. However, implementation on these platforms is
difficult for neural network designers since they usually have limited
knowledge of hardware. High-Level Synthesis (HLS) tools can act as a
bridge between high-level DNN designs and hardware implementation.
Nevertheless, these tools usually need implementation at the C level,
whereas the design of neural networks is usually performed at a higher
level (such as Keras or TensorFlow). In this paper, we propose a fully
automated flow for creating a C-level implementation that is synthesizable
with HLS Tools. Various aspects such as performance, minimal access to
memory elements, data type knobs, and design verification are considered.
Our results show that the generated C implementation is much more HLS
friendly than previous works. Furthermore, a complete flow is proposed
to determine different fixed-point precisions for network elements. We
show that our method results in 25% and 34% reduction in bit-width
for LeNet and VGG, respectively, without any accuracy loss.

Index Terms—Deep Neural Network, Accelerator, High-Level Synthe-
sis, Fixed-Point, Quantization

I. INTRODUCTION

Deep Neural Networks (DNN) are neural networks with more than
one hidden layer. Running a DNN (a.k.a. inference) can be done
on a variety of platforms such as CPU, GPU, FPGA, and ASIC,
each of which has its own advantages and disadvantages. Since
FPGAs provide high performance, low power consumption, and fast
prototyping, their application for inference is considered by users. In
this paper, FPGA is usually used in descriptions and experimental
results, but virtually all procedures, methods, and capabilities can
also be used for ASIC.

The main issue of implementing a DNN on an FPGA is that DNN
design tools use high-level languages and libraries such as Keras,
TensorFlow, PyTorch, and Caffe in Python and do not provide an
output for FPGA. To fill the gap between very high-level design of
DNNs and low-level implementations for FPGA, HLS tools were
created. However, these tools do not accept such very high-level
descriptions, and most of them need a design in C. Besides, not
all the C implementations are synthesizable to hardware. DNN
designers, who usually have limited knowledge of hardware, need
an intermediary flow to create a proper implementation for FPGA.

In this paper, a fully automatic flow is presented that receives
an input in Keras and produces an implementation of the inference
without any need for user intervention. The main contributions of
this paper are as follows:

« A complete toolchain is proposed, implemented, and presented
in detail that covers all the steps needed to implement a DNN on
FPGA. Steps include generating C code from Keras, validating
the C implementation, quantization effect analysis, and finally
synthesizing the neural network using HLS tools.

« Various implementation knobs are considered to make it possible
to easily set the data type used to implement the whole design
or every specific layer.

o The created C code is in standard ANSI C, which is supported
by most commercial or open-source HLS tools.

o In creating the C code, it is tried to use minimal calculations,
temporary arrays, and non-local variables. They could down-
grade the performance of the generated circuit.

o Features for verifying the accuracy of the generated C code are
added to ensure that the C implementation is functionally equal
to its very high-level counterpart in Keras.

o A complete procedure is proposed in detail to help designers
find the appropriate size and configuration of the fixed-point
data types for each data element in a way that has the least
impact on accuracy.

II. RELATED WORK

Implementing DNNs on FPGAs has been addressed in many
works. Some of them propose creating a code at the Register
Transfer Level (RTL) [1], [2]. RTL implementations can be directly
synthesized on an FPGA using conventional synthesis tools. Some
others, e.g., [3]-[5], propose implementation on heterogeneous sys-
tems. Operations, such as addition, multiplication, or convolution,
are implemented in the programmable logic and are controlled and
scheduled in the CPU using frameworks like OpenCL [6]. Another
related approach is implementing a domain-specific processor in the
programmable logic, which executes the DNN related operations with
a higher performance than general-purpose CPUs. Two examples
are Xilinx Deep Learning Processor Unit (DPU) and Intel Vision
Processing Unit (VPU), which are configured and implemented using
Vitis and OpenVINO, respectively.

