
Mälardalen University Press Dissertations
No. 359

FORMAL METHODS FOR SCALABLE SYNTHESIS
AND VERIFICATION OF AUTONOMOUS SYSTEMS

MISSION PLANNING AND COLLISION AVOIDANCE

Rong Gu

2022

School of Innovation, Design and Engineering

Copyright © Rong Gu, 2022
ISBN 978-91-7485-552-4
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Mälardalen University Press Dissertations
No. 359

FORMAL METHODS FOR SCALABLE SYNTHESIS
AND VERIFICATION OF AUTONOMOUS SYSTEMS

MISSION PLANNING AND COLLISION AVOIDANCE

Rong Gu

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras onsdagen
den 15 juni 2022, 13.00 i Gamma & online, Mälardalens universitet, Västerås.

Fakultetsopponent: Professor Rajeev Alur, University of Pennsylvania

Akademin för innovation, design och teknik

Abstract
Autonomous systems (a.k.a., agents) are often designed to move and execute tasks, without or with little
human intervention. As the agents are often involved in safety- or mission-critical scenarios, ensuring
the correctness of mission planning (i.e., path finding and task scheduling) and collision avoidance is
crucial for such systems. However, traditional verification approaches, such as testing, are not sufficient
to provide such assurance.

Formal methods such as model checking are well known for their rigorous verification based on
mathematical models and logic rules, which provide guarantees of the absence of errors in system
models. However, employing them entails tackling many challenges such as the complicated formal
modeling and the scalability of the algorithmic methods. Additionally, the mission planning concerns
the static and predictable factors in the working environment of the agents, such as stationary obstacles
and predefined tasks, whereas the collision avoidance focuses on the dynamic and unpredictable factors,
such as pedestrians. Consequently, certain questions arise in this context: (i) How can formal methods
be applied in providing correctness-guaranteed solutions within a holistic framework that handles
both the static mission planning and the dynamic collision avoidance?, and (ii) When the methods
for realizing the agents' artificial intelligence, such as machine learning, involve large amounts of data,
how to improve the scalability of formal methods when verifying the results of such methods? In this
dissertation, we offer answers to the questions by developing solutions in form of new frameworks
and algorithms targeting the mentioned problems, implementing the solutions in software tools, and
evaluating their performance on real-world applications.

We propose a two-layer framework for formal modeling and verification of agents. The framework
separates the discrete mission planning from the continuous movement of agents, which is needed for
collision avoidance verification. Additionally, different formal modeling and verification techniques are
adopted in the two layers of the framework respectively.

For mission planning, we design two types of tool-supported approaches, one based on graphic search,
and one based on learning. The former is sound and complete, and supported by the tools UPPAAL and
UPPAAL TIGA. However, the graphic-search approach is not scalable for large numbers of agents. The
learning-based solution complements the graphic-search one, by handling more agents, being supported
by UPPAAL STRATEGO. As a trade-off, the learning-based method is sound but not complete.

For the verification of collision avoidance, we propose two solutions, the first one based on statistical
model checking in UPPAAL SMC, and the second one based on the symbolic model checking of
UPPAAL STRATEGO. In the second solution, we transform the hybrid agent models, whose verification
is undecidable, into a conservative over-approximation as a discrete-time model whose model checking
is decidable. These results are proven as theorems in the dissertation.

To support our methods, we develop a toolset named MALTA that enables the automation of model
construction and mission planning, and provides a visualization of environment configuration and the
resulting mission plans. By using MALTA, we experiment with our novel methods in an industrial use
case: an autonomous quarry. The experiment results demonstrate the advantages and weaknesses of
different methods used in different types of environments, as well as the applicability of our methods
and tool in complex systems.

ISBN 978-91-7485-552-4
ISSN 1651-4238

Abstract

Autonomous systems (a.k.a., agents) are often designed to move and
execute tasks, without or with little human intervention. As the agents
are often involved in safety- or mission-critical scenarios, ensuring the
correctness of mission planning (i.e., path finding and task scheduling)
and collision avoidance is crucial for such systems. However, traditional
verification approaches, such as testing, are not sufficient to provide such
assurance.

Formal methods such as model checking are well known for their rig-
orous verification based on mathematical models and logic rules, which
provide guarantees of the absence of errors in system models. However,
employing them entails tackling many challenges such as the compli-
cated formal modeling and the scalability of the algorithmic methods.
Additionally, the mission planning concerns the static and predictable
factors in the working environment of the agents, such as stationary
obstacles and predefined tasks, whereas the collision avoidance focuses
on the dynamic and unpredictable factors, such as pedestrians. Con-
sequently, certain questions arise in this context: (i) How can formal
methods be applied in providing correctness-guaranteed solutions within
a holistic framework that handles both the static mission planning and
the dynamic collision avoidance?, and (ii) When the methods for realiz-
ing the agents’ artificial intelligence, such as machine learning, involve
large amounts of data, how to improve the scalability of formal methods
when verifying the results of such methods? In this dissertation, we offer
answers to the questions by developing solutions in form of new frame-
works and algorithms targeting the mentioned problems, implementing
the solutions in software tools, and evaluating their performance on real-
world applications.

We propose a two-layer framework for formal modeling and verifica-

i

ii

tion of agents. The framework separates the discrete mission planning
from the continuous movement of agents, which is needed for collision
avoidance verification. Additionally, different formal modeling and ver-
ification techniques are adopted in the two layers of the framework re-
spectively.

For mission planning, we design two types of tool-supported ap-
proaches, one based on graphic search, and one based on learning. The
former is sound and complete, and supported by the tools UPPAAL and
UPPAAL TIGA. However, the graphic-search approach is not scalable
for large numbers of agents. The learning-based solution complements
the graphic-search one, by handling more agents, being supported by
UPPAAL STRATEGO. As a trade-off, the learning-based method is sound
but not complete.

For the verification of collision avoidance, we propose two solutions,
the first one based on statistical model checking in UPPAAL SMC, and
second one based on the symbolic model checking of UPPAAL STRAT-
EGO. In the second solution, we transform the hybrid agent models,
whose verification is undecidable, into a conservative over-approximation
as a discrete-time model whose model checking is decidable. These re-
sults are proven as theorems in the dissertation.

To support our methods, we develop a toolset named MALTA that
enables the automation of model construction and mission planning, and
provides a visualization of environment configuration and the resulting
mission plans. By using MALTA, we experiment with our novel methods
in an industrial use case: an autonomous quarry. The experiment results
demonstrate the advantages and weaknesses of different methods used
in different types of environments, as well as the applicability of our
methods and tool in complex systems.

Sammanfattning

Autonoma system (även kallade agenter) är ofta designade för att förfly-
tta sig och utföra uppdrag, helt utan eller med lite mänskligt ingripande.
Eftersom agenter ofta är involverade i säkerhets- eller uppdragskritiska
scenarion, är det avgörande att säkerställa korrektheten av uppdrags-
planeringen (dvs. planering av färdväg och schemaläggning av uppgifter)
hos sådana system. Men traditionella verifieringsmetoder, såsom test-
ning, är inte tillräckliga för att ge sådan försäkran.

Formella metoder, exempelvis modellkontroll ("model checking"), är
välkända för sin rigorösa algoritmiska verifiering baserad på matem-
atiska modeller och logiska regler, vilken ger garantier för frånvaron
av fel i systemmodeller. Att använda dem innebär dock att hantera
många utmaningar såsom den komplicerade formella modelleringen och
skalbarheten hos de algoritmiska metoderna. Dessutom så berör up-
pdragsplaneringen de statiska och förutsägbara faktorerna i agenternas
arbetsmiljö, såsom stationära hinder och fördefinierade uppgifter, medan
kollisionsundvikandet fokuserar på de dynamiska och oförutsägbara fak-
torerna, såsom fotgängare. Följaktligen uppstår frågor i detta samman-
hang: (i) Hur kan formella metoder tillämpas för att tillhandahålla kor-
rekthetsgaranterade lösningar inom ett holistiskt ramverk som hanterar
både den statiska uppdragsplaneringen och det dynamiska kollisionsund-
vikandet?, och (ii) När algoritmerna för att realisera agenternas artifi-
ciella intelligens (AI), såsom maskininlärning, involverar stora mängder
data, hur kan man förbättra skalbarheten av formella metoder när man
verifierar resultaten av sådana algoritmer? I denna avhandling erb-
juder vi svar på dessa frågor genom att utveckla lösningar i form av
nya ramverk och algoritmer som riktar in sig på de nämnda problemen,
implementera lösningarna i mjukvaruverktyg och utvärdera deras pre-
standa på verkliga applikationer.

iii

iv

Vi föreslår ett ramverk i två lager för formell modellering och veri-
fiering av agenter. Ramverket skiljer den diskreta uppdragsplaneringen
från den kontinuerliga rörelsen av agenter, som behövs för att verifiera
kollisionsundvikande. Dessutom så används olika formella modellerings-
och verifieringstekniker i ramverkets två lager.

För uppdragsplanering så designar vi två typer av verktygsstödda
tillvägagångssätt, ett baserat på grafisk sökning och ett baserad på lärande.
Det förstnämnda tillvägagångssättet är sunt och fullständigt, och stöds
av verktygen UPPAAL och UPPAAL TIGA. Men, det är dock inte
skalbart för ett stort antal agenter. Det lärningsbaserade tillvägagångssät-
tet kompletterar det grafisk söknings-baserade, genom att hantera flera
agenter, med stöd av UPPAAL STRATEGO. Som en avvägning, så är
den lärningsbaserade metoden sund men inte fullständig.

För verifiering av kollisionsundvikande presenterar vi två lösningar,
den första baserad på statistisk modellkontroll i UPPAAL SMC, och den
andra baserad på den symboliska modellkontroll som finns i UPPAAL
STRATEGO. I den andra lösningen transformerar vi hybridmodellen av
agenter, vars verifiering är oavgörbar, till en konservativ överapproxima-
tion i form av en diskret tids-modell, vars modellkontroll är avgörbar.
Dessa resultat bevisas som satser i avhandlingen.

För att underlätta tillämpningen av våra metoder i industriella sys-
tem, utvecklar vi en verktygsuppsättning, MALTA, vilken möjliggör au-
tomatisering av modellkonstruktion och uppdragsplanering och ger en
visualisering av miljökonfiguration och de resulterande uppdragsplan-
erna. Genom att använda MALTA utvärderar vi våra nya metoder på ett
industriellt användningsfall: ett autonomt stenbrott. Utvärderingsresul-
taten visar fördelarna och svagheterna med olika metoder som används
i olika typer av miljöer, och visar användbarheten av våra metoder och
verktyg i komplexa system.

致我的父亲母亲

To my parents

吾生也有涯，而知也无涯。
以有涯随无涯，何如？

– 庄子·内篇·养生主

My life has an end.
The universe of knowledge has no end.

How would it be,
to pursue the endless knowledge with a limited life?

– Chuang Tzu

Acknowledgments

In September 2006, I was taking my first class in discrete mathematics.
The professor asked us a question: how can you prove the correctness
of your software program? I did not know the answer but since then, I
started my journey of pursuing the answer to that question. After grad-
uating from Xi’an Jiaotong University in 2013, I became an embedded
software developer at an avionic institute, where I participated in several
projects of designing control software of safety-critical systems, such as
aircraft. That question, how to prove the correctness of software pro-
grams, had always been remaining in my mind. Testing and simulation
are good for finding bugs, but how can I ensure that my programs are
free of bugs? Curiosity drove me to apply for a doctoral student at the
age of 29, a year earlier than what we Chinese call 而立 (er-li), which
means a man should finish his study and be independent at that time.

After five years of study, can I answer that question? Yes and No. On
one hand, I have been learning and using formal methods to prove the
correctness of autonomous systems in my doctoral study. I am fascinated
by formal modeling, model checking, and theorem proving, which are
mathematically elegant yet practically useful. On the other hand, the
more I study the more I know that there are still many unsolved problems
in this field, which motivate me to carry on researching with the attitude
of a student in the future.

During these five years, things were not always easy, sometimes even
tough. Luckily, I have a lovely family behind me. My wife is always
there for me. We took good care of each other and went through some
difficult times altogether. Without her, I could not come to Sweden in
the first place and never dream of taking the courage to give up an easy
life and pursuing a career that I really like. Thank you, Rui. You are
my best friend and my love, the one whom I want to share every laugh

ix

x

and tear with.
I would like to thank my supervisors, Associate Professor Cristina

Seceleanu, Professor Kristina Lundqvist, Senior Lecturer Eduard Enoiu,
and former supervisor Dr Raluca Marinescu, for your guidance and sup-
port during the journey. Cristina, I want to send my special thanks to
you, for your kind heart in tolerating all my faults and waywardness,
and patience in teaching me everything repetitively. Your consistent en-
thusiasm for work and life is and will always be my light for the path.
Many thanks to Edi and Raluca. Your advice on how to do research,
write papers and give presentations has been very helpful to me. I re-
ally enjoy the time when we work together and walk your dogs together.
Kristina, thank you for being there when I need someone to talk to and
sharing your rich experience in academia. Your criticism is always mild
and accurate. It is my luck to have you as my co-supervisor.

I would like to express my deep gratitude to the faculty examiner,
Professor Rajeev Alur, and the grading committee members: Professor
Kim Larsen, Professor Jan Křetínský, and Associate Professor Jana Tu-
mova for kindly accepting our invitation and dedicating part of their
valuable time to review my study. It is truly my honour to have you as
the reviewers of this dissertation.

I would like to thank Professor Hans Hansson for reviewing the pro-
posal and the initial version of the dissertation, and Dr Peter Backeman
for the help with the Swedish abstract.

I would like to express my appreciation to my colleagues at Mälardalen
University (MDU), Lecturer Afshin Ameri, Professor Mats Björkman,
and Professor Mikael Sjödin for providing me the chance to give lec-
tures to our students. Many thanks to Senior Lecturer Baran Çürüklü at
MDU, Dr Eduard Baranov and Professor Axel Legay at UCLouvain, and
Assistant Professor Peter Jensen at Aalborg University. I have learned
a lot in our collaboration for solving the synthesis problem. The pan-
demic of Covid-19 has stopped the traveling, but our online discussion
and communication went successfully and fruitfully. I would like to thank
my friends, Asha, Damir, Nesredin, Predrag, and Simin, etc., for being
supportive and giving me advice to be a good doctoral student. Al-
though we may not see each other as often as before, it is like what the
beautiful Chinese poem says, a bosom friend afar brings distance near.

Rong Gu
Västerås, March, 2022

List of Publications

Papers Included in the Dissertation1

Paper A Towards a Two-Layer Framework for Verifying Autonomous
Vehicles. Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Published in Proceedings of the 11th Annual NASA Formal
Methods Symposium, LNCS vol.11460, pp.186-203, Springer, Houston,
USA, 2019.

Paper B Verifiable Strategy Synthesis for Multiple Autonomous
Agents: A Scalable Approach. Rong Gu, Peter G. Jensen, Danny B.
Poulsen, Cristina Seceleanu, Eduard Enoiu, and Kristina Lundqvist.
Published in Journal of Software Tools for Technology Transfer (STTT),
Special Issue: FMICS 2019/2020, pp.1-20, Springer, 2022.

Paper C Synthesis and Verification of Mission Plans for Multiple Au-
tonomous Agents under Complex Road Conditions. Rong Gu, Eduard
Baranov, Afshin Ameri, Eduard Enoiu, Baran Cürüklü, Cristina Sece-
leanu, Axel Legay, and Kristina Lundqvist. Submitted to Transactions
on Software Engineering and Methodology (TOSEM), ACM, 2022.

Paper D Probabilistic Mission Planning and Analysis for Multi-agent
Systems. Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Published in Proceedings of the 9th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA), LNCS vol.12476, pp.350-367, Springer, Rhodes,
Greece, 2021.

1The included papers have been reformatted to comply with the dissertation layout

xi

xii

Paper E Correctness-Guaranteed Strategy Synthesis and Compression
for Multi-Agent Autonomous Systems. Rong Gu, Peter G. Jensen, Cristi-
na Seceleanu, Eduard Enoiu, and Kristina Lundqvist. Submitted to
Journal of Science of Computer Programming (SCP), Elsevier, 2022.

Paper F Model Checking Collision Avoidance of Nonlinear Autono-
mous Vehicle Models. Rong Gu, Cristina Seceleanu, Eduard Enoiu, and
Kristina Lundqvist. Published in Proceedings of the 24th International
Symposium on Formal Methods (FM). LNCS vol.13047, pp.676-694,
Springer, online, 2021.

Papers Related to, but not Included in the
Dissertation
1. Formal Verification of an Autonomous Wheel Loader by Model Che-
cking. Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Published in Proceedings of the 6th Conference on Formal
Methods in Software Engineering (FormaliSE), pp.74-83, ACM, 2018.

2. TAMAA: UPPAAL-based Mission Planning for Autonomous Agents.
Rong Gu, Eduard Enoiu, and Cristina Seceleanu. Published in Proceed-
ings of the 35th Symposium on Applied Computing (SAC), pp.1624-
1633, ACM, 2020.

3. Verifiable and Scalable Mission-Plan Synthesis for Multiple Autono-
mous Agents. Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Published in Proceedings of the 25th International Con-
ference on Formal Methods for Industrial Critical Systems (FMICS).
LNCS vol.12327, pp.73-92, Springer, Vienna, Austria, 2020. Best Pa-
per Award.

Contents

I Dissertation 1

1 Introduction 3
1.1 A Two-Layer Framework for Modeling and Verifying Au-

tonomous Systems . 6
1.2 Mission Planning for Multi-Agent Autonomous Systems . 6
1.3 Reach-Avoid Verification of Nonlinear Agents 9
1.4 Dissertation Overview . 10

2 Preliminaries 17
2.1 Formal Verification and Synthesis 17

2.1.1 Formal Verification 17
2.1.2 Synthesis . 19

2.2 Modeling Languages and Tools 19
2.2.1 Timed Automata and UPPAAL 20
2.2.2 Hybrid Automata and UPPAAL SMC 22
2.2.3 Timed Games and Strategies 24

2.3 Path Finding and Collision Avoidance 25
2.3.1 Theta* Algorithm 25
2.3.2 Collision Avoidance based on Dipole Flow Fields . 26

2.4 Reinforcement Learning 26

3 Research Problem 29
3.1 Problem Description . 29
3.2 Research Goals . 31

4 Research Methods 35

xiii

xivContents

5 Dissertation Contributions 37
5.1 A Two-Layer Framework for Modeling and Verifying Au-

tonomous Systems . 37
5.1.1 Overall Description of the Framework 37
5.1.2 Communication between the Two Layers 39

5.2 Mission Planning in Different Environments 41
5.2.1 Mission Planning in Deterministic Environments . 45
5.2.2 Mission Planning in Non-deterministic Environ-

ments . 47
5.2.3 Mission Planning in Stochastic Environments . . . 52
5.2.4 Correctness-Guaranteed Mission Plan Compression 52

5.3 Model-Checking Reach-Avoid Requirement of Nonlinear
Agents . 53
5.3.1 Modeling Nonlinear Agents 54
5.3.2 Solution A: Statistical Model Checking 56
5.3.3 Solution B: Exhaustive Model Checking 57

5.4 Validation on Industrial Systems 60
5.5 Research Goals Revisited 64

6 Related Work 67
6.1 Multi-Layer Frameworks for Agent Design and Verification 67
6.2 Mission Planning of Agents 68
6.3 Verification of Agents . 70

7 Conclusions and Future Work 73
7.1 Conclusions . 73
7.2 Future Work . 75

Bibliography 77

II Included Papers 89

8 Paper A: Towards a Two-layer Framework for Verifying
Autonomous Vehicles 91
8.1 Introduction . 93
8.2 Preliminaries . 94

8.2.1 Hybrid Automata and UPPAAL SMC 94
8.2.2 Theta* Algorithm 96
8.2.3 Dipole Flow Field for Collision Avoidance 96

Contents xv

8.3 Use Case: Autonomous Wheel Loader 97
8.4 A Two-level Framework for Planning and Verifying Au-

tonomous Vehicles . 99
8.5 Pattern-based Modeling of the Dynamic Layer 101

8.5.1 Patterns for the Execution Unit 101
8.5.2 Patterns for the Control Unit 102
8.5.3 Encoding the Control Unit Patterns as Hybrid Au-

tomata . 104
8.6 Use Case Revisited: Applying Our

Method on AWL . 106
8.6.1 Formal Model of the Control Unit 107
8.6.2 Statistical Model Checking of the AWL Formal

Model . 108
8.7 Related Work . 111
8.8 Conclusions and future work 112
Bibliography . 113

9 Paper B: Verifiable Strategy Synthesis for Multiple Au-
tonomous Agents: A Scalable Approach 117
9.1 Introduction . 119
9.2 Preliminaries . 122

9.2.1 Timed Automata and Timed Games 122
9.2.2 Stochastic Timed Games and Stochastic Strategies 124
9.2.3 UPPAAL, UPPAAL TIGA, and UPPAAL STRAT-

EGO . 125
9.2.4 Reinforcement Learning 126

9.3 Problem Description and Analysis 127
9.3.1 An Industrial Case Study: The Autonomous Quarry127
9.3.2 Problem Analysis 128
9.3.3 Non-determinism and Scalability of Mission

Planning . 129
9.4 Overall Description of the Solutions 130
9.5 Solution 1: Game-Theoretic Synthesis 132

9.5.1 Overall Description of TAMAA 132
9.5.2 Mission-Plan Synthesis by TAMAA 132
9.5.3 Synthesizing Strategies in UPPAAL TIGA 137

9.6 Solution 2: Simulation-Based Synthesis 140
9.6.1 State-Space Exploration of TAMAA 140
9.6.2 Learning Strategies 140

xviContents

9.7 Tool Support . 149
9.7.1 Integration of Task Scheduler and UPPAAL STRAT-

EGO . 151
9.8 Experimental Evaluation 152

9.8.1 Design of Experiments 152
9.8.2 Results of Experiments 152
9.8.3 Discussion of the Experimental Results 155

9.9 Related Work . 157
9.10 Conclusions and Future Work 159
Bibliography . 161

10 Paper C: Synthesis and Verification of Mission Plans for
Multiple Autonomous Agents under Complex Road Con-
ditions 167
10.1 Introduction . 169
10.2 An Industrial Case Study: The Autonomous Quarry . . . 173
10.3 Preliminaries . 176

10.3.1 Timed Automata and UPPAAL 177
10.3.2 Devices for Assisted Living (DALi) 179

10.4 Mission Planning Methodology 180
10.4.1 Improved DALi for Path Planning 183
10.4.2 TAMAA for Task Scheduling 187
10.4.3 Mission Planning with DALi and TAMAA 198

10.5 Description of the Tool . 201
10.5.1 Overall Description 201
10.5.2 Mission Management Tool 203
10.5.3 Environmental Configuration with MMT 204
10.5.4 Mission Plan Demonstration in MMT 206

10.6 Evaluation . 207
10.6.1 Methodology . 208
10.6.2 Comparison of DALi optimizations 210
10.6.3 Comparison of A* and DALi 210
10.6.4 Evaluation of the Approach with Heat Areas and

Temporary Obstacles 213
10.6.5 Results for Multiple Agents 215

10.7 Adaptability of MALTA: a Special Industrial Use Case . . 219
10.7.1 Adjustments of the Models 221
10.7.2 Additional Adaptation of Queries and Models . . . 223
10.7.3 Synthesis Results 225

Contents xvii

10.8 Related Work . 226
10.9 Conclusions and Future Work 229
Bibliography . 231

11 Paper D: Probabilistic Mission Planning and Analysis for
Multi-agent Systems 237
11.1 Introduction . 239
11.2 Preliminaries . 241

11.2.1 Stochastic Timed Automata and UPPAAL SMC . 241
11.2.2 Reinforcement Learning 242
11.2.3 A Two-Layer Framework for Formal Modelling and

Verification of Autonomous Agents 243
11.3 Problem Description . 244
11.4 Mission Planning Based on Reinforcement Learning and

Stochastic Timed Automata 246
11.4.1 MCRL: Combining Model Checking and Reinforce-

ment Learning for Mission Planning 247
11.4.2 Stochastic Timed Automata for MCRL 249

11.5 Statistical Verification and Analysis of the Use Case: an
Autonomous Quarry . 253
11.5.1 Mission Plan Synthesis 254
11.5.2 Bottleneck Analysis 255
11.5.3 Travelling Timed Estimation and Re-Planning . . 256

11.6 Related Work . 259
11.7 Conclusions and Future Work 260
Bibliography . 261

12 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression for Multi-Agent Autonomous Systems 265
12.1 Introduction . 267
12.2 Preliminaries . 269

12.2.1 UPPAAL Timed Automata 269
12.2.2 Timed Games . 270
12.2.3 Model Checking and Temporal Properties 272
12.2.4 Reinforcement Learning 273

12.3 Problem Description . 273
12.3.1 Overall Description 274
12.3.2 Challenges of Solving the Planning Problem 274
12.3.3 A Motivating Example 277

xviiiContents

12.4 Strategy Synthesis, Verification and Compression 278
12.4.1 Overall Workflow of MoCReL 278
12.4.2 Modeling of MAS 279
12.4.3 Partial State-Space Observation 283
12.4.4 Key Techniques of MoCReL 284

12.5 Experimental Evaluation 294
12.5.1 Use Case Description 295
12.5.2 Experiment Design 296
12.5.3 Experiment Results 297

12.6 Related Work . 300
12.7 Conclusions and Future Work 301
Bibliography . 303

13 Paper F: Model Checking Collision Avoidance of Nonlin-
ear Autonomous Vehicle Models 309
13.1 Introduction . 311
13.2 Problem Description . 313
13.3 Definitions and Verification Reduction Theorems 315

13.3.1 Definitions of Maps, Agent States, and Trajectories 316
13.3.2 Collision-Avoidance Verification Reduction 319
13.3.3 Discretization of Trajectories 320

13.4 Verification Approach and Tool Support 323
13.4.1 General Description of the Approach 324
13.4.2 Design of the UTA Templates and CTL Properties 325
13.4.3 Reduction of the State Space of the UTA Model . 326

13.5 Experimental Evaluation 327
13.5.1 The Collision-Avoidance Algorithm to be Verified . 328
13.5.2 Verification Results 328

13.6 Related Work . 331
13.7 Conclusions and Future Work 332
Bibliography . 333

A 337
A.1 Algorithm of Synthesis . 337
A.2 Algorithm of Verification and Labeling 337
A.3 Templates of the TG models 340
A.4 Overview of the External Library of MoCReL 342

I

Dissertation

1

Chapter 1

Introduction

Autonomous systems are systems that can move and execute certain
tasks without or with little human intervention. Such systems, which
are referred to as autonomous agents, or shortly agents [1], are often
designed to move within a confined environment and accomplish a com-
mon mission, sometimes collectively. To achieve this design goal, two
crucial functions of autonomy need to be designed: mission planning or
mission-plan synthesis (that includes path finding and task scheduling),
and collision avoidance. The first function aims to generate mission plans
for agents to move without hitting static obstacles, and accomplish cer-
tain tasks with respect to certain requirements, e.g., a robotic mailman
delivering all letters within two hours. The second function is about
avoiding dynamic obstacles, e.g., humans, when agents are executing
the mission plans. Additionally, agents are often involved in safety- or
mission-critical scenarios where malfunctions of the systems can result
in casualties and profound property damage. According to an analysis of
traffic accidents that occurred in the US state of California from January
2015 to December 2017 [2], the risk of a traffic accident with causalities
involving autonomous vehicles is almost eight times higher than that of
human-driven vehicles. Therefore, a thorough analysis of the agents’ au-
tonomous functionality is crucial for obtaining a guarantee of their safe
operation. In cases that the agents operate in industrial settings, such
as in construction sites, besides safe operation they are also required to
guarantee a certain productivity. The uncertainties in the environment
may hinder the agents from fulfilling such requirements. For instance,

3

4 Chapter 1. Introduction

pedestrians that appear arbitrarily in a site may cause the agents to slow
down or deviate from their original paths, and thus failing to accomplish
their mission in time.

Traditional approaches of verification, such as simulation and proto-
type testing, can be expensive and sometimes not sufficient for assuring a
system that interacts autonomously with an unpredictable environment
that assumes the presence of humans and varying site conditions [3]. If
one considers an example of a fleet of agents, guaranteeing less than one
catastrophic failure per hour needs more than 10 billion test cases [4].
Additionally, the traditional approaches of verification are often applied
after the system’s design phase, which makes it expensive to correct mis-
takes that could have been detected and removed at or before that phase
already, such as the system’s specification phase.

Formal methods are mathematically rigorous techniques for system
specification, design, validation, and verification [5]. Therefore, formal
verification can be applied for assuring such autonomous systems at de-
sign time, as a complement to the traditional verification techniques.
Model checking is a formal method that explores the state space of a
model and checks if it satisfies certain temporal logic properties [6],
such as always executing task A, and then B, followed by C, possibly
within a given time. When the state-space exploration is exhaustive,
model checking provides a guarantee that a system model satisfies a
certain requirement, which might not be possible for traditional verifi-
cation techniques. Besides verification, tool-supported formal methods
also provide a possibility of automatically constructing mission plans
with a correctness guarantee, that is, synthesizing mission plans that
are correct-by-construction [7].

Several related studies [8, 9, 10, 11, 12] on motion planning and the
verification of agents have inspired us to address the problems of mission
planning and collision avoidance verification by leveraging state-of-the-
art formal methods. However, applying formal methods on such complex
systems has many challenges:

(i) The inherent difference between mission planning and dynamic col-
lision avoidance. The former aspect does not concern the kinematic
features of the agents as it only focuses on computing a path plan
towards the destination, and a schedule carrying out certain tasks,
in a certain order, at given positions called milestones, within pre-
scribed amounts of time. However, verifying dynamic collision

5

avoidance requires a continuous environment, in which the kine-
matics of the agents can be captured. Therefore, one needs a mod-
eling and verification solution that decouples the discrete part from
the continuous part in order to provide a separation of concerns.

(ii) Composing a large number of agents within a model gives rise
to a dramatically large state space, which makes the problem of
mission-plan synthesis and verification computationally challeng-
ing [13, 14]. Additionally, different types of environments require
different synthesis methods, such as collaborative environments be-
ing under the full control of agents and non-deterministic ones act-
ing arbitrarily. However, the resulting mission plans are supposed
to let the agents accomplish their mission regardless of how the
environment acts. Hence, our synthesis methodology must be scal-
able to deal with a large number of agents and be able to function
in different types of environments.

(iii) The combination of the discrete control of an agent’s behavior, and
its continuous motions gives rise to a hybrid system model (e.g.,
captured via hybrid automata [15]), on which exhaustive model
checking cannot be applied as such, since it is undecidable [16, 17].

(iv) Few of the related studies consider timing requirements for mission-
plan synthesis, which are of high concern in industrial applications.
Our verification techniques must be applicable for real-world cases,
such as industrial systems.

In this dissertation, we address the above challenges by the following
contributions:

• A two-layer framework for modeling and verification of agents -
Challenge (i) (Section 5.1).

• A scalable methodology for mission planning in different types of
environments - Challenge (ii) (Section 5.2).

• A methodology for reach-avoid verification considering the nonlin-
ear trajectories of agents - Challenge (iii) (Section 5.3).

• Tools that facilitate the use of our methodology in industrial ap-
plications - Challenge (iv) (Section 5.4).

6 Chapter 1. Introduction

Next, we give a more detailed introduction of the four parts of the dis-
sertation’s contributions, followed by an overview of the dissertation.

1.1 A Two-Layer Framework for Modeling
and Verifying Autonomous Systems

In this dissertation, we propose a two-layer framework for modeling and
verification of agents consisting of a static and a dynamic layer, respec-
tively, with data being exchanged between them [18]. The static layer
is responsible for mission planning for the agents according to possibly
incomplete information of the environment. In this layer, known static
obstacles are assumed, together with milestones representing points of
task operation of the agents. The dynamic layer is dedicated to simu-
lating and verifying the agents that follow the reference path from the
starting point to the destination, generated by the static layer, while
considering unforeseen static and moving obstacles. The structure of
the framework separates the static high-level mission planning from the
dynamic collision avoidance, thus providing a separation of concerns for
the system’s modeling and verification. The communication between
these two layers enables re-planning when unforeseen obstacles are de-
tected in the dynamic layer and the static layer needs to update the
mission plan accordingly.

1.2 Mission Planning for Multi-Agent Au-
tonomous Systems

Mission planning for Multi-Agent Autonomous Systems (MAS) can be
categorized into three types of problems according to the environment
types, respectively: 1) a deterministic environment where agents control
which actions start and finish, and when; 2) a stochastic environment
where agents decide only which actions start and when, whereas the
environment chooses each action’s ending time stochastically; 3) a non-
deterministic environment that is similar to a stochastic one, with a
difference that the respective ending time of any action is decided by the
environment non-deterministically. Next, we introduce the solutions for
each type of environment, respectively.

1.2 Mission Planning for Multi-Agent Autonomous Systems
7

Solution for environments of type 1). In a deterministic environment,
a mission plan consists of the starting and ending time of the agents’
actions, respectively, that is, moving to a milestone or starting a task.
We model the mission-planning problem in such environments as a 1-
player game where the MAS represent the only player in the game. The
goal of winning the game is to order the agents’ actions so that they visit
the milestones in a certain order and finish their tasks in the shortest
time while satisfying the constrains of tasks, e.g., always finishing task A
before task B starts. We use timed automata (TA) [19] as the modeling
language and the model checker UPPAAL [20] to solve the game, that is,
synthesize a plan (a.k.a., winning strategy) for agents to win the game.
In addition, the method is supported by our tool named MALTA1 [21].
The tool provides a graphical user interface (GUI) for configuring the
environment and tasks for the agents, and an extensible module of path
finding and task scheduling. So far, MALTA supports three path-finding
algorithms, A* [22], Theta* [23], and DALi [24], and one task-scheduling
method that uses timed automata and UPPAAL [13].

Solution for environments of type 2). In a stochastic environment,
the duration of actions is no longer a fixed number but a time interval be-
tween the best-case-execution time (BCET) and the worst-case-execution
time (WCET). In other words, the time point of finishing an action is
chosen by the environment stochastically between the action’s BCET and
WCET. For example, if completing an action is equally likely between
its BCET and WCET, the uniform distribution of probabilities can be
used to model the environment’s stochastic decision of completing the
action. Now, the mission-planning problem in such environments can
be modeled as a 1 1

2 -player game, in which one player, i.e., the MAS,
behaves non-deterministically, and the environment is counted as 1

2 of a
player whose behavior is stochastic. The goal of winning the game is to
choose the agents’ starting time of actions according to the environment’s
stochastic reactions, so that the probability of visiting the milestones in
the right order and finishing all the tasks within a certain time, while
satisfying the task constraints, is higher than a required number.

Solution for environments of type 3). In a non-deterministic environ-
ment, the environment’s behavior becomes non-deterministic, meaning
that the actions are completed at arbitrary time points. Hence, the
mission-planning problem now becomes a 2-player game, where both

1MALTA is published: https://github.com/rgu01/MALTA

8 Chapter 1. Introduction

the MAS and the environment are players of the game, who control their
actions non-deterministically. Now the goal of winning the game is to
choose the agents’ starting time of actions, respectively, so that they can
visit the milestones in the right order and finish all the tasks within a
certain time while satisfying the task constraints regardless of how the
environment reacts.

To solve the 2-player games captured by formal models called timed
games (TG), adapted from the TA models in MALTA, we use the so-
called UPPAAL TIGA tool [25, 26]. The problem that UPPAAL TIGA
can solve limits the number of agents to five, because the linear growth of
the agents’ number increases the TG’s state space exponentially, which
causes the infamous state-space-explosion problem of model checking
[27]. To deal with this limit, we design a novel synthesis approach that
combines model checking with reinforcement learning [28], called MCRL2

[29]. Our new approach is able to deal with more than five agents within
a reasonable computation time. As an improvement of MCRL, we fur-
ther develop the approach by integrating it into the tool called UPPAAL
STRATEGO [30, 26]. The integration facilitates the modeling phase, ac-
celerates the learning phase for synthesizing mission plans, and enables
compressing the synthesized strategies while preserving their properties,
such as “always eventually finishing all the tasks” [31].

We also show that MCRL can be used in solving 1 1
2 -player games

[32], and provide probabilistic results of verification by using statistical
model checking [33]. The results expose the bottleneck of a strategy,
which shows the positions where agents most likely wait the longest
time, and enable the agents to re-calculate the mission plans considering
moving obstacles, e.g., pedestrians, which are unpredictable and appear
stochastically in the environment. The resulting mission plans are sta-
tistically optimal in the sense that they are most likely (i.e., with the
highest probability) to be able to finish the agents’ tasks in time.

Our method called MoCReL3 is for compressing strategies produced
by MCRL [31]. The compression can reduce the strategies’ sizes down to
0.05% of the original ones while preserving their properties. This con-
tribution is especially meaningful when the mission plans are supposed
to be comprehensible by humans, or used in embedded systems with a
limited memory space.

2MCRL: Model Checking + Reinforcement Learning
3MoCReL: Model-checked Compressed Reinforcement Learning

1.3 Reach-Avoid Verification of Nonlinear Agents 9

1.3 Reach-Avoid Verification of Nonlinear
Agents

When agents start to execute the synthesized mission plans, they need
to follow the planned paths and visit the milestones to carry out their
tasks autonomously. The traveling now becomes continuous instead of
the series of discrete steps in the mission plan. The agents may even en-
counter unforeseen obstacles, which can be also moving unpredictably.
The manners of the moving obstacles’ behavior form two types of envi-
ronments: non-deterministic environments and stochastic environments.
In both types of environments, the moving obstacles can appear at any
moments, at any positions within the space, travel at any speeds and
towards any directions within their capabilities. When the probabili-
ties of when and where the obstacles appear and how they move are
known, the environment is considered a stochastic one; otherwise, it is
a non-deterministic environment. Whatever type the environment is,
the agents are supposed to travel safely from their initial positions to
destinations, respectively, without colliding with the static and moving
obstacles. We call such a requirement the reach-avoid requirement, a
term that is also used and studied in the literature [34, 35, 36].

To model the continuous movement of agents and moving obstacles,
we use nonlinear hybrid automata [15], which reflect the nonlinear evo-
lution of their continuous variables, e.g., positions, and the discrete state
transitions, e.g., from stopped to moving. Unfortunately, model checking
nonlinear hybrid automata is an undecidable problem [16, 17]. We use
two methods to overcome this difficulty: (a) statistical model checking
(SMC), and (b) symbolic model checking after a conservative transfor-
mation of the hybrid models. First, we employ statistical model checking
supported by UPPAAL SMC [33] for verifying hybrid automata against
the reach-avoid requirement [18]. Instead of exhaustively exploring the
state space of the model, UPPAAL SMC simulates the model by the
Monte-Carlo simulation and samples traces before checking whether the
traces satisfy a certain property or not. The ones that satisfy the prop-
erty are successful traces and the ratio of such successful traces among
all samples is returned from the model checker as the probability of sat-
isfaction of the property. In this way, the verification of hybrid automata
is realized with a sacrifice of completeness, that is, quantitative answers
(i.e., probabilities) replacing the qualitative answers (i.e., true/false).

10 Chapter 1. Introduction

When the environment becomes non-deterministic, the behavior of
moving obstacles becomes non-deterministic, hence statistical model
checking is not suitable here. To cope with the undecidable problem of
model checking nonlinear hybrid automata, we conservatively transform
the verification of an agent’s continuous trajectory to the one of over-
approximating discrete-time trajectory, and prove that, under certain
assumptions, if the latter satisfies the reach-avoid requirement, the
former must also satisfy it [37]. Based on this conclusion, we develop
a method for model checking the reach-avoid requirement against
TA models of agents and moving obstacles, whose model checking is
decidable. The method uses the model checker in UPPAAL STRATEGO
[30], as the tool supports calling external libraries, which provides a
flexible way of embedding the collision avoidance algorithms into the
TA. The model transformation does not sacrifice the level of assurance
like in the case of employing statistical model checking, that is, if the
verification returns true, the nonlinear hybrid models of agents are
guaranteed to travel safely within the environment, and reach their
destinations when facing any moving obstacles.

The two-layer framework and the corresponding novel approaches for
mission plan synthesis and reach-avoid verification are evaluated via ex-
periments on an industrial application, i.e., an autonomous quarry, pro-
vided by Volvo Construction Equipment in Sweden. The experimental
evaluations show the performance of different mission-planning methods
in different types of environments [26, 31]. Furthermore, we verify a novel
algorithm of collision avoidance that is based on dipole flow fields [38]
by using statistical model checking [18] and exhaustive model checking
combined with our method of model transformation [37]. The methods
reveal several problematic situations that benefit the algorithm design-
ers to improve their method. We further demonstrate the absence of
mistakes for an improved version of the algorithm in environments with
one moving obstacle [37], which is impossible for traditional methods
such as testing and simulation.

1.4 Dissertation Overview

This dissertation is divided into two parts. The first part is a summary of
our research, including the preliminaries of this dissertation (Chapter 2),
the problem formulation and our research goals (Chapter 3), the research

1.4 Dissertation Overview 11

methods applied in this dissertation (Chapter 4), a brief overview of our
contributions (Chapter 5), a discussion on the related work (Chapter
6), as well as our conclusions, limitations and future work directions
(Chapter 7). The second part is a collection of papers included in this
dissertation, listed as follows:

Paper A Towards a Two-Layer Framework for Verifying Autonomous
Vehicles. Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. In Proceedings of the 11th Annual NASA Formal Methods
Symposium, LNCS volume 11460, pages 186-203, Springer, Houston,
USA, 2019.

Abstract: Autonomous vehicles rely heavily on intelligent algorithms
for path planning and collision avoidance, and their functionality and
dependability can be ensured through formal verification. To facilitate
the verification, it is beneficial to decouple the static high-level planning
from the dynamic functions like collision avoidance. In this paper, we
propose a conceptual two-layer framework for verifying autonomous
vehicles, which consists of a static layer and a dynamic layer. We focus
concretely on modeling and verifying the dynamic layer using hybrid
automata and UPPAAL SMC, where a continuous movement of the
vehicle as well as collision avoidance via a dipole flow field algorithm
are considered. In our framework, decoupling is achieved by separating
the verification of the vehicle’s autonomous path planning from that of
the vehicle autonomous operation in its continuous dynamic environ-
ment. To simplify the modeling process, we propose a pattern-based
design method, where patterns are expressed as hybrid automata. We
demonstrate the applicability of the dynamic layer of our framework on
an industrial prototype of an autonomous wheel loader.

My contribution: I was the main driver of the paper, wrote most of
the text and implemented the model, and performed the case study. The
other authors contributed with valuable ideas and comments.

Paper B Verifiable Strategy Synthesis for Multiple Autonomous
Agents: A Scalable Approach. Rong Gu, Peter G. Jensen, Danny B.
Poulsen, Cristina Seceleanu, Eduard Enoiu, and Kristina Lundqvist.
In Journal of Software Tools for Technology Transfer (STTT), Special

12 Chapter 1. Introduction

Issue: FMICS 2019/2020, pages 1-20, Springer, 2022.

Abstract: Path planning and task scheduling are two challenging
problems in the design of multiple autonomous agents. Both problems
can be solved by the use of exhaustive search techniques such as
model checking and algorithmic game theory. However, model checking
suffers from the infamous state-space explosion problem that makes it
inefficient at solving the problems when the number of agents is large,
which is often the case in realistic scenarios. In this paper, we propose
a new version of our novel approach called MCRL that integrates
model checking and reinforcement learning to alleviate this scalability
limitation. We apply this new technique to synthesize path planning
and task scheduling strategies for multiple autonomous agents. Our
method is capable of handling a larger number of agents if compared
to what is feasibly handled by the model-checking technique alone.
Additionally, MCRL also guarantees the correctness of the synthesis
results via post-verification. The method is implemented in UPPAAL
STRATEGO and leverages our tool MALTA for model generation, such
that one can use the method with less effort of model construction and
a higher efficiency of learning than those of the original MCRL. We
demonstrate the feasibility of our approach on an autonomous quarry
industrial case study, and discuss the strengths and weaknesses of the
methods.

My contribution: I was the primary driver of the paper, wrote most
of the text. Peter Jensen and Danny Poulsen are external collabora-
tors from Aalborg University, Denmark, who were responsible for the
technical part of UPPAAL STRATEGO. The remaining authors provided
valuable ideas and comments.

Paper C Synthesis and Verification of Mission Plans for Multiple
Autonomous Agents under Complex Road Conditions. Rong Gu, Eduard
Baranov, Afshin Ameri, Eduard Enoiu, Baran Cürüklü, Cristina Sece-
leanu, Axel Legay, and Kristina Lundqvist. Submitted to Transactions
on Software Engineering and Methodology (TOSEM), ACM, 2022.

Abstract: Mission planning for multi-agent autonomous systems aims
to generate feasible and optimal mission plans that satisfy the given
requirements. In this article, we propose a mission-planning methodol-

1.4 Dissertation Overview 13

ogy that combines (i) a path-planning algorithm for synthesizing path
plans that are safe in environments with complex road conditions, and
(ii) a task-scheduling method for synthesizing task plans that schedule
the tasks in the right and fastest order, taking into account the planned
paths. The task-scheduling method is based on model checking, which
provides means of automatically generating task execution orders that
satisfy the requirements and ensure the correctness and efficiency of
the plans by construction. We implement our approach in a tool
named MALTA, which offers a user-friendly GUI for configuring mission
requirements, a module for path planning, an integration with the model
checker UPPAAL, and functions for automatic generation of formal
models, and parsing of the execution traces of models. Experiments
with the tool demonstrate its applicability and performance in various
configurations of an industrial case study of an autonomous quarry. We
also show the adaptability of our tool by employing it on a special case
of the industrial case study.