The first problem with these methods is that the user cannot modify
the generated output by considering the limitations or freedoms in ac-
curacy, performance, area utilization, or quantization level. Secondly,
in practice, they cannot be used by neural network designers, who
are mostly users with limited hardware knowledge [7].

Another category of works transforms a DNN to a lower-level
implementation in C/C++. It can then be implemented on hardware
platforms using HLS tools. Using these methods, the end-user may
have the freedom to alter and tweak the design to get the desired
performance, accuracy, and area utilization. The user may prefer to
sacrifice the accuracy for lower latency or the latency for lower area
utilization. It is required that the generated code be synthesizable.
For instance, four of these works generated code that could not be
synthesized by HLS [8]-[11], and their main target was embedded
CPUs. There were only a few cases that could be synthesized by the
HLS. They create a synthesizable C++ version of a neural network
[12]-[14]. They do not provide features like verification, testbench,
or finding the proper quantization size and configuration. Besides,
some of them can only be used for small networks such as LeNet
[15], and large networks like VGG [16] are not supported. Finally,
the method in [17] generates a synthesizable C implementation, but
only one data type for all data elements is supported.

Another topic that should be considered in the related work is
the quantization technique or using Fixed-Point (FxP) data type
instead of Floating-Point (FIP) data type. If FxP is used, then
its configuration (including the size and the Fixed-Point position)
becomes important. In [2] and [18], 16-bit data type using eight bits
for integer and fractional portions is used for all data elements. Many
others use 16-bit data types without explicitly mentioning the exact
configuration [1], [4], [19]. Some others have added the support for
FxP implementation, but the configuration should be determined by
the user [7], [17], [20]. To the best of our knowledge, this is the
first work that extensively analyzes the impact of FxP data types
and proposes a systematic method for determining the proper FxP
configuration.

III. AuTODEEPHLS FLOW

DNNs are usually designed in very high-level languages and
libraries. These descriptions are not synthesizable on FPGAs by
HLS tools and require methods to automatically create an equivalent
instance in a lower level such as C. In this paper, we consider the
input to be in Keras [21]. For output, ANSI C [22] is generated, which
is supported by almost every HLS tool. AutoDeepHLS flow receives
input in Keras and, through several steps and by examining various
aspects, creates an optimal implementation in C to be synthesized on
an FPGA. Figure 1 shows the overall flow of AutoDeepHLS. In this
section, each of the steps is explained in detail.

Preprint submitted to IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS 2022)

Data dump files

< Inputs
< Weights

< Biases

\/—

l

Testbench files

% Running inference
< Generating reports

L

Data analysis

Data type for each
element:
v Inputs

-

Keras Description

< Layers
< Weights
< Biases

\/_

1

Preprocessing

v Running inference

v Finding accuracy

v Creating data
dump files

2

Keras to C

Automatic creation of

v Type definitions
and knobs

v Inference
implementation

v Testbench

Testbench (float)
v Keras-C

equivalence check
v Data range report

Base Accuracy

< Floating-point

data types

Inference Code

< Ports

< Loops

< Data-type
knobs

< Data-type

HLS

v Weights, Biases
v Inter-layer data l

Data analysis results = Testbench (DSE) =Y Type definitions

< Signed/Unsigned v Various total < Integer part for
< Integer width widths (min: MTW) each data
< Minimum total element

width (MTW) < Total width

Fig. 1. The overall view of the proposed method

A. Preprocessing

Before creating the C implementation begins, it is needed to extract
the required data for the DNN under process. It is assumed that the
DNN is already designed, trained, and tested. Preprocessing stage is
implemented in Python to enable the extraction of the data seamlessly
in the same environment that the neural network is implemented and
trained. Preprocessing receives a trained DNN, which contains layers’
specifications, weights, and biases.

In this stage, input data (e.g., images), weights, and biases of
the DNN are converted to multidimensional arrays in standard C
format. Another output of this stage is the base accuracy of the
DNN using these specific input data, weights, and biases. Keras uses
floating-point data type (FIP) for processing the DNN, and hardware
implementations mostly use the fixed-point data type (FxP). The
accuracy obtained at this step (base accuracy) using FIP is later used
for two purposes: conversion validation and FxP impact analysis.