My contribution: I was the primary driver of the paper, wrote the
majority of the text. Eduard Baranov designed of the path-finding al-
gorithm called DALi that was integrated in our tool MALTA and wrote
the technical part of DALi. Afshin Ameri and Baran Cürüklü were re-
sponsible for the front-end of MALTA, that is, MMT, and wrote the
introduction of MMT. The remaining authors provided valuable ideas
and comments.

Paper D Probabilistic Mission Planning and Analysis for Multi-agent
Systems. Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. In Proceedings of the 9th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA), LNCS volume 12476, pages 350-367, Springer, Rhodes,
Greece, 2021.

Abstract: Mission planning is one of the crucial problems in the
design of autonomous Multi-Agent Systems (MAS), requiring the agents
to calculate collision-free paths and efficiently schedule their tasks.
The complexity of this problem greatly increases when the number of
agents grows, as well as timing requirements and stochastic behavior
of agents are considered. In this paper, we propose a novel method
that integrates statistical model checking and reinforcement learning

14 Chapter 1. Introduction

for mission planning within such context. Additionally, in order to
synthesise mission plans that are statistically optimal, we employ hybrid
automata to model the continuous movement of agents and moving
obstacles, and estimate the possible delay of the agents’ travelling time
when facing unpredictable obstacles. We show the result of synthesising
mission plans, analyze bottlenecks of the mission plans, and re-plan
when pedestrians suddenly appear, by modeling and verifying a real
industrial use case in UPPAAL SMC.

My contribution: I was the primary driver of the paper, wrote most
of the text. All the remaining authors provided feedback and valuable
ideas and comments.

Paper E Correctness-Guaranteed Strategy Synthesis and Compression
for Multi-Agent Autonomous Systems. Rong Gu, Peter G. Jensen,
Cristina Seceleanu, Eduard Enoiu, and Kristina Lundqvist. Submitted
to Journal of Science of Computer Programming (SCP), Elsevier, 2022.

Abstract: Planning is a critical function of multi-agent autonomous
systems, which includes path-finding and task scheduling. Exhaustive
search-based methods such as model checking and algorithmic game
theory can solve simple instances of multi-agent planning. However,
these methods suffer from state-space explosion when the number of
agents is large. Learning-based methods can alleviate this problem,
but lack a guarantee of correctness of the result. In this paper, we
introduce MoCReL, a new version of our previously proposed method
that combines model checking with reinforcement learning in solving
the planning problem. The approach takes advantage of reinforcement
learning to synthesize path plans and task schedules for large numbers
of autonomous agents, and of model checking to verify the correctness
of the synthesized strategies. Further, MoCReL can compress large
strategies into smaller ones that have 0.05% of the original sizes, while
preserving their correctness, which we show in this paper. MoCReL is
integrated into a new version of UPPAAL STRATEGO that supports
calling external libraries when running learning and verification of timed
games models.

My contribution: I was the primary driver of the paper, wrote most of
the text. Peter Jensen was the external collaborator from Aalborg Uni-

1.4 Dissertation Overview 15

versity, Denmark, who was responsible for the technical part of UPPAAL
STRATEGO. The remaining authors provided valuable comments.

Paper F Model Checking Collision Avoidance of Nonlinear Au-
tonomous Vehicle Models. Rong Gu, Cristina Seceleanu, Eduard Enoiu,
and Kristina Lundqvist. In Proceedings of the 24th International
Symposium On Formal Methods (FM), LNCS volume 13047, pages
676-694, Springer, online, 2021.

Abstract: Autonomous vehicles are expected to be able to avoid static
and moving obstacles automatically, along their way. However, most
of the collision-avoidance functionality is not formally verified, which
hinders ensuring such systems’ safety. In this paper, we introduce
formal definitions of the vehicle’s movement and trajectory, based on
hybrid transition systems. Since formally verifying hybrid systems
algorithmically is undecidable, we reduce the verification of nonlinear
vehicle models to verifying discrete-time vehicle models. Using this
result, we propose a generic approach to formally verify autonomous
vehicles with nonlinear behavior against reach-avoid requirements.
The approach provides a UPPAAL timed-automata model of vehicle
behavior, and uses UPPAAL STRATEGO for verifying the model
with user-programmed libraries of collision-avoidance algorithms. Our
experiments show the approach’s effectiveness in discovering bugs in
a state-of-the-art version of a selected collision-avoidance algorithm,
as well as in proving the absence of bugs in the algorithm’s improved
version.

My contribution: I was the primary driver of the paper, proved the
theorems, built the models, conducted the experiments, and wrote most
of the text. All the remaining authors provided feedback and contributed
with valuable ideas and comments.

Chapter 2

Preliminaries

In this chapter, we overview the preliminaries needed for the rest of
the dissertation. First, we introduce the concepts of formal verifica-
tion and synthesis, with an emphasis on model checking and statistical
model checking as the verification techniques used in this dissertation.
Next, we introduce the modeling languages and tools used in this disser-
tation: timed automata and UPPAAL, hybrid automata and UPPAAL
SMC, timed games and UPPAAL TIGA as well as UPPAAL STRATEGO.
Third, we introduce two novel algorithms for path finding and collision
avoidance that are used in this dissertation. Last, we briefly introduce
reinforcement learning and a classic reinforcement learning algorithm
called Q-learning.

2.1 Formal Verification and Synthesis
In this section, we briefly recall two techniques that serve as the main
focus of this dissertation: formal verification and synthesis.

2.1.1 Formal Verification
Formal verification is a process of mathematically checking whether a
system, described by mathematical models, satisfies certain formal spec-
ifications, described in some logic (predicate logic, temporal logic, etc.)
often called the property language [39]. Examples of mathematical mod-
els are finite-state automata [40] and Petri nets [41]. In this dissertation,

17

18 Chapter 2. Preliminaries

we use model checking as the formal verification technique, and primar-
ily focus on timed models, such as timed automata [19], for describing
the agents’ behaviors, because agents are real-time reactive systems. The
properties that model checking is concerned with can be categorized into
two classes:

• Safety properties: the model will never present a certain behavior,
e.g., deadlock,

• Liveness properties: the model will present a certain behavior even-
tually, or infinitely often, e.g., a process waiting to enter a mutual-
exclusive memory space will eventually enter.

In this dissertation, we particularly consider a subset of liveness prop-
erties regarded as timing properties, which require the models to not
only eventually do something, but also do it within a time frame. This
is justified by the fact that industrial systems are often concerned with
timing properties for maintaining a certain level of productivity. For in-
stance, an autonomous truck must transport 10 tons of materials within
30 minutes in a construction site.

(a) Exhaustive model checking

(b) Statistical model checking

Figure 2.1: Two formal verification techniques: exhaustive model check-
ing and statistical model checking

2.2 Modeling Languages and Tools 19

As depicted in Fig. 2.1a, exhaustive model checking explores the entire
state space of the model and returns a qualitative answer to the question
of whether a model satisfies a formal specification (i.e., yes or no). When
the answer is negative, the model checker can bring a counterexample
(i.e., diagnostic information) that shows how the specification is violated
by the model. Another verification technique called statistical model
checking randomly simulates the model, samples its execution traces,
and returns a quantitative answer to that question (e.g., the probability
of a positive answer is 99%). A more detailed introduction of statistical
model checking is given in Section 2.2.2.

2.1.2 Synthesis

Formal verification is concerned with proving that a system model satis-
fies a certain formal specification described by a set of logic-based prop-
erties. In contrast, synthesis is concerned with how to automatically
construct a system model that provably satisfies a given set of properties
[39]. In this dissertation, we formally prove the soundness of our synthe-
sis methods, which means that the synthesis results are guaranteed to be
correct (a.k.a., correct-by-construction). Additionally, synthesis can not
only yield correctness-guaranteed results but also provide insights into
inconsistent specifications when the answer of synthesis is negative.

In this dissertation, we propose two categories of synthesis meth-
ods: search-based methods, introduced in Sections 5.2.1 and 5.2.2, and
simulation-based methods, introduced in Sections 5.2.2 and 5.2.3. The
former methods are sound and complete, but not scalable, which means
that the methods must find the valid result of synthesis when it ex-
ists (i.e., completeness) and the result must be correct (i.e., soundness),
however, the methods cannot deal with complex models with large state
space, e.g., when the number of agents is large. In contrast, the latter
methods are scalable and sound, but not complete.

2.2 Modeling Languages and Tools

In this section, we introduce the formal modeling languages and tools
that are used in this dissertation.

20 Chapter 2. Preliminaries

2.2.1 Timed Automata and UPPAAL

UPPAAL [20, 42] is a tool suite for modeling, simulation, and model
checking of real-time systems. The modeling formalism of UPPAAL is
UPPAAL timed automata (UTA), which is an extension of Alur’s and
Dill’s timed automata that are finite automata extended with real-valued
variables called clocks [19]. The latter models the logic clocks in systems,
which are zero initially and then increase simultaneously at the same rate
of one. UTA extends TA with data variables such as integers and Boolean
variables. Formally, a UTA is defined as a tuple:

< L, l0, A, V, C,E, I >, (2.1)

where L is a finite set of locations, l0 ∈ L is the initial location, A = Σ ∪ τ
is a set of actions, where Σ is a finite set of synchronizing actions and
τ /∈ Σ denotes internal or empty actions without a synchronization, V is
a set of data variables, C is a set of clocks, E ⊆ L×B(C, V)×A×2C×L
is the set of edges, where B(C, V) is the set of guards over C and V , that
is, conjunctive formulas of clock constraints B(C) (of the form x ▷◁ n or
x− y ▷◁ n, where x, y ∈ C, n ∈ N, ▷◁ ∈ {<,≤,=,≥, >}) and non-clock
constraints B(V), and I : L 7→ Bd(C) is a function assigning invariants
to locations, where Bd(C) ⊆ B(C) is the set of downward-closed clock
constraints with ▷◁ ∈ {<,≤,=}. The invariants bound the time that can
be spent at locations.

We illustrate the basics of UTA via an example. In Figure 2.2, one
can see two UTA modeling a car and its controller, respectively. The
automaton in Figure 2.2a models the controller, where time is a clock
variable that measures the elapse of time and progresses continuously.
The controller UTA has three locations, namely Idle, Start and Arrive,
and edges connecting them. At each of the locations, the controller UTA
has two non-deterministic choices of actions: (i) staying at the location
and letting time elapse as long as the invariant on that location, e.g.,
time <= 10, is satisfied; (ii) moving via an edge to another location,
as long as the guard on the outgoing edge, e.g., time >= 5, is satisfied.
In Figure 2.2a, the controller UTA can stay at location Idle until time
reaches ten, or transfer to location Start when time exceeds five.

A network of UTA (NUTA) models a parallel composition of UTA
that can synchronize via channels (i.e., a! is synchronized with a? by
handshake). When moving from location Idle to Start, the controller
UTA synchronizes with the car UTA in Figure 2.2b, via a channel called

2.2 Modeling Languages and Tools 21

(a) UTA of a car’s controller
(b) UTA of a car

Figure 2.2: An example of UTA in UPPAAL

GO. An exclamation mark “!” following the channel’s name denotes the
sender, and a question mark “?” denotes the receiver. Meanwhile, an
assignment on the edge resets the clock, e.g., from Idle to Start, that is,
the controller UTA sets the clock variable time to 0. The assignment can
also be a function written in a subset of the C language, updating clock
variables as well as data variables. In the UTA of a car (Figure 2.2b),
there are two special locations, namely Stop and Brake. The former is
called an urgent location and the latter is called a committed location.
Both urgent and committed locations do not allow time to elapse, with
the latter being stricter because the next transition is requested to start
only from one of the committed locations of the NUTA.

The semantics of a UTA A is defined as a timed transition system over
states (l, v), where l is a location and v ∈ RC represents the valuation of
the clocks in that location, with the initial state s0 = (l0, v0), where v0
assigns all clocks in C to zero. There are two kinds of transitions:

(i) delay transitions: (l, v)
d−→ (l, v ⊕ d), where v ⊕ d is the result

obtained by incrementing all clocks of the automaton with the delay
amount d such that v ⊕ d |= I(l), and

(ii) discrete transitions: (l, v)
a−→ (l′, v′), corresponding to traversing

an edge l g,a,r−−−→ l′ for which the guard g evaluates to true in the source
state (l, v), a ∈ A is an action, r is the clock reset set, and clock valuation
v′ of the target state (l′, v′) is obtained from v by resetting all clocks in
r such that v′ |= I(l′).

The UPPAAL model checker supports the verification of queries
(properties) written in a decidable subset of Timed Computation Tree

22 Chapter 2. Preliminaries

Logic (TCTL) [42]. The syntax of a TCTL formula consists of quantifiers
over paths, and path-specific temporal operators. There are two types
of path quantifiers: the universal one, “A” meaning “for all paths”,
and the existential one, “E” denoting “there exists a path”. We are
interested in two path-specific temporal operators, that is, “Always”
(□) temporal operator meaning that a given formula is true in all states
of a path, and the “Eventually” (♢) operator meaning that a formula
becomes true in finite time, in some state along a path.

The UPPAAL queries that we verify in this dissertation are properties
of the form: (i) Invariance: A □ pmeans that for all paths, for all states
in each path, p is satisfied, (ii) Liveness: A ♢ p means that for all paths,
p is satisfied by at least one state in each path, (iii) Reachability: E ♢ p
means that there exists a path where p is satisfied by at least one state
of the path, and (iv) Time-bounded Reachability: E ♢≤t p means
that there exists a path where p is satisfied by at least one state of the
path within t time units.

2.2.2 Hybrid Automata and UPPAAL SMC

UPPAAL SMC [43] is an extension of the tool UPPAAL [43], which sup-
ports statistical model checking of hybrid automata (HA) [15]. HA in
UPPAAL SMC are similar to UPPAAL TA, and are extended with a set
of continuous variables whose derivatives are described by ordinary dif-
ferential equations (ODE). Similarly to the UTA case, we illustrate the
basics of HA via a simple example. Figure 2.3a shows the HA of a car
with the same car controller as shown in Figure 2.2a. The derivatives of
two continuous variables, namely position and speed, are defined in the
HA. As variables speed and position represent the velocity and position
of the car, respectively, based on Newtonian laws of motion, the deriva-
tive of position is the value of speed when the car is moving, and the
derivative of speed is assumed to be five.

In UPPAAL SMC, the HA have a stochastic interpretation based on:
(i) the probabilistic choices between multiple enabled transitions, and (ii)
the non-deterministic time delays that are refined based on probability
distributions, either uniform distributions for time-bounded delays, or
user-defined exponential distributions for unbounded delays. For exam-
ple, in Figure 2.3a, the time-bounded delay at location Stop follows the
uniform distribution, which means that it is equally likely to leave the
location from time unit three to four, whereas the unbounded delay at

2.2 Modeling Languages and Tools 23

(a) HA of a car

(b) TG of a car (c) STG of a car

Figure 2.3: Examples of HA, TG, and STG

location Brake follows an exponential distribution with an exponential
rate 5. The exponential distributions make the HA become increasingly
likely to leave the location as the delay increases at the location. When
being executed, the HA race against each other according to their proba-
bility distributions, that is, they independently and stochastically decide
how much to delay before making a discrete transition, with the “winner”
being the automaton that chooses the minimum delay.

UPPAAL SMC supports an extension of weighted metric temporal
logic [33] for probability estimation, whose queries are formulated as
follows: Pr[bound] (ap), where bound is the simulation time, ap is
the formula based on either of the following two temporal operators:
“Eventually” (♢) and “Always” (□). Such queries estimate the proba-
bility that ap is satisfied within the simulation time bound.

24 Chapter 2. Preliminaries

2.2.3 Timed Games and Strategies

A timed game G (TG) [44] is a UTA whose actions Σ are partitioned
into controllable (Σc) and uncontrollable (Σu) actions. A TG is a useful
mathematical model, suitable to describe a system consisting of several
players that compete or collaborate to win a game, e.g., to finish their
tasks. Note that each player can take arbitrary numbers of actions before
the other player acts. The numbers depend on the design of the TG
model. Informally, a strategy is a function that during the course of
the TG constantly suggests the players what actions to do next. The
suggestion is either a controllable action a ∈ Σc or a delay. A winning
strategy of a player is the one that always enables the player to win the
game regardless of how others act.

When more information is known of the environment, for instance,
the likelihood of uncontrollable actions or the probability distribution of
delays, we consider stochastic timed games (STG) [45], where a stochastic
environment is assumed. The environment makes choices of delay and
uncontrollable actions stochastically, according to a density function for
a given state. Correspondingly, strategies for STG are stochastic ones
that indicate the probabilities of choosing controllable actions and delays
at each state of the players.

Figures 2.3b and 2.3c depict a TG and an STG model of a car, re-
spectively, with the same controller as in Figure 2.2a. The solid arrows
are controllable actions and the dashed arrows are uncontrollable ac-
tions. Figure 2.2a and Figure 2.3b (respectively, Figure 2.3c) model a
timed game (respectively, a stochastic timed game) between a car and
its driving environment. The controller sends commands of moving and
braking to the car via synchronization channels GO, WARN, and STOP,
whereas the environment gets to choose the time of starting to brake
and stop. In a timed game, the choices of uncontrollable actions are
made non-deterministically, and the goal of a winning strategy can be
to indicate the right actions to the controller at each of its states so
that the car can fully stop eventually, after it starts to move. When the
environment becomes stochastic, the model becomes an STG, where the
choices of uncontrollable actions are stochastic. The winning strategy
now involves controller actions in order to fully stop the car eventually,
with the highest probability. The probability distributions in Figure 2.3c
are the same as the ones in Figure 2.3a, that is, exponential distributions
on unbounded delays (e.g., at location Brake) and uniform distributions

2.3 Path Finding and Collision Avoidance 25

on time-bounded delays (e.g., at location Stop).

UPPAAL TIGA and UPPAAL STRATEGO

UPPAAL TIGA [25] is an extension of UPPAAL, and it supports solving
games based on TG with respect to the temporal properties mentioned
in Section 2.2.1. In this dissertation, we use UPPAAL TIGA to solve
our mission-planning problem as a solution of search-based synthesis of
mission plans (details in Sections 5.2.1 and 5.2.2). UPPAAL STRATEGO
[30] is a tool that integrates UPPAAL with two of its branches, that is,
UPPAAL SMC [33] (statistical model checking) and UPPAAL TIGA [25].
In addition, it supports learning algorithms for solving STG, and we use
this tool to develop our solution of learning-based synthesis of mission
plans (details in Sections 5.2.2and 5.2.3).

2.3 Path Finding and Collision Avoidance
In this section, we briefly introduce a path-finding algorithm, namely
Theta* algorithm, and a collision-avoidance based on dipole flow fields.

2.3.1 Theta* Algorithm
The Theta* algorithm has been firstly proposed by Nash et al. [23] to
generate smooth paths with as few sharp turns as possible, from the
starting position to the destination. Similar to the Dijkstra algorithm
and A* algorithm [22], the Theta* algorithm explores the map and cal-
culates the cost of nodes by the function f(n) = g(n) + h(n), where n
is the current node being explored, g(n) is the Euclidean distance from
the starting node to n, and h(n) is the estimated cheapest cost from
n to the destination. In this dissertation, we use Manhattan distance
[46] for h(n). In each search iteration, the node with the lowest cost
among the nodes that have been explored is selected, and its reachable
neighbors are also explored by calculating their costs. The iteration is
eventually ended if the destination is found or all reachable nodes have
been explored. As an optimized version of A* [23], Theta* determines
the preceding node of a node to be any node in the searching space in-
stead of only neighbor nodes. In addition, Theta* adds a line-of-sight
(LOS) detection to each search iteration to find an any-angle path that
is less zigzagged than those generated by A* and its variants.

26 Chapter 2. Preliminaries

2.3.2 Collision Avoidance based on Dipole Flow
Fields

When agents move, they may encounter moving obstacles and thus take
a detour to avoid them. The problem is how far the detour should be
from the planned path and how the agents can reach their destination
when the deviation occurs.

Trinh et al. propose an approach to calculate static flow fields for
all objects, and the dynamic dipole fields for the moving objects in the
environment [38]. In the authors’ method, every moving object is as-
sumed to be a source of magnetic dipole field, in which the magnetic
moment is aligned with the moving direction, and the magnitude of the
magnetic moment is proportional to the moving object’s velocity. As
soon as the agents equipped with this algorithm get close enough to a
moving obstacle, the magnetic moment around them keeps them away
from each other. The static flow fields are created within the neighbor-
hood of the initial path generated by the Theta* algorithm, and of the
static obstacles. The force of the static flow fields is a combination of
the attractive force drawing the agents to the initial path, and the re-
pulsive force pushing the agents away from obstacles. Unlike the dipole
field force, the static flow field force always exists, regardless of whether
the object is moving or not. The combination of the static flow fields
and the dynamic dipole fields enables agents to move safely by avoiding
all kinds of obstacles and reach the destination, as long as a safe path
exists. Compared with other methods [47, 48], this algorithm provides
a novel method for path following and collision avoidance, in the shared
working environment of humans and agents, which suits our require-
ments well. However, one needs to verify whether the algorithm is able
to safely avoid all moving obstacles, including unforeseen ones. We carry
out this verification as part of our dissertation contribution [18, 37] that
is described later in Chapter 5.

2.4 Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning aiming at
calculating how agents should take actions in an environment, in order to
maximize the accumulated reward obtained from the environment [49].
Model-free RL, such as Actor-Critic algorithms [50], relies on samples
from the environment, which can be a model or a real environment, to

2.4 Reinforcement Learning 27

estimate the rewards of the next state-action pairs. Model-based RL,
such as Dynamic Programming [28], uses the model’s predictions or dis-
tributions of the next state-action pairs and their rewards to calculate
optimal actions. Q-learning is one of the model-free RL algorithms,
which, at the limit, converges to optimal policies for reactive agents in a
stochastic environment. Policies are associated with a state-action value
function called Q function. The optimal Q function satisfies the Bellman
optimality equation:

q∗(s, a) = E[R(s, a) + γ MAX
a′

q∗(s′, a′)], (2.2)

where q∗(s, a) represents the expected reward of executing action a at
state s, E denotes the expected value function, R(s, a) is the reward ob-
tained by taking the action a at state s, γ is a discounting value, s′ is the
new state coming from state s by executing action a, and MAX

a′
q∗(s′, a′)

represents the maximum reward that can be achieved by any possible
next state-action pair (s′, a′). The Bellman equation calculates the re-
wards of state-action pairs by considering both the current reward and
the discounted maximum future reward. Watkins [51] shows that under
the assumption of sufficient repeated sampling, the Q-learning algorithm
converges towards the optimal Q-values and thus the solution to the Bell-
man equations. These values are stored in Q-tables, which serve as the
strategies that we aim to synthesize.

Chapter 3

Research Problem

In this chapter, we formulate our research problem and research goals
addressed in this dissertation.

3.1 Problem Description
The broad focus of this dissertation is on scalable mission plan synthe-
sis of multi-agent systems (MAS), and reach-avoid verification of such
systems. Concretely, we target two aspects, that is:

1. synthesizing mission plans of MAS that provably satisfy certain
requirements;

2. ensuring the reach-avoid requirement when agents are executing
the mission plan and face static and dynamic obstacles.

The first aspect focuses on computing plans that guide the agents to-
wards their destinations, respectively, and ensuring that agents execute
various tasks in compliance with certain rules, such as a certain execu-
tion order and timing requirements. The second aspect needs to consider
the kinematics of the agents and moving obstacles. Therefore, when syn-
thesizing mission plans, one only needs to consider the discrete feature of
the environment and the agents. More specifically, only static obstacles
and important positions, a.k.a. milestones, where tasks are carried out,
are extracted from the environment and modeled. The continuous move-
ment of the agents as well as the operations for executing the tasks do not

29

30 Chapter 3. Research Problem

need to be modeled when our target is only about synthesizing mission
plans. Therefore, agent movements and task executions can be mod-
eled as time intervals between the best-case execution time (BCET) and
the worst-case execution time (WCET). Although a continuous concept,
time, is included in the models, by certain techniques of abstraction,
such as zones [52], the state space of the models can be represented sym-
bolically, and the numbers of such symbolic states are countable. Hence,
our problem of mission plan synthesis is to somehow traverse the
symbolic state space of a model of MAS and find the traces (sequences
of states connected by transitions) that satisfy our requirements. As a
variant of the classic job-shop scheduling problem, mission plan synthesis
is NP-hard [53], that is, when the number of agents grows linearly, the
state space of the model increases exponentially, making the traversal of
the state space impossible to finish within a reasonable time when the
agents are many. In summary, solving mission planning is connected to
answering the following research questions:

How to find the paths that autonomous agents need to follow towards
their destinations, respectively, and avoid static obstacles, and how to
schedule the actions of movement and task execution so that the agents
finish all tasks timely, while obeying the task constraints?

Given the complexity of computation, finding a scalable method
is a related research problem in our focus.

The other aspect of the problem deals with dynamic reach-avoid
requirement, where we take into account the continuous behaviors of
agents and unforeseen moving obstacles. When the agents move and
execute the synthesized mission plan, they must be ensured to follow
the planned paths closely for the collision avoidance against the known
and static obstacles, deviate from the planned paths timely for the colli-
sion avoidance against the unforeseen moving obstacles, and reach their
destination eventually. How comprehensively and faithfully the model
reflects the real scenarios is one important factor in this subproblem,
while the ability of verification must still be preserved by the solution
as we focus on generating a correctness- and safety-guaranteed design of
agents. In summary, solving the reach-avoid verification is connected to
answering the following research questions:

When no moving obstacle is around agents, how to ensure the agents
to follow their planned paths closely enough so that no collision occurs?

3.2 Research Goals 31

When moving obstacles appear, how to ensure the agents to deviate
from their planned paths timely so that no collision occurs?

When deviations from the agents’ planned paths occur, how to ensure
the agents to reach their destinations eventually, respectively?

The overall research problem is the combination of the research prob-
lems connected to the two mentioned aspects and is presented as follows:

How to synthesize correctness-guaranteed mission plans for multi-agent
systems, and verify their reach-avoid functionalities when the agents
are executing the mission plans, so that the agents are functionally
correct and safety-guaranteed, with the scalability tamed as the number
of agents increases?

3.2 Research Goals
To solve the research problem as formulated in Section 3.1, the main
research goal of the dissertation is as follows:

Overall goal. Determine how algorithmic formal methods can be
employed and scaled up to synthesize and verify autonomous systems
with respect to mission planning and dynamic collision avoidance.

Remark 1. The algorithmic formal methods, e.g., model checking, are
based on searching the state space of formal models, and are used for
mission plan synthesis and reach-avoid verification. We do not consider
deductive methods of formal verification in this dissertation.

A key principle of designing complex systems in general is the notion
of separation of concerns [54]. The essential idea is to avoid co-locating
different concerns within the design. In our research problem, mission
planning is not concerned with the agents’ operations in a continuous
dynamic environment, whereas the continuous behavior of the agents is
for executing the pre-computed mission plans. Therefore, achieving the
separation of concerns of mission planning and continuous movement and
task execution, while backing them by formal verification techniques, can
be beneficial. Consequently, the first subgoal is as follows:

Subgoal 1. Provide a means that decouples the design of mission
planning from the agents’ autonomous operation in a continuous dy-
namic environment, supported by model checking techniques.

32 Chapter 3. Research Problem

The context of mission plans varies, for example, collaborative en-
vironments give agents the complete control over their actions, whereas
stochastic and non-deterministic ones only let the agents decide when to
start their actions but choose the ending times independently. We need
to adopt suitable techniques for different kinds of problems and identify
their advantages and limitations. This gives rise to the second subgoal,
formulated as follows:

Subgoal 2. Assuming different types of environments of mission
planning, that is, deterministic and collaborative ones, stochastic ones,
or non-deterministic ones, identify suitable methods for mission plan-
ning, and evaluate their appropriateness in various scenarios.

As mission planning for multiple agents is an NP-hard problem [53],
the complexity of the problem can grow dramatically with the linear
increase of agent numbers. Consequently, the synthesis of mission plans
can be computationally intensive and the resulting mission plans can
take large memory space that is a disadvantage in most cyber-physical
systems, such as MAS. Hence, the third subgoal aims to provide a scalable
method for mission plan synthesis and compression. The subgoal is
formulated as follows:

Subgoal 3. Provide scalable approaches that involve model check-
ing, for mission-plan synthesis and compression of MAS, such that the
computation time is reasonable when the number of agents is large and
the resulting mission plans only contain the useful information that guar-
antees the agents to satisfy given temporal requirements.

Remark 2. In this dissertation, the number of agents is considered
large when it is more than four, which aligns with the context of certain
industrial systems, such as autonomous quarries [21].

After addressing Subgoals 1-3, when agents start to execute the mis-
sion plans, can they follow the reference paths closely enough so that
collisions with known static obstacles can be avoided? More so, when
dynamic obstacles appear, can the agents stop or turn timely so that
collisions are avoided? When facing unforeseen obstacles, both static
and dynamic, can the agents be guaranteed to reach their destinations
in a timely fashion? The fourth subgoal of our research aims to answer
these questions, by focusing on the continuous behavior of the agents
and dynamic obstacles:

Subgoal 4. Ensure the reach-avoid requirement of agents when exe-

3.2 Research Goals 33

cuting mission plans in environments with unforeseen static and dynamic
obstacles.

Our solutions need to be aligned with the state-of-the-art and state-
of-practice, in the sense that the approaches are theoretically innovative
and practically applicable. Hence, our fifth subgoal is:

Subgoal 5. Develop automated support that integrates the ap-
proaches of mission plan synthesis and verification, and assesses the
applicability of the approaches in an industrial use case.

In summary, the five subgoals concern different aspects of the research
problem, and addressing them enables meeting the overall goal of the
dissertation. If achieved, subgoal 1 brings an overview of the research
problem and decouples it into suitable modules such that the inherently
different components of the problem can be solved separately. Subgoal 2
focuses on the subproblem of mission planning. It enables us to select the
right tools and motivates us to invent new methods to deal with different
environments, which sets the foundation of addressing the problem in
the next subgoal. Subgoal 3 concentrates on providing model-checking-
based concrete solutions for mission plan synthesis and compression that
are suitable for different kinds of environment. Once mission plans are
synthesized, Subgoal 4 continues towards ensuring the correctness of
agents executing the mission plans in the sense of fulfilling the reach-
avoid requirements. Finally, if the tool support in Subgoal 5 is realized,
all the approaches can be integrated, which facilitates their applicability
and enables experimental evaluations on industrial systems. Altogether,
the five subgoals provide a detailed decomposition of the overall goal and
clarify the scope and focus of this study.

Chapter 4

Research Methods

In this chapter, we introduce the research methods that we use to con-
duct our research in order to address the research goals. We first describe
the general process that we follow in our research, after which we explain
the concrete methods used in this dissertation.

Our research process is shown in Figure 4.1. This research is initiated
by industrial problems that have not been solved by industrial solutions
nor thoroughly studied by academic researchers. Based on the indus-

Figure 4.1: Research Process

trial problems and the state-of-the-art research results, we formulate the
research goals (Step 1). To address these goals, we start by investigat-
ing the formal methods and their applications on agents that have been
studied by industry and academia. The research method that we adopt
in this phase is critical analysis of the literature and practice method [55].

35

36 Chapter 4. Research Methods

By reviewing literature (Step 2), we understand the state-of-the-art and
state-of-practice related to the topic that we aim to research, and iden-
tify the gaps between the problems and the existing solutions so that we
can modify the research goals if necessary. The next action is to propose
approaches to solve the problems, and implement the approaches within
a prototype tool that could be applied to industrial applications (Steps
3 and 4). Finally, we apply the approaches and the tool to an industrial
case study to demonstrate their applicability to real-world systems, and
conduct several groups of experiments assuming different environments
to evaluate their performance. The results comprise a series of research
papers and reports (Step 5). Whenever the results match the expecta-
tion of a research goal, we conclude that the goal is achieved. Whenever
the results differ from our expectation, either for better or worse, we
analyze the reasons behind the deviation. Then, if necessary, we use the
obtained experience to modify the research goals, or propose a new and
improved solution to the same problem (Step 5 to Step 1, or Step 3, or
Step 4).

We have applied a set of research methods during the activities of
the research process. During the design and evaluation of our approach
for synthesizing mission plans and pattern-based modeling (details are
in Section 5.3.1), we apply the proof of concepts method [56] to show the
correctness and applicability of our proposed approach. In Paper B and
Paper E, we integrate our methods for strategy synthesis and compres-
sion into the tool UPPAAL STRATEGO. In Paper C, we present our tool
MALTA that provides a GUI for environment and mission configuration,
and extensible modules for path finding and task scheduling. The tools
are the proof of concepts of our model-checking-based mission-planing
methods in different environments. When validating the research re-
sults in the industrial use case, we employ the proof by demonstration
method [56], by applying our tool MALTA assuming an industrial-like
context. In Paper B, Paper C, Paper E, and Paper F, we experiment
different scenarios of the industrial use case to demonstrate the tool’s
ability of solving practical problems. We also use mathematical modeling
and mathematical proof [56] in showing the correctness of our synthe-
sis methods (Paper B) and model transformation from the continuous
trajectories to discrete-time trajectories of agents (Paper F).

Chapter 5

Dissertation Contributions

In this chapter, we present the contributions of this dissertation, which
address the aforementioned research goals. We first introduce a two-
layer framework for modeling and verifying agents, which facilitates the
design of our methodology, to address the overall research goal. Next, we
present each of the techniques and algorithms that support the proposed
methodology, and address the subgoals, respectively. We also indicate
which included paper contains a particular contribution, as well as the
research subgoal that the latter addresses.

5.1 A Two-Layer Framework for Modeling
and Verifying Autonomous Systems

In this section, we briefly introduce the two-layer framework for agent
modeling and verification, which is initially proposed in Paper A [18].
We first give the overall description of the framework, before introduc-
ing the communication between the layers and the probabilistic mission
planning based on this communication, which are in Paper D [32].

5.1.1 Overall Description of the Framework

Two of the fundamental functionalities of agents are static mission plan-
ning and dynamic collision avoidance. The former includes path finding
and task scheduling, which we call mission planning collectively. When

37

38 Chapter 5. Dissertation Contributions

synthesizing a mission plan, the autonomous systems (agents) focus on
generating paths and an order of executing tasks. The generated mission
plan must satisfy various requirements. For instance, in an autonomous
quarry, autonomous trucks should carry 100 m3 of stones to the primary
crusher that outputs crushed stones at given fractions, before carrying
the crushed stones to the secondary crusher, all within 2 hours. At
this level of design, the agent model should not include the concrete
movement and operation, because they are irrelevant in mission plans.
Consequently, the agent model only needs to know what to do or where
to go at certain time points and positions in the environment.

At the lower level, when the agents start to execute a mission plan,
their continuous behaviors have to be modeled, such that the models are
as realistic as possible. Hence, it is better to model behaviors like ac-
celeration and turning at this separate level. Therefore, mission planing
and the continuous behaviors can be decoupled to reduce the complexity
of the design and verification, and provide a separation of concerns.

Figure 5.1: A two-layer framework for formally modeling and verifying
multi-agent autonomous systems

In Paper A [18], we propose a two-layer framework consisting of a
static layer and a dynamic layer, which is depicted in Fig. 5.1. The
static layer is responsible for mission planning, based on the known
information of the environment, and includes static obstacles and mile-

5.1 A Two-Layer Framework for Modeling and Verifying
Autonomous Systems 39

(a) A HA generating pedestrians
(b) A HA modeling the movement of agents

Figure 5.2: Examples of HA in the dynamic layer of the framework

stones where the tasks should be carried out. Moving obstacles that are
unforeseen by the agents are considered in the dynamic layer, which is
designed to simulate and verify the agents to guarantee that they follow
the reference path generated by the static layer and avoid the moving
obstacles dynamically. These two layers support the modeling of the
discrete behavior and the continuous behavior separately, such that the
desired decoupling is achieved.

5.1.2 Communication between the Two Layers

The communication between these two layers is needed in order to en-
able the exchange of information. For example, when agents deviate
too far from the planned paths, they can send the new map of the en-
vironment including the newly discovered static obstacles to the static
layer. The latter can synthesize a new mission plan and send it to the
dynamic layer so that the agents can adjust their behavior according
to the new plan and verify it. The newly discovered obstacles can ap-
pear stochastically, which requires the static layer to synthesize mission
plans based on the probabilistic information of the environment. Paper
D [32] demonstrates the communication between these two layers and
shows the ability to re-plan in the presence of unexpected pedestrians.

Next, we introduce the models used in both layers and how the com-
munication works. As depicted in Fig. 5.3a, in an environment with an

40 Chapter 5. Dissertation Contributions

(a) An intersection contain-
ing pedestrians

(b) A stochastic model of agent movement

Figure 5.3: A scenario of intersection and a stochastic model used in the
static layer for mission planning

autonomous wheel loader and some pedestrians that can possibly cross
the intersection near B2, we need to find the optimal path for the wheel
loader to travel safely and efficiently from A1 to A2. First, we simulate
the stochastic occurrence of pedestrians by using the stochastic hybrid
automata (SHA) that are initially proposed in Paper A [18] and used
in the dynamic layer. Fig. 5.2a is an example of such a SHA in UPPAAL
SMC, which stochastically transfers via the self-loop edge of location G0.
The transition follows an exponential distribution with a rate of 0.1.
One can modify the rate to change the possibility of the occurrence of
the pedestrians. The function spawn Humans(id) generates instances of
this SHA template during the verification time to mimic the stochastic
occurrence of pedestrians.

When the wheel loader encounters a pedestrian, it may stop, or ac-
celerate, or take a detour via B2. The choices depend on the concrete
collision-avoidance algorithm. In our study, we employ a novel algo-
rithm based on dipole flow fields [38]. The algorithm enables the agents
to deviate from their planned paths in order to avoid dynamic obsta-
cles. The detour can prolong the traveling time that is even longer than
the traveling time on another road, from C1 and C2 and finally to A2
(see Fig. 5.3a). The length of the prolonged time depends on how many
pedestrians exist in the intersection and their moving speeds, which are
stochastic.

To obtain the lengths and probabilities of the prolonged traveling
time, in Paper D [32], we reuse the HA model of agents that is initially
designed in Paper A [18] (see Fig. 5.2b). Next, we model-check the

5.2 Mission Planning in Different Environments 41

composed HA model in Fig. 5.2 against a reachability property in the
form of Query (5.1) supported by UPPAAL SMC:

Pr[<=T](♢ A2), (5.1)

where T is the simulation time, A2 is a Boolean variable indicating
whether the wheel loader arrives at position A2 or not. UPPAAL SMC
also supports verifying properties in the following form:

Pr[<=T] (□ A2 imply t<=PT), (5.2)

where t is a clock variable for measuring the traveling time from A1
to A2, and PT is a constant value for estimating the traveling time.
Query (5.1) checks whether the wheel loader ever gets to the position
A2. Query (5.2) checks if the traveling time is at most PT time units
when the wheel loader arrives at A2. By changing the value of PT, we
can obtain the probabilities of reaching A2 within different time. The
estimation is reflected in the model in Fig. 5.3b, which is used in the
static layer. Here, we can see that traveling from A1 to A2 via B2
takes 10 time units for 40% of probability, and 18 time units for 60%
of probability, whereas traveling via B1 takes a fixed traveling time: 15
time units. Mission-planning algorithms based on this stochastic model,
which are introduced in Section 5.2, can generate the statistically optimal
strategy that most likely takes an agent to its destination the fastest. In
this contribution (Paper A [18] and Paper D [32]), which addresses
Subgoal 1, we show the two-layer framework, its ability of decoupling
the problems of mission planning and dynamic collision avoidance, and
the communication between the two layers.

5.2 Mission Planning in Different Environ-
ments

Problem description. Mission planning for multi-agent autonomous sys-
tems (MAS) is separated into two subproblems: path finding and task
scheduling. The former cares about finding a static path that avoids
static obstacles and reaches the destination. The latter aims at schedul-
ing the tasks of agents, e.g., digging and loading in quarries, such that the
agents can finish their tasks in time with respect to temporal constraints.
Although they are different, these two subproblems are essentially about
ordering the motion primitives (a.k.a. actions) of agents, such as moving

42 Chapter 5. Dissertation Contributions

to a milestone where a corresponding task can be carried out, or starting
to execute a task at the current milestone.

Each of the agents in the MAS is assigned with a group of tasks. To
achieve the global goal that the MAS is designed to accomplish, each of
the agents must carry out tasks individually if the corresponding tasks
are independent, or collaboratively if the corresponding tasks need agents
to execute at the same milestone during the same time period. In either
case, the requirements, e.g., achieving the global goal within a certain
time frame, must be met. For instance, in a quarry, the global goal is
to dig and transport a certain amount of stones in 24 hours. To achieve
this global goal, autonomous wheel loaders need to dig stones at stone
piles, and collaborate with autonomous trucks to load the stones into
the trucks. The latter then proceed to transport the stones to each of
the crushers and unload stones. When a special event happens, e.g., fuel
level becomes low, the corresponding agent needs to react to it in priority,
e.g., moving to a charging pole. Mission planning in this quarry is to
order the autonomous wheel loaders’ and autonomous trucks’ actions of
moving and executing a task, so that they can travel without collision
and achieve the global goal by carrying out each of their tasks.

One of the challenge is the variable execution time of actions. For ex-
ample, when the autonomous trucks load stones into crushers, the speed
of the conveyor belt of a crusher can vary in a certain range, which
influences the execution time of loading stones, and further influences
the entire mission plan. Section 5.2.2 introduces this challenge in de-
tails. The uncertainty of action time is caused by the factors in the
environment, which is not controllable by the agents. Therefore, assum-
ing different types of environments, the solution for mission planning
can be different. In summary, in the context of MAS, mission planning
is formulated as follows:
Mission planning : Given a MAS and a set of requirements, the goal of
mission planning is to order the agents’ actions of movement and task
execution, according to their variable ending time and occurrences of
events, which are decided by the environment, such that the MAS can
finish its tasks and satisfy the requirements.

Remark 3. One can reduce the planning problem to a path-finding prob-
lem by removing the actions of task execution, or a task-scheduling prob-
lem by removing the actions of movement. Our algorithms must be ca-
pable of solving the general problem that contains path finding and task

5.2 Mission Planning in Different Environments 43

(a) (b) (c)

Figure 5.4: Examples of trajectories and the granularity of movement.

scheduling or only one of them.

Remark 4. The requirements can be functional ones, such as “always
start task A after task B finishes”, and safety ones, such as “no collision
with the static obstacles in the environment happens”.

The agent actions are modeled into different granularity according
to different purposes of mission planning. For example, if we reduce
the planning problem to a path-finding problem, as depicted in Fig. 5.4,
the movement from the red dot to the green dot can be modeled as
one step in Fig. 5.4a or several steps in Figures 5.4b and 5.4c. Different
granularity serves different purposes of the path plans. Path plans based
on maps like Fig. 5.4a can serve as a high-level plan (the solid line)
that indicates which milestone to visit and when. A low-level algorithm
for collision avoidance is needed in this case, which must enable the
agents to avoid all kinds of obstacles (the dashed line). Path plans in
maps like Figures 5.4b and 5.4c show the concrete steps of movement to
avoid the static obstacle between the initial and ending positions. Note
that the collision avoidance against moving obstacles and other agents is
considered in the dynamic layer of our two-layer framework [18], which
is not a concern of mission planning.

Modelling agent movement. No matter which granularity is chosen,
the agent movement can be modeled as the ones in Fig. 5.5, where loca-
tions P1 and P2 represent the current position and the target position of
the movement, respectively, location F1T2 models the duration of trav-
eling. Fig. 5.5a models the movement in a collaborative environment,
where the traveling time of each agent is fixed, since any agent can fully
control the starting and ending time of its actions. Fig. 5.5b models
the movement in a non-deterministic environment, where an agent only

44 Chapter 5. Dissertation Contributions

(a) A UTA of agent movement (b) A TG of agent movement

Figure 5.5: Models of agent movement in different kinds of environments

decides the starting time of its actions but the ending time is decided
by the environment non-deterministically within a time interval, which
is between the constant integers up and down in the Figure. When the
environment is stochastic, for example, the probabilities of reaching P2
between up and down follow an uniform distribution, the TG models can
be interpreted as a STG with no change on the model template. Simi-
larly, task executions can be modeled as UTA or TG models depending
on the type of the environment. Detailed description of the models can
be found in Paper B [26].

An overview of the mission-planning solutions. Given the agent mod-
els, mission planning is about exploring the state space of the models and
finding the traces that solve the planning problem of MAS. We categorize
the planning problem into three categories (Table 5.1).

• When the environment is assumed to be collaborative, that is,
an environment whose behavior is fully controlled by agents, the
problem of mission planning is a 1-player game. For this kind
of environments, we propose a method based on UTA and model
checking in UPPAAL named TAMAA (Timed Automata based Mis-
sion planning for Autonomous Agents) (Paper B [26]).

• When the environment is non-deterministic, the problem becomes
a 2-player game, and we can use UPPAAL TIGA [25] or our method
MCRL (Model Checking + Reinforcement Learning) to solve it [29].
MCRL is a novel approach that combines model checking with rein-
forcement learning, which is capable of dealing with a large number
of agents that TAMAA cannot deal with (Paper B [26]).

• When the environment is stochastic, the problem becomes a 1 1
2 -

player game and can be solved by UPPAAL STRATEGO that in-
cludes UPPAAL SMC [30] (Paper D [32]).

5.2 Mission Planning in Different Environments 45

Technical details of the above mentioned approaches are introduced in
Sections 5.2.1, 5.2.2, and 5.2.3. Their strengths and weaknesses are
presented in Paper B [26].

Table 5.1: Summary of approaches for different games

TAMAA TIGA MCRL STRATEGO
Model UTA TG TG & STG STG
Game 1 player 2 player 2 player 1 1

2 player

Techniques Model
Checking [13]

Symbolic
On-The-Fly

Algorithm [44]

Reinforcement
Learning &

Model Checking [29]

Reinforcement
Learning [30][45]

In summary, in these contributions, mission planning is uniformly
defined as a planning problem of MAS, based on which the solutions for
solving the problem in different types of environments are categorized
and proposed. This contribution addresses Subgoal 2. In the next
subsections, we give a more detailed description of our proposed mission-
planning methods.

5.2.1 Mission Planning in Deterministic Environ-
ments

In the previous section, we have categorized mission planning in de-
terministic environments as a 1-player game, in which the goal of win-
ning the game is to order the agents’ actions so that they can finish
their tasks and reach their destination in the shortest time. TAMAA is
the method that we propose for solving 1-player games, which provides
an automation of model generation for constructing the UTA of agent
movement and task execution [13]. Figure 5.6 depicts the workflow of

Figure 5.6: Workflow of TAMAA

TAMAA, where the mission information refers to the topology of the

46 Chapter 5. Dissertation Contributions

environment and task constraints, etc., and the UTA generation module
generates the movement and task execution UTA automatically. For ex-
ample, Fig. 5.5a is the movement TA that is generated by TAMAA. The
automatically generated models are also used in other mission-planning
methods (Table 5.1) with slight changes, which are introduced in detail
in Subsections 5.2.2 and 5.2.3.

When the models are generated, the mission planning algorithms
need to somehow explore the state space of the models and find out the
execution traces that satisfy the requirements, e.g., finishing the tasks
eventually, within one hour. TAMAA uses UPPAAL [20] to verify a gener-
ated UTA model and obtain the fastest execution trace in case the model
satisfies given requirements. Here, we only show the TCTL property of
the Timing requirement used in UPPAAL. The rest of the properties are
reported in our work [13] and Paper B [26] in this dissertation. The
TCTL reachability Query (5.3) checks if agents can repetitively execute
their tasks M rounds within TL time units, where ite is an integer array
storing each agent’s iteration of its tasks, that is, finishing all tasks once
counts for one round, x is a clock variable that is never reset, N and M are
two integers indicating the number of agents and the requested iterations
of tasks, respectively:

E♢ ((forall(i:int[0,N-1]) ite[i]>=M) && x≤TL) (5.3)

(a) An example of a trace (b) An example of executing a strategy

Figure 5.7: Examples of: (a) UTA trace in TAMAA, and (b) executing a
TG strategy in UPPAAL TIGA

In case the Query (5.3) is satisfied, UPPAAL returns a trace that
reaches the goal state within the shortest time, or the fewest steps, or
in an arbitrary manner. In TAMAA, we always use the fastest trace to

5.2 Mission Planning in Different Environments 47

get the order of actions: movement or task execution. Fig. 5.7a depicts
a segment of such traces belonging to a model of 2 agents, where states
of the models are symbolically represented by the locations of the UTA,
e.g., (A, Idle, initial, Idle) represents a state where the move-
ment UTA of an agent is at location A, and its task execution UTA is at
location Idle, whereas another agent’s movement UTA and task execu-
tion UTA are at locations Initial and Idle, respectively. The symbols
mi and tei stand for actions in the movement and task execution UTA of
agent i, respectively, and move[i]:tei->mi stands for the synchronized
actions of starting to move. As depicted, all the actions are controllable
by the agents (i.e., solid lines), which consecutively or alternately move
the respective agent and execute tasks. Two or more agents can stay at
the same milestone (e.g., B) but cannot execute the same task (e.g., two
T1 cannot appear at the same state) unless the agents are not mutually
exclusive in the task.

Finally, when such a trace is found, a mission plan is generated based
on the trace, which contains the order of actions and the paths towards
the destination that avoid static obstacles. Since the resulting mission
plans are based on the fastest traces that satisfy given requirements,
they are guaranteed to meet the requirements too, and complete the
tasks in the shortest time. Additionally, as the search of the model
state space is exhaustive in UPPAAL, TAMAA can eventually find such
a trace to synthesize a mission plan. Formally, if a 1-player game of
mission planning has a winning solution, TAMAA is able to find it; when
TAMAA finds a winning solution of a 1-player game of mission planning,
it is guaranteed to be correct.

Next, we introduce the solutions for solving 2-player games where
environment becomes non-deterministic, and 1 1

2 -player games where en-
vironment becomes stochastic.

5.2.2 Mission Planning in Non-deterministic Envi-
ronments

TAMAA in UPPAAL TIGA: non-deterministic environments.
When the environment becomes non-deterministic, agents only choose
which actions to start and when. The ending time of actions is decided by
the environment, non-deterministically. Therefore, the mission-planning
problem now becomes a 2-player game, where agents and the environ-
ment represent the players, respectively. The goal of winning the game

48 Chapter 5. Dissertation Contributions

Table 5.2: Performance evaluation of synthesis in UPPAAL TIGA with
different number of agents running 3 tasks among 3 milestones

Number of
agents

Number of
explored states

Computation
time

2 775 5 ms
3 222,88 220 ms
4 764,001 18.1 s
5 33,312,229 53.8 mins
6 Out of memory Unknown

now is to find out a strategy that controls the agents’ controllable ac-
tions in order to finish their tasks while satisfying given requirements,
no matter when and which uncontrollable actions are taken by the envi-
ronment.

As depicted in Fig. 5.5b, the agent actions are modeled as timed
games (TG) [44] in UPPAAL TIGA. UPPAAL TIGA is a tool for mod-
eling and synthesizing strategies for TG. It uses a symbolic on-the-fly
algorithm to explore the state space of a TG model, and finds the con-
trollable state-action pairs that win a game. Fig. 5.7b shows an example
of running a strategy of TG in UPPAAL TIGA, which contains control-
lable (solid lines) and uncontrollable actions (dashed lines). The first
four steps in Fig. 5.7a and Fig. 5.7b are the same, being all controllable
actions. From the fifth step in Fig. 5.7b, the strategy starts to be differ-
ent from the trace, because the former has uncontrollable actions, which
means that the environment decides which actions to perform instead of
the agents.

The same as TAMAA in UPPAAL for 1-player games, TAMAA in
UPPAAL TIGA is based on exhaustive graph search, and thus it is sound,
that is, the resulting mission plans are guaranteed to be correct, and com-
plete, that is, if a correct mission plan exists in the model, the method
will terminate and find this mission plan. In addition, the result of syn-
thesis in UPPAAL TIGA is a set of permissive strategies that are not
necessarily optimal but guaranteed to satisfy the requirement anyway.
Although UPPAAL TIGA compensates TAMAA in UPPAAL by solving
the 2-player games, we discover that both methods are not able to solve
the mission-planning problem with more than 5 agents [13, 26]. Table 5.2
shows the performance of running TAMAA in UPPAAL TIGA for solving
the problem of agents running 3 tasks in an environment with 3 mile-
stones. The computation time increases dramatically from 4 agents to 5

5.2 Mission Planning in Different Environments 49

agents. When the agents are 6, the tool runs out of the physical memory
that is assigned by the operating system (i.e., 2 GB on Windows 10).
Therefore, we need to develop a scalable method to deal with a large
number of agents.

In Paper B [26], we analyze the root of the state-space explosion
problem in our mission plan synthesis. The problem is caused by the
exponentially increased number of states when multiple agent models
are composed together. The interleaving behavior of the agents makes
the composed model extremely complex to be explored and analyzed.
For example, when agents A, B, and C are traveling to a common and
mutually exclusive position, who arrives first yields different situations.
Moreover, the traveling time of the agents are intervals, which compli-
cates the problem even more. The graph-search based methods [13, 44]
rely on the algorithmic exploration of the state space, which traverses
the states in a fixed order (e.g., the depth-first order), and needs to store
all the explored states. Even though the symbolic on-the-fly algorithm
of UPPAAL TIGA alleviates the state-space explosion to some extent,
the nature of the algorithm still limits the size of its solvable problems.

MCRL: scalable synthesis. In an attempt to improve scalabil-
ity of mission-plan synthesis, we propose a novel approach of synthe-
sis, namely MCRL (Model Checking + Reinforcement Learning), which
replaces the exhaustive graph search with random simulation and rein-
forcement learning [29]. The approach employs Monte-Carlo simulation
to explore the model state space, uses a reinforcement learning algorithm,
i.e., Q-learning [51], to generate a strategy, and verifies the strategy by
model checking to ensure the correctness of the synthesized strategy.
The Monte-Carlo simulation solves the out-of-memory error because it
randomly explores the model state space, which means it does not need
to store all of states but only samples of traces, and the exploration
terminates when the simulation time ends.

Fig. 5.8a depicts the first version of MCRL, where we use Q-learning
to process the traces and compute the scores of state-action pairs by
using Equation (2.2) (shown in Section 2) and then populate a Q-table
to store the scores. The Q-table serves as the strategy (mission plan)
that we aim to synthesize. Next, we need to check if the strategy indeed
satisfies the requirement. Before running model checking, we reform the
agent model by adding a new UTA called conductor, which is responsible
for searching the strategy and returning the action having the highest
score to the agent model at each of its states. Therefore, when the

50 Chapter 5. Dissertation Contributions

(a) MCRL 1.0 [29] (b) MCRL 2.0 [26]

Figure 5.8: Workflow of MCRL

new model of the MAS is checked by UPPAAL, the agents are controlled
by the conductor model based on the information in the strategy. If
the verification passes, then the strategy is guaranteed to be correct in
the sense that the new agent model can satisfy the requirements when
it is under the control of the strategy. If the verification fails, a loop
going back to simulation and learning takes place with the number of
required sampling traces being increased so that the learning can be
more thorough than the previous round of synthesis.

At the step of model checking (Fig. 5.8a), one typical requirement is
a liveness property of the model, captured by Query (5.4), where ϕ is the
goal that the agents need to satisfy eventually, e.g., finishing all required
tasks. Query (5.4) means that the agents must always eventually satisfy
ϕ no matter how the environment acts.

A♢ ϕ (5.4)

The first version of MCRL is realized in UPPAAL, where a step of
model reforming must be carried out before model checking, which com-
plicates the modeling phase [29]. Moreover, the simulation and learning
are separated in two steps so they cannot benefit from each other.

In Paper B [26] and Paper E [31], we collaborate with researchers

5.2 Mission Planning in Different Environments 51

from Aalborg University in Denmark to integrate MCRL into the tool
UPPAAL STRATEGO. The integration enables MCRL to conduct the
simulation and learning in an interleaving manner. As depicted in
Fig. 5.8b, at the step of synthesis, simulation and learning iterates until
a user-configured number of traces is sampled and finally produces a
strategy. An intermediate strategy that may not be complete is used in
the simulation. The temporary information of the scores of state-action
pairs reflects the experience accumulated in learning so far, which can
benefit the simulation to reach the goal states more likely than totally
random simulation. Specifically, actions with higher scores become more
likely to be chosen by the simulator. Unexplored actions enjoy the same
priority to be chosen as the ones with the highest scores. Eventually,
when a strategy is produced, it is model checked by the model checker
in UPPAAL STRATEGO, without the extra work of constructing the
conductor UTA, because we extend the model checker by leveraging its
new function of calling external libraries (Paper B [26] and Paper E
[31]).

In the classic UPPAAL, the model checker explores the model’s state
space based on the semantics of the model. In our extension of UPPAAL
STRATEGO, an external library counsels the model checker to choose the
right controllable actions based on the synthesized strategy. Specifically,
the external library searches the strategy and returns the actions with
the highest score at the current state. Consequently, the model checker
only explores the state-action pairs that are returned from the external
library. In this way, the agent model is under the control of the strategy
without introducing the new model of conductor. In our extension of
UPPAAL STRATEGO, Query (5.4) is changed to the following one, where
σ is a strategy, and a keyword under is used to instruct the model checker
to call the external library containing a strategy named σ when running
the verification:

A♢ ϕ under σ (5.5)
Query (5.5) is initially proposed in the literature [30]. However, it can
only be used to verify strategies that are synthesized by the graph-search
based method in UPPAAL TIGA. In this dissertation, we extend the
model checker in UPPAAL STRATEGO to verify a subset of strategies
that are synthesized via reinforcement learning, against properties in the
form of Query (5.5). MCRL can synthesize correctness-guaranteed mis-
sion plans for more than five agents working in environments with more
tasks and milestones, which improves TAMAA and meets the require-

52 Chapter 5. Dissertation Contributions

ment of our industrial use cases. In this dissertation, we prove that the
new version of MCRL is sound (Paper E [31]). However, as the method
is based on random simulation, it is not complete because it cannot guar-
antee to terminate with a mission plan being found even if such a plan
exists. We leave this as a direction of future work.

5.2.3 Mission Planning in Stochastic Environments

When the environment becomes stochastic, the ending time of actions
is decided by the environment stochastically. Therefore, the mission-
planning problem now becomes a 1 1

2 -player game. The goal of winning
the game is to synthesize a strategy that owns the highest probability
of finishing the agents’ tasks while satisfying other requirements. As
MCRL uses random simulation to sample traces for learning, the method
is naturally suitable for solving the 1 1

2 -player games.
In Paper D [32], we report our application of MCRL on a stochastic

environment of an industrial use case. As aforementioned in Section 5.1,
we reuse the HA models of agents that are modeled for the dynamic layer
of our two-layer framework, and estimate the traveling time of agents,
which may encounter moving objects stochastically. Next, we use the
estimation of traveling time in the movement TG of agents, and run
MCRL to obtain a strategy that is stochastically optimal. Besides, we
can conduct analysis on the synthesized strategies, such as the bottleneck
analysis, which shows at which milestone the agents stay idle for the
longest time, and the re-planning when the probability distribution of
the occurrence of pedestrians changes.

5.2.4 Correctness-Guaranteed Mission Plan Com-
pression

Although MCRL can deal with larger numbers of agents, the mission
plans in these cases usually take large memory space, which is time-
consuming with respect to looking for the right action at each state of
the model. In some applications, it is simply impossible to store plans
that take too much memory space, such as in Airborne Collision Avoid-
ance System X [57]. Hence, in this dissertation, we propose a method
for compressing mission plans, while preserving the properties that are
satisfied by the original plans. The method is called MoCReL (Model-
checked Compressed Reinforcement Learning) [31], which is extended

5.3 Model-Checking Reach-Avoid Requirement of Nonlinear
Agents 53

from MCRL.

Figure 5.9: Workflow of MoCReL

Fig. 5.9 shows the workflow of this method. Similar to MCRL 2.0
in Fig. 5.8b, MoCReL starts with an iterative process of simulation and
learning, which initially synthesizes a strategy. Next, instead of purely
model checking a liveness property in the form of Query (5.5) against
the strategy, MoCReL runs the model checking while labeling the visited
state-action pairs in the strategy. Next, when the model checking passes,
unlabeled pairs are cleaned from the strategy, which saves a massive
portion of the original one. In Paper E [31], we prove that the method
of synthesis and compression is sound in the sense that if a strategy is
synthesized and compressed by MoCReL, it is guaranteed to be correct,
that is, satisfying the liveness property that we aim to achieve in the
mission planning problem. The experiments of MoCReL on our industrial
use case show that the compression can save up to 99.95% memory space
of what the original strategies take.

In summary, the contributions of TAMAA, MCRL, and MoCReL col-
lectively address Subgoal 3.

5.3 Model-Checking Reach-Avoid Require-
ment of Nonlinear Agents

In this section, we describe the modeling of the agents’ continuous mo-
tions and their embedded control systems, before the introduction of the

54 Chapter 5. Dissertation Contributions

two solutions for model checking the reach-avoid requirement of nonlin-
ear agents.

5.3.1 Modeling Nonlinear Agents

Mission plans are considered to be static because they only take into
account static milestones, obstacles, and tasks. When the agents start
to execute mission plans, their controlling systems as well as the sensors
and actuators must cooperate to function correctly. Moreover, the agents
may encounter unexpected moving obstacles, and thus they must avoid
the obstacles dynamically.

(a) The skeleton of the pattern (b) The HA of the pattern

Figure 5.10: The pattern of the linear motion component of an agent

In the two-layer framework, the agents’ embedded controlling sys-
tems and their dynamic collision avoidance functions are modeled in the
dynamic layer, where the modeling language is hybrid automata (HA).
The HA models are introduced in Paper A [18], where we use pat-
terns to design the templates of the models so that they can be reusable.
Fig. 5.10a depicts the skeleton of the pattern for modeling the agents’
movement, where locations represent the driving modes of the agent,
continuous variables v, pcx, and pcy represent the agent’s velocity, and
its coordinate on the X and Y axes, respectively. Based on the New-
tonian laws of motion, the template HA of this pattern is designed as
shown in Fig. 5.10b, where the derivatives of v, pcx, and pcy are de-
scribed by ordinary differential equations (ODE), which are presented

5.3 Model-Checking Reach-Avoid Requirement of Nonlinear
Agents 55

as replaceable modules in the pattern (blank boxes in Fig. 5.10a).
The pattern-based design is also used in the HA templates of the

agents’ rotating motions and the models of their embedded control sys-
tems. As UPPAAL does not support hierarchical or recursive modeling,
when the systems contain hierarchical structures such as processes and
threads, functions and subfunctions, the models of the systems become
very complex and hard to build and organize. The pattern-based method
facilitates the building of the models by reusing the common components.

Verification of the HA models. After the HA models are constructed,
the target now is to verify them against certain requirements. In this
study, we are interested in a specific one called reach-avoid requirement :
the agents must travel safely from their initial area to the goal area
without a collision on the way. As depicted in Fig. 5.11, an agent starting
from the initial area wants to follow its planned path and go to the goal
area. Although the planned path avoids the static obstacles and reaches

Figure 5.11: A scenario of agents violating the reach-avoid requirement
even though the planned path is correct.

the goal area, the agent does not necessarily always satisfy the reach-
avoid requirement. The challenge is two-fold: (i) the planned path is
not practically tractable because of the sharp turnings at the waypoints
where the linear line segments are connected, which generates inevitable
tracking errors; (ii) the trajectory of an unpredictable moving obstacle
can overlap with the agent’s real trajectory, which possibly causing a
collision. Moreover, even without considering challenges (i) and (ii),
model checking HA is an undecidable problem [16]. We propose two
approaches to solve this problem: (a) statistical model checking, and
(b) exhaustive model checking after a provably correct transformation
from the original HA model to an over-approximation as a discrete-time
model, whose model checking is decidable.

56 Chapter 5. Dissertation Contributions

5.3.2 Solution A: Statistical Model Checking
In Paper A [18], we propose the first solution, which uses statistical
model checking (SMC) and UPPAAL SMC [33] as the tool. SMC ran-
domly simulates the HA models instead of exhaustively exploring their
state space. The random simulation samples a certain number of traces
and checks if they satisfy the requirements. The ratio of the satisfac-
tory traces among the samples is the probability of satisfaction of a
requirement. Hence, instead of qualitative answers: true or false, SMC
can return quantitative answers of probabilities. For instance, we check
properties in the following forms1, where constant numbers in the square
brackets (e.g., [<= 70]) are used to define the simulation time, a Boolean
variable arrived indicates whether the agent has arrived at the goal area
or not, a clock variable counter counts the entire traveling time, and a
Boolean variable collided indicates whether collision happens or not:

Pr[<=70](♢ arrived && counter<=60) (5.6)

Pr[<=110](□ !collided) (5.7)

Query (5.6) returns the probability of eventually reaching the goal area
within 60 time units, and Query (5.7) returns the probability of always
traveling with no collision. Moreover, we can use an UPPAAL SMC query
of the form below, to sample variables such as the positions of the agent
and moving obstacles, at different time points.

simulate 1[<=110] {pcx,pcy,ocx[0],ocy[0],
ocx[1],ocy[1],ocx[3],ocy[3]}

(5.8)

The keyword simulate uses Monte-Carlo simulation to sample traces in
the model state space. The constant number following simulate (e.g.,
1) indicates the simulation rounds. Arrays ocx and ocy in Query (5.8)
represent the positions of moving obstacles at x and y axes. In this
dissertation, we choose a novel collision avoidance algorithm based on
dipole flow fields [38] for the dynamic collision avoidance function of
the agents, and simulate the HA models by using Query (5.8). The
trajectories obtained from the query are shown in Fig. 5.12, where “A”
and “B” are two predefined moving obstacles, and “C” is a dynamically
generated obstacle that moves “recklessly” towards the agent, so the
latter turns around to avoid the obstacle.

1Properties in Section 5.3.2 are supported by UPPAAL SMC 4.1.24.

5.3 Model-Checking Reach-Avoid Requirement of Nonlinear
Agents 57

Figure 5.12: The trajectory of an agent in a map with moving obstacles

In summary, by using statistical model checking in UPPAAL SMC,
we can get the probabilistic answers of satisfying the reach-avoid prop-
erty and simulate the agent models to get the samples of movement.
When the occurrence of moving obstacles are stochastic, this approach
addresses Subgoal 4. When the moving obstacles are non-deterministic
in the sense that they can non-deterministically appear at any moment
during the verification time, from any position in the map, travel at
any speed and angle within their capabilities, solution A is not enough.
Hence, we propose solution B for this case.

5.3.3 Solution B: Exhaustive Model Checking

If we can enumerate all the possible behaviors of the non-deterministic
moving obstacles and exhaustively check if the agent model satisfies the
reach-avoid property when such obstacles do exist, then we can get an
absolute answer to the reach-avoid problem. However, HA models have
infinite states, which makes model checking such models an undecidable
problem. Although TA models are infinite-state models too, because
of the continuous clock variables, with a certain method of abstraction,
e.g., zones [52], the states of TA models are represented symbolically and
thus the state space becomes finite, so the problem of model checking
TA becomes decidable. Unfortunately, there is no such an abstraction
technique for nonlinear HA models [17].

Therefore, in this dissertation (Paper F [37]), we propose a novel
transformation from the nonlinear trajectories of agents to discrete-time

58 Chapter 5. Dissertation Contributions

trajectories and prove that, under certain assumptions, if the latter sat-
isfies the reach-avoid property, the former must also satisfy the property.
The assumptions include: (i) the tracking errors of agent have a Lya-
punov function [12], and (ii) the sampling periods (denoted by ϵ) of the
discrete-time trajectory satisfy: ϵ ≤ L

∥V∥ , where L = La + Lo, where La

is the tracking-error boundary of the agent, Lo is the smallest tracking-
error boundary among dynamic obstacles2, and V is the maximum linear
velocity of the moving obstacles.

Figure 5.13: Safe region of a planned path and its discrete-time path

The conclusion reached by Fan et al. [58] shows that if the agents’
tracking errors have a Lyapunov function, their real trajectories are
bounded within a safe region centered by the planned path (as shown
in Fig. 5.13). Based on this result, we further introduce dynamic obsta-
cles and prove two theorems (Theorem 1 and Theorem 2) in Paper F
[37], which show that by sampling on the planned path with a certain
length of periods, we can obtain a discrete-time trajectory that pre-
serves the reach-avoid property of the real nonlinear trajectory. Thus,
the proven transformation results in a discrete-time over-approximating
model of trajectories, whose model checking is decidable. Based on the
model transformation, we propose a tool-supported technique of model
checking nonlinear agents. We use UPPAAL STRATEGO [30] as the
model checker, since its latest version supports calling external func-
tions, which enables us to implement collision avoidance algorithms as
external libraries.

2When no dynamic obstacle is detected, Lo is zero.

5.3 Model-Checking Reach-Avoid Requirement of Nonlinear
Agents 59

Fig. 5.14 shows the workflow of the verification approach. The input
of the approach are the parameters of the agents (i.e., autonomous vehi-
cles and dynamic obstacles) and their boundary of the tracking errors,
as well as the environment (e.g., static obstacles). In Step 1, users pro-
vide their nonlinear vehicle models, which are used for calculating the
boundary of tracking errors. This module is the approach provided by
Fan et al. [12], which is not the focus of this dissertation. We use the
output of their approach in our models for verification. In Step 2, users
configure the parameters of the approach, which are used for instanti-
ating the UTA templates of the discrete-time models in Step 3. Note
that the user-programmed collision-avoidance algorithm is embedded in
the models as executable libraries, e.g., Dynamic-Link Libraries (DLL)
in Windows, or Shared Objects (SO) in Linux.

Figure 5.14: The workflow of solution B for verifying the reach-avoid
property against nonlinear vehicle models

After the instantiation of UTA, the model checker verifies the model
by traversing its state space, calling the external library at the transi-
tions where external functions are invoked, and checking if the vehicle
model avoids all obstacles and reaches the destination under all circum-
stances. Since the model checker only uses the output of the external
functions in the verification, the external library is treated as a black
box whose implementation detail is not concerned by the verification. If
the verification result is “true”, the agents are guaranteed to satisfy the
reach-avoid requirement under the current parameter configuration; oth-
erwise, counter-examples are returned by the model checker for the users
to debug their algorithm or change the configuration of the parameters
(Step 4).

60 Chapter 5. Dissertation Contributions

To demonstrate the performance of our approach, in this disserta-
tion, we program the collision-avoidance algorithm based on dipole flow
fields [38] as an external library and verify the model that is linked to
this library. The results identify two problematic scenarios where colli-
sion happens inevitably. Using these counter-examples, we improve the
algorithm and verify the model again. The new verification results show
that the algorithm enables the agents to travel safely and reach their
destination in an environment with one moving obstacle, and the verifi-
cation time is in the range of several seconds or minutes. Details of the
experiments and the results are in Paper F [37]. In summary, the exper-
imental results demonstrate the ability of the approach for finding bugs
in the design stage of a collision-avoidance algorithm and demonstrate
the absence of certain bugs in an improved version of the algorithm. The
contributions of solutions A and B collectively address Subgoal 4.

5.4 Validation on Industrial Systems

As the dissertation aims to deal with industrial systems, our methods
need to be automated by tools so that engineers can benefit from formal
methods without the required expertise. In this dissertation (Paper
C [21]), we propose MALTA, a tool-supported methodology of mission
planning. Fig. 5.15 depicts the structure of MALTA, which is built of

Figure 5.15: The structure of MALTA

three parts: a front end providing user-interface, a middleware providing
path planning and building mission plans from paths and schedules, and
a back end dedicated for task scheduling. The toolset adopts a Client-
Server architecture. The reason is twofold: first, the front end of the
toolset is a GUI that had been independently designed before the mid-

5.4 Validation on Industrial Systems 61

(a) Path finding of the example in MALTA

(b) Task scheduling of the example in MALTA

Figure 5.16: An example of mission planning in MALTA

dleware and the back end were designed. Beside the GUI, the front end
also provides a group of programming interfaces and data structures for
communication. Therefore, the front end is open for extension without
requiring code updates. Second, the computation of mission plans can be
quite expensive. As we show in Section 5.2, synthesizing mission plans
for multiple agents can cost hours on a computationally powerful server.
Therefore, a separation of the front-end GUI from the function of mis-
sion plan synthesis allows the users to move computation to a dedicated
server, which is a user-friendly and efficient pattern of design.

In the front end (see Fig. 5.16a), users can configure their environ-
ment including the navigation areas, milestones, tasks, agents, etc., after

62 Chapter 5. Dissertation Contributions

which, the environmental configuration is transferred to the middleware.
The middleware receives the environment configuration and passes it to
a path planner. Any path-finding algorithm that supports the desired
environmental constraints can be used.

In this dissertation, we include several path-finding algorithms: A*
[22], Theta* [23], and DALi [24] and two of its improved versions. A*
algorithm is a classic algorithm that discretizes the environment as a
Cartesian grid and computes the shortest paths between two points in
the grid. The resulting paths are restricted to the edges and diagonals
of the cells of the grid. Theta* algorithm is based on A*, which is not
restricted to only use edges and diagonals of cells, and thus its resulting
paths are smooth in the sense of having as few sharp turnings as pos-
sible. The DALi algorithm and its two improved versions are special
path-finding algorithms in complex environments. The algorithm takes
into account environmental constraints and user’s preferences, such as
temporary forbidden areas and hot maps. The resulting paths of DALi
avoid the temporary forbidden areas when necessary and stick to the
user-preferred areas as close as possible.

After paths are found, the middleware generates UTA models as we
have described in Section 5.2. These UTA models are transferred to the
back end, where TAMAA is executed to synthesize task schedules. The
path-finding module in the middleware and task-scheduling module in
the back end run iteratively until all the environmental constraints are
met by the paths and task schedules. Finally, mission plans are generated
based on the synthesized paths and task schedules and then shown in
the front end (see Fig. 5.16a).

We evaluate the toolset in an industrial use case: an autonomous
quarry that contains autonomous wheel loaders and trucks that need to
dig and transport a certain amount of stones every day. The quarry
use case is provided by Volvo Construction Equipment in Sweden. The
evaluation results show the computation time of various versions of the
path-finding algorithm and task scheduler in different sizes of environ-
ments. As shown in Fig. 5.17a, the computation time of path finding
increases linearly with the increased numbers of agents and milestones.
It is because the path-finding algorithm is executed independently in
each of the agents and the resulting paths do not need to consider each
other. The overlapping of the paths is dealt with by the dynamic layer
of our two-layer framework. However, as task scheduling uses the com-
posed model of all agents, the computation time increases exponentially

5.4 Validation on Industrial Systems 63

(a) Path finding time of DALi wrt the numbers of agents and milestones

(b) Task scheduling time wrt the numbers of agents and milestones

Figure 5.17: Computation time of MALTA

64 Chapter 5. Dissertation Contributions

Table 5.3: Contribution of included papers with respect to research goals

Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4 Subgoal 5
Paper A X X
Paper B X X X
Paper C X X
Paper D X X
Paper E X
Paper F X X

with the linearly increased number of agents (as shown in Fig. 5.17b),
which complies with the experimental results in Paper B [26]. More
experiments and the results are reported in Paper C [21].

As aforementioned, to meet the requirement of agent numbers in
industrial systems, we propose a scalable method of mission planning
called MCRL. In the experiments of Paper B [26], the method is adopted
in the toolset MALTA. In summary, we develop a tool that automates
the mission planning methods for different kinds of environments. The
tool facilitates the model building and mission plan synthesis by using
formal methods. This contribution addresses Subgoal 5.

5.5 Research Goals Revisited

In this section, we present the technical contributions of this dissertation
and the relationship between the included papers and the research goals.
Each research goal is addressed by one or more papers, as illustrated in
Table 5.3.

• Paper A [18] proposes a two-layer framework for the formal mod-
eling and verification of autonomous agents, such that design-
ers can utilize formal methods to analyze and design autonomous
agents via a systematic approach that is founded on rigorous design
elements based on formal models. Paper D [32] shows the commu-
nication between the static layer and dynamic layer of the frame-
work. These contributions address Subgoal 1: Provide a means
that decouples the design of mission planning from the agents’ au-
tonomous operation in a continuous dynamic environment, sup-
ported by model checking techniques.

5.5 Research Goals Revisited 65

• Paper B [26] introduces our mission-planning algorithms in dif-
ferent types of environments, and analyzes their weaknesses and
strengths. This contribution addresses Subgoal 2: Assuming dif-
ferent types of environments of mission planning, that is, determin-
istic and collaborative ones, stochastic ones, or non-deterministic
ones, identify suitable methods for mission planning, and evaluate
their appropriateness in various scenarios.

• Paper C [21] introduces the approaches for mission planning in a
deterministic environment with complex road conditions. Paper
B [26] shows the second version of MCRL integrated into UPPAAL
STRATEGO, and demonstrates the performance of the algorithm
when dealing with relatively large numbers of agents. Paper D
[32] is about the probabilistic mission planning, and Paper E [31]
extends MCRL with strategy compression. These contributions
address Subgoal 3: Provide scalable approaches that involve model
checking, for mission-plan synthesis and compression of MAS, such
that the computation time is reasonable when the number of agents
is large and the resulting mission plans only contain the useful
information that guarantees the agents to satisfy given temporal
requirements.

• Paper A [18] uses statistical model checking to verify the HA
models of agents against the reach-avoid requirement when fac-
ing unforeseen moving obstacles. Paper F [37] proposes our the
model transformation from nonlinear trajectories to discrete-time
trajectories and uses symbolic model checking to give a qualita-
tive answer of true or false to the reach-avoid verification. These
contributions address Subgoal 4: Ensure the reach-avoid require-
ment of agents when executing mission plans in environments with
unforeseen static and dynamic obstacles.

• By implementing our mission-planning approaches in a toolset
named MALTA, a tool-supported approach for reach-avoid veri-
fication, and applying our proposed methods to the industrial use
case of an autonomous quarry, Paper B [26], Paper C [21], and
Paper F [37] collectively address Subgoal 5: Develop automated
support that integrates the approaches of mission plan synthesis
and verification, and assesses the applicability of the approaches in
an industrial use case.

66 Chapter 5. Dissertation Contributions

These contributions together provide methodologies for mission plan-
ning and reach-avoid verification of MAS, supported by formal methods
and tools, which address our overall research goal.

Chapter 6

Related Work

In this chapter, we present some of the related work in mission planning
and verification of agents. These previous studies pave the way of mission
plan synthesis and reach-avoid verification by using formal methods,
which inspire our work. However, the fact that these related studies
either consider only one aspect of the problem, i.e., discrete mission
planning or verification of hybrid models, or fail to provide a scalable
solution for multiple agents in one framework has motivated us to extend
the study and fill the research gaps.

6.1 Multi-Layer Frameworks for Agent De-
sign and Verification

Belta et al. [59] present a hierarchical structure, and based on a three-
level process they propose a method for the verification of mobile robots
using Linear Temporal Logic (LTL). This is evaluated in several case
studies [60, 61]. Bhatia et al. [62, 63] propose a multi-layered syner-
gistic approach for solving motion planning problems for mobile robots
involving temporal goals. This approach addresses two key issues: the
construction of the discrete abstraction of the robots and its efficient
exploration in the high-level layer. Dimarogonas et al. [64, 65] propose
their method for motion planning of multiple-agent systems using vari-
ous temporal logics. Saddem et al. [66] use UPPAAL and Computation
Tree Logic (CTL) to verify reachability properties of autonomous func-

67

68 Chapter 6. Related Work

tionalities, including path finding. The authors propose an environment
decomposition method to reduce the memory requirement and execu-
tion time of model checking. However, few of the studies have decoupled
the problems of mission planning and reach-avoid verification in differ-
ent layers, where suitable formal methods are adopted, respectively. In
addition, our communication between the layers is bidirectional. Not
only mission plans can be sent to and verified in the dynamic layer, but
once new road conditions are detected, e.g., new temporary obstacles,
the environmental information is also sent back to the static layer for
re-planning. All these aspects of our framework are supported by formal
methods combined with state-of-the-art approaches of synthesis, e.g., Q-
learning [51], and collision avoidance, e.g., the algorithm based on dipole
flow fields [38].

6.2 Mission Planning of Agents

Path finding in the Artificial Intelligent (AI) community, has been a
research interest since the early days of robotics [67]. Sampling-based
methods like Rapidly-exploring Random Tree (RRT) [68] and a method
based on probabilistic roadmaps [69], and graph-search-based methods
like A* [22] and Theta* [23], are two typical branches of path-finding
algorithms. These algorithms are dedicated to find collision-free paths
in a confined environment, interspersed with static obstacles. However,
when the environment starts to be dynamic, e.g., moving obstacles are
involved, or the agents need to interact with it, e.g., picking an object
and carrying it to another position, the path-finding algorithms become
insufficient. Alami et al. [70] and Hauser et al. [71] propose a modal
structure of the robots and their working environments. Since the switch
of modes is discrete, the problem is about identifying the modes of the
systems, defining the transitions among the modes, and traversing the
state space in order to find a trace that satisfies some certain constraints.
This is the so-called task planning in the AI community [72].

In recent decades, there has been a growing interest in task planning
with complex goals. There is an important line of work of task planning
that uses temporal logic to specify the high-level requirements of tasks
[73, 74]. Linear Temporal Logic (LTL) is one of the most widely used
logic for requirement specification [75, 76, 62], because of its expressive
power that is able to capture relatively complex requirements. Different

6.2 Mission Planning of Agents 69

from these studies, we adopt Timed Computation Tree Logic (TCTL).
(T)CTL and LTL are subsets of a temporal logic family named CTL* [6].
Each of the logics has an expressive power that is orthogonal to the other,
hence they are used in different problems, respectively. TCTL enables
one to express timing requirements, e.g., digging 1000m3 of stones within
24 hours, which is of high industrial concern, in an attempt to ensure
productivity when using autonomous vehicles. Most importantly, our
MCRL method innovatively combines model checking with reinforcement
learning to deal with a large number of agents in a composed model while
preserves the correctness guarantee of the results.

In the field of combining formal methods with reinforcement learn-
ing (RL), Behjati et al. [77] attempt to solve the state-space-explosion
problem of model checking LTL properties by using RL. The method
proposed by Bouton et al. [78] enforces probabilistic guarantees on
agents during the course of reinforcement learning. Jothimurugan et
al. [79] propose DIRL, a synthesis approach that interleaves Djikstra’s
algorithm with RL to train agents. Brázdil et al. [80] provide learning
algorithms for searching MDP (Markov Decision Processes) to verify var-
ious reachability properties. Legay et al. [81] present a scalable approach
of verification for MDP. In comparison, Our MCRL combines reinforce-
ment learning with model checking in another direction, that is, using
reinforcement learning to alleviate the state-space explosion problem of
model checking.

Some studies have proposed tool-supported methods of planning by
using UPPAAL and its branches. Andersen et al. [82] present a UPPAAL-
based method for motion planning of multi-robot systems. Their method
uses reachability queries to generate motion plans, which is not sufficient
for synthesizing comprehensive strategies that consider time intervals as
the execution time of motions. Bersani et al. [11] present the PuR-
SUE (Planner for RobotS in Uncontrollable Environments) approach,
which supports users to configure their robotic applications and auto-
matically generate their controllers by using UPPAAL TIGA. However,
their method can only deal with 2 robots simultaneously. Comparing
with these studies, we formally formulate the planning problem for multi-
agent systems and categorize the problem according to the types of the
environment. For different type of environment, we propose different
solutions and analyze their strengths and weaknesses. In a nutshell, our
solutions for the mission-planning problem is systematic and scalable in
realistic industrial scenarios.

70 Chapter 6. Related Work

In the area of strategy compression, Julian et al. explore several ways
of compressing strategies by using origami compression [83] or deep neu-
ral network [57][84]. Ashok et al. propose a decision-tree-based method
for concisely representing strategies [85][86]. Their tool named dtControl
is able to compress strategies produced by UPPAAL TIGA. Compared
with these methods, the strategy compression in MoCReL focuses on
cleaning the unused data in the strategies rather than representing them
in different forms. Compression in MoCReL that relies on exhaustive
model checking inherently provides correctness guarantee of the results,
which needs extra effort to achieve in other methods [84]. Piterman et
al. minimize strategies by removing redundant states [87]. Intuitively,
states are considered redundant if the corresponding strategies satisfy
the desired properties with and without these states. In contrast, the
unused state-action pairs that MoCReL removes are those that are ex-
plored by reinforcement learning but do not satisfy the properties.

6.3 Verification of Agents

The reach-avoid verification is always a focus of research in the Robotic
community. Automata-based methods have been studied widely in solv-
ing this problem [88, 89, 8, 60]. In these papers, the authors study agents
that autonomously carry out tasks like searching for an object, avoiding
an obstacle, and missions sequencing. The main method of verification
that is used in these studies is model checking. As aforementioned, when
the environment contains unforeseen obstacles, or the dynamics of the
agents becomes continuous or even nonlinear, classic model checking is
not able to solve the problem.

Runtime verification that monitors the behavior of autonomous
systems addresses the above-mentioned shortage to some extent
[90][91][92][93]. This technique extracts information from a running
system, based on which the behavior of the system is verified. The
runtime overhead caused by the monitor is the most common problem
introduced by this method.

Other formal methods such as theorem proving have also been inves-
tigated in conducting the reach-avoid verification of agents. Mitsch et
al. [94] propose a method to verify safety properties of robots. Their
method is based on hybrid system models and differential dynamic logic
for theorem proving in KeYMaera. Abhishek et al. [95, 96] also use

6.3 Verification of Agents 71

KeYMaera for collision-avoidance verification. Their models consider
the realistic geometrical shapes of vehicles, as well as the combination
of maneuvre and braking. Heß et al. [97] propose a method to verify an
autonomous robotic system during its operation, in order to cope with
changing environments. O’Kelly et al. [98] have developed a verification
tool, called APEX, and investigated the combined action of a behavioral
planner and state lattice-based motion planner to guarantee a safe vehi-
cle trajectory. Our work differs from the above studies in the following
aspects: based on the bounded tracking errors of actual trajectories, we
prove that the reach-avoid verification of nonlinear vehicle models can
be simplified to a decidable problem of verifying over-approximations in
form of discrete-time models. Additionally, we consider the difficulties
of using formal methods in industrial scenarios and propose methods
such as pattern-based modeling and external libraries embedded in for-
mal models to facilitate engineers to benefit from formal methods with
a lesser effort of learning.

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

In this dissertation, we research the mission planning and reach-avoid
verification of autonomous agents by employing formal methods. To
achieve separation of concerns, we decouple the discrete mission plan-
ning from the reach-avoid verification of the mission plan execution in a
continuous environment, by proposing a two-layer framework that con-
sists of a static layer and a dynamic layer. The static layer contains the
milestones, tasks, and static obstacles, and is dedicated to the mission
planning problem. The continuous movement of agents, as well as the
unforeseen moving obstacles are considered in the dynamic layer. In the
static layer, we propose different methods of mission planning for differ-
ent types of environments. For the environment that is fully controlled
by agents, we design a correctness-guaranteed synthesis method based
on model checking, namely TAMAA. The method is capable of synthesiz-
ing the fastest mission plans and guarantees its results to satisfy various
requirements. If the environment non-deterministically decides the end-
ing time of agent actions, we adapt the TA models of agents to be TG
models. We first adopt TAMAA in UPPAAL TIGA for synthesizing mis-
sion plans based on the TG models. Our experiments show that both
TAMAA in UPPAAL and UPPAAL TIGA have a limitation on the number

73

74 Chapter 7. Conclusions and Future Work

of agents that they can handle. To scale the solution to a larger number
of agents, we propose a novel approach called MCRL, which combines
model checking with reinforcement learning. The new method is able
to cope with more agents than TAMAA. In addition, MCRL is demon-
strated to be able to provide stochastically optimal solutions of mission
planning when the environment contains probabilistic information about
obstacles. Moreover, we design a method of mission plan compression
based on MCRL, namely MoCReL. The mission plans that are synthe-
sized and compressed by MoCReL are guaranteed to be correct and use
down to 0.05% of the memory space of the original ones.

For the dynamic layer of the framework, we propose a pattern-based
method of designing the models described by hybrid automata (HA),
which can generate the continuous movement of agents and moving ob-
stacles. As model checking HA models is undecidable, we propose two
ways of the reach-avoid verification: statistical model checking, and ex-
haustive model checking with a 2-step model transformation that we
prove correct, which results in a discrete-time over-approximated model
that can be model checked. First, when the occurrence of moving ob-
stacles is stochastic, we employ statistical model checking to provide
probabilistic results of verification. Second, when the moving obstacles
appear and behave non-deterministically, we transform the continuous
trajectories to discrete-time ones and prove that if the latter satisfy the
reach-avoid property, the former must also satisfy it. Based on the model
transformation, we propose a tool-supported model checking technique
in UPPAAL STRATEGO. The experimental results show that the ap-
proach is able to detect problematic scenarios for an improved version
of the collision-avoidance algorithm based on dipole flow fields, where
collisions with moving obstacles are inevitable, and demonstrate the ab-
sence of bugs in the agents when such scenario does not exist. These
two verification approaches provide solutions for different types of envi-
ronments.

To facilitate the use of our methods by engineers in industrial appli-
cations, we develop a toolset called MALTA and a pattern-based method
of modeling and verification. MALTA provides a GUI for configuring the
environment and missions of the agents, and is open for extensions of
path-finding and task-scheduling algorithms. With the help of MALTA,
engineers can benefit from using formal methods for mission planning
without the corresponding expertise. The pattern-based modeling facili-
tates the model construction. When facing different agents with different

7.2 Future Work 75

kinematics, users of our method only need to replace certain modules of
the patterns to create their own agent models. Especially when the em-
bedded control systems of the agents have hierarchical structures, the
patterns alleviate the complexity of modeling in UPPAAL, which does
not support multi-level models.

7.2 Future Work
The future work has several possible directions. One is to enhance the
communication between the two layers of the framework so that they
communicate in a real-time manner, such that the mission planning and
verification can be optimized. Another direction is about investigating
the combination of reinforcement learning and model checking in the
synthesis problem. So far, reinforcement learning aids model checking
because the former enables the latter to verify mission plans of large num-
bers of agents. However, when the goal of the agents is a rare event in the
sense that random simulation can hardly reach the goal state, reinforce-
ment learning finds it very hard to obtain results. A counter-example-
guided approach can complement reinforcement learning by providing
counter-examples of incomplete mission plans and accelerate the learn-
ing phase. In the direction of scalable synthesis for MAS, we want to
investigate the methods of decoupling the system into smaller and more
tractable sub-systems, while still achieving their common goal of the
mission.

In the direction of agent verification, applications with more complex
kinematics and dynamics of agents may be investigated. How to adapt
techniques that can be beneficial for engineers, such as barrier certificate
or bounded model checking, falls also within our research interest.

Bibliography

[1] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey
Oliver. Autonomous vehicles: challenges, opportunities, and future
implications for transportation policies. Journal of modern trans-
portation, 24(4):284–303, 2016. Springer.

[2] Ðorđe Petrović, Radomir Mijailović, and Dalibor Pešić. Traffic ac-
cidents with autonomous vehicles: type of collisions, manoeuvres
and errors of conventional vehicles’ drivers. Transportation research
procedia, 45:161–168, 2020. Elsevier.

[3] Walter F Tichy. Should computer scientists experiment more?
Computer, 31(5):32–40, 1998. IEEE.

[4] Philip Koopman and Michael Wagner. Autonomous vehicle safety:
An interdisciplinary challenge. IEEE Intelligent Transportation Sys-
tems Magazine, 9(1):90–96, 2017.