B. Keras to C

This stage is the main part of creating the C implementation. In this
stage, Keras implementation is processed to extract all the required
information. A DNN description in Keras is relatively concise, and
most of the information about the layers is not explicitly provided.
However, to generate a C code, it is necessary to have various
information about the network layers, including layer type (e.g.,
convolutional or fully connected), the number of filters, kernel size,
stride size, padding type (valid or same), type of activation function
(e.g., relu), and layer input and output sizes. They can either be
directly extracted from the Keras function for a specific layer or by
analyzing previous layers.

In this stage, two outputs are created. The first output is the C
implementation of the DNN inference that is ready to be synthesized
on the FPGA by the HLS tool. It includes ports, loops, data defini-
tions, etc. It also comes with several knobs in order to simply switch
between various data types. These knobs and how they can be set are
explained later. The second output is testbench files. Testbench, like
a wrapper, is placed around the inference code, and in addition to
applying input data (e.g., input image), is responsible for monitoring
and recording inputs, outputs, and internal values of the network, and
it ultimately creates the necessary reports.

In creating C implementation, several measures are taken to
enhance the usability and performance of the circuit which is being
generated based on it:

o The first and most crucial aspect to consider is that the code is
created such that it can be adequately synthesized on an FPGA.

The HLS processes are very sensitive to the loop layout, use of
variables and constants instead of accessing memory arrays, and
locality of the accesses.

o The generated C code is able to use various data types for each
of the data elements, such as inputs, outputs, weights, biases,
and layer data, through easy-to-use knobs.

o The code created for inference does not only perform the
main math operations but also embodies features that, when
the testbench executes it, it can monitor and save all the data
elements. They are required in the future stages.

« In a neural network, different data elements, including inputs,
outputs, biases, weights, and layer data, are needed. In the case
of layer data, both internal FPGA storage (such as BRAM)
and external memory (such as DDR) can be used. In C code
generation, both of these approaches are supported to be able to
implement even very large networks with many layers or large
layers dimensions.

« Input data sets, especially when many of them are to be applied,
can be very large. The number of weights and biases can also be
very high for large DNNs. To ensure scalability, file-to-memory
mechanisms are included in the testbench.

o In some of the previous works, the code for each layer or
operation (such as convolution) is implemented as a function.
But in this work, the inference code to be synthesized is
fully flat (without using functions) and in a single file. This
is very important because, firstly, calls to the functions add
extra states and latency when synthesized, and secondly, a
flat implementation allows the HLS tool to make inter-layer
optimizations.

« All for-loops have labels. This will lead to more readable HLS
reports. Additionally, it allows the designers or tool developers
to use external HLS directive files, e.g., directives.tcl file for
Xilinx Vivado HLS.

C. Running testbench in floating-point mode

As mentioned earlier, testbench, like a wrapper, is placed around
the inference code and connects the input and output data to it. Before
we can run the testbench, hence the inference code, we need to
determine the data type to be used for each of the data elements
in the network through the knobs that are defined. These data types
may be all FIP or FxP, or different FxP settings for each of them. In
this stage, testbench is executed using the FIP mode for all network
data elements (including inputs, outputs, weights, biases, and layer
data). There are two main objectives for this execution.

o When a Keras description of a DNNs is executed on a CPU or
a GPU, FIP is used. Therefore, if the inference in C is executed
using the same input data and the same type of data, it should
have the same accuracy as the one obtained in the preprocessing
stage as the base accuracy. In fact, by executing the testbench
in FIP mode, an equivalence check is performed to ensure that
the conversion is done correctly.

o The main question about using FxP is that what configuration
for each FxP data type should be selected. This configuration
includes the total width, the length of the integer portion, and
the length of the fractional portion. During the execution of the
inference in FIP mode, all the values stored in data elements
are monitored, and the required information for finding a proper
FxP configuration is extracted and stored. They will be used in
the later stages.