[5] Edmund M Clarke and Jeannette M Wing. Formal methods: State
of the art and future directions. ACM Computing Surveys (CSUR),
28(4):626–643, 1996.

[6] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT press, 2008.

[7] Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D
Ames, Jessy W Grizzle, Necmiye Ozay, Huei Peng, and Paulo
Tabuada. Correct-by-construction adaptive cruise control: Two
approaches. IEEE Transactions on Control Systems Technology,
24(4):1294–1307, 2015.

77

78Bibliography

[8] Michael Melholt Quottrup, Thomas Bak, and RI Zamanabadi.
Multi-robot planning: A timed automata approach. In Proceed-
ings of the 2004 IEEE International Conference on Robotics and
Automation, volume 5, pages 4417–4422. IEEE, 2004.

[9] Gopinadh Sirigineedi, Antonios Tsourdos, Brian A White, and Rafal
Zbikowski. Modelling and verification of multiple uav mission using
smv. arXiv preprint arXiv:1003.0381, 2010.

[10] Ankush Desai, Tommaso Dreossi, and Sanjit A Seshia. Combin-
ing model checking and runtime verification for safe robotics. In
International Conference on Runtime Verification, pages 172–189.
Springer, 2017.

[11] Marcello M Bersani, Matteo Soldo, Claudio Menghi, Patrizio Pel-
liccione, and Matteo Rossi. Pursue-from specification of robotic
environments to synthesis of controllers. Formal Aspects of Com-
puting, 32(2):187–227, 2020. Springer.

[12] Chuchu Fan, Kristina Miller, and Sayan Mitra. Fast and guaranteed
safe controller synthesis for nonlinear vehicle models. In Interna-
tional Conference on Computer Aided Verification, pages 629–652.
Springer, 2020.

[13] Rong Gu, Eduard Enoiu, and Cristina Seceleanu. Tamaa: Uppaal-
based mission planning for autonomous agents. In Proceedings of
the 35th Annual ACM Symposium on Applied Computing, pages
1624–1633, 2020.

[14] Maxime Bouton, Akansel Cosgun, and Mykel J Kochenderfer. Belief
state planning for autonomously navigating urban intersections. In
Intelligent Vehicles Symposium. IEEE, 2017.

[15] Thomas A Henzinger. The theory of hybrid automata. In Verifica-
tion of digital and hybrid systems, pages 265–292. Springer, 2000.

[16] Kārlis Čerāns. Algorithmic problems in analysis of real time system
specifications. PhD thesis, University of Latvia, 1992.

[17] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin
Varaiya. What’s decidable about hybrid automata? Journal of
computer and system sciences, 57(1):94–124, 1998. Elsevier.

Bibliography 79

[18] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Towards a two-layer framework for verifying au-
tonomous vehicles. In NASA Formal Methods Symposium, pages
186–203. Springer, 2019.

[19] Rajeev Alur and David Dill. The theory of timed automata. In
Workshop/School/Symposium of the REX Project (Research and
Education in Concurrent Systems), pages 45–73. Springer, 1991.

[20] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International journal on software tools for technology transfer, 1(1-
2):134–152, 1997. Springer.

[21] Rong Gu, Eduard Baranov, Afshin Ameri, Eduard Enoiu, Baran
Cürüklü, Cristina Seceleanu, Axel Legay, and Kristina Lundqvist.
Synthesis and verification of mission plans for multiple agents under
complex road conditions. Submitted to Transactions on Software
Engineering and Methodology (TOSEM), 2022. ACM.

[22] Steve Rabin. Game programming gems, chapter a* aesthetic opti-
mizations. Charles River Media, 2000.

[23] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelligence
Research, 39:533–579, 2010. AI Access Foundation.

[24] Alessio Colombo, Daniele Fontanelli, Axel Legay, Luigi Palopoli,
and Sean Sedwards. Efficient customisable dynamic motion plan-
ning for assistive robots in complex human environments. Journal
of ambient intelligence and smart environments, 7(5):617–634, 2015.
IOS Press.

[25] Gerd Behrmann, Alexandre David, Emmanuel Fleury, Kim Larsen,
Didier Lime, and Ecole Nantes. Uppaal-Tiga: Time for playing
games! (tool paper). In Proceedings of the 2007 Computer Aided
Verification. Springer, 2007.

[26] Rong Gu, Peter Jensen, Danny Poulsen, Cristina Seceleanu, Eduard
Enoiu, and Kristina Lundqvist. Verifiable strategy synthesis for
multiple autonomous agents: A scalable approach. International
Journal on Software Tools for Technology Transfer (STTT), pages
1–20, 2022. Springer.

80Bibliography

[27] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zu-
liani. Model checking and the state explosion problem. In LASER
Summer School. Springer, 2011.

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[29] Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Verifiable and scalable mission-plan synthesis for au-
tonomous agents. In International Conference on Formal Methods
for Industrial Critical Systems, pages 73–92. Springer, 2020.

[30] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Mar-
ius Mikučionis, and Jakob Haahr Taankvist. Uppaal Stratego. In
TACAS. Springer, 2015.

[31] Rong Gu, Peter Jensen, Danny Poulsen, Cristina Seceleanu, Eduard
Enoiu, and Kristina Lundqvist. Strategy synthesis and compression
for multi-agent systems. Submitted to Journal of Science of Com-
puter Programming (SCP), 2022. Elsevier.

[32] Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Probabilistic mission planning and analysis for multi-
agent systems. In International Symposium on Leveraging Applica-
tions of Formal Methods, pages 350–367. Springer, 2020.

[33] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statistical
model checking for stochastic hybrid systems. In arXiv preprint
arXiv:1208.3856, 2012.

[34] Chuchu Fan, Umang Mathur, Sayan Mitra, and Mahesh
Viswanathan. Controller synthesis made real: Reach-avoid specifi-
cations and linear dynamics. In International Conference on Com-
puter Aided Verification, pages 347–366. Springer, 2018.

[35] Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire J Tomlin, and Jaime F
Fisac. Safety and liveness guarantees through reach-avoid reinforce-
ment learning. arXiv preprint arXiv:2112.12288, 2021.

[36] Jaime F Fisac, Mo Chen, Claire J Tomlin, and S Shankar Sas-
try. Reach-avoid problems with time-varying dynamics, targets and

Bibliography 81

constraints. In Proceedings of the 18th international conference on
hybrid systems: computation and control, pages 11–20, 2015. ACM.

[37] Rong Gu, Cristina Seceleanu, Eduard Enoiu, and Kristina
Lundqvist. Model checking collision avoidance of nonlinear au-
tonomous vehicles. In International Symposium on Formal Methods,
pages 676–694. Springer, 2021.

[38] Lan Anh Trinh, Mikael Ekström, and Baran Cürüklü. Toward
shared working space of human and robotic agents through dipole
flow field for dependable path planning. Frontiers in neurorobotics,
12, 2018. Frontiers Media SA.

[39] Stephen Edwards, Luciano Lavagno, Edward A Lee, and Alberto
Sangiovanni-Vincentelli. Design of embedded systems: Formal mod-
els, validation, and synthesis. Proceedings of the IEEE, 85(3):366–
390, 1997.

[40] Stephen C Kleene et al. Representation of events in nerve nets and
finite automata. Automata studies, 34:3–41, 1956. Princeton, NJ.

[41] Carl Adam Petri. Communication with automata. University of
Hamburg, 1966.

[42] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algo-
rithms and tools. Lecture Notes in Computer Science, 3098:87–124,
2004. Springer.

[43] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statis-
tical model checking for stochastic hybrid systems. arXiv preprint
arXiv:1208.3856, 2012.

[44] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G Larsen,
and Didier Lime. Efficient on-the-fly algorithms for the analysis of
timed games. In International Conference on Concurrency Theory,
pages 66–80. Springer, 2005.

[45] Manfred Jaeger, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel
Legay, Sean Sedwards, and Jakob Haahr Taankvist. Teaching strat-
ego to play ball: Optimal synthesis for continuous space MDPs. In
International Symposium on Automated Technology for Verification
and Analysis, pages 81–97. Springer, 2019.

82Bibliography

[46] Paul E Black. Manhattan distance. Dictionary of Algorithms and
Data Structures, 18:2012, 2006. US National Institute of Standards
and Technology. Retrieved May.

[47] Luis Valbuena and Herbert G Tanner. Hybrid potential field based
control of differential drive mobile robots. Journal of intelligent &
robotic systems, 68(3-4):307–322, 2012. Springer.

[48] Yoav Golan, Shmil Edelman, Amir Shapiro, and Elon Rimon. On-
line robot navigation using continuously updated artificial temper-
ature gradients. IEEE Robotics and Automation Letters, 2(3):1280–
1287, 2017.

[49] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforce-
ment learning, volume 2. MIT press Cambridge, 1998.

[50] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Ad-
vances in neural information processing systems. MIT Press, 2000.

[51] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. King’s College, Cambridge, 1989.

[52] Gerd Behrmann, Patricia Bouyer, Kim G Larsen, and Radek
Pelánek. Lower and upper bounds in zone-based abstractions of
timed automata. International Journal on Software Tools for Tech-
nology Transfer, 8(3):204–215, 2006. Springer.

[53] Yasmina Abdeddaı, Eugene Asarin, Oded Maler, et al. Scheduling
with timed automata. Theoretical Computer Science, 354(2):272–
300, 2006. Elsevier.

[54] Walter L Hürsch and Cristina Videira Lopes. Separation of con-
cerns. Citeseer, 1995.

[55] Marvin V Zelkowitz and Dolores Wallace. Experimental valida-
tion in software engineering. Information and Software Technology,
39(11):735–743, 1997. Elsevier.

[56] Hilary J Holz, Anne Applin, Bruria Haberman, Donald Joyce, Helen
Purchase, and Catherine Reed. Research methods in computing:
what are they, and how should we teach them? ACM SIGCSE
Bulletin, 38(4):96–114, 2006.

Bibliography 83

[57] Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. Deep
neural network compression for aircraft collision avoidance systems.
Journal of Guidance, Control, and Dynamics, 42(3):598–608, 2019.
American Institute of Aeronautics and Astronautics.

[58] Chuchu Fan, Zengyi Qin, Umang Mathur, Qiang Ning, Sayan Mitra,
and Mahesh Viswanathan. Controller synthesis for linear system
with reach-avoid specifications. IEEE Transactions on Automatic
Control, 2021.

[59] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli,
Eric Klavins, and George J Pappas. Symbolic planning and control
of robot motion [grand challenges of robotics]. IEEE Robotics &
Automation Magazine, 14(1):61–70, 2007.

[60] Stephen L Smith, Jana Tumova, Calin Belta, and Daniela Rus. Op-
timal path planning for surveillance with temporal-logic constraints.
International Journal of Robotics Research, 30(14):1695–1708, 2011.
SAGE Publications.

[61] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, Calin Belta, and
Daniela Rus. Optimality and robustness in multi-robot path plan-
ning with temporal logic constraints. International Journal of
Robotics Research, 32(8):889–911, 2013. SAGE Publications.

[62] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi. Sampling-based
motion planning with temporal goals. In International Conference
on Robotics and Automation, pages 2689–2696. IEEE, 2010.

[63] Amit Bhatia, Matthew R Maly, Lydia E Kavraki, and Moshe Y
Vardi. Motion planning with complex goals. IEEE Robotics &
Automation Magazine, 18(3), 2011.

[64] Fernando S Barbosa, Lars Lindemann, Dimos V Dimarogonas, and
Jana Tumova. Integrated motion planning and control under met-
ric interval temporal logic specifications. In 2019 18th European
Control Conference (ECC). IEEE, 2019.

[65] Alexandros Nikou, Dimitris Boskos, Jana Tumova, and Dimos V
Dimarogonas. On the timed temporal logic planning of coupled
multi-agent systems. Automatica, 97:339–345, 2018. Elsevier.

84Bibliography

[66] Rim Saddem, Olivier Naud, Karen Godary Dejean, and Didier
Crestani. Decomposing the model-checking of mobile robotics ac-
tions on a grid. IFAC-PapersOnLine, 50(1):11156–11162, 2017. El-
sevier.

[67] Nils J Nilsson et al. Shakey the robot. Articial Intelligence Center,
SRI International Menlo Park, California, 1984.

[68] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. In Technical Report, 1998.

[69] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Over-
mars. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and Automa-
tion, 1996.

[70] Rachid Alami, Thierry Simeon, and Jean-Paul Laumond. A geomet-
rical approach to planning manipulation tasks. the case of discrete
placements and grasps. In The fifth international symposium on
Robotics research. MIT Press, 1990.

[71] Kris Hauser and Jean-Claude Latombe. Multi-modal motion plan-
ning in non-expansive spaces. The International Journal of Robotics
Research, 2010. SAGE Publications.

[72] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning
and acting. Cambridge University Press, 2016.

[73] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
transactions on robotics, 25(6):1370–1381, 2009.

[74] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal methods
for discrete-time dynamical systems. Springer, 2017.

[75] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. Ltl-
mop: Experimenting with language, temporal logic and robot con-
trol. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2010.

[76] Mingyu Cai, Hao Peng, Zhijun Li, and Zhen Kan. Learning-based
probabilistic ltl motion planning with environment and motion un-
certainties. IEEE Transactions on Automatic Control, 2020.

Bibliography 85

[77] Razieh Behjati, Marjan Sirjani, and Majid Nili Ahmadabadi.
Bounded rational search for on-the-fly model checking of ltl prop-
erties. In FSE, pages 292–307. Springer, 2009.

[78] Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura,
Mykel J Kochenderfer, and Jana Tumova. Reinforcement learn-
ing with probabilistic guarantees for autonomous driving. arXiv
preprint arXiv:1904.07189, 2019.

[79] Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Ra-
jeev Alur. Compositional reinforcement learning from logical spec-
ifications. Advances in Neural Information Processing Systems, 34,
2021. MIT Press.

[80] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtěch
Forejt, Jan Křetínskỳ, Marta Kwiatkowska, David Parker, and Ma-
teusz Ujma. Verification of markov decision processes using learning
algorithms. In International Symposium on Automated Technology
for Verification and Analysis. Springer, 2014.

[81] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Scalable
verification of markov decision processes. In International Confer-
ence on Software Engineering and Formal Methods. Springer, 2014.

[82] Michael S Andersen, Rune S Jensen, Thomas Bak, and Michael M
Quottrup. Motion planning in multi-robot systems using timed au-
tomata. IFAC Proceedings Volumes, 37(8):597–602, 2004. Elsevier.

[83] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen,
and Mykel J Kochenderfer. Policy compression for aircraft colli-
sion avoidance systems. In 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), pages 1–10. IEEE, 2016.

[84] Kyle D Julian and Mykel J Kochenderfer. Guaranteeing safety for
neural network-based aircraft collision avoidance systems. In 2019
IEEE/AIAA 38th Digital Avionics Systems Conference (DASC),
pages 1–10. IEEE, 2019.

[85] Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan
Křetínskỳ, Maximilian Weininger, and Majid Zamani. dtcontrol:
Decision tree learning algorithms for controller representation. In
Proceedings of the 23rd International Conference on Hybrid Sys-
tems: Computation and Control, pages 1–7. ACM, 2020.

86Bibliography

[86] Pranav Ashok, Mathias Jackermeier, Jan Křetínskỳ, Christoph
Weinhuber, Maximilian Weininger, and Mayank Yadav. dtcontrol
2.0: Explainable strategy representation via decision tree learning
steered by experts. arXiv preprint arXiv:2101.07202, 2021.

[87] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reac-
tive (1) designs. In International Workshop on Verification, Model
Checking, and Abstract Interpretation, pages 364–380. Springer,
2006.

[88] Georgios E Fainekos, Hadas Kress-Gazit, and George J Pappas.
Temporal logic motion planning for mobile robots. In Proceedings
of the 2005 IEEE International Conference on Robotics and Au-
tomation, pages 2020–2025. IEEE, 2005.

[89] Marius Kloetzer and Cristian Mahulea. A petri net based approach
for multi-robot path planning. Discrete Event Dynamic Systems,
24(4):417–445, 2014. Springer.

[90] Patrick Doherty, Jonas Kvarnström, and Fredrik Heintz. A tem-
poral logic-based planning and execution monitoring framework for
unmanned aircraft systems. Autonomous Agents and Multi-Agent
Systems, 19(3):332–377, 2009. Springer.

[91] Erann Gat, Marc G Slack, David P Miller, and R James Firby.
Path planning and execution monitoring for a planetary rover. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 20–25. IEEE, 1990.

[92] Alex Lotz, Andreas Steck, and Christian Schlegel. Runtime mon-
itoring of robotics software components: Increasing robustness of
service robotic systems. In Advanced Robotics (ICAR), 2011 15th
International Conference on, pages 285–290. IEEE, 2011.

[93] Chenxia Luo, Rui Wang, Yu Jiang, Kang Yang, Yong Guan, Xiao-
juan Li, and Zhiping Shi. Runtime verification of robots collision
avoidance case study. In 2018 IEEE 42nd Annual Computer Soft-
ware and Applications Conference (COMPSAC), pages 204–212.
IEEE, 2018.

[94] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André
Platzer. Formal verification of obstacle avoidance and navigation

of ground robots. The International Journal of Robotics Research,
36(12):1312–1340, 2017. SAGE Publications.

[95] Aakash Abhishek, Harry Sood, and Jean-Baptiste Jeannin. Formal
verification of braking while swerving in automobiles. In Proceedings
of the 23rd International Conference on Hybrid Systems: Compu-
tation and Control, pages 1–11. ACM, 2020.

[96] Aakash Abhishek, Harry Sood, and Jean-Baptiste Jeannin. Formal
verification of swerving maneuvers for car collision avoidance. In
2020 American Control Conference (ACC), pages 4729–4736. IEEE,
2020.

[97] Daniel Heß, Matthias Althoff, and Thomas Sattel. Formal verifi-
cation of maneuver automata for parameterized motion primitives.
In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1474–1481. IEEE, 2014.

[98] Matthew O’Kelly, Houssam Abbas, Sicun Gao, Shin’ichi Shiraishi,
Shinpei Kato, and Rahul Mangharam. Apex: Autonomous vehicle
plan verification and execution. SAE World Congress, 2016. SAE.

II

Included Papers

89

Chapter 8

Paper A: Towards a
Two-layer Framework for
Verifying Autonomous
Vehicles

Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina Lundqvist
Published in Proceedings of the 11th Annual NASA Formal Methods
Symposium, Springer, 2019.

91

Abstract

Autonomous vehicles rely heavily on intelligent algorithms for path plan-
ning and collision avoidance, and their functionality and dependability
can be ensured through formal verification. To facilitate the verifica-
tion, it is beneficial to decouple the static high-level planning from the
dynamic functions like collision avoidance. In this paper, we propose a
conceptual two-layer framework for verifying autonomous vehicles, which
consists of a static layer and a dynamic layer. We focus concretely on
modeling and verifying the dynamic layer using hybrid automata and
UPPAAL SMC, where a continuous movement of the vehicle as well as
collision avoidance via a dipole flow field algorithm are considered. In our
framework, decoupling is achieved by separating the verification of the
vehicle’s autonomous path planning from that of the vehicle autonomous
operation in its continuous dynamic environment. To simplify the mod-
eling process, we propose a pattern-based design method, where patterns
are expressed as hybrid automata. We demonstrate the applicability of
the dynamic layer of our framework on an industrial prototype of an
autonomous wheel loader.

8.1 Introduction 93

8.1 Introduction

Autonomous vehicles such as driverless construction equipment bear the
promise of increased safety and industrial productivity by automating
repetitive tasks and reducing labor costs. These systems are being used
in safety- or mission-critical scenarios, which require thorough analysis
and verification. Traditional approaches such as simulation and proto-
type testing are limited in their scope of verifying a system that interacts
autonomously with an unpredictable environment that assumes the pres-
ence of humans and varying site conditions. These techniques are either
applied later in the system’s development cycle (testing), or they simply
cannot prove, exhaustively or statistically, the satisfaction of properties
related to autonomous behaviors such as path planning, path follow-
ing, and collision avoidance (simulation). Formal verification is usually
adopted to compensate such shortage, yet verifying such a complex sys-
tem in a continuous and dynamic environment is still considered a big
challenge [1][2].

In this paper, we approach this challenge by proposing a two-layer
framework consisting of a static and a dynamic layer, which facilitates
verifying autonomous vehicles. The structure of the framework sepa-
rates the static high-level path planning that assumes an environment
with a predefined sequence of milestones that need to be reached, as well
as static obstacles, from the dynamic functions like collision avoidance,
thus providing a separation of concerns for the system’s design, model-
ing, and verification. To improve on existing formal models of vehicle
movement [3][4], in the dynamic layer, we propose a continuous model of
the vehicle’s motion, together with a model of the environment, where
moving obstacles are either predefined or dynamically generated. The
resulting models are hybrid automata, as accepted by the input language
of UPPAAL Statistical Model Checker (SMC). The vehicle’s dynamics is
modeled as ordinary differential equations assigned to locations in the
hybrid automata. In this paper, the hybrid automata only have non-
deterministic time-bounded delays that are encoded based on the de-
fault uniform distributions assigned by UPPAAL SMC. We also consider
the embedded control system of the autonomous vehicle including the
involved processes, as well as the scheduling and communication among
them. The path planning is following the Theta* algorithm [5], and the
collision avoidance relies on the dipole flow field one [6]. Both algorithms
are encoded as C-code functions in UPPAAL SMC, within the dynamic

94 Paper A: Towards a Two-layer Framework

layer of our framework. Once this is accomplished, we can statistically
model check the resulting network of hybrid automata, against proba-
bilistic invariance properties expressed in weighted metric temporal logic
[7]. To simplify the modeling process, we propose a pattern-based de-
sign method to provide reusable templates for various components of the
framework. We demonstrate the applicability of our approach for model-
ing and analyzing the dynamic layer on an industrial autonomous wheel
loader prototype that should meet certain safety-critical requirements.

This paper is organized as follows. In Section 8.2, we overview hy-
brid automata and UPPAAL SMC, as well as the Theta* algorithm for
path planning, and the dipole flow field algorithm for collision avoid-
ance. Section 8.3 describes the function of the autonomous wheel loader
and its architecture. In Section 8.4, we present the conceptual two-layer
framework, and in Section 8.5 we propose the pattern-based modeling of
the components (of the dynamic layer) and their formal encoding. Next,
we demonstrate the applicability of the framework on the autonomous
wheel loader, and we present the verification results in Section 8.6. We
compare to related work in Section 8.7, before concluding and outlining
future lines of research in Section 8.8.

8.2 Preliminaries

In this section, we overview the background information needed for the
rest of the paper, that is, hybrid automata and UPPAAL SMC, as well
as the Theta* and dipole flow field algorithms.

8.2.1 Hybrid Automata and UPPAAL SMC

UPPAAL SMC [8] is an extension of the tool UPPAAL[9], which supports
statistical model checking of hybrid automata (HA). A HA is defined as
the following tuple:

HA =< L, l0, X,Σ, E, F, I >, (8.1)
where: L is a finite set of locations, l0 ∈ L is the initial location, X is a
finite set of continuous variables, Σ = Σi⊎Σo is a finite set of actions that
are partitioned into inputs (Σi) and outputs (Σo), E is a finite set of edges
of the form (l, g, a, φ, l′), where l and l′ are locations, g is a predicate on
RX , a ∈ Σ is an action label, and φ is a binary relation on RX , F (l)
is a delay function for the location l ∈ L, and I assigns an invariant

8.2 Preliminaries 95

predicate I(l) in/of L, which bounds the delay time in the respective
location. In UPPAAL SMC, locations are marked as urgent (denoted
by encircled u) or committed (denoted by encircled c), indicating that
time cannot progress in such locations. Committed locations are more
restrictive, requiring that the next edge to be traversed needs to start
from a committed location. The delay function F (l) for a simple clock
variable x, which is used in (priced) timed automata, is encoded as the
linear differential equation x′ = 1 or x′ = e appearing in the invariant of
l.

The semantics of the HA is defined over a timed transition system,
whose states are pairs (l, u) ∈ L × RX , with u ⊨ I(l), and transitions
defined as: (i) delay transitions (< l, u >

d−→< l, u + d > if u ⊨ I(l) and
(u+d′) ⊨ I(l), for 0 ≤ d′ ≤ d), and (ii) discrete transitions (< l, u >

a−→<

l′, u′ > if edge l g,a,r−−−→ l′ exists such that a ∈ Σ, u ⊨ g, clock valuation u′
in the target state (l′, u′) is derived from u by resetting all clocks in the
reset set r of the edge, such that u′ ⊨ I(l′)).

In UPPAAL SMC, the automata have a stochastic interpretation based
on: (i) the probabilistic choices between multiple enabled transitions,
and (ii) the non-deterministic time delays that can be refined based on
probability distributions, either uniform distributions for time-bounded
delays or user-defined exponential distributions for unbounded delays.
In this paper, only the default uniform distributions for time-bounded
delays are used. Moreover, the UPPAAL SMC model is a network of HA
that communicate via broadcast channels and global variables. Only
broadcast channels are allowed for a clean semantics of purely non-
blocking automata, since the participating HA repeatedly race against
each other, that is, they independently and stochastically decide on their
own how much to delay before delivering the output, with the “winner”
being the automaton that chooses the minimum delay.

UPPAAL SMC supports an extension of weighted metric temporal
logic for probability estimation, whose queries are formulated as fol-
lows: Pr[bound] (ap), where bound is the simulation time, ap is the
statement that supports two temporal operators: “Eventually” (♢) and
“Always” (□). Such queries estimate the probability that ap is satisfied
within the simulation time bound. Hypothesis testing (Pr[bound](ψ) ≥
p0) and probability comparison (Pr[bound](ψ1) ≥ Pr[bound](ψ2)) are
also supported.

96 Paper A: Towards a Two-layer Framework

8.2.2 Theta* Algorithm

In this paper, we employ the Theta* algorithm to generate an initial
path for our autonomous wheel loader. The Theta* algorithm has been
firstly proposed by Nash et al. [5] to generate smooth paths with few
turns, from the starting position to the destination, for a group of au-
tonomous agents. Similar to the A* algorithm that we have used in our
previous study [3], the Theta* algorithm explores the map and calcu-
lates the cost of nodes by the function f(n) = g(n) + h(n), where n is
the current node being explored, g(n) is the Euclidean distance from the
starting node to n, and h(n) is the estimated cheapest cost from n to
the destination. In this paper, we use Manhattan distance [10] for h(n).
In each search iteration, the node with the lowest cost among the nodes
that have been explored is selected, and its reachable neighbors are also
explored by calculating their costs. The iteration is eventually ended if
the destination is found or all reachable nodes have been explored. As
an optimized version of A*, Theta* determines the preceding node of
a node to be any node in the searching space instead of only neighbor
nodes. In addition, Theta* adds a line-of-sight (LOS) detection to each
search iteration to find an any-angle path that is less zigzagged than
those generated by A* and its variants. For the detailed description of
the algorithm, we refer the reader to the literature [5].

8.2.3 Dipole Flow Field for Collision Avoidance

Searching for a path from the starting point to the goal point, assuming a
large map, is not an easy task and it is usually computationally intensive.
Hence, some studies have adopted methods to generate a small deviation
from the initial path, which is much easier to compute than an entirely
new path, while being able to avoid obstacles. To avoid collisions, Trinh
et al.[6] propose an approach to calculate the static flow field for all
objects, and the dynamic dipole field for the moving objects in the map.
In the theory of dynamic dipole field, every object is assumed to be a
source of magnetic dipole field, in which the magnetic moment is aligned
with the moving direction, and the magnitude of the magnetic moment
is proportional to the velocity. In this approach, the static flow field
is created within the neighborhood of the initial path generated by the
Theta* algorithm. The flow field force is a combination of the attractive
force drawing the autonomous wheel loader to the initial path, and the

8.3 Use Case: Autonomous Wheel Loader 97

repulsive force pushing it away from obstacles. Unlike the dipole field
force, the flow field force always exists, regardless of whether the vehicle
is moving or not. As soon as the vehicle equipped with this algorithm
gets close enough to a moving obstacle, the magnetic moment around
the objects keeps them away from each other. The combination of the
static flow field and the dynamic dipole field ensures that the vehicle
moves safely by avoiding all kinds of obstacles and that it eventually
reaches the destination, as long as a safe path exists. Compared with
other methods [11][12], this algorithm provides a novel method for path
planning of mobile agents, in the shared working environment of humans
and agents, which suits our requirements well. For details, we refer the
reader to the literature [6].

8.3 Use Case: Autonomous Wheel Loader

In this section, we introduce our use case, which is an industrial pro-
totype of an autonomous wheel loader (AWL) that is used in construc-
tion sites to perform operations without human intervention [3]. On one
hand, like other autonomous vehicles, autonomous wheel loaders need to
be equipped with path-planning and collision-avoidance capabilities. On
the other hand, they also ought to accomplish several special missions,
e.g., autonomous digging, loading and unloading, often in a predefined
sequence. Furthermore, autonomous wheel loaders usually work in un-
predictable environments – dust and various sunlight conditions (from
dim to extremely bright) that might cause inaccuracy or even errors in
image recognition and obstacle detection. Moving entities, e.g., humans,
animals, and other machines, might also behave unpredictably, for there
are no traffic lights and lanes. Despite such disadvantages, the AWL’s
movements are less restricted if compared to, for instance, self-driving
cars, as there are only a few traffic rules in sites. They can also stop
and wait as long as they need without influencing the vehicles behind
them. All these characteristics make our path-planning (Theta*) and
collision-avoidance (Dipole Flow Field) algorithms applicable.

The architecture of the AWL’s control system, presented in Figure
8.1, consists of three main units: a vision unit, a control unit, and an
execution unit, which are connected by CAN buses. In this paper, we
mainly focus on the control unit that consists of three parallel processes,
namely ReadSensor, Main, and CalculateNewPath, as depicted in Fig-

98 Paper A: Towards a Two-layer Framework

Figure 8.1: The architecture of the AWL’s embedded control system

ure 8.2. These three processes are executed in parallel on independent
cores. The process ReadSensor acquires data from sensors (e.g., LIDAR,
GPS, angle and speed sensors, etc.) and sends them to the shared mem-
ory before they are accessed by process Main that runs the path-planning
algorithm and invokes a function called Execution Function, in which
three sub-functions are called. The function AdjustAngle adjusts the

Figure 8.2: Process allocation in the control system

moving angle of the AWL, based on its own and the obstacles’ positions.
Function Turn judges if the AWL arrives at one of the milestones on its
initial path calculated by the path-planning algorithm, and changes its
direction based on the result. Function Arrive judges if the AWL reaches
the destination and sends the corresponding commands. Basically, the
processes Main and ReadSensor are responsible for the AWL’s regular
routine. However, when an unforeseen obstacle suddenly appears in its
vision, the process Main sends a request to process CalculateNewPath,
in which the collision-avoidance algorithm is executed and a new and
safe path segment is generated if it exists. Note that, although the AWL
has more functionality, e.g., digging and loading, we focus only on the

8.4 A Two-level Framework for Planning and Verifying
Autonomous Vehicles 99

path planning and collision avoidance in this paper.
The loader’s architecture (Figures 8.1, 8.2), including the parallel

processes and functions, is hierarchical. Moreover, the distributed na-
ture of the AWL’s components, and the dynamic nature of its movement
(including collision avoidance) call for a separation of concerns along the
static and the dynamic dimensions of the system. Hence, in the follow-
ing, we propose a two-layer framework to model and verify autonomous
vehicles on different levels.

8.4 A Two-level Framework for Planning and
Verifying Autonomous Vehicles

As it is shown in Figure 8.3, our two-level framework consists of a static
layer and a dynamic layer, between which data is exchanged according
to a defined/chosen communication protocol. The static layer is respon-
sible for path and mission planning for the AWL, according to possibly
incomplete information of the environment. In this layer, known static
obstacles are assumed, together with milestones representing points of
operation of the loader. The dynamic layer is dedicated to simulat-
ing and verifying the system following the reference path given by the
static layer, while considering continuous dynamics in an environment
containing moving and unforeseen obstacles.
Static layer. The static layer is defined as a tuple < Es, Ss,Ms >,
where Es denotes a discrete environment, Ss is a set of known static
obstacles, and Ms is a set of milestones associated to missions (e.g., dig-
ging, loading, unloading, charging), including the order of execution, and
timing requirements. As the path found by the path-planning algorithm
is a connection of several straight-line segments on the map, realistic
trajectories and continuous dynamics do not need to be considered in
this layer. Hence, the environment is modeled as a discrete Cartesian
grid whose resolution is defined appropriately to present various sizes of
static obstacles, e.g., holes, rocks, signs, etc. Even if not entirely faithful
to reality, the Cartesian grid provides a proper abstraction of the map for
path and mission planning. As the static layer is still at the conceptual
stage currently, we propose several possible options for modeling and
verification of this layer. DRONA [13] is a programming framework for
building safe robotics systems. which has been applied in collision-free
mission planning for drones. Rebeca is a generic tool for actor-based

100 Paper A: Towards a Two-layer Framework

Figure 8.3: Two-layer framework for planning and verifying autonomous
vehicles

modeling and has been proven to be applicable for motion planning for
robots [14]. Mission Management Tool (MMT) is a tool allowing a hu-
man operator an intuitive way of creating complex missions for robots
with non-overlapping abilities [15].
Dynamic layer. The dynamic layer is defined as a tuple < Ed, Ts, Sd,
Md, Dd >, where Ed is a continuous environment, Ts is the trajectory
plan input by the static layer, Sd is a set of static obstacles, Md is a set
of moving obstacles that are predefined, Dd is a set of unforeseen moving
obstacles that are dynamically generated. The speed and direction of a
moving obstaclem0 ∈Md are predefined as constant values in our model.
The dynamically generated moving obstacle d0 ∈ Dd is instantiated
during the verification when its initial location, moving speed and angle
are randomly determined. Collision-avoidance algorithms are executed
in this layer if the vehicle meets moving obstacles or unforeseen static
obstacles. Ordinary differential equations (ODEs) are adopted to model
the continuous dynamics of moving objects (e.g., vehicle, human, etc.),
and the embedded control system of the autonomous vehicle is modeled
in this layer.

This two-layer design has many benefits. Firstly, it provides a sep-
aration of concerns for the system’s design, modeling, and verification.
As a path plan does not concern the continuous dynamics of the vehicle,
the discrete model in the static layer is a proper abstraction, which sac-

8.5 Pattern-based Modeling of the Dynamic Layer 101

rifices some unnecessary realistic elements but preserves the possibility
of exhaustive verification. The dynamic layer, which concerns the actual
trajectories of moving objects, consists of hybrid models that contain
relatively more realistic details of the system and environment, which
enhance the truthfulness of the model. However, as a tradeoff, only prob-
abilistic verification is supported in this layer. In addition, modification
of algorithms or design is only restricted within the corresponding layer,
so potential errors will not propagate in the entire system. Secondly, the
two-layer framework is open for extension. It provides a possibility to
add layers for new functions, such as artificial intelligence or centralized
control.

8.5 Pattern-based Modeling of the Dynamic
Layer

A classic control system consists of four components: a plant containing
the physical process that is to be controlled, the environment where the
plant operates, the sensors that measure some variables of the plant and
the environment, and the controller that determines the system state and
outputs timed-based signals to the plant [16]. In our case, as shown in
Figure 8.1, the execution unit is the “plant” that describes the continuous
dynamics of the AWL. The “sensors” are divided into two classes: vision
sensors (LiDAR) connecting to the vision unit, and motion sensors (GPS,
IMU, Angle and Speed sensors) connecting to the execution unit.

8.5.1 Patterns for the Execution Unit

Currently, the vision unit and vision sensors have no computation ability,
so they are simply modeled as data structures. The execution unit is
modeled in terms of hybrid automata, in which the motion of the AWL
is given by a system of three ordinary differential equations:

ẋ(t) = v(t)cosθ(t) ẏ(t) = v(t)sinθ(t) (8.2)

θ̇(t) = ω(t), (8.3)

where, ẋ(t) and ẏ(t) are the projections of the linear velocity on x and
y axes, ω(t) is the angular velocity, and v(t) is the linear velocity, which
follows the Newton’s Law of Motion: v(t) = F−k×M

M , where F is the

102 Paper A: Towards a Two-layer Framework

force acting on the AWL, k is the friction coefficient, and M is the mass
of the AWL.

(a) The skeleton of the pattern
(b) The hybrid automaton of the pat-
tern

Figure 8.4: The pattern of the linear motion component in the execution
unit

The pattern of the execution unit is a hybrid model consisting of two
hybrid automata, namely linear motion and rotation. Here we use the
linear motion component as an example to present the idea. As depicted
in Figure 8.4a, there are four locations indicating four moving states of
the AWL, that is, stop at Idle, acceleration at Acc, moving at a constant
speed at Constant, and deceleration at Dec. Therefore, the derivatives
of the position (pcx′, pcy′) and the velocity (v′) are assigned to zero at
Idle for the stop state. According to different moving states, variations
of equation 8.2 should be encoded in the refinement of each location in
the blank boxes in 8.4a. Figure 8.4b is an instance of the pattern, where
v′ is set to a positive value (v′ == (AF − k ∗ m)/m) at location Acc
to present acceleration. Once the velocity reaches the maximum value
(maxS) or the automaton receives a brake signal (denoted as a channel
brake), it goes to location Constant or Dec, where the ODEs are changed
to make the AWL move at a constant speed or decelerate.

8.5.2 Patterns for the Control Unit

As a part of an embedded system, the control unit model has three
basic components: a scheduler, a piece of memory, and a set of pro-

8.5 Pattern-based Modeling of the Dynamic Layer 103

cesses. Currently, the memory is modeled as a set of global variables,
hence the scheduler pattern and the processes patterns are the essence.
Due to its safety-critical nature, the control unit is assumed to be a
multi-core system and the processes are scheduled in a parallel, pre-
dictable, and non-preemptive fashion. This scheduling policy is inspired
by Timed Multitasking [16], which tackles the real-time programming
problem using an event-driven approach. However, instead of the pre-
emptive scheduling, we apply a non-preemptive strategy. To illustrate
this scheduling strategy, we use the three processes in the control unit
(Figure 8.2) as an example. The process ReadSensor is firstly triggered

Figure 8.5: Process scheduling

at the moment Trigger1 when the process reads data from sensors and
runs its function as illustrated in Figure 8.5. Regardless of the exact ex-
ecution time of a process, the inputs are consumed and the outputs are
produced at well-defined time instances, namely trigger and deadline.
As the input of Main is the output of ReadSensor, the former is trig-
gered after the latter finishes. At same the moment, CalculateNewPath
finishes its execution immediately as no input comes. This is actually
reasonable, since process CalculateNewPath does not need to be exe-
cuted every round, as it is responsible for generating a new path segment
only when the AWL encounters an obstacle. For the benefits brought by
the explicit execution time and deadline, we refer the interested readers
to the literature [16] for detail.

The pattern of a process consists of two parts: a state module and
an operation module. Similar to the state machine function-block and
modal function-block in related work [17], the state module describes
the mode transition structure of the processes, and the operation mod-
ule describes the procedure or computation of the process. Because of

104 Paper A: Towards a Two-layer Framework

Figure 8.6: A process model example

their definition, the state modules are modeled as discrete automata, and
the operation modules are modeled as discrete automata or computation
formulas according to their specific functionality. Figure 8.6 shows the
inputs of the process coming to the state module in which the state of
the process transfers according to the inputs. Some state transitions of
the state module are detailed by the functions in the operation module
in the sense that the former invokes the latter for concrete computation.
Specifically, functions in the operation module could be modeled as dis-
crete automata when they involve logic, or executable code when they
are purely about computation. After executing the corresponding func-
tions in the operation module, some results are sent out of the process as
output, and some are sent back to the state module for state transitions,
which might also produce output. The designs of the state module and
operation module for different processes have both similarities and differ-
ences. They all need to be scheduled, to receive input, produce output,
etc., but their specific functionality is different. To make our patterns
reusable, we design fixed skeletons of the process patterns, which are
presented as hybrid automata.

8.5.3 Encoding the Control Unit Patterns as Hybrid
Automata

Scheduler. To model the scheduler as a hybrid automaton in UPPAAL
SMC, we first discretize the continuous time as a set of basic time units
to mimic the clock in an embedded system. As depicted in Figure 8.7,
we use an invariant at location Init (clock xd ≤ UNIT), and a guard on
its outgoing edge (xd == UNIT) to capture the coming basic time unit.
We also declare a data structure representing processes, as follows:

8.5 Pattern-based Modeling of the Dynamic Layer 105

typedef struct{
int id; //process id
bool running; // whether the process is being executed
int period; //counter for the period of the process
int executionTime; //counter for the execution time of the process

}PROCESS;

When a basic time unit comes, the scheduler transfers to location
Updating. In the function update(), the period counters of all processes
are decreased by one, and so are the execution time counters if the
variable running in the process structure is true. When the period of
a process equals zero, its id is inserted into a queue called ready and
the variable readyLen indicating the length of the queue is increased by
one. Similarly, when the executionTime equals zero, the process’s id is
inserted into a queue called done. The fact that the queue done is not
empty (doneLen > 0) implies that the execution times of some processes
have elapsed, so the scheduler changes from Updating to Finishing
to generate the outputs of those processes. The self loop at location
Finishing indicates that the outputs of all the processes in queue done
are generated orderly by the synchronization between the scheduler and
the corresponding process automaton via the channel output. If the
queue ready is not empty (readyLen > 0), similarly, the scheduler moves
to location Execution to trigger the top process in ready via the channel
execute, and waits there until the process finishes, when the scheduler is
then synchronized again with the process via channel finish. Note that
the process finishes its function instantaneously and stores its output in
the local variables, which will only be transferred to the other processes
via global variables when the execution time passes.
Process. A typical state module of a process consists of four states: be-
ing triggered, doing its own function, idle, and output. A typical pattern
for it is shown in Figure 8.8a. Except locations Start and Idle, all loca-
tions are urgent because the execution is instantaneous, and the output
is generated when the execution time is finished. From location Start
to O1, the process is being triggered by the scheduler by synchronizing
on channel execute[id], in which id is the process’s ID. If the input is
valid (input == true), the process starts to execute by leaving O1 to the
next location, otherwise, it finishes its execution immediately by going
back to Start without any output generated, just as the description of
the scheduling policy in Section 8.5.2. The blank box indicates the pro-
cess’s own function that is created in an ad-hoc fashion, so it is not part

106 Paper A: Towards a Two-layer Framework

Figure 8.7: The pattern of the scheduler

of the fixed skeleton of the pattern. After executing its own function, the
process synchronizes again with the scheduler on channel finish[id],
when the process finishes and gives control back to the scheduler. The
output is generated from location Idle to Notification. The broad-
cast channel notify[id] is for notifying other processes waiting for the
output of the current process. Based on this idea, we give an example
instantiated from this pattern in Figure 8.8b. The automaton goes from
O2 to O3 through two possible edges based on data1, which is the out-
come of function ownJob1(). The concrete computation is encoded in
functions ownJob2() and ownJob3(), which are the counterparts of the
functions in the operation module of Figure 8.6. If the specific function
of the process is more complex than in this example, or it includes func-
tion invocation, this blank box can be extended with synchronizations
with other automata. We will elaborate this by revisiting our use case
in the next section.

8.6 Use Case Revisited: Applying Our
Method on AWL

As the patterns of linear motion and rotation components and the sched-
uler are totally applicable in the use case, they are simply transplanted in
the model of the AWL with parameter configuration. Hence, in this sec-
tion, we mainly demonstrate how the processes in AWL’s control unit
are modeled using the proposed patterns, and present the verification
results.

8.6 Use Case Revisited: Applying Our
Method on AWL 107

(a) The skeleton of the pattern (b) An instance of the pattern
Figure 8.8: The pattern of a generic process

8.6.1 Formal Model of the Control Unit

The control unit contains three parallel processes (Figure 8.2). Read-
Sensor and CalculateNewPath are relatively simple because they do
not invoke other functions, while Main calls function Execution, which
calls other three functions: AdjustAngle, Turn, and Arrive. Therefore,
The state modules of ReadSensor and CalculateNewPath are mod-
eled as single automata and the operation modules are the functions
at edges encoding the computation of their functionality. Differently,
the state module of Main is a mutation of the process pattern extended
with a preprocessing step calculating an initial path by running Theta*
algorithm. Figure 8.9 depicts the automaton of the state module of
Main, in which another automaton representing the function Execution
is invoked via channel invoke[0], where 0 is the ID of the function
Execution. Note that the transition from the location Init to Moving
is the preprocessing step and Theta* algorithm is implemented in the
function main, which will be moved to the static layer eventually after
the entire framework is accomplished. As the process Main invokes other
functions, its operation module is a network of automata containing the
function Execution, AdjustAngle, Turn, and Arrive, which are called
by using synchronizations between the state module automata and op-
eration module automata (channels invoke, respond, finish). After
calling other functions, Main goes to the location Idle via three edges
based on the return values of the invoked functions and waits to generate
output there.