D. Data Analysis

At this stage, various data that were extracted and stored in
the stage of running testbench in FIP mode are analyzed to select
appropriate data types. The required knobs to determine the type of
data for each of the elements in the network are already integrated
into the code, and in this stage (and the next), we are going to find
how to adjust those knobs. Data elements include inputs, outputs,
weights, biases, and data for each layer separately.

One of the three modes for the implementation and execution of
the inference can be selected.

« Floating-point mode: In this mode, for all data elements in the
DNN, the FIP data type is chosen.

Binary point

1W=F+I
!

ii[ilililili!f]flflflflflflflf\fj

T T
Integer part (1) Fractional part (F)

Fig. 2. Fixed-point format and its constituent parts

« Single Fixed-point mode: An FxP data type configuration is
determined by three main characteristics: number of bits in its
integer portion (I), number of bits in its fractional portion (F),
and signedness (S). The total width (W) equals I + F. The
integer part can be signed or unsigned, and it determines the
type of the whole number. Figure 2 shows how an FxP is made
of these parts. In this mode, all data types have the same FxP
configuration, i.e., identical W, L. In this mode, all data types are
signed. For example, as will be discussed later, a LeNet network
on the MNIST data set can be implemented in this mode with
W and I equal to 16 and 8, respectively, without losing any
accuracy.

o Multiple Fixed-point mode: In this mode, like the previous
mode, FxP data type is used for all data elements, with the
difference that each of the FxP types can have different I and S.
Note that W is equal for all types. The rest of the stages in this
section cover how the configuration for each of the data types
is determined.

To determine I and signedness of a specific data element, all the
values that a (scalar or array) variable has received should be analyzed
to find their minimum and maximum. These values are monitored and
stored in the stage of running testbench in FIP mode. Then, based on
them, Equation 1 is used to determine I. Regarding the sign, if the
minimum value is smaller than zero (i.e., at least once, the element
has received a value less than zero), then a signed type should be
chosen, and otherwise, an unsigned data type suffices.

I = maz(|log, maz(|MinValue| , [MaxValue|)|,—1)+1 (1)

Another result from this stage is the minimum data width. Since
W is common for all FxP types, it should be able to fit (at least) the
integer part of all types. Therefore, when I is calculated for all types,
the maximum I is chosen as Minimum Total Width (MTW). Most
likely, the W of the DNN will be larger than MTW. It will be found
in the next stage.

E. Running testbench for various data widths

In the previous stage, the width for the integer part of each data
element was found. Then, we need to find the whole width (and, as
a result, the width for the fractional part of each of them). This
stage could not be performed by analysis or a formula, and we
need to examine different widths to evaluate their impact on the
network accuracy. Therefore, testbench is executed for various values
for W beginning from MTW. It continues until the accuracy drop is
perceived as negligible.

E Running HLS

At this point, the configuration for each of the data types is known.
These configurations are used to set the knobs already integrated into
the design. Now, all the ingredients, including the source files and
the knobs, are ready to run the HLS.

IV. EXPERIMENTAL RESULTS

To demonstrate the performance of the presented work, we first
provide the results of the stages for two well-known networks. Then,
to explain how HLS friendly is our generated code, we compare the
proposed method with a recent work.

A. Tool stages results

To verify the performance of the presented method, we tested it
on two well-known networks. The first, LeNet [15], is a seven-layer
network that, using MNIST [23] dataset, is designed to detect digits
in black and white photos with dimensions of 32x32. The second
one, VGG [16], consists of 21 layers and receives colored images
with dimensions of 224x224 pixels and classifies them in one of
1,000 possible categories. The reason for choosing these two is that
they are among the smallest and largest networks that have been

used in most articles that provide hardware implementation for neural
networks. After completing the Preprocessing and KerasToC stages,
the next stage is to run the inference in C in floating-point mode on
the same data that was used in the Preprocessing stage. The obtained
accuracy in this stage should be compared with the accuracy obtained
in the Preprocessing stage. This is to ensure that the conversion is
done without error. This was done for both networks. Another output
of this stage is a list of minimum and maximum stored values in
every variable or array. The obtained values are then examined in the
Data Analysis stage to find the data type configurations, including
the required number of bits to store the integer part, according to
Equation 1, as well as being signed or unsigned. Tables I and II
show the results for LeNet and VGG, respectively. Note that the
values shown in the table are rounded.

TABLE I
DATA ANALYSIS RESULT FOR LENET

Data Element | MinValue | MaxValue | Si; d Int. Width (bits)
Biases -0.050506 | 0.132952 Signed 1
Weights -0.603276 | 0.942556 Signed 1
Inputs 0 1 Unsigned 1
Data (Layer 1) 0 6.844573 | Unsigned 3
Data (Layer 2) 0 6.844573 | Unsigned 3
Data (Layer 3) 0 13.107732 | Unsigned 4
Data (Layer 4) 0 13.107732 | Unsigned 4
Data (Layer 5) 0 15.539978 | Unsigned 4
Data (Layer 6) 0 13.975531 | Unsigned 4
Data (Layer 7) 0 18.596546 | Unsigned 5
TABLE II

DATA ANALYSIS RESULT FOR VGG

Data Element | MinValue | MaxValue | Signedness | Int. Width (bits)

Biases -1.027151 9.431553 Signed 5

Weights -0.6714 0.608516 Signed 1

Inputs -123.68 151.061005 Signed 9
Data (Layer 1) 0 1056.574219 | Unsigned 11
Data (Layer 2) 0 4527.906738 | Unsigned 13
Data (Layer 3) 0 4527.906738 | Unsigned 13
Data (Layer 4) 0 7646.894043 | Unsigned 13
Data (Layer 5) 0 14836.139648 | Unsigned 14
Data (Layer 6) 0 14836.139648 | Unsigned 14
Data (Layer 7) 0 16868.339844 | Unsigned 15
Data (Layer 8) 0 15843.737305 | Unsigned 14
Data (Layer 9) 0 17463.654297 | Unsigned 15
Data (Layer 10) 0 17463.654297 | Unsigned 15
Data (Layer 11) 0 12117.775391 | Unsigned 14
Data (Layer 12) 0 6396.614746 | Unsigned 13
Data (Layer 13) 0 4099.385742 | Unsigned 13
Data (Layer 14) 0 4099.385742 | Unsigned 13
Data (Layer 15) 0 2423.161377 | Unsigned 12
Data (Layer 16) 0 1097.153931 | Unsigned 11
Data (Layer 17) 0 566.926697 Unsigned 10
Data (Layer 18) 0 566.926697 Unsigned 10
Data (Layer 19) 0 111.201981 Unsigned 7
Data (Layer 20) 0 24.104248 Unsigned 5
Data (Layer 21) 0 30.676727 Unsigned 5

According to the data obtained from data analysis, the maximum
integer width of all data elements will be the minimum total width
(MTW) required for all elements. Therefore, MTW for LeNet and
VGG will be 5 and 15 bits, respectively.

Before running the HLS, the last stage of data width determination
is to find a total width that has the least impact on accuracy. For
example, for the LeNet network, if the total width is equal to 5
bits, i.e., equal to MTW, there will be four bits remaining for the
fractional part of biases, weights, and inputs and two, one, and zero
fractional bits for the layer data of the first, sixth, and seventh layers,
respectively. Therefore, in the last stage, we will test various total
widths beginning from MTW bits until the accuracy loss is minimal.

Figure 3 illustrates the accuracy loss for both single- and multi-
fixed-point modes for LeNet. As shown, in multi-fixed-point mode,
at least 14 bits are needed to have an accuracy loss of zero,
and the accuracy loss for 12 and 13 bits is negligible. As for
the conventional method of single-fixed-point mode, which uses a
common configuration for all of the data elements, even by using
16-bit data types, there is a slight accuracy loss, and with 12-bit data
types, the network, with 59% error, is virtually unusable.