108 Paper A: Towards a Two-layer Framework

Figure 8.9: The automaton of the state module of the process Main

8.6.2 Statistical Model Checking of the AWL Formal
Model

Environment configuration. In the following we consider a contin-
uous map with the size 55 × 55, where five static obstacles and two
moving obstacles are predefined, and another moving obstacle is dynam-
ically generated during the verification. In order to achieve this, we
leverage the spawning command of UPPAAL SMC to instantiate new
time automata instance of the moving obstacle that “appears” in the map
whenever it is generated by the automaton called generator and “dis-
appears” from the map when its existence time terminates. The speed
of the moving obstacles is a constant value indicating that they move
one unit distance per second and their moving directions are either op-
posite or the same as it of the AWL. The parameters of the AWL are
the weight of it, acceleration and deceleration force, friction coefficient
and maximum speed, which are defined as constant values in UPPAAL
SMC.
Path generation and following. Given a start and a goal and a set
of milestones, the AWL must be able to calculate a safe path passing
through them orderly avoiding static obstacles if the path exists and
follow it. To verify this requirement, we first simulate the model in
UPPAAL SMC using the command:

simulate 1[<= 110] {pcx, pcy} (8.4)
where pcx and pcy are the real-valued coordinate of the AWL. Figure
8.10a shows the result of the simulation, and the result data is exported

8.6 Use Case Revisited: Applying Our
Method on AWL 109

into Excel to depict the moving trajectory of the AWL shown in Figure
8.10b. The AWL perfectly follows the generated path that avoids all

(a) Coordinate changing of the AWL (b) Moving trajectory of the AWL in
Excel

Figure 8.10: Moving trajectory of the AWL generated by the command
{simulate 1[<=110] pcx,pcy} in UPPAAL SMC and exported in Ex-
cel

the static obstacles. But the simulation only runs one possible execution
trace of the AWL model. Hence, we further verify the model with a
query:

Pr[<= 70](<> arrived && counter <= 60) (8.5)

Pr[<= 110]([] followedPath) (8.6)

where arrived and counter in query 8.5 are a Boolean variable and a
clock that reflect if the AWL arrives at the destination and what the
minimum time does it take, followedPath in query 8.6 is a Boolean
variable indicating if the AWL has reached the destination and come
back to the start by visiting all the milestones orderly. To update the
value of followedPath timely and periodically during the verification,
we create an independent automaton called monitor that checks the
index of the model. The monitor is triggered by the scheduler every
time unit that is small enough to ensure the position of the AWL does
not change much during this time interval. The probability interval of
satisfying these queries is [0.902606, 1] with 95% confidence obtained
from 36 runs.
Collision avoidance. By the nature of the Theta* algorithm, AWL is
able to avoid the static obstacles as long as it sticks to the initial path.

110 Paper A: Towards a Two-layer Framework

When it meets an unforeseen static obstacle or a moving obstacle, the
AWL must run the dipole flow field algorithm timely to avoid it. Two
queries are designed to get the simulated moving trajectory and estimate
the probability of satisfaction:
simulate 1[<= 110] {pcx, pcy, ocx[0], ocy[0], ocx[1], ocy[1], ocx[3], ocy[3]}

(8.7)

Pr[<= 110]([] !collided) (8.8)

Arrays ocx and ocy in query 8.7 represent the positions of moving ob-
stacles at x and y axes. The trajectories got from query 8.7 is shown in
Figure 8.11, where “A” and “B” are two predefined moving obstacles and
“C” is a dynamically generated obstacle that moves “recklessly” towards
the AWL, so the latter turns around to avoid the obstacle. The overlap

Figure 8.11: The trajectory of the AWL in a map with three moving
obstacles

of two trajectories at “C” does not imply a collision because the AWL
and the moving obstacle are not at the same position at the same mo-
ment. To prove this, query 8.8 is designed, where collided is a Boolean
variable indicating if the AWL has collided with any static or moving
obstacles during the verification time. Similar to the verification of path
generation and following, the automaton monitor is extended to update
this variable periodically by checking if the current coordinate of the
AWL is close to any obstacle in the map, and the threshold of the dis-
tance is 0.8 in this case. The probability interval of satisfying this query
is [0.902606,1] with 95% confidence obtained from 36 runs.

8.7 Related Work 111

8.7 Related Work

Automata-based methods [18][19][4][20] have been used for path or mo-
tion planning. Different from our work, these studies aim to solve the
vehicle-routing problem by using temporal logic. These studies accom-
plish many typical autonomous tasks like searching for an object, avoid-
ing an obstacle, and missions sequencing. However, as they focus on
achieving collision avoidance in design, uncertainties in the real deploy-
ment like transmission time of sensors data in the embedded system and
unforeseen obstacles have not been considered.

Runtime verification that monitors the behavior of autonomous sys-
tems complements this shortage to some extend [21][22][23][24]. This
technique extracts information from a running system, based on which
the behavior of the system is verified. Runtime overhead caused by the
monitor is the most common problem introduced by this method.

Agent-based method is another widely studied approach for autono-
mous systems [25][26][21][27][28]. As the predominant form of rational
agent architecture is that provided through the Beliefs, Desires, and
Intentions (BDI) approach, these studies aim to translate the agent-
based language to a formal language to verify the behavior of the agent.
But this method usually does not concern the detail of the embedded
control system and continuous dynamics of the vehicle.

There are also some studies providing a framework for verification
of autonomous vehicles or robots. In [29], the authors captured the
behavior of an unmanned aerial vehicle performing cooperative search
mission into a Kripke model to verify it against the temporal proper-
ties expressed in Computation Tree Logic (CTL). Their model contains
a decision making layer and a path planing layer. In [30], the authors
propose an approach combining model checking with runtime verifica-
tion to bridge the gap between software verification (discrete) and the
actual execution of the software on a real robotic platform in the phys-
ical world. The software stack of a robotics system providing different
verification capability focusing on different functionality has inspired our
work. However, our framework provides an ability to encode the colli-
sion avoidance algorithm in the model and verifying it in a continuous
environment.

112 Paper A: Towards a Two-layer Framework

8.8 Conclusions and future work
We have proposed a conceptual two-layer framework for formally veri-
fying autonomous vehicles that decouples the high-level static planning
from dynamic functions like collision avoidance, etc. The framework
provides a separation of concerns for the complex modeling and verifi-
cation of autonomous vehicles. The static layer focuses on making the
optimal plan for the vehicle to accomplish a sequence of missions based
on the incomplete information of the environment. While the dynamic
layer concerns the execution of the plan with vehicle dynamics in a con-
tinuous environment model where unforeseen moving obstacles appear
randomly. Hence, a collision avoidance algorithm relying on dipole flow
field is implemented in the model of the embedded control system in
this layer. We are currently engaged in modeling the dynamic layer us-
ing hybrid automata and UPPAAL SMC, and designing a pattern-based
method to simplify the modeling process and increase reusability. The
dynamic layer has been applied to model and verify a prototype of an
autonomous wheel loader and the verification result shows the capability
and applicability of statistical model checking adopted in autonomous
vehicles. We expect to report our research of the static layer and the
combination of these two layers in the years to come.

Acknowledgments
The research leading to the presented results has been performed within
the research profile DPAC - Dependable Platform for Autonomous Sys-
tems and Control project, funded by grant 20150022 of the Swedish
Knowledge Foundation that is gratefully acknowledged.

Bibliography

[1] Amit Bhatia, Matthew R Maly, Lydia E Kavraki, and Moshe Y
Vardi. Motion planning with complex goals. IEEE Robotics &
Automation Magazine, 18(3):55–64, 2011.

[2] Michael S Branicky, Vivek S Borkar, and Sanjoy K Mitter. A unified
framework for hybrid control: Model and optimal control theory.
IEEE transactions on automatic control, 43(1):31–45, 1998.

[3] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Formal verification of an autonomous wheel loader by
model checking. In Proceedings of the 6th Conference on Formal
Methods in Software Engineering, pages 74–83. ACM, 2018.

[4] Michael Melholt Quottrup, Thomas Bak, and RI Zamanabadi.
Multi-robot planning: A timed automata approach. In Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE Interna-
tional Conference on, volume 5, pages 4417–4422. IEEE, 2004.

[5] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelligence
Research, 39:533–579, 2010.

[6] Lan Anh Trinh, Mikael Ekström, and Baran Cürüklü. Toward
shared working space of human and robotic agents through dipole
flow field for dependable path planning. Frontiers in neurorobotics,
12, 2018.

[7] Peter Bulychev, Alexandre David, Kim Guldstrand Larsen, Axel
Legay, Guangyuan Li, Danny Bøgsted Poulsen, and Amelie Stainer.

113

114Bibliography

Monitor-based statistical model checking for weighted metric tem-
poral logic. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 168–182. Springer, 2012.

[8] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statis-
tical model checking for stochastic hybrid systems. arXiv preprint
arXiv:1208.3856, 2012.

[9] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International journal on software tools for technology transfer, 1(1-
2):134–152, 1997.

[10] Paul E Black. Manhattan distance. Dictionary of Algorithms and
Data Structures, 18:2012, 2006.

[11] Luis Valbuena and Herbert G Tanner. Hybrid potential field based
control of differential drive mobile robots. Journal of intelligent &
robotic systems, 68(3-4):307–322, 2012.

[12] Yoav Golan, Shmil Edelman, Amir Shapiro, and Elon Rimon. On-
line robot navigation using continuously updated artificial temper-
ature gradients. IEEE Robotics and Automation Letters, 2(3):1280–
1287, 2017.

[13] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and
Sanjit A Seshia. Drona: A framework for safe distributed mo-
bile robotics. In Proceedings of the 8th International Conference
on Cyber-Physical Systems, pages 239–248. ACM, 2017.

[14] Ali Jafari, Jayasoorya Jayanthi Surendran Nair, Stephan Baumgart,
and Marjan Sirjani. Safe and efficient fleet operation for autonomous
machines: an actor-based approach. In Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, pages 423–426.
ACM, 2018.

[15] Branko Miloradović, Baran Cürüklü, Mikael Ekström, and Alessan-
dro Papadopoulos. Extended colored traveling salesperson for mod-
eling multi-agent mission planning problems. In Proceedings of the
8th International Conference on Operations Research and Enter-
prise Systems - Volume 1: ICORES,, pages 237–244. INSTICC,
SciTePress, 2019.

Bibliography 115

[16] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Mit Press, 2016.

[17] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. Comdes-ii:
A component-based framework for generative development of dis-
tributed real-time control systems. In null, pages 199–208. IEEE,
2007.

[18] Georgios E Fainekos, Hadas Kress-Gazit, and George J Pappas.
Temporal logic motion planning for mobile robots. In Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE In-
ternational Conference on, pages 2020–2025. IEEE, 2005.

[19] Marius Kloetzer and Cristian Mahulea. A petri net based approach
for multi-robot path planning. Discrete Event Dynamic Systems,
24(4):417–445, 2014.

[20] Stephen L Smith, Jana Tumova, Calin Belta, and Daniela Rus. Op-
timal path planning for surveillance with temporal-logic constraints.
The International Journal of Robotics Research, 30(14):1695–1708,
2011.

[21] Patrick Doherty, Jonas Kvarnström, and Fredrik Heintz. A tem-
poral logic-based planning and execution monitoring framework for
unmanned aircraft systems. Autonomous Agents and Multi-Agent
Systems, 19(3):332–377, 2009.

[22] Erann Gat, Marc G Slack, David P Miller, and R James Firby.
Path planning and execution monitoring for a planetary rover. In
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 20–25, 1990.

[23] Alex Lotz, Andreas Steck, and Christian Schlegel. Runtime mon-
itoring of robotics software components: Increasing robustness of
service robotic systems. In Advanced Robotics (ICAR), 2011 15th
International Conference on, pages 285–290. IEEE, 2011.

[24] Chenxia Luo, Rui Wang, Yu Jiang, Kang Yang, Yong Guan, Xiao-
juan Li, and Zhiping Shi. Runtime verification of robots collision
avoidance case study. In 2018 IEEE 42nd Annual Computer Soft-
ware and Applications Conference (COMPSAC), pages 204–212.
IEEE, 2018.

[25] Rafael H Bordini, Michael Fisher, Willem Visser, and Michael
Wooldridge. Verifying multi-agent programs by model checking.
Autonomous agents and multi-agent systems, 12(2):239–256, 2006.

[26] Louise A Dennis, Michael Fisher, Matthew P Webster, and Rafael H
Bordini. Model checking agent programming languages. Automated
software engineering, 19(1):5–63, 2012.

[27] Michael Fisher, Rafael H Bordini, Benjamin Hirsch, and Paolo Tor-
roni. Computational logics and agents: a road map of current tech-
nologies and future trends. Computational Intelligence, 23(1):61–91,
2007.

[28] Michael Fisher, Louise Dennis, and Matt Webster. Verifying au-
tonomous systems. Communications of the ACM, 56(9):84–93, 2013.

[29] Gopinadh Sirigineedi, Antonios Tsourdos, Brian A White, and Rafal
Zbikowski. Modelling and verification of multiple uav mission using
smv. arXiv preprint arXiv:1003.0381, 2010.

[30] Ankush Desai, Tommaso Dreossi, and Sanjit A Seshia. Combin-
ing model checking and runtime verification for safe robotics. In
International Conference on Runtime Verification, pages 172–189.
Springer, 2017.

Chapter 9

Paper B: Verifiable
Strategy Synthesis for
Multiple Autonomous
Agents: A Scalable
Approach

Rong Gu, Peter G. Jensen, Danny B. Poulsen, Cristina Seceleanu, Ed-
uard Enoiu, and Kristina Lundqvist
Published in Journal of Software Tools for Technology Transfer, Springer,
2022.

117

Abstract

Path planning and task scheduling are two challenging problems in the
design of multiple autonomous agents. Both problems can be solved
by the use of exhaustive search techniques such as model checking and
algorithmic game theory. However, model checking suffers from the in-
famous state-space explosion problem that makes it inefficient at solving
the problems when the number of agents is large, which is often the case
in realistic scenarios. In this paper, we propose a new version of our
novel approach called MCRL that integrates model checking and rein-
forcement learning to alleviate this scalability limitation. We apply this
new technique to synthesize path planning and task scheduling strate-
gies for multiple autonomous agents. Our method is capable of handling
a larger number of agents if compared to what is feasibly handled by
the model-checking technique alone. Additionally, MCRL also guaran-
tees the correctness of the synthesis results via post-verification. The
method is implemented in UPPAAL STRATEGO and leverages our tool
MALTA for model generation, such that one can use the method with
less effort of model construction and higher efficiency of learning than
those of the original MCRL. We demonstrate the feasibility of our ap-
proach on an industrial case study: an autonomous quarry, and discuss
the strengths and weaknesses of the methods.

9.1 Introduction 119

9.1 Introduction

With the rise of artificial intelligence (AI), autonomous agents such as
driverless cars, drones, and autonomous construction equipment, are in-
creasingly integrated in all aspects of society. Autonomy requires that
the involved agents are able to sense the often unpredictable environ-
ment and act on changes over time in order to pursue their goals [1]. For
instance, in a construction site, the autonomy of the agents (machines)
bear the promise of increasing people’s safety, while improving industrial
productivity by automating repetitive tasks. Two major problems need
to be solved to achieve the autonomy during operations: path planning
and task scheduling. Computing both automatically is called mission
plan synthesis. Path planning aims to calculate a path that visits all
target positions (a.k.a. milestones) and avoids static obstacles. Algo-
rithms like A* [2], Theta* [3], and Rapidly-exploring Random Tree [4]
are adopted widely for calculating the shortest path between two points
in a 2-D map. While path plans specify the movement between every
two milestones, the order in which tasks should be completed at mile-
stones is often dealt with as a subsequent optimization problem. The
optimization problem of task scheduling is often paired with additional
constraints, such as finishing tasks in a certain order, and repeating some
tasks until the agents are informed to execute other tasks. The require-
ments on tasks can involve temporal conditions, e.g., “always start task
A before task B is finished”, and timing constraints, e.g., “always finish
all tasks within 8 hours”. All these constraints make the task scheduling
difficult to complete in practice, in particular if constraints on compu-
tation time are given. In fact, a simplified version of task scheduling is
the classic job-shop problem [5], which is NP hard [6].

In our previous work [7], we proposed an approach based on Timed
Automata (TA) and Timed Computation Tree Logic (TCTL) to formally
describe the agents’ movement and task execution, as well as their re-
quirements, respectively, to facilitate synthesis of plans by model check-
ing. The approach has been implemented as a tool named TAMAA
(Timed-Automata-based Mission planner for Autonomous Agents). The
tool shows the feasibility of solving the mission-planning problem by us-
ing model checking when time of movement and task execution are fixed.
However, TAMAA has two limitations: (i) if moving and executing tasks
take unpredictable durations, TAMAA fails to generate complete mission
plans that address all eventualities; (ii) TAMAA alone does not scale well

120 Paper B: Scalable Approaches for Mission Plan Synthesis

with the number of agents growing, as the state space of the model ex-
plodes when the number of agents becomes large.

In this paper, we first solve problem (i) by synthesizing comprehen-
sive strategies of timed games (TG), which use time intervals instead
of fixed times as the moving and task execution times. TG are solv-
able by UPPAAL TIGA [8], which is for synthesizing strategies of TG.
The TAMAA-generated TA can be re-used and easily converted into TG
by labeling actions as controllable and uncontrollable ones in UPPAAL
TIGA. As the TG models consider all possible times of task execution
and moving within given intervals, and UPPAAL TIGA utilizes liveness
properties to find the state-action pairs of the models that always even-
tually reach the goal states, the results represent the complete mission
plans that address all eventualities.

However, as the synthesis in UPPAAL TIGA is still based on exhaus-
tive symbolic exploration, this method inevitably suffers from the same
state-space explosion problem as ordinary TAMAA. The state-space-
explosion problem is one of the most stringent issues when employing
exhaustive search techniques such as model checking [9], therefore many
studies have explored ways of fighting it [10, 11]. To solve problem
(ii), we proposed a novel method called MCRL [12] that combines model
checking with reinforcement learning [13] to synthesize mission plans
for large numbers of agents. Instead of exhaustively exploring the state
space, MCRL samples the state space randomly within a time frame, and
then uses these samples to train the agent models so that their behavior
becomes increasingly efficient in reaching their goals such as finishing all
tasks. Since the method does not need to traverse every state of the
model, state-space explosion is avoided.

In this paper, we improve the original MCRL by integrating it with
UPPAAL STRATEGO1 [14], which is a tool that integrates the UPPAAL
model checker, simulation, algorithmic synthesis (i.e., UPPAAL TIGA),
and learning-based synthesis. Thanks to the integration, we can merge
the sampling phase and the training phase of MCRL so that the tem-
porary synthesis results can be used in the simulation and accelerate it
to get to the goal state. Specifically, after each round of simulation, the
sampled trace is provided to a learning module, which runs Q-learning
[15] to populate a Q-table. Q-learning is a reinforcement learning al-
gorithm that calculates a value for each state-action pair in the trace.

1https://people.cs.aau.dk/∼marius/stratego/

9.1 Introduction 121

The state-action pairs and their values are stored in the Q-table, which
is then used as a strategy. Strategies are mission plans that constantly
provide suggestions of actions to the agents, at each of their states. The
suggested actions include moving to a certain milestone, or executing a
certain task. After the learning algorithm is invoked, an intermediary
strategy is generated, which does not necessarily cover all the eventuali-
ties in the unpredictable environment. However, it is still input into the
next round of simulation so that the simulator explores the state space
in a heuristic way, by increasing the probabilities of choosing the actions
that have higher values than other actions of the same state in the Q-
table. In this way, the simulation can get to the goal state increasingly
likely and faster.

Although exhaustive model checking suffers from state-space explo-
sion, it is beneficial at ensuring the correctness of the synthesized strate-
gies, that is, the latter satisfy all requirements, and the completeness,
meaning that the synthesized strategies cover all the eventualities in the
unpredictable environment. Therefore, we leverage exhaustive model
checking after a strategy is synthesized by the Q-learning algorithm, to
verify if the agent models behave according to the requirements specifica-
tion, under the control of the strategy. In this work, we further extend
the model checker of UPPAAL STRATEGO to support the exhaustive
verification of the learned strategies. In this way, model checking and
reinforcement learning are combined effectively by our method (MCRL),
in solving the mission-plan synthesis problem of multiple autonomous
agents. Moreover, the new version of MCRL reuses the automation of
model construction provided by our toolset named MALTA.

To summarize, this paper is an extension of our previous work [12]
and the new contributions are:

• An improved version of TAMAA that employs UPPAAL TIGA to
synthesize mission plans (i.e., strategies) that consider all the even-
tualities in the respective environments.

• A new version of MCRL integrated in UPPAAL STRATEGO, which
provides advantages such as a merged phase of sampling and train-
ing that benefit each other. The new version of MCRL is imple-
mented in an extensible scheme with the help of UPPAAL STRAT-
EGO, so that users can replace the learning algorithm with their
own pre-compiled libraries.

122 Paper B: Scalable Approaches for Mission Plan Synthesis

• Experimental evaluation of the new methods by applying them on
an industrial case study to demonstrate their merits and weak-
nesses.

The remainder of the paper is organized as follows. In Section 9.2, we
introduce the preliminaries of this paper, that is, definitions of timed au-
tomata, (stochastic) timed games, (stochastic) strategies, and reinforce-
ment learning. Section 9.3 describes the problem of strategy synthesis
for multiple agents, as well as its challenges. Section 9.4 presents all the
solutions and their application ranges. This section provides a general
view of the methods and describes their differences. In Section 9.5, we
overview our previous method TAMAA, which is the foundation of the
new methods, and introduce the improved version of TAMAA in UPPAAL
TIGA. Section 9.6 continues with the introduction of the learning-based
method for strategy synthesis. It first analyzes the root of the scalability
problem of TAMAA, after which it describes the new MCRL. Section 9.7
presents the implementation of MCRL and the integration with UPPAAL
STRATEGO, as well as the automated model generation supported by
our existing toolset. Next, we describe the evaluation experiments in
Section 9.8, where we present the results of the experiments, as well as
a discussion of the merits and weaknesses of the simulation-based meth-
ods and the improved version of TAMAA. In Section 9.9, we compare to
related work, before concluding the paper in Section 9.10.

9.2 Preliminaries

9.2.1 Timed Automata and Timed Games
Definition 1. A Timed Automaton TA [16] is a tuple:

A =< L, l0, X,Σ, E, I >, (9.1)

where L is a finite set of locations, l0 is the initial location, X is a
finite set of non-negative real-valued clocks, Σ is a finite set of actions,
E ⊆ L×B(X)×Σ×2X ×L is a finite set of edges, where B(X) is the set
of guards over X, that is, conjunctive formulas of clock constraints of the
form x ▷◁ n or x − y ▷◁ n, where x, y ∈ X, n ∈ N, ▷◁∈ {<,≤,=,≥, >},
and I : L→ B(X) assigns an invariant to each location. □

The semantics of a TA A is defined as a timed transition system over
states (l, v), where l is a location and v ∈ RX represents the valuation

9.2 Preliminaries 123

of the clocks on that location, with the initial state s0 = (l0, v0), where
v0 assigns all clocks in X to zero. There are two kinds of transitions:

(i) delay transitions: (l, v)
d−→ (l, v ⊕ d), where v ⊕ d is the result

obtained by incrementing all clocks of the automaton with the delay
amount d such that v ⊕ d |= I(l), and

(ii) discrete transitions: (l, v)
a−→ (l′, v′), corresponding to traversing

an edge l g,a,r−−−→ l′ for which the guard g evaluates to true in the source
state (l, v), a ∈ Σ is an action, r is the clock reset set, and clock valuation
v′ of the target state (l′, v′) is obtained from v by resetting all clocks in
r such that v′ |= I(l′).

We denote the timed transition system of a TA A by SA. A run π of
a TA A is a sequence of alternating delay and discrete transitions of its
SA: π = (l0, v0)

d1−→ (l0, v1)
a1−→ (l1, v

′
1)

d2−→ ...
dn−→ (ln−1, vn)

an−−→ (ln, v
′
n),

where di refers to a delay transition and ai refers to a discrete transition.
We denote the set of finite runs of A starting from (l0, v0) as Πf (A).

A Timed Game G (TG) [17] is a TA whose actions Σ are partitioned
into controllable (Σc) and uncontrollable (Σu) actions. The timed tran-
sition system, runs, and a set of runs of a TG are denoted as SG , π,
and Π(G), respectively. TG is a useful mathematical model, suitable to
describe a system consisting of several players that compete or collab-
orate to win the game, e.g., by finishing their tasks. Each player can
take arbitrary numbers of actions before other players act. The numbers
depend on the design of the TG. Informally, a strategy is a function that
during the course of the TG constantly suggests the players what to do
next in order to win the game. The suggestion is either a controllable
action a ∈ Σc or a delay. Delays in strategies are denoted as λ, which
do not indicate the lengths of delays, whereas the symbol di used in the
definition of runs refers to concrete delays with specific lengths. The for-
mal definition of strategies is as follows, where last(πf) is used to denote
the last state of a finite run πf :

Definition 2 (Strategy). Let G =< L, l0, X,Σc ∪ Σu,
I > be a TG. A strategy σ over G is a partial function: πf → Σc ∪{λ}
such that for any finite run πf ending in state q (i.e., q = last(πf)), if
a ∈ σ(πf) ∩ Σc, then there must exist a transition q

a−→ q′ ∈ SG. □

Definition 2 indicates that a strategy is a function that takes finite
runs of the TG as input and output controllable actions or delays as
suggestions of actions to the agents. If the strategy σ is memoryless,

124 Paper B: Scalable Approaches for Mission Plan Synthesis

that is, the decisions on actions depend only on the current state, it can
be represented as a function: last(πf) → Σc ∪ {λ}. In this paper, we
focus on memoryless and non-lazy winning strategies [18], which either
urgently decide on a controllable action or wait until the environment
acts2.

9.2.2 Stochastic Timed Games and Stochastic Strate-
gies

In principle, more information is often known of the environment, for in-
stance, the likelihood of actions or the probability distribution of delays.
In this section, we consider Stochastic Timed Games, where a stochastic
environment is assumed. The environment makes choices of delay and
uncontrollable actions stochastically, according to a density function for
a given state. We define the Stochastic Timed Game as a Timed Markov
Decision Process (TMDP) [18]:

Definition 3 (Stochastic Timed Games). A Stochastic Timed Game
(STG) is a TMDP P =< G, µu >, where G = < L, l0, X,Σc ∪Σu, E, I >
is a TG, and µu is a family of density-functions. Let µu

q(d, u) ∈ R≥0 be
a member of µu, which assigns a probability density of the environment
taking the uncontrollable action “u” after a delay of “d” at the state “q”,
where {µu

q : ∃l∃v.q = (l, v)}, u ∈ Σu is an uncontrollable action, and q
is a state (l, v). □

Stochastic strategies [18] for STG are correspondingly defined as follows:

Definition 4 (Stochastic Strategy). A stochastic strategy µc for a STG
is a family of density-functions. Let µc

q(d, c) ∈ R≥0 be a member of µc,
which assigns a probability density of the controller taking the controllable
action “c” after a delay of “d” from state “q”, where {µc

q : ∃l∃v.q = (l, v)},
c ∈ Σc is a controllable action, and q is a state (l, v). □

Remark 5. The STG models are for sampling the state-action pairs
in the corresponding TG. They are used in the simulation and learn-
ing phases of MCRL. The TG models, which reflect the agents’ behavior

2This kind of strategies are shown to suffice for optimal scheduling of Duration
Probabilistic Automata [19].

9.2 Preliminaries 125

more realistically, are used in the verification phase of MCRL, and the
algorithmic synthesis in UPPAAL TIGA.

9.2.3 UPPAAL, UPPAAL TIGA, and UPPAAL STRAT-
EGO

UPPAAL

UPPAAL [20] is a state-of-the-art model checker for real-time systems.
It supports modeling, simulation, and model checking, and uses an ex-
tension of TA as the modeling formalism. We use an example depicted

Figure 9.1: An example of a UPPAAL timed automaton (UTA) of a
traffic light

in Fig. 9.1 to illustrate a simple UPPAAL TA (UTA) modeling traffic
lights. Locations are circles, such as the ones labeled Red and Green,
which model the two colors of the traffic lights. The initial location is
the double circle (i.e., Red). One UTA can have only one initial loca-
tion. The UTA’s edges are directed lines that connect locations, which
can be decorated by guards. A clock variable x is defined to measure
the elapse of time, and used in the invariants on locations (e.g., x<=6),
which specify how long the UTA can delay on that location, and guards
on edges (e.g., x>=3).

A network of UTA models a parallel composition of UTA that can
synchronize via channels (i.e., a! is synchronized with a? by handshake).
In Fig. 9.1, the edges are labeled with channels named STOP and GO,
which synchronize this UTA with other UTA. In UPPAAL, there are two
special kinds of locations, namely urgent and committed locations. Ur-
gent locations are denoted by encircled u, and require that the time does
not elapse on those locations (e.g., Yellow); committed locations are de-
noted by encircled c, and require that not only no time elapses there but
also the next edge to be traversed must start from one of the committed

126 Paper B: Scalable Approaches for Mission Plan Synthesis

locations in the network of UTA (e.g., Switch). UTA also extends TA by
introducing discrete data variables that can be updated via functions on
edges. Functions are written in a subset of the C language. Clocks can
be reset over edges, e.g., x=0 in Fig. 9.1.

The UPPAAL queries that we verify in this paper are properties of
the following form, where p is an atomic proposition over the locations,
clocks, and data variables of the UTA: (i) Invariance: A[]p meaning
that for all runs, for all states in each run, p is satisfied, (ii) Liveness:
A<>p meaning that for all runs, p is satisfied by at least one state in
each run, and (iii) Reachability: E<>p meaning that there exists a run
where p is satisfied by at least one state of the run.

UPPAAL TIGA and UPPAAL STRATEGO

UPPAAL TIGA [8] is an extension of UPPAAL, which supports solv-
ing games based on TG with respect to the temporal properties afore-
mentioned. In this paper, we use UPPAAL TIGA to solve our task
scheduling problem in the first solution based on game-theoretic syn-
thesis. UPPAAL STRATEGO [14] is a tool that integrates UPPAAL with
two of its branches, that is, UPPAAL SMC [21] (statistical model check-
ing) and UPPAAL TIGA [8]. In addition, it also supports learning-based
algorithms for solving STG, and we use this tool to develop our second
solution to strategy synthesis that is based on simulation and learning.

9.2.4 Reinforcement Learning

MCRL employs reinforcement learning (RL) for strategy synthesis. RL
is a kind of machine learning method for training reactive systems by
rewarding desired behaviors and/or punishing undesired ones. Agents
that constantly act in an environment and receive feedback (i.e., re-
wards/penalties) from the environment are reactive systems. RL aims
to calculate how agents should take actions in an environment, in order
to maximize the accumulated rewards of actions. Model-free RL, such
as Actor-Critic algorithms [22], relies on samples from the environment,
which can be a model or a real environment, to estimate the rewards
of the next state-action pairs. Model-based RL, such as Dynamic Pro-
gramming [13], uses the model’s predictions or distributions of the next
state-action pairs and their rewards to calculate optimal actions.

Q-learning is one of the model-free algorithms, which, at the limit,

9.3 Problem Description and Analysis 127

converges to optimal policies for reactive agents in a stochastic environ-
ment. Policies are associated with a state-action value function called
Q function. The optimal Q function satisfies the Bellman optimality
equation:

q∗(s, a) = E[R(s, a) + γ MAX
a′

q∗(s′, a′)], (9.2)

where q∗(s, a) represents the expected reward of executing action a at
state s, E denotes the expected value function, R(s, a) is the reward ob-
tained by taking the action a at state s, γ is a discounting value, s′ is the
new state coming from state s by taking action a, and MAX

a′
q∗(s′, a′)

represents the maximum reward that can be achieved by any possible
next state-action pair (s′, a′). The Bellman equation calculates the re-
wards of state-action pairs by considering both the current reward and
the discounted maximum future reward. Watkins [15] shows that under
the assumption of sufficient repeated sampling, the Q-learning algorithm
converges towards the optimal Q-values and thus the solution to the Bell-
man equations. These values are stored in Q-tables, which serve as the
strategies that we aim to synthesize.

9.3 Problem Description and Analysis

In this section, we introduce the autonomous quarry that serves as the
industrial case study provided by VOLVO Construction Equipment (CE)
in Sweden. Based on this practical case study, we formulate our research
problem and two associated challenges.

9.3.1 An Industrial Case Study: The Autonomous
Quarry

As depicted in Fig. 9.2, the quarry contains various autonomous vehicles,
e.g., trucks and wheel loaders, which are the agents in the environment.
A typical mission of the agents is to transport stones from stone piles

to crushers. Specifically, wheel loaders first dig stones at the stones
piles and load them into trucks that are responsible for transporting the
stones to crushers. The primary crushers crush the stones into fractions,
after which trucks load the crushed stones and transport the material
to the secondary crushers, which is the final destination of the stones.
During the transportation, the agents (that is, autonomous wheel loaders

128 Paper B: Scalable Approaches for Mission Plan Synthesis

Figure 9.2: An example of an autonomous quarry

and trucks) must avoid static obstacles (e.g, holes and rocks on the
ground, larger than given sizes) and dynamic obstacles (e.g., humans,
other mobile machines). In brief, these agents must be able to plan
their paths to the target positions (a.k.a. milestones) and schedule their
tasks so that the entire mission could be accomplished respecting some
requirements, e.g., quarrying 1500m3 of stones per day.

Generalizing from this case study, our research problem of mission
planning involves task scheduling, path planning and following, and col-
lision avoidance for multiple agents. In our previous work [23][24], we
have introduced a solution for the collision-avoidance problem of dy-
namic obstacles, and proposed a method for verifying this function. In
this paper, we focus on synthesizing static mission plans, while assum-
ing that the dynamic avoidance among agents as well as other moving
obstacles functions correctly.

9.3.2 Problem Analysis

Algorithms such as Theta* [3] and RRT [4] are capable of computing
collision-free paths between two milestones. We adopt the Theta* algo-
rithm to solve path-planning in this study and the experiments, as the
algorithm is especially good at generating smooth paths with any-angle
turning points, in 2-D maps. Note that, our toolset (introduced in Sec-
tion 9.7) supports more path-planning algorithms. After the paths are
calculated, the execution order of tasks on milestones must be decided
to achieve correct and efficient strategies. Based on the requirements
from VOLVO CE, we formulate and categorize the requirements of tasks

9.3 Problem Description and Analysis 129

as follows:

• Milestone Matching. Tasks must be performed at the right mile-
stones, e.g., digging stones must be carried out at stone piles.

• Task Sequencing. The task execution order must be correct, e.g.,
unloading stones into the primary crusher must be executed after
digging stones is finished, but before loading stones starts.

• Timing. All tasks that contribute to the goal (e.g. transporting 10
tons of stones to the secondary crusher) must be finished within a
prescribed time (e.g. within 1 hour).

Task scheduling now reduces to synthesizing a plan of task execution
such that, by following the plan, agents can work independently or col-
lectively to accomplish the entire mission according to the requirements.
The classic scheduling problem called the job-shop problem [5] is a sim-
plified version of the task scheduling. Being an NP-hard problem, even a
simple instance of the job-shop problem with very restrictive constraints
remains difficult to solve [6]. Additionally, our task-scheduling problem
poses some unique extra challenges, as described in the next section.
For simplicity, henceforth, we call the problem of path planning and
task scheduling for autonomous agents as mission planning.

9.3.3 Non-determinism and Scalability of Mission
Planning

Different from the classic job-shop problem, there are two types of un-
certainties existing in the environment that must be considered in the
mission-planning phase, that is, the non-deterministic execution time of
tasks and non-deterministic duration of agent movement.

• Non-deterministic task execution time. The execution time of a
task is usually a time interval between the BCET (best-case execu-
tion time) and WCET (worst-case execution time) of the respective
task.

• Non-deterministic movement time. The devices at some milestones
could be exclusively occupied by agents. Therefore, other agents
that are approaching these milestones must wait until those devices
are released, respectively, and then start their tasks. This yields a
non-deterministic movement time.

130 Paper B: Scalable Approaches for Mission Plan Synthesis

Figure 9.3: Examples of symbolic state spaces of different models of
games. Probabilities in (b) are only used in 1 1

2 -player games

These features complicate our task scheduling even more than in the
classic job-shop case. Our target is not only calculating mission plans,
but also guaranteeing their correctness, that is, showing that the syn-
thesized mission plan (a.k.a., strategy) satisfies all the requirements, and
that it is complete, namely, covers all eventualities in the environment.

In our previous work [7], we have proposed an approach called TAMAA,
based on the model-checking technique, to synthesize mission plans for
agents. This approach can automatically generate mission plans, as-
suming feasible numbers of milestones and tasks up to 100. However,
the approach cannot cover all eventualities when the environment is
non-deterministic. Additionally, when the number of agents exceeds 5,
TAMAA exhausts the physical memory due to the notorious state-space-
explosion problem of model checking [9].

9.4 Overall Description of the Solutions

Facing the limitation of TAMAA, we propose two solutions in this paper,
that is, 1) a game-theoretic synthesis (i.e., TIGA), and 2) a simulation-
based synthesis (i.e., MCRL). Table 9.1 lists the solutions and their

9.4 Overall Description of the Solutions 131

Table 9.1: Summary of all solutions.

TAMAA TIGA MCRL STRATEGO
Model UTA TG TG & STG STG
Game 1 player 2 player 2 player 1 1

2 player

Techniques Model
Checking [7]

Symbolic
On-The-Fly

Algorithm [17]

Reinforcement
Learning &

Model Checking [12]

Reinforcement
Learning [14][25]

characteristics. TAMAA uses UTA as the modeling language and is suit-
able for 1-player games, in which agents have the full control over their
environment. As depicted in Fig. 9.3(a), the agent models in TAMAA
have no uncontrollable actions, which means the agents can totally con-
trol their movement and task execution times. Therefore, the goal of
TAMAA is to find the best mission plans that finish all tasks the fastest.

However, strategies of 1 1
2 -player and 2-player games can only choose

controllable actions, whereas the uncontrollable actions are taken by the
environment either non-deterministically in 2-player games, or stochas-
tically in 1 1

2 -player games (Fig. 9.3(b)). Therefore, the goal of 2-player
games, solvable by UPPAAL TIGA and MCRL, is to find the compre-
hensive strategies that enable the agents to finish their tasks no matter
which and when uncontrollable actions are taken. Taking into account
the probabilities of performing the uncontrollable actions, the goal of 1 1

2 -
player games, solvable by UPPAAL STRATEGO, is to find the strategies
that have the highest probability of finishing all tasks.

In summary, different methods are suitable for different applications,
and have their own advantages and disadvantages. When stochastic
behaviors are observed in the system, 1 1

2 -player games and UPPAAL
STRATEGO can provide a suitable solution. When agents can fully con-
trol their task execution times, 1-player games and TAMAA can be the
right choice (Section 9.5). When the task execution times are flexible
rather than fixed and the uncontrollable actions are non-deterministic,
UPPAAL TIGA (Section 9.5) and MCRL (Section 9.6) are capable of
handling the problem.

UPPAAL TIGA is sound and complete in the sense that when a strat-
egy is synthesized, it is guaranteed to be correct by construction, and
conversely, when such a strategy exists in the state space of the model,
UPPAAL TIGA is able to find it. However, UPPAAL TIGA suffers from
the scalability problem as the method relies on the exhaustive graphic

132 Paper B: Scalable Approaches for Mission Plan Synthesis

search. MCRL uses a simulation-based method for synthesis and pro-
poses a post-verification of the synthesized strategies, which alleviates
the scalability problem while sacrificing the completeness of the method,
that is, although MCRL has the ability to deal with more agents than
UPPAAL TIGA, it does not guarantee to synthesize a strategy even if
such strategy exists.

We will introduce these methods in detail in Sections 9.5 and 9.6,
and then compare their performance in different application scenarios in
Section 9.8.

9.5 Solution 1: Game-Theoretic Synthesis

In this section, we introduce the first solution, that is, our game-theoretic
synthesis, which is based on an exhaustive search of the state spaces of
agent models. We have two methods belonging to such kind of synthesis,
namely the original TAMAA [7] and TAMAA in UPPAAL TIGA [8]. As
aforementioned, the original TAMAA is designed to solve 1-player games,
whereas TAMAA in UPPAAL TIGA leverage the models of TAMAA and
the algorithmic method of synthesis of UPPAAL TIGA to synthesize com-
plete plans that take into account any (possibly antagonistic) environ-
mental action. First, we overview TAMAA, which provides an automatic
model generation and synthesis of mission plans for 1-player games.

9.5.1 Overall Description of TAMAA

TAMAA [7] enables users to configure their agents, tasks, and working
environment in a graphical user interface (GUI), and automatically gen-
erate UTA networks that model the movement and task execution of
agents. After users finish the configuration, UPPAAL is called to verify
the UTA models in order to generate runs that satisfy various proper-
ties. The verification used in TAMAA is not for checking if the model
is correct or not, but for generating runs of the model, which are then
parsed to generate mission plans.

9.5.2 Mission-Plan Synthesis by TAMAA

To pave the foundation of the synthesis method, we first elaborate the
UTA models generated by TAMAA by an example illustrated in Figure

9.5 Solution 1: Game-Theoretic Synthesis 133

9.4a. These models are also used in the improved solution of TAMAA
with some slight adjustments (see Section 9.5.3).

(a) An example of quarries
(b) Map decomposition and the calcu-
lated paths

Figure 9.4: An example of calculating paths by decomposing the map
and running the Theta* algorithm.

In the quarry example, there are four autonomous trucks starting at
milestone A, which aim to transport stones from milestone B to the pri-
mary crusher at milestone C or D, and eventually go to the secondary
crusher at milestone E. A wheel loader is working at milestone C to dig
stones and load them into the trucks. Only the autonomous trucks are
the agents that we are interested in. First, the environment is decom-
posed into a Cartesian grid and the Theta* algorithm [3] is executed to
calculate the shortest paths among milestones A - E (See Figure 9.4b).
Note that the trucks only need to choose one primary crusher at position
C or D, to unload stones.

Next, UTA models are automatically generated by TAMAA, based
on the shortest paths. For brevity, in Figure 9.5a, we show a part of
the UTA model in UPPAAL describing the movement of the autonomous
trucks between milestones A and B. The movement to other milestones
is modeled in a similar way. Locations A and B represent milestones A
and B, respectively. The outgoing edge from the urgent initial location
to location A indicates that the trucks start from milestone A. Locations
FATB and FBTA are created to count the traveling time between A and
B. A constant variable MT stores the traveling time. The agent is only
allowed to move when it is not executing any tasks. Therefore, channel
move[id] is used to synchronize the transitions in the movement UTA
with the task execution UTA (Figure 9.5b) so that the moving actions
are only enabled when the agent is idle, where the variable id refers to

134 Paper B: Scalable Approaches for Mission Plan Synthesis

(a) Part of a movement UTA

(b) Part of a task execution UTA

Figure 9.5: UTA models of an agent’s movement and task execution

9.5 Solution 1: Game-Theoretic Synthesis 135

the current agent in both the movement UTA and the task execution
UTA. A two-dimensional Boolean array named position is updated in
this UTA, in which each element stores whether a certain milestone is
being occupied by an agent. To model the agents’ movement on the paths
in Fig. 9.4b, TAMAA instantiates movement UTA similar to Fig. 9.5a.

The task execution UTA models the actions that an agent can choose
to execute at a milestone. One such UTA is partly depicted in Fig. 9.5b,
where location Idle represents the status of “no operation”, when the
agent is allowed to move, and location T2 represents the task of un-
loading stones into a primary crusher. The self loop of location Idle
labeled by channel move[id] regulates the movement UTA to start to
move only when the task execution UTA is at location Idle. Two
Boolean arrays named ts and tf are updated in the UTA, represent-
ing whether a task has been started or finished, respectively. Assuming
trucks need to iterate their tasks multiple times before transporting all
the stones, the guard of the incoming edge of location T2 enables this
edge if the following conditions are true: (i) the task of loading stones
from the wheel loader is done (i.e., tf[id][1] is true), (ii) the agent
must be at milestone C or D, where the primary crushers are located
(i.e., position[id][2] ∥ position[id][3] is true), (iii) no other agent
is executing this task (i.e., !isBusy(2) is true), and (iv) the task has
not been done in this round of transportation (i.e., isNecessary(2) is
true). Location T2 has an invariant indicating that the execution time
of the task must not exceed its WCET. Similarly, the guard on the out-
going edge of location T2 ensures that task is finished after the execution
time is greater than or equal to BCET. The function updateIteration()
updates the integer of task iteration.

After the resulting UTA model is automatically generated by TAMAA,
properties that formalize the requirements mentioned in Section 9.3.2 are
also generated by using the configuration information and well-designed
TCTL templates. The Timing requirement is used for synthesizing mis-
sion plans that finish all tasks within a prescribed time limit. Others
are for verifying if the models guarantee that the mission plans are func-
tionally correct. For brevity, we only show the TCTL property of the
Timing requirement used in UPPAAL. The rest of the properties are
reported in our previous work [7]. The TCTL reachability Query (9.3)
checks if agents can accomplish their missions within TL time units,
where ite is an integer array storing the iteration of the tasks, that is,
finishing all tasks once counts for one round, x is a clock variable that

136 Paper B: Scalable Approaches for Mission Plan Synthesis

Figure 9.6: A segment of a run generated by TAMAA

is never reset, N and M are two integers indicating the number of agents
and the requested iterations of tasks, respectively:

E<> ((forall(i:int[0,N-1]) ite[i]>=M) && x≤TL) (9.3)

The target of mission planning in a 1-player game is to find the run
that reaches the goal state where, for example, agents finish all the tasks.
Fig. 9.6 depicts a segment of such run belonging to a model of 2 agents,
where states of the models are symbolically represented by the locations
of the UTA, mi and tei stand for actions in movement and task execution
UTA of agent i, respectively, and move[i]:tei->mi stands for the syn-
chronized actions of starting to move. As depicted, all the actions are
controllable by the agents (i.e., solid lines), which consecutively or alter-
nately move the respective agent and execute tasks. They can stay at
the same milestone (e.g., B) but cannot execute the same task (e.g., two
T1 cannot appear at the same state) unless the agents are not mutual
exclusive of the task.

As explained in Section 9.4, runs like the one in Fig. 9.6 are mission
plans of 1-player games. To obtain such runs, TAMAA uses the model
checker of UPPAAL to verify the UTA models of agents against reachabil-
ity properties in the form of Query (9.3). If the properties are satisfied,
UPPAAL can generate runs that can be either the fastest, shortest, or
random run, respectively. Hence, TAMAA can generate these three kinds
of mission plans.

However, when the problem becomes a 1 1
2 -player game or a 2-player

9.5 Solution 1: Game-Theoretic Synthesis 137

game, TAMAA is not able to solve it, because the task execution times
are decided by the uncontrollable actions taken by the environment. We
need another method to deal with these problems such that the mission
plans can cover all possible scenarios, even in the face of an antagonistic
environment.

9.5.3 Synthesizing Strategies in UPPAAL TIGA
In this subsection, we apply UPPAAL TIGA instead of UPPAAL to syn-
thesize strategies defined by Definition 2, which serve as the complete
mission plans that the original TAMAA is not able to synthesize.

(a) Part of a movement TA

(b) Part of a task execution TA

Figure 9.7: TG models of an agent’s movement and task execution in
UPPAAL TIGA

We recast the models of TAMAA from the UTA formalism into the
TG formalism of UPPAAL TIGA as follows. As depicted in Fig. 9.7a, the
edge from location FATB (resp., FBTA) to location B (resp., A) is marked
as uncontrollable. This change indicates that the decision of choosing

138 Paper B: Scalable Approaches for Mission Plan Synthesis

a milestone to visit is made by the agent, whereas the duration of the
movement to reach the milestone is determined by the environment.
Note that the invariant on FATB (i.e., t<=MT) and the guard on the out-
going edge of FATB (i.e., t>=MT) force the duration to be MT. Similarly,
in Fig. 9.7b, the edge from location T2 to location Idle is marked as
uncontrollable, indicating that the duration of the task is determined by
the environment.

Besides the change of uncontrollable actions, the synchronization be-
tween the task execution UTA and movement UTA is removed to avoid
the input non-determinism of random simulation in UPPAAL. Instead,
a global Boolean array idle is introduced in the TG models to store
whether the agents are idle or not. This array is used in the function
named isReady in the movement TG, which returns true when the cor-
responding element in idle is true and the agent has not finished its
requested iteration of tasks.

Query (9.3) is also adjusted to synthesize complete strategies that
deal with the non-determinism of the environment, as follows:

strategy st = control: A<> ((forall(i:int[0,N-1])

ite[i] ≥ M) && x≤TL)
(9.4)

Query (9.4) applies the universal quantifier A on runs and the “eventu-
ally” temporal operator <> on states, which means that the synthesized
strategy st must always guide the agents to finish their tasks for M rounds
within TL time limit, no matter how long the time of task execution is.

As depicted by Fig. 9.8, the runs generated by UPPAAL TIGA con-
tain controllable (solid lines) and uncontrollable actions (dashed lines).
The other notions of the figure are the same as in Fig. 9.6. The first four
steps in Fig. 9.6 and Fig. 9.8 are the same, being all controllable actions.
The fifth step in Fig. 9.8 starts to be different, because it is an uncontrol-
lable action, which means that the environment decides which actions to
perform, instead of the agents. Assuming that the agents travel at the
same speed, at state (FATB, Idle, FATB, Idle), the environment can
choose agent 0 to arrive at milestone B first via the uncontrollable action
in m0; or choose agent 1 to arrive first via the uncontrollable action in m1.
The actions of finishing tasks are also uncontrollable, so the task execu-
tion times are uncertain from the agents’ point of view. The strategies
synthesized by UPPAAL TIGA are complete in the sense that no matter
which and when uncontrollable actions are taken, the agents can always

9.5 Solution 1: Game-Theoretic Synthesis 139

Figure 9.8: A segment of a strategy generated by UPPAAL TIGA

finish their tasks with respect to various requirements by following the
strategies.

Although the strategies are now complete, since UPPAAL TIGA is
also (in the worst case) exhaustively exploring the state space to synthe-
size strategies, the scalability problem of TAMAA still exists in UPPAAL
TIGA. As depicted in Table 9.2, the number of explored states, and the
computation time increase exponentially with the agent number growing
linearly, which implies that UPPAAL TIGA encounters the state space
explosion.

Table 9.2: Performance evaluation of synthesis in UPPAAL TIGA with
different number of agents running 3 tasks among 3 milestones.

Number of
agents

Number of
explored states

Computation
time

2 775 5 ms
3 222,88 220 ms
4 764,001 18.1 s
5 33,312,229 53.8 mins
6 Out of memory Unknown

140 Paper B: Scalable Approaches for Mission Plan Synthesis

9.6 Solution 2: Simulation-Based Synthesis

In this section, we introduce our second solution for the task-scheduling
problem, which is based on simulation and learning. First, we describe
the root of the state-space-explosion problem that the both the original
and improved versions of TAMAA have.

9.6.1 State-Space Exploration of TAMAA

The states of the agent models are the Cartesian product of states in
each individual agent. Therefore, the state space of multiple agents
grows exponentially with the number of agents growing linearly. The in-
terleaving actions among the agents also increase the state space. Run-
ning TAMAA in UPPAAL TIGA requires searching the state space of the
model. The essence of the method is about searching and storing the
state space in order to find the runs that reach (respectively, avoid) cer-
tain states for reachability properties (respectively, safety properties).
Since it relies on an implementation of an on-the-fly symbolic algorithm,
UPPAAL TIGA may terminate before having explored the entire state
space, which alleviates the state-space-explosion problem. However, the
searching algorithm is either breadth-first, depth-first, or random, which
is not heuristic because it constantly follows the same order of search-
ing without using the historical information of the searched state space.
Therefore, the synthesis method in UPPAAL TIGA can take a long time
to find the desired runs when the state space is large. The simulation-
based synthesis, which is presented in the next subsection, improves the
method in this aspect.

9.6.2 Learning Strategies

Instead of using a symbolic and potentially exhaustive method, we study
here the use of simulation-based synthesis algorithms such as Q-learning
[15]. Rather than exploring the state space exhaustively, simulation-
based methods sample the state space strategically, which happens of-
ten in a reactive manner, hence they can avoid state-space explosion.
Nonetheless, simulation-based approaches sacrifice completeness over speed
of synthesis, but gain the ability to accommodate a stochastic resolution
of environment choices.

In this subsection, we go through the workflow of the new version

9.6 Solution 2: Simulation-Based Synthesis 141

Figure 9.9: Workflow of MCRL

of MCRL, which is integrated with UPPAAL STRATEGO. In the rest of
Section 9.6, we introduce the new features of the new MCRL while briefly
introducing the functions and parameters in UPPAAL STRATEGO. For
technical details of UPPAAL STRATEGO, readers are referred to the
literature [14] [25].

As depicted in Fig. 9.9, MCRL explores the state space of the TG
model via random simulation at the initial step, during which runs of the
model are sampled. These runs serve as input to the learning algorithm
to compute the rewards or penalties of the state-action pairs. As a result,
the pairs belonging to the runs that reach the states where tasks are
finished faster than those in other runs are assigned with higher rewards,
whereas the pairs that end up into deadlocked states, or are wondering
meaninglessly, are assigned with lower rewards or even penalties. The
accumulated values (i.e., rewards or penalties) of the state-action pairs
contribute to synthesize an intermediary strategy, which is then used
in the next round of simulation until a user-defined number of runs is
sampled. Specifically, the simulator exploits the intermediary strategy in
its following rounds of simulation by increasing (respectively, decreasing)

142 Paper B: Scalable Approaches for Mission Plan Synthesis

the probabilities of choosing the actions with higher values (respectively,
lower values). In this way, the simulator can reach the goal state faster
and easier than the previous rounds of simulation do. This integration
of simulation and learning is not provided by the initial version of MCRL
[12].

When a user-defined number of runs is sampled, a strategy is con-
sidered to be produced. The simulation-based synthesis cannot guar-
antee the correctness of the strategies. Therefore, we propose a post-
verification of the strategies by using model checking. Specifically, the
TG models are verified together with the synthesized strategies. When
the model checker encounters multiple controllable actions during verifi-
cation, it enquires the strategy to choose the ones with the highest val-
ues. Details of the verification are presented in Subsection 23. Strategies
that pass the verification are guaranteed to be correct in the sense that
they satisfy the temporal constraints of requirements. If the verification
fails, a new iteration of the synthesis and verification can be carried out,
where the user-defined number of runs is increased for a more thorough
learning. In addition, the state space of the model is restricted by the
synthesized strategy, which enables MCRL to deal with more complicated
problems than TAMAA and UPPAAL TIGA do.

In the following subsections, we introduce the key definitions, algo-
rithms, and techniques that are used in the new version of MCRL. Since
UPPAAL STRATEGO integrates UPPAAL, UPPAAL SMC, and UPPAAL
TIGA, the following algorithms and techniques are designed and imple-
mented collectively in UPPAAL STRATEGO.

Model Conversion

The initial step of MCRL is random simulation (see Fig. 9.9). The non-
deterministic choices of actions in the synthesis of UPPAAL TIGA are
replaced by random sampling of actions in the simulation. Consequently,
the TG must be converted into STG by assigning probabilities to actions.

Fig. 9.10 shows the model conversion in the process of learning and
verifying a strategy. In step 1, the task-execution TG is changed to
an STG, where the probability of finishing a task between its BCET and
WCET is uniformly distributed. Note that the uniform distribution can
be changed to a user-defined distribution that can make the agents fin-
ish their tasks easier, in the simulation. However, it does not change the
fact that the synthesized strategies lack a correctness guarantee, which

9.6 Solution 2: Simulation-Based Synthesis 143

Figure 9.10: Overview of various models and strategies and their rela-
tions in UPPAAL TIGA and UPPAAL STRATEGO (adapted from [14])

means that the post-verification is needed anyway. The reason why we
choose to use the uniform distribution is because it is the default distri-
bution on time-bounded delays in UPPAAL STRATEGO3. Therefore, the
syntactic structure of the TG does not need to be changed. We name the
first step probabilistic quantification because it assigns quantitative prob-
abilities to the actions that are originally chosen non-deterministically
in UPPAAL TIGA.

Step 2 is MCRL’s synthesis (also seen in Fig. 9.9), which learns a
stochastic strategy σ◦ based on the STG. σ◦ is then abstracted to a
strategy that does not contain any probability, in step 3. The abstraction
of stochastic strategies is introduced in Subsection 23. In the final step,
the TG and the synthesized strategy σ are verified together by the model
checker of UPPAAL STRATEGO4. This is supported by queries in the
form of Query (9.7) that is introduced in Subsection 23.

The model conversion does not spoil our assumption of the environ-
ment, because the probabilities assigned to the uncontrollable actions
in the TG are only used in the learning phase. The formal verification
of the synthesized strategy is still by exhaustive model checking, which
guarantees that the agents satisfy the requirements regardless of how the
environment behaves.

3The uniform distribution is used in UPPAAL SMC by default. UPPAAL
STRATEGO includes UPPAAL SMC.

4The model checker is UPPAAL [20], which is included in UPPAAL STRAT-
EGO.

144 Paper B: Scalable Approaches for Mission Plan Synthesis

Q-learning Algorithm

Although we adopt Q-learning [15] in this work, our framework is open
for extension with any other learning algorithms. In order to apply Q-
learning on our STG models of the agents, we first define the states and
actions of the Q-table generated by the learning algorithm. To differen-
tiate the states of STG, we define Q-states and Q-actions as follows.

Definition 5 (Q-State). A Q-state is defined as the following tuple:

QS =< RT ,CT ,CP ,ST >,

where:

• RT ∈ Nd is a set of natural numbers denoting the iteration of
executing all tasks for each agent, where d is the number of agents,

• CT ∈ N denotes the index of the current task,

• CP ∈ N denotes the index of the current milestone,

• ST is a set of Boolean variables encoding the respective execution
statuses of tasks (EST) of all agents. □

Definition 6 (Q-Action). A Q-action is defined as the following tuple:

QA =< MT ,TT >,

where:

• MT ∈ {1, 2} denotes the type of motion, i.e., 1 : moving, 2 :
executing a task, and

• TT ∈ N denotes the target of the motion, which can be a milestone
or a task. □

In practice, “RT ” is declared as an array of integers in our UTA
models. “CT ” and “CP ” are represented by the current locations of the
movement UTA and task-execution UTA, respectively. “ST ” is declared
as a two-dimensional array of Boolean variables that stores the execution
statuses of tasks (EST), that is, finished (true) or unfinished (false), for
all agents in the environment. “TT ” can be the index of the target
milestone, or the index of the next task.

9.6 Solution 2: Simulation-Based Synthesis 145

Note that a Q-state does not contain continuous variables such as
clocks, because it is impossible to sample all the possible values of contin-
uous variables in the simulation. Moreover, the mission-planning prob-
lem concerns the EST of agents, which are covered by Q-states already.
Introducing other variables, e.g., a global clock variable that measures
the entire time of mission execution, would be redundant. In addition, to
symbolise Q-states with clock variables, we need to use zones [20] instead
of their concrete values, which complicates the problem unnecessarily.
The existence of “ST ” in Q-states requires the agents to communicate
with each other, which introduces overhead and unreliability in the im-
plementation of these agents. However, to solve the mission-planning
problem with uncertain task execution times, this cost is necessary.

To apply Q-learning, we need to define a formula to calculate the re-
wards for state-action pairs. The rewards should encourage the agents to
accomplish their tasks as fast as possible. Hence, a global clock variable
named gt that measures the total execution time of agents is defined in
our UTA model, although it is not included in the Q-states. UPPAAL
STRATEGO provides a special query [25] that allows us to simulate the
model, sample the specific runs, and pass them to the learning algorithm
(e.g., Q-learning):

strategy opt = minE(x)[<=T]{dv}–>{cv}:<> P (9.5)

In Query (9.5), minE(x) simulates the model while executing the learning
algorithm to minimize “x”, which can be a variable or an expression.
Parameter T is the maximum simulation time, dv is a set of discrete
variables, and cv is a set of continuous variables. The learning algorithm
observes the state space of the model partially, by detecting the values
of the variables in dv and cv. The formula “<>P” is a (T)CTL property
satisfied by the runs sampled from the simulation. These runs are used
as input to the learning algorithm to evaluate state-action pairs. In this
mission-planning problem, the global clock variable gt is x, the attributes
of Q-state constitute dv, cv is an empty set, and P is as follows, being
also used in Query (9.4):

(forall(i:int[0,N-1]) ite[i] ≥ M) && gt ≤ TL (9.6)

Algorithm 1 presents the process of executing queries in the form of
Query (9.5) in UPPAAL STRATEGO. Parameters stg, iterationNum,
totalNum, and goodNum, formula represent the STG model, the user-

146 Paper B: Scalable Approaches for Mission Plan Synthesis

defined number of iterations of learning, the user-defined maximum rounds
of simulation, the maximum number of runs that satisfy the property,
and the property (<> P in Query (9.5)), respectively.

Algorithm 1: Simplified algorithm behind the minE-query of
UPPAAL STRATEGO
1 Main(stg, iterationNum, totalNum, goodNum, formula)
2 int iterations = 0
3 int bestFitness = ∞
4 Strategy best = empty
5 Strategy aStrategy = empty
6 for iterations < iterationNum do
7 int totalRuns = 0
8 int goodRuns = 0
9 for totalRuns < totalNum do

10 Run aRun = simulate(stg , aStrategy)
11 if aRun satisfies formula then
12 aStrategy = learn(aRun)
13 goodRuns ++
14 if goodRuns ≥ goodNum then
15 break

16 totalRuns ++;

17 if goodRuns ≥ goodNum then
18 fitness = evaluate(aStrategy)
19 if fitness < bestFitness then
20 bestFitness = fitness
21 best = aStrategy

22 iterations ++

23 return best ;

At lines 4 and 5 of Algorithm 1, two empty strategies are defined,
which are two arrays for storing Q-tables, in practice. In line 10, ran-
dom simulation starts, from which the runs that satisfy “<> P” (a.k.a.,
good runs) are sent to the learning algorithm (line 12), which can be
an internal function of UPPAAL STRATEGO or a pre-compiled library.
The check of satisfaction of “<> P” is done by UPPAAL STRATEGO. For

9.6 Solution 2: Simulation-Based Synthesis 147

details, we refer the interested reader to the literature [14]. The learning
algorithm calculates the rewards of the state-action pairs in these good
runs based on the value of “x”, and stores the rewards in the variable
aStrategy (line 12).

The simulation and learning terminate under two conditions: (i)
when the total rounds of simulation reach the limit (line 9), or (ii) when
the number of good runs reaches the limit (line 15). When the simulation
terminates in case (i), no strategy is generated as the good runs collected
from the simulation do not support generating a complete strategy; if
the simulation terminates in case (ii), a strategy is generated and stored
as a Q-table. Lines 17 to 21 evaluate the learned strategy. The fitness of
a strategy is the expectation of “x” when the model is under the control
of the strategy up to the horizon provided in the query. If the query
is minE (respectively, maxE), the evaluation observes the fitness of the
current strategy and judges if its value is less (respectively, larger) than
the value of the best strategy, and updates the best strategy accordingly.

Verification of the Synthesized Strategies

As depicted in Fig. 9.9, after a strategy is synthesized, the model checker
of UPPAAL STRATEGO is employed to verify the TG of the system under
the control of the strategy. UPPAAL STRATEGO provides a special
query to realize this function, which is shown in Query (9.7), where P
is a Boolean expression, e.g., Query (9.6), opt is the strategy that is
synthesized by Query (9.5) and that controls the behavior of the model:

A<> P under opt (9.7)

Specifically, when UPPAAL STRATEGO reaches a state where it faces
multiple controllable actions, the model checker can filter out non-optimal
choices (according to the strategy) from the exploration of the system.

We extend UPPAAL STRATEGO such that a subset of strategies
generated by Query (9.5) can also be verified by Query (9.7). This is
an extension of the original work on UPPAAL STRATEGO [14] where
only strategies generated by the game-theoretic synthesis of UPPAAL
TIGA [8] can be verified. The subset of strategies here refers to the ones
that do not have clock variables. As defined in Definitions 5 and 6, the
strategies (i.e., Q-tables) of MCRL do not contain clocks.

This verification is step 4 of the method (see Fig. 9.10). For the users
of this method, synthesizing a strategy and verifying it are two consec-

148 Paper B: Scalable Approaches for Mission Plan Synthesis

utive operations of running Queries (9.5) and (9.7). However, there are
two important steps of model conversion that are executed underneath,
by the tool: probabilistic quantification and abstraction (Fig. 9.10). Prob-
abilistic quantification is explained in Section 9.6.2. Now we introduce
the abstraction from stochastic strategies σ◦ of STG to strategies σ of
the corresponding TG. As stated in Definitions 4 and 2, σ◦ assigns prob-
abilities to the controllable actions of the agents, whereas σ explicitly
informs the agents what is the next action to do at each state.

In practice, given a Q-table that contains the values of state-action
pairs defined in Definitions 5 and 6, we construct strategies σ by using
the rewards as the priorities of choosing actions at the corresponding
states, that is, the actions with the highest values are always chosen
by the model checker. When multiple actions have the same value at
some states, the model checker will exhaustively select each one of them
to execute and check, in a non-deterministic manner. In this way, we
can verify if the strategies synthesized by Q-learning are guaranteed
to be complete and correct in the sense that the new models of the
agents, which are controlled by the strategies, satisfy the requirements
considering all the possible task execution times. In addition, the state-
space explosion of the original TAMAA is overcome, since the state space
that is explored by the model checker for verifying the new models is
much reduced by the strategies.

To guarantee that the synthesized strategies meet all the require-
ments mentioned in Section 9.3.2, we design queries as presented below.
In these queries, ten and moven are the task execution TG and move-
ment TG of agent n, respectively. The variable tf is a two-dimensional
Boolean array of agents’ task execution statuses, e.g., finished, or unfin-
ished, x is a clock variable, and opt is the synthesized strategy.

• Milestone Matching. Query (9.8) checks that agent’s n position is
always at milestone Pi, when it is executing task Ti:

A[] (ten.Ti imply moven.Pi) under opt (9.8)

• Task Sequencing. Query (9.9) checks if the precedent task Ti−1 is
always finished, when agent n is executing task Ti:

A[] (ten.Ti imply tf[n][i-1]==true) under opt (9.9)

9.7 Tool Support 149

• Timing. Query (9.10) checks if the agents can always finish all
their tasks within TL time units, where N is the number of agents,
M is the requested tasks iteration number, and TL is an integer of
time limit:

A<> ((forall(i:int[0,N-1]) fin[i]≥ M)

imply x≤TL) under opt
(9.10)

9.7 Tool Support

In this section, we describe the automated support for our method, our
toolset MALTA5, which is depicted in Fig. 9.11. A GUI named Mission

Figure 9.11: The structure of the toolset.

Management Tool (MMT) is designed at the top level to enable users
to configure the map, agents, tasks, and milestones, etc., capturing the
information of the environment. A module named Path Planner is de-
signed at the second level, to support various path-planning algorithms,
e.g., A* [2], Theta* [3], and DALi [26]. The Path Planner obtains the
information of the map, including the navigation area, forbidden areas,
milestones, etc., and calculates paths among the milestones and avoid
all the forbidden areas. DALi can even select paths intelligently, when

5MALTA is published: https://github.com/rgu01/MALTA.

150 Paper B: Scalable Approaches for Mission Plan Synthesis

encountering temporary obstacles, crowed areas, etc. We refer the reader
to literature [26] for details.

In the experiments of this paper, we use Theta* for path planning,
due to its capability of calculating smooth paths that minimize the
amount of sharp turns. The Path Planner sends the paths to the third
level, where a module named Model Generator is designed to produce
the TG/UTA models of agents, automatically. These models are used in
the fourth level called Task Scheduler, which invokes TAMAA, UPPAAL
TIGA, or UPPAAL STRATEGO, based on the requirement and scale of
the problem of synthesizing strategies. Strategies (respectively, runs),
synthesized by UPPAAL TIGA or UPPAAL STRATEGO (respectively,
TAMAA), are then sent back to the third level, where a module named
Strategy & Run Parser is designed to parse the strategy or runs into
the format that is understandable for the second level. Last, the task
schedule and the path plan are combined as a mission plan and shown
in MMT GUI.

A detailed description of levels 1 to 3 of the toolset can be found in
previous work [7]. We focus on level 4, Task Scheduler, in this section. In
our previous work [12], we have proposed an implementation of MCRL,
which uses the simulation query in UPPAAL SMC to randomly simulate
the models, gathers enough runs that satisfy a condition, and prints the
rewards of the state-action pairs of the runs into text files. Next, the files
are parsed and used as the source data for the Q-learning algorithm to
populate Q-tables. The Q-tables are then injected back into the models.
A new UTA named conductor is designed to read the Q-tables every time
when the agent needs to make a decision. The conductor sends signals
to the movement and task-execution UTA, in order to control them to
perform different actions according to the Q-table.

This implementation separates the data-gathering phase from the
learning phase, so the rewards of state-action pairs accumulated in the
data-gathering phase cannot easily be exploited for guiding the sam-
pling in a strategic manner. In every round of simulation, the simulator
explores the state space randomly, with unchanged probabilities of the
actions. Moreover, the UTA models allow the most permissive behaviors
of agents, such as wondering without executing any tasks. The separa-
tion of phases makes the simulation unlikely to reach the states where
rare events happen, e.g., multiple iterations of tasks, or finishing a large
number of tasks in a strict time frame. Therefore, the new version of
the method embeds MCRL into UPPAAL STRATEGO to fix this incon-

9.7 Tool Support 151

venience, which will be introduced in the next subsection.

9.7.1 Integration of Task Scheduler and UPPAAL
STRATEGO

As shown in Algorithm 1, in the new version of MCRL, once a run that
satisfies our requirement is obtained from the simulation (line 11), it is
directly fed into the learning algorithm to synthesize a strategy (line 12).
The strategy is not necessarily complete, but it is then input into the
next round of simulation (line 10), where the simulator can exploit the
existing strategy by using the rewards accumulated in the past rounds of
simulation as the probabilities of actions (see Subsection 9.6.2). There-
fore, the actions with higher rewards will be chosen more likely than the
ones with lower rewards, and thus, the learning phase is accelerated.

After a certain rounds of simulation (the number is configurable), a
candidate strategy is produced and sent to the model checker to verify
if it guarantees to enable the agents to finish all tasks according to the
requirement, regardless of how the environment reacts. This process
iterates until the verification passes. In our previous implementation of
MCRL [12], the movement and task-execution UTA are modified, and a
UTA named conductor is created to control the models according to the
Q-table. In our current implementation, the original movement and task-
execution TG are directly verified in UPPAAL STRATEGO by running
queries in the format of Query (9.7). When UPPAAL STRATEGO verifies
the models against these queries, it calls back a function in the external
library of the learning algorithm, where the Q-table is stored, whenever
it faces multiple available controllable actions. This function searches the
Q-table and returns the highest priority for the actions with the highest
rewards to the model checker. UPPAAL STRATEGO then exhaustively
explores the actions that have the same highest priority, but ignores the
ones with lower priorities. In this way, the models’ behavior is under
the control of the strategy without introducing new models, such as a
conductor UTA.

Additionally, the new version of MCRL is implemented in an exten-
sible scheme. The learning algorithm is programmed in standard C or
C + +, and compiled into an external library, which UPPAAL STRAT-
EGO calls back when learning is required. Hence, the users of the tool
can replace the Q-learning with their own learning algorithms, and lever-
age the formal aspects of the method to guarantee the completeness and

152 Paper B: Scalable Approaches for Mission Plan Synthesis

correctness of the synthesized strategies.

9.8 Experimental Evaluation
In this section, we evaluate the improved version of TAMAA and the new
version of MCRL in several experiments. The experiments are conducted
on a laptop running an Intel Core i7 processor with 12 cores, 16 GB of
RAM and a 64-bit Linux OS.

9.8.1 Design of Experiments
Fig. 9.12 depicts a working environment of agents created in MMT. Our
mission planner calculates paths that enable the agents to visit the mile-
stones in a certain order so that they finish their tasks in a correct and
efficient way. According to previous investigation [7], the number of
agents is the factor that impacts the computation time of the mission
planners most profoundly. As shown in Table 9.2, UPPAAL TIGA could
not handle more than 5 agents. Therefore, we vary the number of agents
from 3 to 6 in the experiments in order to show that the new MCRL is ca-
pable of dealing with more agents than the improved version of TAMAA
in UPPAAL TIGA. To demonstrate the extensibility of MCRL, the ex-
periments are conducted on two versions of MCRL. One uses an external
library of Q-learning and one uses the Q-learning function in UPPAAL
STRATEGO [25], which are called external and internal Q-learning for
brevity6, respectively. We experiment with both an internal and an ex-
ternal version of Q-learning to study the impact of (1) a fully extensible
implementation of the learning algorithm, and (2) the overhead of com-
munication between UPPAAL STRATEGO and the external library. In
addition, this construction allows us to define a custom strategy out-
put format for an integration into our toolset MALTA. We also vary
the number of milestones (correspondingly, tasks) to see how this factor
influences the computation time.

9.8.2 Results of Experiments
Table 9.3 shows the numbers of explored states and computation time for
the three mission planners synthesizing mission plans for 3, 4, 5, and 6

6Although the internal Q-learning is a part of UPPAAL STRATEGO, MCRL
provides a post-verification to it and thus it is called MCRL with internal Q-learning.

9.8 Experimental Evaluation 153

Figure 9.12: A working environment of agents in MMT. Module A is the
configuration panel, where users configure the parameters of the map,
vehicles, tasks, etc. Module B is the map, where the environment is
visualized. Synthesized mission plans will also be shown in this module.
Pinpoints like C are the milestones, where tasks are assigned to. Red
areas like D are the special areas, which can be fixed/temporary forbid-
den areas (a.k.a., static obstacles), crowed areas, etc. Tags like E are
the initial positions of agents.

154 Paper B: Scalable Approaches for Mission Plan Synthesis

agents, respectively. The number of milestones and tasks are fixed, such

Table 9.3: Explored states and computation time of synthesizing mis-
sion plans for different numbers of agents. The environment contains 3
milestones and 3 tasks.

States Time Agents
TIGA 222,88 220 ms

3MCRL with
Internal Q-learning 143,044 572 ms

MCRL with
External Q-learning 428,550 2.0 s

TIGA 764,001 18.1 s
4MCRL with

Internal Q-learning 772,619 2.2 s

MCRL with
External Q-learning 1,150,349 7.3 s

TIGA 33,312,229 53.8 mins
5MCRL with

Internal Q-learning 9,822,914 38.2 s

MCRL with
External Q-learning 6,700,782 53.0 s

TIGA Out of memory Unknown
6MCRL with

Internal Q-learning 10,322,666 7.9 mins

MCRL with
External Q-learning 100,901,760 14.8 mins

that the difference of the results among the mission planners would only
be caused by the increased number of agents. We run the experiments 5
times for each mission planner in each scenario containing different num-
ber of agents, and use the mean values as the results. Clearly, UPPAAL
TIGA can only deal with situations with less than 6 agents, whereas
MCRL can cope with 6 agents within reasonable computation times: 7.9
minutes or 14.8 minutes. The difference in computation times of the two
versions of MCRL is due to the different implementations of Q-learning
and the overhead of communication between UPPAAL STRATEGO and
the external library. They collectively confirm the conclusion that MCRL
outperforms TAMAA when the number of agents is large.

As depicted in Table 9.4, strategies synthesized by MCRL with the
external and internal Q-learning are complete in the sense that they
satisfy liveness queries in the form of Query (9.7). When the number
of agents is greater than 4, internal Q-learning needs more simulation
rounds to sample enough runs for learning than that of the external

9.8 Experimental Evaluation 155

Q-learning. The reason for this is discussed in the next subsection.

Table 9.4: The numbers of sampled traces and total simulation rounds
that are needed for synthesizing strategies by using the MCRL with the
internal and external Q-learning, as well as the completeness of the syn-
thesized strategies.

Sampled
traces

Total
runs Completeness Agents

External
Q-learning 100 2,000 true

Internal
Q-learning 100 2,000 true 4

External
Q-learning 200 10,000 true

Internal
Q-learning 200 20,000 true 5

External
Q-learning 200 100,000 true

Internal
Q-learning 200 150,000 true 6

Table 9.5 shows the number of explored states and computation time
for the three mission planners synthesizing mission plans for 2 agents,
but different numbers of milestones and tasks (tasks are assigned to
milestones, thus N milestones imply N tasks). As presented in the table,
the number of explored states and computation time of UPPAAL TIGA
do not increase very fast with the increasing numbers of milestones and
tasks, which is consistent with our previous investigation [7]. However,
two versions of MCRL with the internal and external Q-learning perform
much worse than UPPAAL TIGA when the numbers of milestones and
tasks are greater than 5. Note that, when the numbers of milestones
and tasks are 10, the rates of synthesizing complete strategies by using
the external and internal Q-learning are lower than 10%. We discuss the
reason for this result in the next subsection.

9.8.3 Discussion of the Experimental Results

As MCRL randomly searches the state space multiple times during the
learning process, the numbers of explored states of these two planners do
not reflect the size of the agent model. Hence, we compare the numbers
of explored states obtained with UPPAAL TIGA in Table 9.3 and Table

156 Paper B: Scalable Approaches for Mission Plan Synthesis

Table 9.5: Explored states and computation time of three methods syn-
thesizing mission plans for different numbers of milestones and tasks.
The environment contains 2 agents.

States Time milestones &
tasks

TIGA 11,746 61 ms
5MCRL

Internal Q-learning 136,113 347 ms

MCRL
External Q-learning 200,963 1.1 s

TIGA 161,953 1 s
8MCRL

Internal Q-learning 49,489,463 3.4 mins

MCRL
External Q-learning 63,858,459 8.2 mins

TIGA 586,124 3.9 s
10MCRL

Internal Q-learning 324,257,087 33.7 mins

MCRL
External Q-learning 324,283,558 46.4 mins

9.5, and conclude that the size of the state space of the agent model is
mainly influenced by the number of agents. The numbers of milestones
and tasks increase the state space much less significantly, but the trend
of increase is still exponential.

The reason why MCRL with the external Q-learning needs less total
rounds of simulation than that of the internal Q-learning is because the
intermediary strategies are adopted in the external Q-learning during
the course of simulation for a heuristic exploration of the state space.
The difference of heuristic exploration in two versions of MCRL results
in the different requested rounds of simulation, which also contributes
to the worse performance of the simulation-based algorithms when the
numbers of milestones and tasks are more than 8.

Currently, the learning algorithms can only leverage the “good” runs
that satisfy our requested condition (e.g., Formula (9.6)). When the
milestones and tasks are few, random simulation can easily get to the
states where the property holds. As the numbers of milestones and tasks
increase, it becomes increasingly unlikely to reach the terminal state by
random simulations, which in turns implies that a guided search cannot
occur in the simulation. Runs that do not satisfy the specified condition
are not provided to the learning algorithm, and thus, do not contribute to

9.9 Related Work 157

the heuristic exploration of the state space. Therefore, in cases with large
numbers of milestones and tasks, large numbers of simulation rounds are
needed to generate enough “good” runs, which result in a high number of
explored states and a long computation time. We leave the improvement
of the method for future work, but hypothesize that the inclusion of neg-
ative reinforcement feedback (that is, runs that do not meet the goal will
receive a penalty) will improve the performance of MCRL significantly.

In summary, when the number of agents is large, MCRL with the in-
ternal Q-learning is the first option because it scales better than UPPAAL
TIGA and needs less computation time than MCRL with the external Q-
learning does in this case. In the cases where the numbers of milestones
and tasks are large, UPPAAL TIGA is the first option as it scales and
provides strategies that are guaranteed to cover all possible scenarios.
When the users need to embed their own learning algorithms in the
method, MCRL with the external Q-learning is the first option because
the learning module is an external library that can be replaced easily.

9.9 Related Work

Synthesis of strategies for multiple autonomous agents has become an
increasingly studied area. Wang et al. [27] attempt to address the scala-
bility challenge of solving POMDP (Partially Observable Markov Deci-
sion Processes) with safe-reachability objectives. Similar to the bounded
model-checking technique [28], their method constrains the state-space
of the model by using a goal-constrained belief space instead of the en-
tire belief space. Bouton et al. [29] focus on a concrete scenario of au-
tonomous cars: navigation in unsignalized intersections. Their method is
based on POMDP and Monte Carlo sampling, thus avoiding the scalabil-
ity problem. However, their method does not provide formal-verification-
based guarantees of correctness. Nikou et al. [30] propose a solution to
synthesize controllers of agents for path planning. Their synthesized con-
trollers also satisfy complex high-level constraints of tasks. However, no
proof of scalability with the number of agents is provided. Our approach
is accompanied by a toolset that is capable of handling mission-plan syn-
thesis for multiple agents, mitigating the associated lack of scalability
caused by the numbers of agents, milestones, and tasks.

Similar to our work, some studies also combine formal verification
with learning algorithms. The UPPAAL STRATEGO [14] tool facilitates

158 Paper B: Scalable Approaches for Mission Plan Synthesis

both sample-based optimization and correct-by-construction controller
synthesis. In addition, both these methods can be combined for safe and
(near-)optimal synthesis. Basile et al. [31] use UPPAAL STRATEGO to
solve the strategy synthesis problem for autonomous driving in a moving
block railway system. They leverage the game-theoretic method to syn-
thesize safe strategies and reinforcement learning to optimize the strate-
gies. To achieve formal correctness of a learned controller, UPPAAL
STRATEGO relies on learning under a prior construction of the safe con-
troller, specifically guarding the learning against unsound actions. This
is contrary to our simulation-based approach (namely, MCRL) where
learning is conducted on the original models directly to synthesize strate-
gies with no guarantee of correctness. The post-verification in MCRL
adds correctness guarantees on the learned strategies, which eliminates
the state-space explosion problem that exists in the original models.

Similar to TAMAA, the approach of Gleirscher et al. [32] is also based
on graphic search. Their approach is able to synthesize and verify safety
controllers for human-robot collaboration. Bersani et al. [33] present
the PuRSUE (Planner for RobotS in Uncontrollable Environments) ap-
proach, which supports users to configure their robotic applications and
automatically generate their controllers by using UPPAAL TIGA. The
main difference between MCRL and theirs is that their synthesis is based
on graphic search and thus limited on scalability.

Li et al. [34] focus on capturing complex and domain-specific re-
quirements of robotic systems by using formal specification languages.
Their method also makes the reward generation of the learning process
interpretable and guarantees the satisfaction of specification, for critical
components of the systems. The method proposed by Bouton et al. [35]
enforces probabilistic guarantees on agents during the course of rein-
forcement learning. Brázdil et al. [36] provide algorithms for searching
MDP (Markov Decision Processes) to verify various reachability prop-
erties. Legay et al. [37] present a scalable approach of verification for
MDP. When comparing to these studies, we apply model checking on
the learned strategies and facilitate the verification for complex mod-
els with large state spaces by using reinforcement learning, rather than
constructing initially a safe restriction of the system. Our work is or-
thogonal to that of Brázdil, Legay and Bouton, that is, their methods
could be utilized for the initial construction of strategies to demonstrate
the non-existence of rare events. Our method can be then used to verify
their strategies. In addition, our method has the ability to handle timed

9.10 Conclusions and Future Work 159

systems and distributions over durations.
To the best of our knowledge, the earliest attempt to employ re-

inforcement learning for solving the state-space-explosion problem of
model checking is done by Behjati et al. [38]. The authors propose
a bounded rational verification approach for on-the-fly model checking.
However, this method is limited to LTL properties, and it has not been
applied on autonomous agents.

9.10 Conclusions and Future Work

In this paper, we have presented our method of solving the mission-
plan synthesis problem of multiple autonomous agents. The method is
based on our tool named TAMAA and improves the original TAMAA
with the ability of handling uncertain movement time and task execu-
tion time of agents. Additionally, our method, called MCRL, combines
model checking with reinforcement learning, so that it is capable of deal-
ing with more agents than the improved TAMAA, which applies model
checking alone. MCRL provides a means for verifying and analyzing
the synthesized mission plans by using model checking, to ensure that
safety-critical requirements are met. The method is fully integrated with
UPPAAL STRATEGO. We demonstrate MCRL’s ability of handling mul-
tiple agents by experiments, and compare the result with the original
and improved TAMAA. The number of explored states and computation
time of MCRL increase much slower than the two versions of TAMAA
when the number of agents increases. However, the improved version of
TAMAA in UPPAAL TIGA performs better than MCRL when the num-
ber of agents is less than two but the numbers of milestones and tasks
are more than five.

One of the future directions of work is to improve the learning algo-
rithm of MCRL to perform better in environments with large numbers of
milestones and tasks. Another future work direction focuses on estimat-
ing the existence of strategies of timed games before synthesis starts.
Introducing variables that evolve continuously, e.g., time, energy con-
sumption, in the models and strategies is another interesting direction
of future research, which would dramatically complicate the strategy-
synthesis problem.

160 Paper B: Scalable Approaches for Mission Plan Synthesis

Acknowledgments
We acknowledge the support of the Swedish Knowledge Foundation via
the profile DPAC - Dependable Platform for Autonomous Systems and
Control, grant nr: 20150022, and via the synergy ACICS – Assured
Cloud Platforms for Industrial Cyber-Physical Systems, grant nr. 20190-
038.

Bibliography

[1] Stan Franklin and Art Graesser. Is it an agent, or just a program?:
A taxonomy for autonomous agents. In International Workshop on
Agent Theories, Architectures, and Languages. Springer, 1996.

[2] Steve Rabin. Game programming gems, chapter a* aesthetic opti-
mizations. Charles River Media, 2000.

[3] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelligence
Research, 39, 2010.

[4] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. In Technical Report, 1998.

[5] Henry Fisher. Probabilistic learning combinations of local job-shop
scheduling rules. In Industrial scheduling. Englewood Cliffs, NJ:
Prentice Hall., 1963.

[6] Yasmina Abdeddaı, Eugene Asarin, Oded Maler, et al. Scheduling
with timed automata. Theoretical Computer Science, 354(2), 2006.

[7] Rong Gu, Eduard Paul Enoiu, and Cristina Seceleanu. TAMAA:
UPPAAL-based mission planning for autonomous agents. In
ACM/SIGAPP Symposium On Applied Computing, 2020.

[8] Gerd Behrmann, Alexandre David, Emmanuel Fleury, Kim Larsen,
Didier Lime, and Ecole Nantes. Uppaal-Tiga: Time for playing
games! (tool paper). In International Conference on Computer
Aided Verification. Springer Berlin Heidelberg, 2007.

161

162Bibliography

[9] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zu-
liani. Model checking and the state explosion problem. In LASER
Summer School. Springer, 2011.

[10] Radek Pelánek. Fighting state space explosion: Review and evalua-
tion. In International Conference on Formal Methods for Industrial
Critical Systems. Springer, 2008.

[11] Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim Guldstrand
Larsen, Marco Muñiz, and Jiří Srba. Stubborn set reduction for
two-player reachability games. arXiv preprint arXiv:1912.09875,
2019.

[12] Rong Gu, Eduard Paul Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Verifiable and scalable mission-plan synthesis for mul-
tiple autonomous agents. In International Conference on Formal
Methods for Industrial Critical Systems. Springer, 2020.

[13] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[14] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Mar-
ius Mikučionis, and Jakob Haahr Taankvist. Uppaal Stratego. In
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Springer, 2015.

[15] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. King’s College, Cambridge United Kingdom, 1989.

[16] Rajeev Alur and David L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126, 1994.

[17] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G Larsen,
and Didier Lime. Efficient on-the-fly algorithms for the analysis of
timed games. In International Conference on Concurrency Theory.
Springer, 2005.

[18] Alexandre David, Peter G Jensen, Kim Guldstrand Larsen, Axel
Legay, Didier Lime, Mathias Grund Sørensen, and Jakob H
Taankvist. On time with minimal expected cost! In International
Symposium on Automated Technology for Verification and Analysis.
Springer, 2014.

Bibliography 163

[19] Jean-Francois Kempf, Marius Bozga, and Oded Maler. As soon
as probable: Optimal scheduling under stochastic uncertainty. In
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Springer, 2013.

[20] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algo-
rithms and tools. Lecture Notes in Computer Science, 2004.

[21] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statis-
tical model checking for stochastic hybrid systems. arXiv preprint
arXiv:1208.3856, 2012.

[22] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In
Advances in neural information processing systems, 2000.

[23] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Towards a two-layer framework for verifying au-
tonomous vehicles. In NASA Formal Methods Symposium. Springer,
2019.

[24] Rong Gu, Cristina Seceleanu, Eduard Paul Enoiu, and Kristina
Lundqvist. Model checking collision avoidance of nonlinear au-
tonomous vehicle models. In Formal Methods 2021, 2021.

[25] Manfred Jaeger, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel
Legay, Sean Sedwards, and Jakob Haahr Taankvist. Teaching strat-
ego to play ball: Optimal synthesis for continuous space MDPs. In
International Symposium on Automated Technology for Verification
and Analysis. Springer, 2019.

[26] Luigi Palopoli, Antonis Argyros, Josef Birchbauer, Alessio Colombo,
Daniele Fontanelli, Axel Legay, Andrea Garulli, Antonello Gianni-
trapani, David Macii, Federico Moro, et al. Navigation assistance
and guidance of older adults across complex public spaces: the DALi
approach. Intelligent Service Robotics, 2015.

[27] Yue Wang, Swarat Chaudhuri, and Lydia E Kavraki. Bounded
policy synthesis for POMDPs with safe-reachability objectives. In
International Conference on Autonomous Agents and Multi Agent
Systems. Springer, 2018.

164Bibliography

[28] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strich-
man, and Yunshan Zhu. Bounded model checking. Carnegie Mellon
University, 2003.

[29] Maxime Bouton, Akansel Cosgun, and Mykel J Kochenderfer. Belief
state planning for autonomously navigating urban intersections. In
Intelligent Vehicles Symposium. IEEE, 2017.

[30] Alexandros Nikou, Dimitris Boskos, Jana Tumova, and Dimos V
Dimarogonas. On the timed temporal logic planning of coupled
multi-agent systems. Automatica, 2018.

[31] Davide Basile, Maurice H ter Beek, and Axel Legay. Strategy syn-
thesis for autonomous driving in a moving block railway system with
uppaal stratego. In International Conference on Formal Techniques
for Distributed Objects, Components, and Systems. Springer, 2020.

[32] Mario Gleirscher, Radu Calinescu, James Douthwaite, Benjamin
Lesage, Colin Paterson, Jonathan Aitken, Rob Alexander, and
James Law. Verified synthesis of optimal safety controllers for
human-robot collaboration. arXiv preprint arXiv:2106.06604, 2021.

[33] Marcello M Bersani, Matteo Soldo, Claudio Menghi, Patrizio Pel-
liccione, and Matteo Rossi. Pursue-from specification of robotic
environments to synthesis of controllers. Formal Aspects of Com-
puting, 2020.

[34] Xiao Li, Zachary Serlin, Guang Yang, and Calin Belta. A for-
mal methods approach to interpretable reinforcement learning for
robotic planning. Science Robotics, 2019.

[35] Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura,
Mykel J Kochenderfer, and Jana Tumova. Reinforcement learn-
ing with probabilistic guarantees for autonomous driving. arXiv
preprint arXiv:1904.07189, 2019.

[36] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtěch
Forejt, Jan Křetínskỳ, Marta Kwiatkowska, David Parker, and Ma-
teusz Ujma. Verification of markov decision processes using learning
algorithms. In International Symposium on Automated Technology
for Verification and Analysis. Springer, 2014.

Bibliography 165

[37] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Scalable
verification of markov decision processes. In International Confer-
ence on Software Engineering and Formal Methods. Springer, 2014.

[38] Razieh Behjati, Marjan Sirjani, and Majid Nili Ahmadabadi.
Bounded rational search for on-the-fly model checking of LTL prop-
erties. In Symposium on the Foundations of Software Engineering.
Springer, 2009.

Chapter 10

Paper C: Synthesis and
Verification of Mission
Plans for Multiple
Autonomous Agents under
Complex Road Conditions

Rong Gu, Eduard Baranov, Afshin Ameri, Eduard Enoiu, Baran Cürüklü,
Cristina Seceleanu, Axel Legay, and Kristina Lundqvist
Submitted to Transactions on Software Engineering and Methodology,
ACM, 2022.