In the case of a large network like VGG, the difference is much
more considerable. As can be observed in figure 4, in single-fixed-
point mode, even by using 32-bit data types, there is some accuracy
loss (equal to 1%), and using a data width less than 31 bits makes the
network much different from the execution using FIP. This contrasts
with the fact that the accuracy loss is zero when 23 bits are used
in the multi-type method, and with a 20-bit width, the accuracy loss
can be ignored for some applications.

100% 90.0% 90.1%

80%

59.1%
60%

38.6%
40%

Accuracy Loss

0.0% 16.6%

20%
. 4.2%
0.2% 0.5% 32%-019% 0.6%)

0% =
6 15 14 13 12 11 10

Width (W)

—e—Single FXP mode =+=Multi FxP mode

Fig. 3. Accuracy loss as a function of total width (LeNet)

100%

82.0%,
9
80% 68.0%

60%

40% 27.0%

Accuracy Loss

19.0%, 26.0%

20% 3.0%

5
1.0% 00% 10% >0%X12.0%

0%
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Width (W)

—e—Single FxP mode Multi FxP mode

Fig. 4. Accuracy loss as a function of total width (VGG)

After determining the appropriate data type configurations for
network elements, the C implementation is ready to be synthesized
using HLS. In order to show the impact of the data width on the
resource utilization, the Lookup Table (LUT) and Flip Flop (FF)
utilization for two different sizes are also shown in Table III. To
produce these results, we used Xilinx Vivado HLS tool on a Xilinx
FPGA (xczu7ev-ffvcl1156-2-€).

It should be noted that in this work, in order to make the results
reproducible, we used the datasets, weights, and biases provided
by the Keras library without any modification or improvement. The
results can differ if quantization-aware training [24] or post-training
quantization [25] were used. These enhancements can result in lower
data widths, e.g., 16 bits for VGG.

TABLE III
RESOURCE UTILIZATION AFTER HLS SYNTHESIS
LeNet VGG
Fixed-point width (bits) | 16 12 32 21
Accuracy loss 0.00% | 0.60% | 0% 1%
LUT 38661 | 31623 | 240644 | 186711
FF 8754 | 7325 | 86537 | 64398

B. Comparison with previous work

In order to compare the results of our tool with similar works,
we investigated various publications and tools. Some of them did
not generate pure C implementations, and some others were only
applicable to just small DNNs. To the best of our knowledge, [14] is
the only work that can convert large deep neural networks, like VGG,
to a pure C implementation. It uses an LLVM-based approach by
connecting various third-party tools to create the final C code. It does
not provide testbench, verification, and quantization determination,
and therefore, we just compare the base C implementation results
without applying any optimizations. Their generated C code uses
eight bits for both weights and internal layer data. We configured
our knobs similarly and implemented the network on the same device
(Xilinx VU9P FPGA) with a similar clock frequency (200 MHz). As
shown in Table IV, the latency of the present work for VGG is slightly
lower, and the resource utilization is much lower. This is because a
minimal number of C statements, calculations, temporary arrays, and
non-local variables are used. In essence, the generated code by our
tool is much more HLS friendly.

TABLE IV
COMPARING RESULTS WITH [14]
Latency (clk. cycles) | BRAM | DSP FF LUT
ScaleHLS [14] 695,607,608 311 14 5760 16029
AutoDeepHLS 694,406,880 82 1 2186 6070
Gain 0.17% 73.63% | 92.86% | 62.05% | 62.13%

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a complete flow through which a DNN
in Keras description could be converted to an implementation in C to
be synthesized by an HLS tool. The flow began with generating the
implementation and verifying the result and continued with finding
proper fixed-point configurations for every data element in the DNN.
We assumed that all the data types are supposed to have the same
bit-width, and the only difference is in the binary point position.
However, we believe that for some elements, like VGG biases,
even a smaller bit-width will not cause accuracy loss. One of the
future tracks is finding the proper bit-widths for each data element
individually.