167

Abstract

Mission planning for multi-agent autonomous systems aims to generate
feasible and optimal mission plans that satisfy the given requirements. In
this article, we propose a mission-planning methodology that combines
(i) a path-planning algorithm for synthesizing path plans that are safe in
environments with complex road conditions, and (ii) a task-scheduling
method for synthesizing task plans that schedule the tasks in the right
and fastest order, taking into account the planned paths. The task-
scheduling method is based on model checking, which provides means of
automatically generating task execution orders that satisfy the require-
ments and ensure the correctness and efficiency of the plans by construc-
tion. We implement our approach in a tool named MALTA, which offers
a user-friendly GUI for configuring mission requirements, a module for
path planning, an integration with the model checker UPPAAL, and
functions for automatic generation of formal models, and parsing of the
execution traces of models. Experiments with the tool demonstrate its
applicability and performance in various configurations of an industrial
case study of an autonomous quarry. We also show the adaptability of
our tool by employing it on a special case of the industrial case study.

10.1 Introduction 169

10.1 Introduction

Autonomous robotic systems are becoming common in our society. These
systems can take different forms, e.g. a vehicle that is used for trans-
portation in a factory or in a construction site, a mobile robot used for
entertainment in our homes, or a mobile communication platform used in
the homes of the elderly. Obviously, these robotic systems are associated
with different requirements, thus having different shapes and overall de-
sign. Despite the differences, these systems share a common feature: the
ability to function in an environment without or with minimum human
intervention. This feature can be referred to as autonomous operation.
However, the environment where these systems operate in could include
humans and other obstacles, hence it is unpredictable and only partially
known to the system. To realize the autonomy feature, the autonomous
robotic systems must be able to perceive the environment, reason based
on known facts, and act to meet the requirements associated to their
goals (for the sake of brevity autonomous robotic agents are called “au-
tonomous agents”, or simply “agents” in the rest of the paper [1]).

One key challenge of designing agents that move and operate in a
confined environment is mission planning (a.k.a., mission plan synthe-
sis), which includes path planning and task scheduling. When obstacles
are present in the environment, the ability to reach a destination with-
out colliding with them is a problem that has been solved by existing
path-planning algorithms, such as A* [2] and rapidly-exploring random
tree (RRT) [3] algorithms. However, the real environment might impose
complex restrictions to path planning, stemming from obstacles that are
temporary, or from existing special areas, like crowded or desired ar-
eas. Consequently, the path-planning algorithm should provide means to
calculate a path plan for an agent that “wisely” chooses to wait, circum-
vent, or cross the respective areas. Furthermore, agents visit different
positions (a.k.a. milestones) in the environment as part of their tasks,
e.g., within a quarry, autonomous wheel loaders visit stones piles to load
stones. Being able to guarantee that agents carry out the right tasks
at the right milestones is important for the overall success of a mission.
Additionally, tasks can have complex and temporal requirements, for in-
stance, autonomous wheel-loaders must keep digging stones until trucks
arrive, and then load the stones into the trucks before the latter trans-
port the stones to crushers. Some applications require the agents to keep
a certain level of productivity, e.g., autonomous trucks must transport all

170 Paper C: Mission Plan Synthesis and Verification

the stones to a crusher within a maximum time window of a few hours.
Path-planning algorithms alone are not able to calculate mission plans
that accomplish the tasks respecting such requirements. They must be
combined with task-scheduling algorithms for synthesizing mission plans
that ensure that the agents travel safely, that is, without any collision
with static obstacles, and satisfy the requirements of tasks.

Task-scheduling algorithms aim to calculate an order of task execu-
tion to achieve the global goal, e.g., a pile of stones is dug and loaded,
then transported to crushers, and then crushed into fractions. Based on
the position of each agent, task scheduling assigns milestones and the
visiting orders to the agents, respectively, so that the agents can finish
their mission within a given time window. A classic presentation of this
problem is called the job-shop problem, which is described as follows:

“Given are a set of jobs and a set of machines, assume that: (i) Each
machine can handle at most one job at a time, and (ii) Each job consists
of a chain of operations, each of which needs to be processed during an
uninterrupted time period of a given length on a given machine. The
purpose is to find a schedule, i.e., an allocation of the operations to time
intervals on the machines, that has minimum length.” [4]

As an NP-hard problem, even a simple instance of the job-shop prob-
lem with very restrictive constraints remains difficult to solve [5]. Fur-
thermore, task schedules that we aim to calculate must not only “have
the minimum length”, i.e., accomplish the tasks in the quickest way, but
also satisfy the complex temporal requirements aforementioned. In a
nutshell, we provide answers to the following research questions in this
paper:

1. Path planning : considering an environment with various road con-
ditions, such as static obstacles (e.g., forbidden areas and tempo-
rary obstacles), crowded areas, and desired/undesired areas, how
to calculate a path that reaches the desired milestone without a
collision?

2. Task scheduling : given a set of tasks and milestones where the
tasks are supposed to be carried out, as well as a set of task execu-
tion constraints, how to synthesize a task-execution schedule that
finishes tasks at their respective milestones and satisfies the task
execution constraints?

3. Mission planning : how to combine path planning with task schedul-

10.1 Introduction 171

ing and produce an optimal mission plan?

4. Automation: given a mission-planning problem that matches the
problem definition (Definition 7), how to easily configure the sce-
nario of the problem and automatically calculate mission plans
that combine the results of path planning and task scheduling?

5. Adaptability : when the mission-planning problem does not match
the problem definition, how to leverage the automation and easily
adapt the models to solve the problem?

6. Visualization: how to visualize mission plans for demonstration
purpose?

In this article, our main contribution is a methodology and a tool sup-
port for answering the research questions (1) - (6) collectively, with an
optimal result, that is, not only a correct mission plan that meets various
requirements but also reaches the goal in the fastest manner.

In particular, we adapt and tune up the DALi algorithm [6] for
path planning, which takes into account both environmental constraints
and user preferences (research question (1)). We adapt a method called
TAMAA (Timed-Automata based Mission planner for Autonomous Agents)
[7] for task scheduling, which uses the well-known timed automata (TA)
[8] formalism for modeling, and model checking in UPPAAL [9] for gener-
ating results with a correctness guarantee (research question (2)). Specif-
ically, TAMAA automatically generates a TA model of agents, including
the movement TA and task execution TA, and checks the model to find
the execution traces that reaches the goal state the fastest and satisfy
other requirements. The contribution of the new version of TAMAA
is the combination with DALi. Previously, TAMAA uses the result of
path planning once and generates a mission plan that only considers
the permanently existing obstacles. In this article, complex road con-
ditions such as temporary obstacles are considered. Hence, the initially
correct mission plans may become invalid when temporary obstacles are
activated. Hence, we design a validator in MALTA to check if the tem-
porary mission plan meets the complex road conditions, and an iteration
of execution between DALi and TAMAA until a correct mission plan is
produced (research question (3)).

The design and implementation of our methodology, i.e., a toolset
named MALTA, answers to research questions (4) - (6). MALTA has

172 Paper C: Mission Plan Synthesis and Verification

a client-server architecture, which integrates a graphical user interface
(GUI) called MMT [10] for mission management in the client, data ex-
change modules, and path-planning and task-scheduling algorithms in
the server. The client side of MALTA is MMT where users can configure
the environment, missions for the agents, and parameters of agents, like
their speeds, respectively. The server side has two modules: middleware
and a back end. The middleware is responsible for obtaining the mis-
sion information from the GUI, running a path-planning algorithm, and
generating agent models by using the path-planning results and mission
information. Next, the middleware sends the agent models to the back
end, where TAMAA runs for task scheduling. As our methodology is
designed to cope with complex road conditions, such as temporary ob-
stacles, MALTA possibly runs more than one iteration rounds between
the middleware and the back end until an optimal mission plan is pro-
duced.

If a mission plan exists, it is visualized by MALTA so that users can
check the details of the mission plan, such as when and which agent
starts to execute a certain task, and how temporary obstacles can affect
the plan (research question (6)). MALTA generates models and parses
traces automatically, which eases the work of model and mission plan
construction, especially for the cases where the amount of agents or
the size of the environment is large (research question (4)). One can
also modify the models according to one’s own applications and still
enjoy the facility of other automation provided by MALTA, such as trace
parsing and information extraction from the map (research question (5)).
MALTA has been applied on an industrial use case of an autonomous
quarry that exposes the challenges of synthesizing time-optimal mission
plans of several autonomous vehicles with various requirements.

The rest of the paper is organized as follows. In Section 10.2, we intro-
duce the industrial case study. Section 10.3 describes the preliminaries
including timed automata and UPPAAL, and the DALi algorithm for
path planning. Our methodology for solving the mission-planning prob-
lem for multiple agents is introduced in Section 10.4, followed by the
description of the toolset in Section 10.5. In Section 10.6, we conduct
experiments on a normal use case taken from the industrial case study,
which matches our problem definition, for the evaluation of our method-
ology. Section 10.7 demonstrates how the method can be adapted to a
special use case of our industrial case study. In Section 10.8, we present
and compare to related work, whereas in Section 10.9, we conclude the

10.2 An Industrial Case Study: The Autonomous Quarry
173

Figure 10.1: An example of an autonomous quarry

paper and outline some directions of future work.

10.2 An Industrial Case Study: The Autonomous
Quarry

In this section, we introduce an industrial use case of an autonomous
quarry provided by VOLVO Construction Equipment (CE) in Sweden.
This use case serves as a running example through Sections 10.2 to 10.6,
and as concrete motivation for our research. In the quarry, there are
several stationary machines and vehicles. Examples of stationary ma-
chines are crushers that crush stones into certain sizes and are controlled
manually. Typical examples of vehicles would be wheel loaders that dig
stones, and autonomous trucks that transport stones into crushers. We
assume that the wheel loaders are controlled manually and focus on the
synthesizing mission plans for the autonomous trucks that are not nec-
essarily identical, which means they can have different speed limits (e.g.,
50−80 km/hour) and capability of transportation (e.g., 10−50m3). The
vision is to deploy the autonomous trucks that performs certain tasks in
order to fulfill the objectives defined by the operators of the quarry. The
collection of such tasks together define a mission.

A simple quarry is illustrated in Figure 10.1. In this example, the
stones should be dug up and loaded into the autonomous trucks by
wheel loaders. Then trucks transport the stones and unload them into a
primary crusher first, then later to a secondary crusher, the destination
of the stones. Trucks must go to a charging pole when the battery level
is low. The milestones are the positions where the tasks are carried out,

174 Paper C: Mission Plan Synthesis and Verification

e.g., at stone piles, crushers, and charging poles. A mission in this use
case can be to dig, crush, and transport 1000m3 of stones in 24 hours.

Vehicle transportation should consider the environment. There could
be static obstacles, that is, areas that are impassable by the vehicles
(buildings, sizable holes in the road, etc.), and different road conditions
that may cause the vehicles to slow down, e.g. muddy or bumpy roads,
or form a temporarily inaccessible area, such as, during human interven-
tion for maintenance, the corresponding area should not be crossed by
any vehicle. Navigation must ensure a collision-free transportation in the
presence of all the environmental constraints. The execution of tasks,
e.g., loading, unloading, and charging, must be scheduled correctly and
efficiently such that the trucks are guaranteed to accomplish the mis-
sion. In the autonomous quarry, all the planning work must be done
automatically. Therefore, we need a planning methodology and a tool of
planning that ensures completion of the mission and meeting additional
requirements.

Based on this use case we formulate several requirements. We group
the requirements for the task scheduling into the following categories:

• Requirement Category I (milestone matching): Tasks must be
executed at the correct milestones, e.g., loading stones into primary
crushers must be executed at a primary crusher.

• Requirement Category II (task sequence): Tasks must be exe-
cuted in the right order, e.g., loading stones from stone piles must
precede unloading stones into crushers.

• Requirement Category III (timing): Tasks can be executed
multiple times and must be finished within a time frame in order
to maintain a certain level of productivity, e.g., quarrying 1500m3

stones per day.

Path planning takes care of finding safe and fast paths for agents
between milestones in complex environments. We consider the following
types of environmental abnormalities that should be taken into account
by the path planner:

• Environmental Abnormality I (obstacles): permanent and tem-
porary obstacles must be avoided by agents. Permanent obstacles
are always present, while temporary ones appear at known time
points and disappear later on. Within this work we assume that
all obstacles are static.

10.2 An Industrial Case Study: The Autonomous Quarry
175

• Environmental Abnormality II (road conditions): muddy or
bumpy roads cannot be passed at the full speed. The planner must
decide whether it is faster to take a detour than to travel on these
roads slowly.

• Environmental Abnormality III (soft constraints): for some
reasons, e.g., safety, some areas might be considered undesirable
for driving, and the planner must attempt to avoid such areas
if there exists an alternative path. Such constraints should be
satisfied unless they prevent the satisfaction of other requirements
with higher priority. In the latter case, soft constraints can be
ignored.

Note that path planning and task scheduling are not independent.
Traveling time among milestones are needed by a task scheduler, while
the presence of temporary obstacles can influence the starting time of
travels. Therefore, path planning and task scheduling must work to-
gether to produce efficient mission plans.

In this paper, we work only with static scheduling: generated mission
plans cannot change without full recomputation, therefore any additional
tasks or unpredictable events are not considered, including unpredictable
moving obstacles. Path following and the collision avoidance between
agents are also outside the scope of this paper. We refer the interested
reader to the literature [11] for these topics. In addition, the order of
visiting milestones only depends on the constraints of task sequence. For
example, for a mission containing two tasks A and B that must be carried
out at milestones a and b, respectively, the order of visiting the milestones
only depends on the task sequence of A and B. In another word, if
tasks A and B can be executed in any order, then visiting milestone a
and b can be any order too. To define the scope of automation of our
methodology, we informally define the mission-planning problem and its
solution as follows. The set of (non-negative) real numbers is denoted as
R (R≥0).

Definition 7 (Mission Planning). A mission-planning problem is a tu-
ple:

P =< E , Ab, M, T , f, Req >, (10.1)

where E ⊂ Rn is a confined environment, n ∈ {2, 3}, Ab ⊆ E is a set of
areas that belong to one of the Environmental Abnormalities I, II, and
III, M ⊂ E is a set of milestones, T is a set of tasks, f : M → T assigns

176 Paper C: Mission Plan Synthesis and Verification

each of the tasks to one or multiple milestones, and Req is a set of task
requirements that matches the Requirement Categories I, II, and III.

Assuming an agent is equipped with the ability of doing two types of
actions: moving to a milestone and executing a task, a solution of the
mission-planning problem is informally defined as follows:

Definition 8 (Solution of Mission Planning). Given a set of autonomous
agents V, a solution that enables the agents in V to solve a mission-
planning problem P =< E , Ab, M, T , f, Req > is a tuple:

plan =< schedule, path >, (10.2)

where schedule is a set of pairs (st, ft), st, ft ∈ R≥0 are the time
points of starting and finishing the agents’ actions, respectively, path
is a set of sequences of points p ∈ E that the agents must follow in
order to reach the milestones m ∈ M. Let E1, E2, and E3 be the sets
of environment constraints belonging to Environmental Abnormalities I,
II, and III, respectively, s.t., Ab = E1 ∪ E2 ∪ E3, and E3′ ⊆ E3 be the
subset of E3, which does not contradict E1 and E2, that is, the paths
that meet E3′ do not violate E1 and E2, plan must hold the following
two conditions:

• ∀e ∈ E1 ∪ E2 ∪ E3′, path |= a, that is, the paths must meet
environmental constraints in E1, E2, and E3′,

• ∀r ∈ Req, schedule |= r, that is, the task schedule must satisfy all
the requirements in Req.

In the rest of this paper, we introduce our methodology for auto-
matically generating solutions of mission-planning problems, defined in
Definitions 8 and 7, respectively. We also demonstrate the adaptability
of the methodology to solve problems that does not match Definition 7
with a slight change of the models.

10.3 Preliminaries
In this section, we introduce UPPAAL - the modeling, simulation, and
verification tool that uses Timed Automata as the modeling formalism,
which we apply for modeling agents movement and task execution. We
also briefly describe the path-planning algorithm DALi that we employ
in MALTA. We denote the set of natural numbers as N.

10.3 Preliminaries 177

10.3.1 Timed Automata and UPPAAL
Definition 9. A Timed Automaton (TA) [8] is a tuple:

A =< L, l0, X,Σ, E, Inv >, (10.3)

where L is a finite set of locations, l0 is the initial location, X is a
finite set of non-negative real-valued clocks, Σ is a finite set of actions,
E ⊆ L×B(X)×Σ×2X ×L is a finite set of edges, where B(X) is the set
of guards over X, that is, conjunctive formulas of clock constraints of the
form x ▷◁ n or x − y ▷◁ n, where x, y ∈ X, n ∈ N, ▷◁∈ {<,≤,=,≥, >},
2X is a set of clocks in X that are reset, and Inv : L→ B(X) is a partial
function assigning invariants to locations. □

The semantics of a TA A is defined as a timed transition system over
states (l, v), where l is a location and v ∈ RX represents the valuation
of the clocks in that state, with the initial state s0 = (l0, v0), where v0
assigns all clocks in X to zero. There are two kinds of transitions:

1. delay transitions: (l, v)
d−→ (l, v ⊕ d), where v ⊕ d is the result

obtained by incrementing all clocks of the automaton with the
delay amount d ∈ R+ such that v ⊕ d |= I(l), and

2. discrete transitions: (l, v)
a−→ (l′, v′), corresponding to traversing

an edge l g,a,r−−−→ l′ for which the guard g evaluates to true in the
source state (l, v), a ∈ Σ is an action, r is a set of clocks that
are reset over the edge, and clock valuation v′ of the target state
(l′, v′) is obtained from v by resetting all clocks in r such that
v′ |= Inv(l′).

UPPAAL [9] is a state-of-the-art model checker for real-time sys-
tems. It supports modeling, simulation, and model checking, and uses
an extension of TA with data variables, synchronization channels, urgent
and committed locations etc., as the modeling formalism, which we call
UPPAAL TA (UTA). In UPPAAL, UTA can be composed in parallel as a
network of UTA synchronized via channels (an edge decorated with chan-
nel a! is synchronized with one decorated with a? by handshake). An
example of UPPAAL model is depicted in Figure 10.2, consisting of two
automata: a customer ordering sodas and an impatient vending machine
kicking its customers out of the system when they do not order quickly
enough (i.e., 10 time units is the maximum waiting time). A UTA of the

178 Paper C: Mission Plan Synthesis and Verification

(a) A UTA of a vending machine (b) A UTA of a customer

Figure 10.2: An example of UTA modeling a customer ordering food
from an impatient vending machine.

vending machine shown in Figure 10.2a has 3 locations named Idle,
Sell, and Wait. Edges are the direct lines that connect locations, which
can be decorated by guards, channels, and updates. A clock variable time
measures the elapse of time, and is used in the invariants on locations
(e.g., time<=10) and in the guards on edges (e.g., time>=8). In UTA,
locations can be labeled as urgent, denoted by encircled ∪, which forbids
delaying in the locations (e.g., Pay of the customer TA in Figure 10.2b),
or committed, denoted by encircled C, which not only forbid time from
elapsing but also require the network of UTA to transit the next edge
from one of the committed locations. Such an example of committed
locations is location Sell of the vendor UTA in Figure 10.2b. UTA also
extends TA with data variables (integer and Boolean variables), which
can be updated via C-code functions or assignments on edges. For ex-
ample, on the edge from locations Decide to Pay of the customer TA, an
integer variable money is updated to 5, meaning that the customer has
paid 5 Swedish crowns to the vending machine.

UPPAAL can verify properties formalized as queries in a subset of
Timed Computation Tree Logic (TCTL) [12]. Given an atomic propo-
sition p over the locations, clocks, and data variables of the UTA, the
UPPAAL queries that are used in this paper are: (i) Invariance: A[] p
means that for all paths, for all states in each path, p is satisfied, (ii)
Liveness: A<> p means that for all paths, p is satisfied by at least one
state in each path, (iii) Reachability: E<> p means that there exists
a path where p is satisfied by at least one state of the path, and (iv)

10.3 Preliminaries 179

Timed-bounded Reachability: E<>≤T p means that there exists a
path where p is satisfied by at least one state of the path within T time
units.

10.3.2 Devices for Assisted Living (DALi)

The DALi algorithm has been proposed previously [6], and is designed
to provide motion planning in complex environments. The planner takes
into account environmental constraints and user’s preferences.

DALi consists of two parts: long-term and short-term planners. The
former one is performed prior to actual navigation and searches for paths
accounting for area topology, user goals, and foreseen obstacles or prob-
lems along the way. During navigation unforeseen obstacles can appear,
e.g. a group of people obstructs the path, its detection starts a short
term planner attempting to find a minimal deviation from the path that
preserves all the constraints. Short term planning is often required to
operate on low resources and to provide a quick response, therefore long
term planner cannot be used for quick search for path deviations.

In this paper, we are interested in a long term planner of DALi.
At the first step the algorithm transforms the area into a graph with
a sufficient granularity to represent paths between points. Permanent
obstacles are excluded from the graph. Other environmental constraints
and user preferences are stored within nodes and edges of the graph with
one of the following options:

• Soft constraints taken from users’ preferences and indicating zones
that the planner would try to visit or to avoid. Each soft constraint
is characterized by a triple (center, radius, intensity): it affects
paths within the radius from its center and its intensity is the
highest at the center decreasing with the distance from the center.
A proposed path is deviated towards or outwards of the center
within the radius based on the intensity level.

• A heat map of the environment indicating areas with high occu-
pancy; navigation through such areas is slower by a specified factor.

• Anomalies or temporary obstacles that are areas inaccessible dur-
ing certain periods of time. The long-term planner considers fore-
known anomalies, assuming that their appearance and disappear-
ance time is provided.

180 Paper C: Mission Plan Synthesis and Verification

The long-term planner of DALi is based on Dijkstra’s shortest path
algorithm [13]. The algorithm maintains a set of nodes to which the
shortest distances from a source node are computed. Starting from the
source node, at each step the algorithm selects a new node that has the
shortest distance from the source node and adds it to the set. DALi
modifies Dijkstra’s algorithm by taking into account environmental con-
straints and users’ preferences during the choices of the nodes to be added
into the set. Temporary obstacles prevent selection of the nodes inside
these obstacles during the inaccessibility time. Heat maps affect the ac-
tual lengths of the edges. Soft constraints add virtual coefficients to the
distances inside the zones covered by these constraints. Note that soft
constraints do not affect the real travel time (the coefficient is virtual),
thus DALi might return a path that is not the shortest. The coefficients
of the soft constraints bound the extra length of the returned path, that
is, if a detour for satisfying a soft constrain is too long to satisfy the time
limit of reaching the destination, the constraint would be ignored.

10.4 Mission Planning Methodology

In this section, we introduce our methodology for automated mission
planning for multiple agents. We describe the overall procedure followed
by the detailed description of each step.

Mission planning is composed of two main aspects: task scheduling
and path planning. The former defines which tasks, in which order, at
what time, and by which agent should be executed. The latter indicates
the traveling path between milestones. Note the dependency of task
scheduling on path planning: the knowledge of the traveling time is
needed for scheduling.

We propose a UTA-based mission planner for agents. The path-
planning aspect is based on an adapted version of the DALi algorithm.
The DALi-based path planner takes the information of the map, includ-
ing the navigation area, special areas (e.g., forbidden areas), milestones,
tasks, and agents, and computes paths connecting milestones to each
other regardless of the visiting order. The task-scheduling aspect is an
adapted version of TAMAA (Timed-Automata based Mission Planner
for Autonomous Agents) [7]. The TAMAA-based task scheduler employs
UPPAALto synthesize an optimal schedule satisfying all the task con-
straints such as the correct order of task execution. In general, task

10.4 Mission Planning Methodology 181

Figure 10.3: Iterative process of mission planning

scheduling sets up the skeleton of the mission plan, which orders the
actions of movement and task execution, and path planning fills in the
generated concrete routes between every pair of milestones. While the-
oretically it is possible to employ UPPAALfor both path planning and
task scheduling, in practice full mission planning in UPPAALis infeasible
due to the scalability problem, and the separation into two aspects is
designed to simplify the computations [7].

To ensure the correct mission planning, path planning and task schedul-
ing have to interact with each other: task scheduling requires the trav-
eling time between milestones while path planning needs to know when
the trip would take place in order to generate paths avoiding temporary
obstacles. Therefore, both parts are executed in a loop until all con-
straints are satisfied by the resulting mission plan. The overall workflow
consists of the following steps:

1. Mission planning receives input information about the navigation
area and its abnormalities, as well as required tasks and their con-
straints.

2. Path planning calculates potential paths and traveling time for
agents between every pair of milestones.

3. TAMAA builds UTA models that are verified in UPPAAL. In case
of successful verification, UPPAAL provides execution traces of the
models that satisfy all task constraints. Subsequently, a task sched-
ule is generated from the traces.

4. Path planning checks whether the scheduled travels cross tempo-
rary obstacles when they are active. If a conflict is found, the
planning returns to step 2 where the affected paths are updated.

182 Paper C: Mission Plan Synthesis and Verification

(a) An example of the autonomous quarry

(b) A grid of the example

Figure 10.4: An example of the autonomous quarry and a grid that
discretizes the environment.

5. If both task and path constraints are satisfied, the iteration ends
and a resulting mission plan is returned.

Figure 10.3 illustrates our solution. In the following subsections, we
provide detailed descriptions of the path planner (DALi) and of the
task scheduler (TAMAA), as well as their integration. To illustrate the
following models and algorithms, we use a running example based on
the case study described in Section 10.2. Figure 10.4a depicts a small
quarry, where an agent (i.e., an autonomous truck) originally located
at milestone A should load stones at milestone B and deliver them to

10.4 Mission Planning Methodology 183

a crusher at milestone C. Two stationary obstacles are located in the
quarry (brick walls in the figure). The area next to the stationary obsta-
cle at the bottom is temporarily blocked. A parking station is an area
that is recommended to be avoided. Moreover, road conditions are poor
and the color scheme indicates the speed reduction (white areas can be
passed at full speed while red areas slow down the agents the most).

10.4.1 Improved DALi for Path Planning
The path planning algorithm is utilized to compute paths between all
milestones. The traveling time of the paths is used by TAMAA for task
scheduling. Note that not all paths are included in the final mission
plan: only travels scheduled by TAMAA would be used. In the running
example in Figure 10.4a, the path planning algorithm computes paths
between every pair of milestones, three in total (i.e., A to B, B to C, and
A to C), yet the final mission plan would use only two of them (i.e., A
to B and B to C).

Path planning has to be capable of providing navigation in complex
environments, considering obstacles, road conditions, and users’ addi-
tional preferences. The DALi algorithm supports different types of en-
vironmental constraints, thus we select it for our methodology. To adapt
DALi to our use case, we transform DALi environmental constraints to
be applicable in a quarry. In addition, we tune the algorithm with several
optimizations as shown below.

The preliminary step of the DALi algorithm is a transformation of
the navigation area into a graph and annotation of graph elements with
environmental conditions. Figure 10.4b illustrates a discretization of the
area with a Cartesian grid where each cell represents a node in the graph
and neighbour cells are connected by edges. Each edge has a length
equal to the distance between centers of cells connected by the edge.
The initial positions of agents as well as milestones are assigned to the
nodes corresponding to the cells that they are located at, respectively.
Environmental constraints are encoded into the graph as follows.

• Permanent obstacles or areas that are always impassable (dark
grey in Figure 10.4b) are excluded from the graph. There are no
nodes corresponding to such areas and no edges connecting them.

• Temporary obstacles or areas that are impassable for a specified
time interval (light orange in Figure 10.4b) are kept in the graph

184 Paper C: Mission Plan Synthesis and Verification

unlike permanent obstacles. Nodes in such areas are annotated
with periods of inaccessibility that would be used by the path plan-
ning.

• Areas with bad road conditions are specified with a heat map used
in DALi (green in Figure 10.4b). In the rest of the paper we refer
to such areas as heat areas. Agents in a heat area have to reduce
their respective speed by a given factor that is stored within the
edges connecting nodes inside the area.

• Soft constraints marking some areas as “undesirable” (blue in Fig-
ure 10.4b) are defined differently from the soft constraints in DALi.
Agents are allowed to pass through such areas however a virtual
coefficient is added to lengths of edges making them less preferen-
tial to the path planner. Different from the original DALi where
the coefficient depends on the distance to the area center, we con-
sider the uniform coefficient in the whole undesirable area. In this
way, we ensure that traversing the undesirable area even close to
its boundary is discouraged. Note that, contrary to the heat areas
that also affect the edges’ lengths, this coefficient is virtual and
only applied during the path finding but does not influence the
actual traveling time on the paths.

The core step of the algorithm is a computation of the path between
each pair of milestones on the created graph. The original DALi is a
single-source single-target algorithm, i.e., it computes a path between a
source and a target, and is based on Dijkstra’s shortest path algorithm
[13]. Algorithm 2 is called for each pair of milestones computing the
shortest path between them while considering the environmental con-
straints. Each node stores a distance to the source, initially infinite.
A priority queue orders nodes by their current distances to the source
(line 12). The main loop (lines 18-29) takes a node with the smallest
distance and updates the distances from all its neighbours to the source.
The update ensures the avoidance of temporary obstacles (lines 21 - 22)
and calculates the distances taking in account soft constraints and heat
areas (line 23). The algorithm terminates when the distance to the tar-
get node is computed and the path is obtained by moving in the graph
via references to the previous nodes (line 30).

10.4 Mission Planning Methodology 185

Algorithm 2: Path Planning Algorithm
1 class Node
2 Edge edges[] // Outgoing edges
3 Double distance, vDistance // Distance to source (virtual - with

soft constraints)
4 Node previous // Previous node on the path
5 Double softConstraint // Soft constraint coefficient; 1 if no

constraint
6 T imeInterval temporaryObstacle // Inaccessibility time if

inside a temporary obstacle

7 class Edge
8 Node start, end
9 Double length

10 Double heat // heat map speed reduction factor; value ∈ [0, 1)

11 Function FindPath(Node[] area, Node source, Node target, Agent agent,
Double startTime, Bool noTemp, Bool softExist)

12 PriorityQueue queue
13 foreach Node node : area do
14 node.distance := inf
15 queue.add(node)

16 source.distance := 0
17 Node processed[]
18 while queue ! = ∅ && target ̸∈ processed do
19 Node currentNode := queue.remove()
20 foreach Edge edge : currentNode.edges do
21 if noTemp || (edge.end ∈

processed || IsInsideTemporaryObstacle(edge, agent, startT ime))
then

22 skip

23 Double newDistance := currentNode.distance+ softExist×
edge.length× edge.end.softConstraint/(1− edge.heat)

24 if edge.end.vDistance > newDistance then
25 edge.end.vDistance := newDistance
26 edge.end.previous := currentNode
27 edge.end.distance :=

currentNode.distance+ edge.length/(1− edge.heat)

28 queue.add(edge.end)

29 processed.add(currentNode)

30 return ExtractPath(target) // traversal from target to source
via node.previous

31 Function IsInsideTemporaryObstacle(Edge edge, Agent agent, Double
startTime)

32 if edge.end.temporaryObstacle ̸= null then
33 Double time :=

startT ime+ (edge.length+ edge.start.distance)/agent.speed
34 return time ∈ edge.end.temporaryObstacle

35 return False

186 Paper C: Mission Plan Synthesis and Verification

Within this work we propose two optimizations of the original DALi
algorithm. The first optimization takes into account that our method
requires to compute paths between every pair of milestones and that
the Dijkstra’s algorithm on which DALi is based can be modified into
single-source multiple-target path planner. The extension of DALi is
straightforward: the algorithm continues the main loop until the dis-
tances between every pair of milestones are computed. This optimization
allows to reduce the number of calls to the path planner.

The second extension is inspired by the heuristics from the A* al-
gorithm [14]. Whenever the algorithm updates the distance of a node
(line 23), it considers not only the distance to the source but also a
distance estimation to the target. In particular, each node stores an es-
timation of the entire path length from the source to the target passing
through the node and the priority queue sorts the nodes based on the
estimation. For a node n the estimation is computed as n.distance +
dist(n, target), where dist returns the Euclidean distance. Such heuris-
tic guides the exploration of the graph towards the target and, in general,
finds the shortest paths faster, especially in areas with few obstacles. In
the remainer of the paper we call the DALi extension with the A* heuris-
tic as DALi*. Note that the two extensions above are incompatible: an
A* heuristic assumes that the algorithm is single-source single-target.
The selection between the two optimizations must take into account
the number of milestones, which affects the number of paths to com-
pute, and the size of the Cartesian grid that discretizes the environment
(Fig. 10.4b).

At the second step of the overall workflow (see the beginning of Sec-
tion 10.4), a path planning algorithm computes the path between every
pair of milestones. Since the path planner does not know at which time a
path would be used, temporary obstacles are not considered during this
step, i.e., the Boolean variable noTemp on line 21 is true. In our run-
ning example in Figure 10.4b, the red path between A and B through the
temporary obstacle would be selected. A path between B and C would
not be direct: a heat area on the way would significantly slow down the
agent and make a deviation faster. The path between A and C is also
deviated due to the soft constraint, yet such path is far from optimal
and may affect the timing constraints of the mission plan.

Temporary obstacles are considered during step 4 of the overall work-
flow (see the beginning of Section 10.4). At this point the selected paths
and their starting time points are known, thus making it possible to

10.4 Mission Planning Methodology 187

Figure 10.5: Overview of the workflow of model generation and mission
plan synthesis in TAMAA

check whether such obstacles have been passed at the wrong time when
the temporary obstacles exist. If that is the case, such paths are recom-
puted with a consideration of the temporary obstacles (i.e., noTemp on
line 21 is now false). In the running example (see Fig. 10.4b), the path
between A and B is recomputed due to the temporary obstacle and a
new and longer path avoiding both the temporary obstacle and the area
with a soft constraint is computed. The new path and its length is then
given to TAMAA for model generation.

It might be the case that paths avoiding areas with soft constraints
are too long, which causes the timing constraint of a global mission to
be violated. In this case, paths are recomputed by the path planner with
soft constraints ineffective (i.e., softExist is false, which is converted
to 0 at line 23). This recomputation may improve some paths and the
updated traveling time is passed to TAMAA for task rescheduling. In the
running example, such recomputation would output yet another path
between A and B.

10.4.2 TAMAA for Task Scheduling

Now, we recall the mission-related requirements of agents, mentioned in
Section 10.2, which agents need to fulfill. To ensure the correct work of
the agents, we need a method that guarantees to meet all the desired
requirements, including correct task scheduling. Model checking can
provide such guarantees given a modeling formalism for agents and con-
straints. We propose a method named TAMAA(Timed-Automata-based
Mission planner for Autonomous Agants) that is able to automatically
generate models and synthesize task schedules that satisfy the formalized
requirements by using model checking. TAMAA employs UPPAAL as the
model checker that uses the UPPAAL timed automata (UTA) formalism

188 Paper C: Mission Plan Synthesis and Verification

for modeling timed behavior of agents and (Timed) Computation Tree
Language ((T)CTL) for requirement specification.

Figure 10.5 depicts the workflow of our approach:

1. UTA generation: mission information, e.g., topology of the map,
and information about the agents and their tasks, are input into
the model-generation module, where a set of UTA that models the
agents’ movement and task execution are generated automatically.

2. Query generation: (T)CTL queries for synthesizing schedules are
generated automatically. Based on our templates of queries, users
can manually modify the queries according to their own require-
ments.

3. Trace generation: The UTA models are verified with UPPAAL
against the (T)CTL queries. If the model checker finds an execu-
tion trace of the model that meets all the requirements, the trace
is returned; otherwise, a verdict that the query is not satisfied is
returned.

4. Schedule generation: The returned trace is parsed and a schedule
of actions (i.e., movement and task execution) is generated based
on the trace.

The method automatically generates models, formalizes requirements,
and synthesizes traces. The TAMAA method’s automation of the process
simplifies its application: no user action is required after setting up
the tasks, milestones, and navigation area. Nevertheless, we leave the
possibility to modify models and to add requirements so that our method
can be used in applications with individual needs that are not expressible
with the existing models. We introduce this in detail in Section 10.7.
In addition, as the traces are generated by exhaustive traversal of the
model state space, we can select the fastest ones that finish the tasks
while holding the other requirements, e.g., milestone matching. In the
following, we introduce the theoretical and technical details of TAMAA
including formal definitions of the concepts, two algorithms for model
generation, and the templates of queries that formalize the requirements
presented in Section 10.2.

10.4 Mission Planning Methodology 189

Definitions of Concepts

In our approach, autonomous agents are characterized by their speeds
and a set of tasks that they are supposed to execute for accomplishing
the entire mission. The environment where agents work in contains a
number of milestones where the tasks are supposed to be carried out.
Therefore, agents with a certain subset of tasks should visit the right
milestones. To accomplish the mission, there are two types of actions
that agents can perform, namely moving and executing tasks. Therefore,
we split the agent model into two UTA, one taking care of the movement
and one of the task execution.

Definition 10 (Agent’s Movement UTA). Given an autonomous agent
AA, the movement of AA is defined as a UTA in the following form:

MV = < Pm, p0, Um,Σm, Em, Im >, (10.4)

where:

• Pm = P s
m ∪ P t

m is a finite set of locations, where P s
m represents

the set of milestones in the environment, and P t
m is designed for

measuring the traveling time between milestones;

• p0 ∈ P s
m is an initial location representing the milestone where the

agent is initially positioned;

• Um = {xm, position}, where xm is a clock variable for measuring
the traveling time, and “position”, which is shared with other UTA,
is an array of Boolean variables that stores whether the agent is at
a milestone or not;

• Σm = {move, τ} is a set of channels, where “move” models the
synchronization with task execution automaton described below in
Definition 12, and τ denotes internal or empty actions without
synchronization;

• Em = Ec
m ∪Eu

m is a finite set of edges connecting locations, where
Ec

m ⊆ P s
m × {true} × {move} × Fm × P t

m, where Fm is a set
of functions that update the value of the Boolean array “position”
and reset the clock xm, and Eu

m ⊆ P t
m × Bm(xm) × Fm × P s

m,
where Bm(xm) is a set of guards containing clock constraints of
the form xm ≥ δ, where δ ∈ R≥0 is the traveling time between two
milestones;

190 Paper C: Mission Plan Synthesis and Verification

(a) Agent movement as an UTA

(b) Agent execution of tasks as an UTA

Figure 10.6: Examples of agent movement UTA and task-execution UTA.

• Im : P t
m → Bt(xm) is a function that assigns invariants to locations

in P t
m, where Bt(xm) contains clock constraints of the form xm ≤

δ, where δ ∈ R≥0 is the traveling time between two milestones.

Figure 10.6a illustrates the movement UTA for two milestones A and
B. The UTAhas four locations: two milestone locations representing the
milestones, i.e., P s

m = {A,B}, and two traveling locations representing
intermediate positions necessary to capture traveling between milestones,
i.e., P t

m = {A2B,B2A}. Edges in Ec
m that connect the milestone loca-

tions with the traveling locations are labeled with a channel move, in our
example, the edges from locations A to A2B and from locations B to B2A,
respectively. The channel move is for synchronizing the movement UTA
with the task execution UTA when the latter informs that the movement
has started. A second group of edges (i.e., Eu

m) models the arrival to
the destination. To model the traveling time we use invariants of the
form xm ≤ MT and guards in the form of xm ≥ MT. The clock variable
xm is for measuring the traveling time between two milestones. The set
Fm in this UTA contains the assignments that reset the clock xm and
modify a specific element in the Boolean array position. We use the
array position to keep track of current position of an agent, which can

10.4 Mission Planning Methodology 191

be accessed by other UTA.
The second part of an agent model formalizes task execution. First,

we define tasks as follows:

Definition 11 (Task). A task is defined as a tuple, as follows:

TS = (BCET, WCET, isStarted, isFinished, Var, pre, Mil), (10.5)

where:

• BCET is the best case execution time;

• WCET is the worst case execution time;

• isStarted is a Boolean variable denoting if the task has started;

• isFinished is a Boolean variable denoting if the task has finished;

• Var is a set of functions that update the variables in the task-
execution UTA (Definition 12) after the task finishes;

• pre is a precondition that must be met to start the task, which can
take into account execution status of other tasks and global vari-
ables. Formally, pre = p | ¬pre | pre∨pre | pre∧pre, where p is
an atomic proposition over S∪F∪V⊣∇, where S, F , and V⊣∇ are
three sets consisting of Boolean variables isStarted, isFinished,
and the variables updated in Var of all tasks, respectively;

• Mil is a set of milestones where the task is allowed to be executed.
A task can be executed at multiple milestones.

Table 10.1 shows two examples of tasks, which we use to illustrate
Definition 11.

Table 10.1: An example of tasks for the autonomous trucks in Fig-
ure 10.4.

BCET
(mins)

WCET
(mins) isStarted isFinished Var pre Mil

Loading 5 10 false false full / B
Unloading 8 14 false false unload(stone) Loading.isFinished C

Initially, an agent starts to load stones near the stone piles at mile-
stone B (loading.isStarted turns true). When the loading task is fin-
ished (Loading.isFinished turns true, while Loading.Started turns false),

192 Paper C: Mission Plan Synthesis and Verification

a Boolean variable full indicating whether the agent is fully loaded
is set to true. At the next step, the agents are supposed to unload
the stones into the primary crusher at milestone C. Therefore, the un-
loading task has a precondition loading.isFinished. Note that precon-
ditions can be much more complex Boolean expressions, e.g., A.pre =
(B.isF inished || ¬C.isStarted) & D.isStarted, which means task A can
start only when task B is done or task C has not started, and after task
D has started. When the unloading task is done, an integer named stone
is increased, which indicates the amount of crushed stones.

The execution time of a task is usually specified with a time interval
(i.e., [BCET, WCET]). In a 1-player game [15], the environment is under the
total control of agents, which means agents can choose any time point
within the time interval to finish the task. The goal of task scheduling
in this paper is to find the schedules that finish tasks in the quickest
way. Notably, the quickest schedules do not necessarily mean always
using BCET for all tasks. In some cases, prolonging the execution time
of some tasks can be more efficient for the entire mission, especially
when multiple agents are working in the same environment. Additionally,
some applications require the tasks to be executed multiple times before
the final goal is reached. Like the example in Table 10.1, autonomous
trucks are asked to repeat the trip of loading and unloading until all
the stones are transferred to the primary crusher (i.e., variable stone is
zero), and the tasks should be executed once and only once during one
trip, i.e., before all tasks are completed. With all the requirements, how
to assign starting time and ending time of tasks to each of the agents
is the question that is answered by task scheduling. Now, we define the
task execution UTA based on the definition of tasks.

Definition 12 (Task Execution UTA). Given an agent AA and a set
of tasks T , task execution of AA is defined as a UTA of the form:

TE = (Ne, n0, Ue,Σe, Ee, Ie), (10.6)

where:

• Ne = {n0} ∪N t
e is a set of locations, where N t

e = {nt | t ∈ T };

• n0 ∈ Ne is the initial location, which stands for the idle status of
AA;

• Ue = {xe, ts, tf , ite}, where xe is a clock that is reset whenever a
task finishes, ts and tf are Boolean arrays that store the statuses

10.4 Mission Planning Methodology 193

of tasks (isStarted and isF inished in Definition 11, respectively),
and ite ∈ N stores the current iterations of all tasks. At the end of
each iteration, ite is incremented by 1, while ts and tf are reset to
false for a new round of tasks execution;

• Σe = {move, τ} is a set of channels;

• Ee = Ed
i ∪Ed

e ∪ {es}, where Ed
i ⊆ {n0} × {τ} ×Bi

e(Ue)× Fe ×N t
e

is a set of edges from n0 to nt ∈ N t
e, Fe is a set of functions

updating the variables in Ue, Bi
e(Ue) is a set of guards consisting

of the preconditions and milestone requirements of tasks, Ed
e ⊆

N t
e × {τ} × Bd

e (xe) × Fe × {n0} is a set of edges from nt ∈ N t
e to

n0, Bd
e (xe) is a set of guards containing clock constraints of the

form xe ≥ BCET of a task, es is a self-loop edge on n0 that is
labeled with channel move and an assignment xe = 0;

• Ie : N
t
e → Bi(xe) is a function assigning invariants to locations in

N t
e. The invariants are of form xe ≤WCET of a task.

An example of the task execution UTA is depicted in Figure 10.6b,
where location Idle is the initial location n0, and location T1 represents
a task. The channel move labels the self-loop edge on location Idle,
which synchronizes the movement UTA and the task execution UTA.
Due to the synchronization, movement cannot start during task execu-
tion but only when the agent is idle. Location T1 and its outgoing edge
are labeled with an invariant (t<=WCET) and a guard (t>=BCET), respec-
tively, to ensure the execution time within BCET and WCET. Function
updateIteration on the edge from T1 to Idle is for incrementing the
variable ite when an agent finishes all its tasks. For a specific case, addi-
tional functions can be added to this edge too, for example, the function
unload(stone) in Table 10.1. Moreover, the guard !tf[1] forbids the
multiple execution of the task during a single round of tasks iteration;
the next execution of this task can be done only in the next iteration
after the reset of the arrays ts and tf. The guard on the edge from
Idle to T1 presents the precondition (i.e., !tf[1] && (tf[2] || tf[3])),
the milestone requirement (i.e., position[1] || position[2]), and the
mutual-exclusive requirement of task T1 (i.e., !isBusy(1)). The func-
tion isBusy(1) checks if T1 is being executed by other agents or not.
As preconditions defined in Definition 11, the function isBusy(1) uses
the "isStarted" and "isFinished" variables of the same task executed by
other agents to see if task T1 is being executed.