REFERENCES

[1] J.Qiu et al., “Going deeper with embedded fpga platform for convolutional
neural network,” in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2016, pp. 26-35.

[2] S. I. Venieris et al., “fpgaconvnet: Mapping regular and irregular convo-
lutional neural networks on fpgas,” IEEE transactions on neural networks
and learning systems, vol. 30, no. 2, pp. 326-342, 2018.

[3] A. Ghaffari et al., “Cnn2gate: Toward designing a general framework for
implementation of convolutional neural networks on fpga,” arXiv preprint
arXiv:2004.04641, 2020.

[4] C. Zhang et al., “Caffeine: Toward uniformed representation and accel-
eration for deep convolutional neural networks,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 11,
pp. 2072-2085, 2018.

[5] P. G. Mousouliotis et al., “Cnn-grinder: From algorithmic to high-level

synthesis descriptions of cnns for low-end-low-cost fpga socs,” Micropro-

cessors and Microsystems, vol. 73, p. 102990, 2020.

J. E. Stone et al., “Opencl: A parallel programming standard for heteroge-

neous computing systems,” Computing in science & engineering, vol. 12,

no. 3, pp. 66-73, 2010.

[71 Y. Guan et al., “Fp-dnn: An automated framework for mapping deep

neural networks onto fpgas with rtl-hls hybrid templates,” in 2017 IEEE

25th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM). 1EEE, 2017, pp. 152-159.

Aljabr0: from-keras-to-c. [Accessed Mar. 29, 2022]. [Online]. Available:

https://github.com/aljabr0/from-keras-to-c

[9] Dobiasd: frugally-deep. [Accessed Mar. 29, 2022]. [Online]. Available:
https://github.com/Dobiasd/frugally-deep

[10] gosha20777: keras2cpp. [Accessed Mar. 29, 2022]. [Online]. Available:
https://github.com/gosha20777/keras2cpp

[11] pplonski: keras2cpp. [Accessed Mar. 29, 2022]. [Online]. Available:
https://github.com/pplonski/keras2cpp

[12] T. Aarrestad et al., “Fast convolutional neural networks on fpgas with
hls4ml,” Machine Learning: Science and Technology, vol. 2, no. 4, p.
045015, 2021.

[13] Ai transformer - keras to ¢ code converter. [Accessed Mar. 29, 2022].
[Online]. Available: https://twitter.com/aitransformer

[14] H. Ye et al., “Scalehls: A new scalable high-level synthesis framework on
multi-level intermediate representation,” in The 28th IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2022.

[15] Y. LeCun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[16] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[17] M. Riazati et al., “Deephls: A complete toolchain for automatic synthesis
of deep neural networks to fpga,” in 2020 27th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS). 1EEE, 2020, pp.
1-4.

[18] S.I. Venieris et al., “fpgaconvnet: A framework for mapping convolutional
neural networks on fpgas,” in 2016 IEEE 24th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2016, pp. 40-47.

[19] K. Guo et al., “Angel-eye: A complete design flow for mapping cnn onto
customized hardware,” in 2016 IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI). 1EEE, 2016, pp. 24-29.

[20] H. Sharma et al., “From high-level deep neural models to fpgas,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1-12.

[21] A. Gulli et al., Deep learning with Keras. Packt Publishing Ltd, 2017.

[22] H. Schildt, The annotated ANSI C Standard American National Standard
for Programming Languages—C: ANSI/ISO 9899-1990. McGraw-Hill,
Inc., 1990.

[23] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141-142, 2012.

[24] Tensorflow - quantization aware training. [Accessed Mar. 29, 2022].
[Online]. Available: https://www.tensorflow.org/model_optimization/
guide/quantization/training

[25] Tensorflow - post-training quantization. [Accessed Mar. 29, 2022].
[Online]. Available: https://www.tensorflow.org/lite/performance/post_
training_quantization

[6

—_

[8

=