194 Paper C: Mission Plan Synthesis and Verification

Algorithm 3: Movement UTA Generation
1 Function CreateMovementUTA(int[][] map, int speed)
2 UTA movementUTA
3 int i := 0, j := 0
4 for i < map.size do
5 Location li := createLocation(“Li”) // Create a location with

the name Li

6 movementUTA.addLocation(li)
7 i++

8 i := 0
9 for i < map.size do

10 Location li := movementUTA.getLocation(“Li”) // Get a
location with the name Li

11 for j < map[i].size && i ̸= j do
12 Location lj := movementUTA.getLocation(“Lj”) // Get a

location with the name Lj

13 Location lFiTj := createLocation(“FiTj”) // Create a
location with the name FiTj

14 lFiTj .invariant = “xm ≤ map[i][j]/speed”
15 movementUTA.addLocation(lFiTj)
16 Edge e1 := createEdge(li, lFiTj) // Create an edge from li

to lFiTj

17 e1.channel := “move?”
18 e1.assignments := “xm = 0, position[i] = false”
19 movementUTA.addEdge(e1)
20 Edge e2 := createEdge(lFiTj , lj) // Create an edge from

lFiTj to lj
21 e2.guard := “xm ≥ map[i][j]/speed”
22 e2.assignments := “xm = 0, position[j] = true”
23 movementUTA.addEdge(e2)
24 j ++

25 i++

26 return movementUTA

10.4 Mission Planning Methodology 195

Algorithm 4: Task-execution UTA Generation
1 Function CreateTaskUTA(int agentID, TS tasks[])
2 UTA taskexeUTA
3 Location Idle := createLocation(“Idle”) // Create a location with

the name Idle
4 taskexeUTA.addLocation(Idle)
5 e0 := createEdge(Idle, Idle) // Create a self-loop edge of

location Idle
6 e0.channel := “move[agentID]!”
7 e0.assignment := “xe = 0”
8 taskexeUTA.addEdge(e0)
9 for i < tasks.size do

10 Location Ti := createLocation(Ti) // Create a location with
the name Ti

11 Ti.invariant := xe ≤ tasks[i].WCET
12 taskexeUTA.addLocation(Ti)
13 Edge e1 := createEdge(Idle, Ti) // Create an edge from Idle to

Ti

14 e1.guard :=
“¬tf [i] ∧ tasks[i].P re ∧ (

∨
l∈tasks[i].Mil position[l])∧!isBusy(i)”

15 e1.assignments := “x: = 0, ts[i] = true, tf [i] = false”
16 taskexeUTA.addEdge(e1)
17 Edge e2 := createEdge(Ti, Idle) // Create an edge from Ti to

Idle
18 e2.guard := “xe ≥ tasks[i].BCET”
19 e2.assignment := “xe = 0, ts[i] = false, tf [i] :=

true, updateIteration()”
20 taskexeUTA.addEdge(e2)
21 i++

22 return taskexeUTA

Definitions 10 and 12 define the models of agent movement and task
execution, respectively. A network of these UTA models the behavior of
multiple agents working collectively to reach a common goal respecting a
given set of constraints, such as mutual-exclusiveness of tasks. The defi-
nitions present the foundation for describing multi-agent systems with a
formal modeling language. Next, we introduce how the course of mod-
eling is automated by two algorithms.

Generation of UTA

In this section, we introduce the algorithms generating the movement
and task execution UTA. Figure 10.6 illustrates the results of algorithms
application. Movement UTA (Definition 10) of an agent is generated by

196 Paper C: Mission Plan Synthesis and Verification

Algorithm 3. Its inputs are a two-dimensional array called map, which
stores the distance between every pair of milestones, and a variable called
speed, which is the agent’s speed. The algorithm starts by creating a
location for each milestone (lines 4 - 7). Next, traveling between each
pair of milestones is represented by a traveling location (lines 13 - 14) and
two edges connecting the milestones via the traveling location (lines 16 -
23). Guards, channels, and invariants are assigned to location and edges
according to Definition 10.

Algorithm 4 describes the generation of an agent’s task execution
UTA. Lines 3 - 8 create a location to represent the idle status of the agent
and a self loop at this location to synchronize with the agent’s movement
UTA. This is a single point of synchronization between the two automata
since task execution and movement are mutually exclusive. Lines 10 -
20 create locations representing the execution of each task and edges
that connect these locations with the idle location. Line 14 assigns a
guard to the edges coming from the location Idle. The guard regu-
lates the UTA to start the task only when the task’s precondition holds
(tasks[i].P re) and the agent is positioned at one of the right milestones
((
∨

l∈tasks[i].Mil position[l])), where position is an array whose values are
changed by the movement UTA of the agent. The guard ¬tf [i] means
that the task is not finished yet in this round of task iteration. The func-
tion updateIteration() in line 19 increments the variable ite belonging
to this UTA if all tasks of the corresponding agent are finished, and turns
the variables in tf and ts to false, indicating a new round of iteration
is about to start.

Formalizing Requirements as UPPAAL Queries

In Section 10.2, we provide a list of typical requirements of our use
case. In this section we describe how they are formalized for the model
checking. Queries for verification of each agent are created based on the
templates presented below (formulas (10.7) to (10.10)). We use index
‘a’ to denote an agent in queries. We use taska (respectively, movea) to
denote the task execution UTA (respectively, movement UTA) of an agent
a, and Ti (respectively, Pi) to denote any location in the task execution
UTA (respectively, movement UTA). A clock variable x is used to measure
the global time. Two Boolean arrays named ts and tf indicate whether
tasks have been started and finished, respectively. Two constant integers
ALL and LIMIT denote the requested number of iterations of tasks and

10.4 Mission Planning Methodology 197

the time constraint to accomplish the entire mission, respectively.

• Milestone matching : Agents must be located at the right milestone
while executing a task. Assuming task Ti must be carried out at
one of the milestones: Pi, Pi+1, ..., Pk, the following queries are
checked for each agent a:

E<> tsa[i] (10.7)

A[] taska.Ti imply (movea.Pi || ... || movea.Pk) (10.8)

Query (10.7) is for verifying whether task Ti ever starts, after which
Query (10.8) checks whether task Ti is carried out at the right
milestone.

• Task sequence: Tasks must eventually be executed, and to start the
execution, their preconditions must be satisfied. Assuming task Ti
can start only after task Tj finishes, and at the beginning of each
task iteration, all elements in both ts and tf are set to false, the
corresponding queries are designed:

A[] tsa[i] imply tfa[j] (10.9)

The first part of the requirement, i.e., whether task Ti ever starts,
is verified in the requirement of milestone matching by checking
Query (10.7). Query (10.9) checks the second part of the require-
ment: task Ti never starts before the required preceding task Tj
has finished.

• Timing : Tasks must be finished within a time frame in order to
maintain a certain level of productivity. The following query is
used to capture this requirement:

E<> iteration[a]>=ALL and gClock <= LIMIT, (10.10)

where gClock is a global clock that is not reset by any transition.
Query (10.10) checks the reachability of a state where all tasks are
executed for ALL rounds within LIMIT time units, and UPPAAL
returns the trace reaching that state, in case the query is satisfied.

Note that satisfaction of Queries (10.7-10.9) is guaranteed by the con-
struction of movement and task execution UTA. The queries can still be

198 Paper C: Mission Plan Synthesis and Verification

verified for a given mission, but they are not used in the mission plan-
ning. If Query (10.10) is satisfied, UPPAALoutputs the trace reaching
the goal state. The trace is processed by TAMAAand a schedule is gener-
ated following the steps of the trace. We always look for the fastest trace.
When the task execution time is a time interval rather than a fixed value,
we assume the environment to be under the control of the agents, which
means that the agents can choose any task execution time during the
time intervals, respectively. If the environment reacts competitively or
possibly antagonistically, we need a comprehensive schedule that consid-
ers all possible scenarios. We refer the interested readers to our previous
work [16], in which we propose a method combining model checking and
reinforcement learning to deal with uncooperative environments.

10.4.3 Mission Planning with DALi and TAMAA

Path planning and task scheduling aspects of the mission planning de-
pend on each other. One of the task scheduling parameters is traveling
time between pairs of milestones. Temporary obstacles affect shortest
paths between milestones, therefore path planning requires to know the
starting time points of travels in order to ensure avoidance of temporary
obstacles. Therefore, mission planning might re-run the path-planning
and task-scheduling modules multiple times until all requirements for the
mission are satisfied: changing paths affect the traveling time and, con-
sequently, might affect the task schedule; changes in the task schedule
modify the starting time points of travels and, consequently, might affect
the paths. In addition, task scheduler might find impossible to satisfy
timing constraints with the given traveling time. In this case, DALi can
attempt to improve the traveling time by ignoring soft constraints and
calling TAMAA to reschedule tasks with the new traveling time as the
input.

We illustrate the steps of the Algorithm 5 with the running exam-
ple depicted in Figure 10.4a. During the first step (line 5), DALi dis-
cretizes the entire environment into a Cartesian grid shown in Figure
10.4b and builds a graph of the environment which is used in all con-
sequent path-planning calls. DALi computes the path between every
pair of milestones while ignoring temporary obstacles during the first
computation (lines 7-9). Indeed, at this point neither the order nor the
starting time points of travels are known and the shortest paths between
every two milestones are returned. In Figure 10.4b, the red path between

10.4 Mission Planning Methodology 199

milestones A and B would be selected as the shortest even if it passes
through a temporary obstacle (orange cells).

At the next step, the model generation module of TAMAA auto-
matically generates the network of UTA that models the agents’ move-
ment and task execution (lines 10-13), after which a function named
Scheduling is invoked to schedule the tasks taking into account the trav-
eling time of the paths (line 14). In the Scheduling function, UPPAAL
checks the existence of a model execution trace satisfying the Query
(10.10) (line 32). Note that queries that formalize other requirements,
e.g., Queries (10.7) - (10.9), can also be checked, which ensure the satis-
faction of other requirements but do not contribute to the mission plan
synthesis. Next, if the query is satisfied and a trace is obtained, we
convert the trace into a schedule ordering the movement and task exe-
cution actions (line 34). In the traceParser function, a schedule that
orders the actions of movement and task execution for all the agents
are generated and returned to the main function of mission planning
(line 14). Note that the returned result of schedule can be empty (i.e.,
null), which indicates the non-existence of mission plans. Since the
model checker exhaustively explores the entire state space of the model,
the non-existence of mission plans is guaranteed. In such case, the mis-
sion planning tries to recompute the paths and the schedule ignoring
soft constraints (line 19). If the Query (10.10) cannot be satisfied even
without soft constraints (line 21), the algorithm terminates and suggests
the users to modify their environment configuration or requirements.

If the Scheduling function returns a non-empty result, DALi checks
whether the plan happens to cross any temporary anomalies and at which
time (line 22). The function CheckTemporaryObstacles looks at all the
paths involved in the schedule, and, with the knowledge of the starting
time of travels, checks that no temporary obstacle is entered during its
inaccessibility period. If at least one path crosses a temporary obstacle
during its existence, recomputation is run (line 25). Given scheduled
starting time of actions, DALi updates paths that used to enter the
temporary obstacles. New paths might become longer than the original
paths, requiring TAMAA to reschedule tasks. For example, in Fig. 10.4b,
if a temporary obstacle is enabled then a different path between A and
B is selected (dashed black lines). The new path is longer and might
affect the satisfaction of timing constraints. In this case, another path is
computed ignoring the soft constraint (solid line). TAMAA is called after
each path modification and regenerates a new task schedule (line 14).

200 Paper C: Mission Plan Synthesis and Verification

Algorithm 5: Mission Planning Algorithm
1 Function MissionPlanning(Environment env, TS tasks[], Agent agents[],

Query query)
2 NUTA model // A network of UTA
3 Bool noTemp := true
4 Bool softExist = true
5 Node area[] := CreateGrid(env)
6 double startT imes[][] := 0
7 foreach agent : agents do
8 foreach m1,m2 : milestones do
9 agent.paths[m1][m2] :=

FindPath(area,m1,m2, agent, startT imes[m1][m2], noTemp, softExist)

10 foreach agent : agents do
11 UTA movement :=

CreateMovementUTA(agent.paths, agent.speed)
12 UTA taskExe := CreateTaskUTA(agent.ID, tasks)
13 model := compose(movement, taskExe)

14 Schedule schedule := Scheduling(model, query)
15 if schedule == null then
16 if softExist then
17 softExist := false
18 double startT imes[][] := 0
19 goto line 7

20 else
21 return false // No mission plan found

22 if !CheckTemporaryObstacles(schedule) then
23 noTemp := false
24 updateT imes(startT imes, schedule)
25 goto line 7 // Recompute affected paths with DALi

26 foreach agent : agents do
27 agent.schedule := distribute(schedule)

28 return true

29

30 Function Scheduling(NUTA model, Query query)
31 Schedule schedule := null // Stores the order of actions
32 Trace trace = check(model, query)
33 if trace ̸= null then
34 schedule = traceParser(trace)

35 return schedule

Next, the entire plan of actions are dissolved into several individual
mission plans for the agents and distributed to each of them (line 27).

10.5 Description of the Tool 201

Figure 10.7: Architecture and the information flow of the toolset

The function distribute dissolves the entire schedule and puts the ac-
tions into the corresponding individual mission plan according to which
agent they belong to. Finally, a mission plan that satisfies all constraints
imposed on the tasks and paths is returned by the mission planner that
integrates DALi and TAMAA. Again, since the satisfaction of constraints
is guaranteed by the model checking technique used in the Scheduling
function, the resulting mission plan is correct-by-construction.

10.5 Description of the Tool

In this section, we present our toolset called MALTA1 that consists
of three main components: a GUI called Mission Management Tool
(MMT), a path planner implementing DALi, and a task scheduler im-
plementing TAMAA.

10.5.1 Overall Description

The toolset is built of 3 parts: a front end providing the graphic user
interface (GUI), a middleware providing path planning and building mis-
sion plans from paths and schedules, and a back end dedicated to task
scheduling. The toolset design adopts a Client/Server architecture. The
reason is twofold: first, the front end of the toolset is a GUI that has been
independently designed. Beside the GUI, the front end also provides a
group of programming interfaces and data structures for extension and
communication. Therefore, the front end is open for extension without

1MALTA installation package and source code of path planner and task scheduler
can be found at https://github.com/rgu01/MALTA

202 Paper C: Mission Plan Synthesis and Verification

touching its code. Second, the computation of mission plans can be
quite expensive. As we show in Section 10.6, synthesizing mission plans
for multiple agents can cost hours on a computationally powerful server.
Therefore, the separation of front end GUI from the mission plan synthe-
sis allows the users to move computations to a dedicated server, which
is a user-friendly and efficient design pattern, also easy to maintain.

In the front end, users can configure their environment including the
navigation areas, milestones, tasks, agents, etc., after which, the envi-
ronmental configuration is transferred to the middleware. The Mission
Management Tool (MMT) described in the following subsections pro-
vides the front end GUI.

The middleware receives the environmental configuration and passes
it to a path planner. Any path planning algorithm that supports the
desired environmental constraints can be used. In our implementation
we offer a choice between A* and DALi algorithms described in Sub-
section 10.4.1. At the second step the middleware generates UTAmodels
following the Algorithms 3 and 4. The UTA model generator is based
on an open source library j2uppaal2.

These UTA models are transferred to the back end, where we imple-
ment the TAMAA scheduler to synthesize schedules. The Scheduling
module implementing the Scheduling function in Algorithm 5 invokes
the model checker UPPAAL to check the UTA models against Query (10.10)
and, in case of successful verification, UPPAAL generates an execution
trace containing the sequence of actions that can be translated into a
schedule by the trace parser, which uses the library for parsing traces pro-
vided by UPPAAL3. The back end can use other model-checking-based
schedulers, for example missions in uncertain environment could use an-
other scheduler combining model checking and reinforcement learning
[17, 16].

The resulting schedule is stored as a standard format of Extensible
Markup Language (XML) and sent to the middleware, where the sched-
ule is combined with the paths to generate a mission plan. A module
called Mission Plan Validator is designed to check if the mission plan
happens to come across the temporary obstacles when they still exist. If
the collision does happen, a new path plan that circumvents the collision
is calculated by the Path Planner and the corresponding UTA models
that reflect the new paths are generated and sent to the task scheduler

2https://github.com/predragf/org.fmaes.j2uppaal
3https://github.com/UPPAALModelChecker/utap/wiki

10.5 Description of the Tool 203

again. The iteration of computation continues until a valid mission plan
is generated or no valid path exists. The final mission plans are shown in
the frond end when the Mission Plan Validator confirms that the results
are correct, or a warning informs the users that no mission plan can be
generated and suggests a configuration modification.

In the following subsections we introduce MALTA’s GUI and demon-
strate how can one configure the environment, and visualize the resulting
mission plan.

10.5.2 Mission Management Tool
The Mission Management Tool (MMT) is a GUI that allows the operator
to plan, execute and supervise missions involving multiple autonomous
vehicles [10]. In the context of this paper the focus is mission definition
and plan visualization, hence we do not discuss the plan execution and
supervision functionalities.

MMT’s main window contains five main panels: (A) mission explorer,
(B) assets, (C) properties, (D) map, and (E) plan outline (Fig. 10.8).
The map shows an overall view of the mission area and the vehicles. It
also provides tools to the operator for defining areas of interest for a
mission. The mission explorer (Fig. 10.8.A) represents different assets
involved in a mission and their relationship in a tree structure. The
assets panel contains three sub-panels that contain vehicles, locations
and tasks. These are either physical assets that the operator has access
to (vehicles), or entities that the operator has defined himself/herself
(tasks and locations). The properties panel shows different properties
of a selected asset and allows the operator to set their values if nec-
essary. Finally the plan outline provides a Gantt chart representation
of the whole plan for a mission (Fig. 10.9). MMT communicates with
the mission planner through the Apache Thrift Framework4. This al-
lows MMT and the planner to share definitions of different assets and
communicate mission data as well as the final mission plan. Since the
version of Apache Thrift that we use (0.9.3) does not fully support asyn-
chronous communication for all the programming languages involved in
this work, both MMT and the Planner provide one-way Thrift services
to each other for communication. This means that upon a function call
through Thrift framework, the client does not wait for a response and in-
stead it provides it own Thrift server for receiving the results (the plan)

4https://thrift.apache.org/

204 Paper C: Mission Plan Synthesis and Verification

Figure 10.8: Mission Management Tool. (A) Mission Explorer, (B) As-
sets, (C) Properties, (D) Map and (E) Plan Outline.

whenever they are ready. Hence, the planners run a Thrift server that
exposes functions allowing the MMT to send a mission definition to the
planner and request a mission plan for it. MMT on the other hand, runs
a Thrift server that includes a function, allowing the planner to send the
final plan back to MMT.

10.5.3 Environmental Configuration with MMT

Mission definition through MMT is done in two steps: First the mission
assets and their properties need to be defined, and next the relationship
between these assets should be configured. Mission assets consist of ve-
hicles, tasks and locations. Vehicles are not defined by the operator as
they are real entities that are discovered by MMT. In case of vehicles,
the operator can set some of their properties that might affect the visu-
alization of vehicle on MMT (i.e. color) or a vehicle’s performance in a
mission (i.e. speed).

The two other types of assets need to be defined by the users. Defin-
ing locations/areas of interest for a mission takes place through the map.
The operator can use map tools to set markers on the map or draw re-
gions on it. The locations/areas are added to the locations sub-panel,

10.5 Description of the Tool 205

where they can be accessed to set their visualization or mission-related
properties. For an area, there are some important properties that can
be set, which affect the planning phase:

• Region Type: This can be set to a forbidden area (vehicles should
not go through that region), a preferred area (vehicles are preferred
to go through that region), a less preferred area (vehicles can go
through there but it is better to avoid it) and a heat area (hard to
pass area).

• Intensity : This parameter indicates the intensity of heat areas and
(less-)preferred areas. For heat areas it affects the speed drop in
the area; for (less-)preferred areas it affects the decision for entering
the areas.

• Start and End Time: These parameters define the time interval
relative to the mission start when the area is active, e.g., temporary
obstacles appear and last a while.

Defining the tasks of a mission is done through the tasks sub-panel.
This panel allows the operator to define a new task or re-use a predefined
one. Defining new tasks requires the operator to define the task type
(either inspect or survey) and the equipment required for it. Inspect
tasks are tasks that should be performed on a location (i.e. digging),
whereas, survey tasks are performed on a whole area (i.e. spraying a
field).

When all the assets are defined, the operator can define the mission
by dragging and dropping the assets to the mission explorer. The mission
explorer contains several entry points for mission assets as follows:

• Navigation Area: This is the main area of the mission. No vehi-
cle will be allowed to move outside this area. Navigation area is
visualized as a polygon with green borders in MMT (Fig. 10.8.D).

• Special Areas: These are the areas that have specific roles in the
mission but are not part of a task. Examples include: forbidden
areas, preferred areas, and heat areas. In MMT, forbidden areas
are displayed with a red background and if they are temporarily
forbidden a lighter shade of red is used. Temporarily forbidden
areas are also annotated with a timespan during which they become
inaccessible by the vehicles. Heat and preferred areas are displayed
in light blue (Fig. 10.8.D).

206 Paper C: Mission Plan Synthesis and Verification

• Task Areas: These are areas that are related to a task. For each
task involved in the mission a new entry point is added, allowing
the operator to add the locations/areas related to it. It is possible
to add several locations/areas to a single task. If a task requires a
specific sensor/actuator, this information is also written next to it
on the map (Fig. 10.8.D).

• Home Locations: These are the locations where the vehicles should
move to after finishing their mission.

• Vehicles: This part contains all the vehicles that are allowed to
participate in the mission. This means that the operator is allowed
to only drag some of the vehicles to this section which in turn means
the planner can only use those for planning (Fig. 10.8.B).

• Tasks: This contains a list of all the tasks that should be performed
in the mission. When the operator drags a task to this section,
a new sub-section for this task is also added to the Task Areas
section, allowing the operator to define the areas for this specific
task (Fig. 10.8.B).

The final step in mission definition is defining location/area proper-
ties after they are added to a task. Please note that these properties
are not directly bound to the location or the task itself, but are prop-
erties that represent that specific task while being done at that specific
location. These properties are only accessible by clicking on the loca-
tion/area under the task in task areas section of mission explorer (Fig.
10.8.C). These properties allow the operator to define task preconditions,
BCET and WCET.

After defining the mission, the operator can save it for later use or
send it to the planner using the plan button on the toolbar. This sends
the plan to the planner and awaits for a result. The final mission plan
is then visualized on the map and plan outline.

10.5.4 Mission Plan Demonstration in MMT

Fig. 10.9 shows a plan visualized in MMT. The plan contains only
one vehicle and nine tasks. The vehicle and its related path are color-
coded (in this case they are all green). In cases with multiple vehicles,
each vehicle, its related path and tasks will get a separate color. It

10.6 Evaluation 207

can be observed that red areas are always avoided by the green lines
(vehicle’s path), while the light-red areas are sometimes avoided (during
the related time span) and sometimes crossed (when the area is not
forbidden anymore). The blue regions indicate areas with bad roads:
vehicles can pass them but at a slower speed. The plan outline at the
bottom also shows the order of actions to be taken by the vehicle and
the amount of time each action consumes.

The mission starts from the initial location of the vehicle and the
path shows the milestones that the vehicle will visit during its mission.
Some milestones are visited several times as this is part of the task and
mission definition. The milestone locations are marked with markers
matching the color of the vehicle and a text shows the actual action
which will be performed at that location.

Figure 10.9: Mission Management Tool.

10.6 Evaluation

To test our prototype implementation we conducted a series of experi-
ments directed to evaluate the performance and scalability of the pro-

208 Paper C: Mission Plan Synthesis and Verification

posed approach5. In this section, we present the design and results of
the experiments.

10.6.1 Methodology

For the experiments we have created a mission shown in Figure 10.8
involving multiple milestones, permanent and temporary obstacles, and
heat areas. The following parameters have been varied in the experi-
ments.

• Path-planning algorithm: we compared A* algorithm, DALi with-
out optimizations, and DALi* discussed in Section 10.4. We refer
to the version without optimizations as DALi. All three algo-
rithms have similar implementations being different only in the
distance computations for the node selections, respectively, thus
the comparison has no bias in implementation.

• Granularity of a partition of the navigation area into nodes: during
the transformation of the navigation area into a graph, the param-
eter (namely, granularity henceforth) sets the sizes of Cartesian
grid cells and the distance between neighbour nodes. A smaller
distance results in finer granularity and a larger graph. We use the
granularity in range [2, 10] resulting in approximately 15000 nodes
in the graph for the granularity 10 and 390000 for the granularity
2.

• Presence of temporary obstacles: in a part of the experiments
where the performance of DALi or DALi* is compared with A*,
we ignore all temporary obstacles.

• Number of tasks/milestones is in range [1, 10].

• Number of permanent obstacles is in range [1, 10].

• Number of heat areas is in range [1, 5].

• Number of vehicles is in range [1, 4].

5The mission configurations of the experiments are published so that one can
replicate the experimental results: https://github.com/rgu01/MALTA.

10.6 Evaluation 209

In order to vary the numbers of milestones, permanent obstacles, and
heat areas and to avoid the generation of a separate mission for each
combination of the parameters, we use the following strategy. The mis-
sion contains a set of milestones (permanent obstacles, heat areas) and
in each experiment we select a subset of all milestones (permanent ob-
stacles, heat areas) of a desired size (ensuring that all task preconditions
can be met) and perform mission planning with the selected milestones
(permanent obstacles, heat areas).

In all experiments we compute the time needed to generate a graph,
the total time used by the path-planning algorithms, and the time used
by TAMAA (i.e., calls to UPPAAL). Each experiment involves multiple
calls to the path-planning algorithm and to UPPAAL; we compute the
total time for all calls. All experiments have been conducted 5 times and
we consider the mean time as a result. The front end and the middleware
are on a same PC with a 12-core i7 CPU, 16 GB RAM, and Windows
10 OS. The back end is on a server with a 48-core CPU (Intel Xeon E5-
2678), 256 GB RAM, and Ubuntu 18.04 OS. The timeout of computation
is set to be 1 hour in the experiments.

We perform a preliminary experiment comparing two optimizations
of DALi. For the preliminary experiment, we use a single vehicle and
remove temporary obstacles and heat areas from the mission to ensure
that path planning is called only once. We vary the granularity and the
number of milestones, and compare the time taken by the path-planning
algorithms. The experimental results show that on our mission DALi*
is faster than the single-source multiple-target optimization. Therefore,
in the remaining experiments we do not use the single-source multiple-
target optimization of DALi. The results of this preliminary experiment
are discussed in Subsection 10.6.2.

The experiments have been divided into 4 groups shown as follows:

1. Group I : agent amount: 1, presence of temporary obstacles and
heat areas: false, path-planning algorithms: A*, DALi and DALi*.

2. Group II : agent amount: 1, presence of temporary obstacles and
heat areas: true, path-planning algorithms: DALi and DALi*.

3. Group III : agent amount: 1 − 4, presence of temporary obstacles
and heat areas: false, path-planning algorithms: A*, DALi and
DALi*.

210 Paper C: Mission Plan Synthesis and Verification

4. Group IV : agent amount: 1 − 4, presence of temporary obstacles
and heat areas: true, path-planning algorithm: DALi*.

Group I for evaluating the performance difference between A* and DALi
algorithms (i.e., DALi and DALi*). Group II considers the effect of heat
areas and temporary obstacles on the performance of DALi algorithms.
The A* algorithm is not used in this group of experiments since it does
not support navigation in the presence of heat areas and temporary ob-
stacles. Groups III and IV consider multiple vehicles to see the influence
of the vehicle numbers on the performance of the DALi algorithms.

In the Figures 10.10-10.21, we show the influence of 1 or 2 parameters
on the execution time of our tool, while the remaining parameters are
set to default values: 1 vehicle, 10 milestones, 10 obstacles, 0 heat areas,
and granularity 4.

10.6.2 Comparison of DALi optimizations
In this preliminary experiment, we compare the path-planning time of
the basic DALi algorithm and two optimizations proposed in Subsec-
tion 10.4.1. The first optimization converts DALi into the single-source
multiple-target algorithm. Considering that our methodology requires
to compute paths between every pair of milestones, such optimization
drastically reduces the number of calls to the algorithm. The second
optimization referenced as DALi* uses an heuristic from the A* algo-
rithm.

The results show that both optimizations are significantly faster than
the original DALi algorithm. Among the two optimizations, the DALi*
is clearly the fastest. The results for the granularity set to 4 are shown
in Figure 10.10. Considering the results of this experiment, we do not
use the single-source multiple-target optimization in the following exper-
iments.

10.6.3 Comparison of A* and DALi

In the first group of experiments we create a mission plan for a sin-
gle vehicle with the A* algorithm and 2 versions of the DALi algo-
rithm without a consideration of heat areas and temporary obstacles.
We vary the number of milestones, the number of permanent obstacles,
and the granularity. We report the mean value of the execution time
of 5 runs. The time spent on the graph generation (Figure 10.11) and

10.6 Evaluation 211

Figure 10.10: Comparison of DALi and its optimizations

Figure 10.11: The first group of experiments: the graph genera-
tion time w.r.t. the granularity and the number of obstacles

212 Paper C: Mission Plan Synthesis and Verification

Figure 10.12: The first group of experiments: the UPPAAL call
time w.r.t. the number of milestones

Figure 10.13: The first group of experiments: the path-planning
time w.r.t. the granularity

10.6 Evaluation 213

on the UPPAAL call (Figure 10.12) is independent from the choice of
algorithms. The graph generation time depends on the granularity since
the number of nodes in a graph is inversely proportional to the square
of the granularity. In this group of experiments, only a single call to
UPPAAL is performed. The lack of temporary obstacles implies that
the generated plan can satisfy all constraints after the single UPPAAL
call. The number of milestones affects the size of the UPPAAL model
and, consequently, the time needed to synthesize a plan. The compu-
tation time of all path-planning algorithms depends on the graph size,
therefore the finer granularity the more time is used to compute paths
(Figure 10.13). Since paths have to be computed between each pair
of milestones, the total path-planning time grows with the number of
milestones (Figure 10.14). On both figures we can notice that A* and
DALi* have the same performance; whereas the original DALi is sig-
nificantly slower and is more drastically affected by the granularity and
the number of milestones. It is interesting to note that while A* and
DALi* are barely affected by the number of obstacles, DALi performs
20% faster with ten obstacles than that with a single one (Figure 10.15).
Indeed, obstacles reduce the number of nodes in the graph, which posi-
tively affects the path search time. Computation time of DALi* and A*
are less affected by this parameter: first of all, they scale better with the
number of nodes than DALi does and, therefore, a small reduction in
the number of nodes has a minor effect on the algorithms’ performance.
Moreover, the heuristic used in A* and DALi* uses the distance estima-
tion to the target node and obstacles on the path make the estimation
less reliable.

10.6.4 Evaluation of the Approach with Heat Areas
and Temporary Obstacles

In the second group of experiments, only two versions of DALi are eval-
uated, because the A* algorithm cannot take heat areas and temporary
obstacles into consideration. The mission has been specifically designed
to ensure that paths computed before the first call to UPPAAL would
cross the temporary obstacles. Therefore, the generation of a correct
mission plan requires a recomputation of several paths and additional
calls to UPPAAL.

The graph generation is unaffected by the presence of temporary ob-
stacles as they are not considered during the graph construction, however

214 Paper C: Mission Plan Synthesis and Verification

Figure 10.14: The first group of experiments: the path-planning
time w.r.t. the number of milestones

Figure 10.15: The first group of experiments: the path-planning
time w.r.t. the number of obstacles

10.6 Evaluation 215

nodes located inside the heat areas have to be marked. Thus, in Fig-
ure 10.16 we can notice that the graph generation time slightly rises
with the number of heat areas. The time for a single UPPAAL call has
not been affected by the presence of heat areas and temporary obstacles.
Figure 10.17 shows the results for the two versions of DALi. For com-
parison, we add the corresponding results from the previous group of
experiments without temporary obstacles. Due to the presence of tem-
porary obstacles, TAMAA requires up to 4 additional calls to the path-
planning algorithm and up to 2 additional calls to UPPAAL, though its
effect on the computation time of path planning is minor: a few seconds
for DALi and less than 1 second for DALi*. Indeed, for 1 vehicle all
UPPAAL calls require less than 0.6 seconds and the path-planning calls
(at granularity 4) take about 0.5 second for DALi and 0.07 seconds for
DALi*, respectively (Figure 10.18). The presence of heat areas does
not have a significant effect on the path-planning time (Figure 10.19).
Nevertheless, heat areas can change the shortest path and, as a result,
affect the number of recomputations of paths: a new path can lead to-
wards a temporary obstacle or, conversely, can help to avoid it. In the
experiment, we have the latter case: one of the heat areas changes a
shortest path between the start point and the first milestone and avoids
a temporary obstacle. As a result, the recomputation is not called, thus
the path-planning and total time are smaller than those of the initial
computation. In Figure 10.19, the path planning for 1 milestone and
5 heat areas takes only 0.4 seconds in comparison to 0.7 seconds for
1 milestone and 0 − 4 heat areas. Note that the path-planning for 4
or more milestones and 5 heat areas is not significantly faster than for
0 − 4 heat areas: paths between other milestones cross the temporary
obstacles causing the recomputation.

10.6.5 Results for Multiple Agents

In the third group of experiments, we evaluate how the tool performs
with multiple agents. Within this group, the mission with temporary
obstacles is used and the only considered path-planning algorithm is
DALi*. Agents have different speeds and subsets of tasks to do. We
assume that all agents can drive through any non-obstacle area and the
heat maps have the same slowing factor for all agents. Therefore, without
the consideration of temporary obstacles, the shortest path between a
pair of milestones can be the same for all agents.

216 Paper C: Mission Plan Synthesis and Verification

Figure 10.16: The second group of experiments: the graph gen-
eration time w.r.t. the number of heat areas

Figure 10.17: The second group of experiments: the path-
planning time w.r.t. the number of milestones

10.6 Evaluation 217

Figure 10.18: The second group of experiments: the mean path-
planning time

Figure 10.19: The second group of experiments: the path-
planning time w.r.t. the number of heat areas

218 Paper C: Mission Plan Synthesis and Verification

Figure 10.20: The third group of experiments: the path-planning
time w.r.t. the number of milestones

Figure 10.21: The third group of experiments: the UPPAAL time
w.r.t. the number of milestones

10.7 Adaptability of MALTA: a Special Industrial Use Case
219

Figure 10.22: An example of the autonomous quarry

An involvement of multiple agents in the mission has low effect on
the path-planning algorithm performance. The assumption above on
the common shortest paths for agents allows us to reuse paths between
milestones for all agents, thus an addition of an extra agent only requires
to compute paths from its starting location to other milestones. The
number of UTA used in TAMAA and, consequently, the complexity of
the composed model of multiple agents depend on the number of agents.

Figures 10.20 and 10.21 show the time required by DALi* and by
UPPAAL, respectively. Our tool times out during UPPAAL calls with no
result in cases of 3 agents with 5 milestones, and 4 agents with 3 mile-
stones. Therefore, figures 10.20 and 10.21 do not show the computation
time of these cases.

Introduction of temporary obstacles that requires additional calls to
UPPAAL roughly multiplies the computation time by the number of calls
to UPPAAL. Our previous work [17] proposes a method named MCRL
(model checking + reinforcement learning) to solve this scalability prob-
lem caused by large numbers of agents. We leave the integration of
MCRL into MALTA as a future work.

10.7 Adaptability of MALTA: a Special In-
dustrial Use Case

Variability of mission planning problems is immense. Even within the
autonomous quarry case study, there is a huge spectrum of require-
ments starting from safety properties to liveness properties [18], such
as agents must never go across a certain area when humans are working

220 Paper C: Mission Plan Synthesis and Verification

there (safety property), and agents should repetitively enter the charg-
ing points until they accomplish the mission (liveness property). Due to
high variability, it is infeasible to build a fully automated solution that
fits all possible cases efficiently. Therefore, the adaptability of a solution
plays a crucial role, which requires an easy way of adapting the agent
models and queries to different applications and their requirements.

In this section, we show an example of a variant of our industrial
case study: the autonomous quarry, which is sightly different from the
problem definition (i.e., Definition 7). We explain how to adapt MALTA
to the special use case depicted in Fig. 10.22. The quarry has 3 iden-
tical autonomous trucks transferring stones from a primary crusher to
a secondary crusher. Stones are gathered at the left side of the quarry
and can be loaded into the trucks either by the primary crusher or by
a wheel loader. The primary crusher is required to minimize idle time,
therefore the wheel loader can only be used if the primary crusher is al-
ready occupied by two trucks: one is being loaded and another is waiting
in a queue. Stones should be unloaded from the trucks at the secondary
crusher on the right part of the map. On the way between crushers
there are two charging stations. The use case requires trucks to stop
for charging every time they pass the charging stations, no matter how
much battery they have left. Each charging stop takes 30 seconds.

The use case has 3 trucks, 1 wheel loader, 1 primary crusher, and 1
secondary crusher. Besides the special charging task, there are 2 regular
tasks for trucks: loading stones that can either be performed at the
primary crusher or at the wheel loader, and unloading stones at the
secondary crusher.

Table 10.2: Machine parameters in the autonomous quarry

Machine Speed Rate Capacity
Mobile Autonomous truck 35 km/h 1.5 tons/s 15 tons

Stationary
Wheel loader / 1.5 tons/s /

Primary crusher / 0.25 tons/s /
Charging station / 30 s/time /

Table 10.2 shows the parameters of the machines in the quarry.
Trucks can carry 15 tones of stones, and the primary crusher can load
0.25 tons of stones per second, therefore the primary crusher takes 60
seconds to fill in one truck, while the wheel loader can do that in 10

10.7 Adaptability of MALTA: a Special Industrial Use Case
221

seconds. The trucks can unload 1.5 tons of stones per second, so trucks
unloading a full bucket of stones into the secondary crusher takes 10
seconds. The mission goal is to transfer 90 tons of stones as fast as
possible.

We use MALTA to create a mission plan for the trucks. The use case
does not specify distances in the quarry, therefore we assign them in a
manner that ensures that the trucks can finish the tasks without draining
out. For path planning, the DALi* algorithm is applied. However,
the use case imposes constraints on tasks that have not been covered
in Section 10.4, in particular the special task of charging and priority
between primary crusher and wheel loader. Therefore, we need to adjust
the already introduced UTA models and queries for this use case.

10.7.1 Adjustments of the Models

The use case has two requirements that are not supported directly by the
original model generated by MALTA. Besides, the topology of the map
is also changed to match the special geographic arrangement of machines
in the quarry. In this section we explain the modifications necessary to
incorporate the new requirements.

The original movement UTA assumes a direct connection between
every pair of milestones. However, the geographic arrangement of the
use case is different. As the charging stations occupy the center of the
quarry, trucks must pass them when traveling from the left to the right
of the quarry, and vice versa. Hence, the topology of the quarry for this
use case is adjusted. As depicted in Fig. 10.23a, the primary crusher,
wheel loader, and the secondary crusher are connected via the charging
stations. The generated movement UTA enforces the topology, and thus
only accepting the traveling between the charging stations and other
milestones. From a truck’s point of view, the wheel loader and primary
crusher are both for loading stones, so there is no need to connect the
wheel loader and primary crusher in the topology. The new requirement
of the charging task also induces other adjustments of the movement
UTA. Fig. 10.23b shows a part of the adjusted movement UTA, where
changes are highlighted by the blue and red squares. When a truck,
which is identified by variable id, leaves a charging station, its charging
task, which is represented by tf[1], must be executed. After the truck
leaves the charging station, the variable tf[1] flips to false so that the
next time it reaches a charging station, the charging task can be carried

222 Paper C: Mission Plan Synthesis and Verification

(a) The topology of the autonomous quarry in
Fig. 10.22

(b) A part of the adjusted movement TA

Figure 10.23: Adjustments of the model for the industrial use case.

out again.
The second additional requirement of this use case is the priority

between the primary crusher and the wheel loader. To fulfill such re-
quirement, an adaptation of the task execution UTA is necessary. As
depicted in Fig. 10.24, we add an additional constraint PCQueue > 2 to
the guard of the edge going to location T2_2 (representing task "Load-
ing at the wheel loader), where PCQueue is a global variable counting
the number of vehicles at the primary crusher. Therefore, the adapted
task execution UTA models that when the length of the waiting queue
at the primary crusher is less than two, trucks must go to the crusher;
otherwise, the trucks can choose to wait in the queue or go to the wheel
loader for loading stones. The synthesized mission plan is supposed to
make a wise choice in this case for the optimal productivity. In addition,
in the movement UTA, edges going into and leaving from the location
representing the primary crusher updates the PCQueue variable.

The mission of this use case is defined to carry all the stones to the

10.7 Adaptability of MALTA: a Special Industrial Use Case
223

Figure 10.24: A part of the adjusted task-execution UTA

secondary crusher rather than complete all the tasks a desired number
of times. Therefore, we add the auxiliary variables stone and load, which
represent the total volume of stones remained to be transferred and the
vehicles capacity, respectively.

10.7.2 Additional Adaptation of Queries and Models

The requirements formalised by Queries (10.7) - (10.9) are not changed
for the use case, however the Query (10.10) is replaced due to the differ-
ent mission formulation by:

E<> stone == 0 (10.11)

The use case has two additional requirements:

1. Prioritizing the primary crusher before the wheel loader: a truck
can choose the wheel loader only in case when there are two other
vehicles at the primary crusher (one being served and one in a
queue).

2. Battery charging: whenever a truck passes by a charging station,
it must stop there and charge for 30 seconds. The trucks’ batteries
must never be consumed before they finish the global mission.

The former requirement has a straightforward encoding into the follow-
ing UPPAAL query:

A[] PCQueue < 2 imply !(task0.T2_2 || ... || taskn.T2_2), (10.12)

224 Paper C: Mission Plan Synthesis and Verification

This query checks that at any moment in case of the queue at the primary
crusher being not full, the task execution UTA of any truck is not at the
location T2_2 that represents being loaded at the wheel loader.

The latter requirement consists of two parts. First, it requires the
trucks to always charge themselves right after they arrive at a charging
station. Second, it requires the trucks to charge themselves timely so
that their batteries are not consumed. A logic formalization of the first
part is called “always next”, i.e., the next action of moving to a charging
station is always charging. Unfortunately, the “always next” property
cannot be formalized in the query language supported by UPPAAL (a
subset of TCTL [9]). To overcome this difficulty, we design an auxiliary
UTA, to help us verify this requirement. Fig. 10.25 shows the auxiliary

Figure 10.25: The auxiliary UTA monitor for verifying the repetitive
charging requirement.

UTA, namely monitor, where channels arrive and charge synchronize
the movement UTA and the monitor UTA (see Fig. 10.23b too). The
channel exe is for synchronizing the task execution UTA and the monitor
UTA when the truck is going to execute a task (see Fig. 10.24 too).
Therefore, the monitor UTA initially stays at location Sleep when the
truck moves and executes tasks (i.e., two self-loops at location Sleep in
Fig. 10.25). If the truck is moving to a charging station, the monitor UTA
transfers to location Wait, and synchronizes with the movement UTA
via channel charge. Next, the monitor UTA has multiple choices of the
next transition: charging or executing other tasks (i.e., synchronization
via channel exe), or moving to other milestones (i.e., synchronization
via channel charge or arrive). A Boolean variable ts[1] is used to
indicate whether the current truck is charging or not. The edge from
location Wait to location Sleep is guarded by this variable, meaning
that only charging can make the monitor UTA go back to its initial

10.7 Adaptability of MALTA: a Special Industrial Use Case
225

location, whereas other transitions will end up to a location representing
errors. In summary, the monitor UTA regulates the correct order of a
truck’s task execution, i.e., moving to a charging station must be always
succeeded by charging. If the trucks violate this regulation, they will be
stuck at the Error location. The contraposition of this statement forms
the “always next” constraint in the battery-charging requirement: if the
truck models never visit the Error location, the next action of moving
to a charging station is always charging. Now, we encode an invariance
query to verify this property:

A[] !monitor0.Error && ... && !monitorn.Error (10.13)

Query (10.13) requires that monitors of trucks never reach the Error
location. Satisfying this query indicates that the trucks always charge
themselves after arriving at a charging station.

To verify the second part of the battery-charging requirement, we
need to add an array of integers to store the battery levels of trucks.
When a truck moves, the corresponding integer of its battery level de-
creases. The consumption rate is assumed to be proportional to the
truck’s traveling time. If the truck charges, the integer increases. The
CTL query that encodes this property is as follows, where N is the index
of the last truck.

A[] forall(i:int[0,N]) battery[i]>0 (10.14)

10.7.3 Synthesis Results

Given the machine parameters shown in Table 10.2, we use MALTA to
synthesize a mission plan that controls the three trucks to transport 90
tons of stones to the secondary crusher while satisfying all the require-
ments of the use case, and find the fastest way to finish the global mis-
sion. After running MALTA to generate the fastest trace that satisfies
Query (10.11), a synthesized result of mission plan is illustrated in MMT
(Fig. 10.26). Fig. 10.26a shows the paths of avoiding static obstacles and
visiting different milestones. The task schedule (Fig. 10.26b) shows the
interleaving sequence of movement (empty rectangles) and task execu-
tion (solid rectangles). One can check the details of path plans by clicking
on the empty rectangles, and then the corresponding path plans will be
highlighted in the GUI of path plans. The mission plan shows that the
fastest time of transporting all the stones is 6.9 minutes. The fact that

226 Paper C: Mission Plan Synthesis and Verification

(a) The path plans of trucks

(b) A part of the Gantt chat presenting the task schedules of trucks

Figure 10.26: A mission plan of trucks working in the autonomous quarry
of Fig. 10.22

a mission plan is depicted in MMT demonstrates that Queries (10.12) -
(10.14) are satisfied.

10.8 Related Work
Path planning, a.k.a., motion planning in the Artificial Intelligent (AI)
community, has been an interest of research since the early days of

10.8 Related Work 227

robotics [19]. Sampling-based methods like Rapidly-exploring Random
Tree (RRT) [3] and a method based on probabilistic roadmaps for path
planning [20], and graph-search-based methods like A* [2] and Theta*
[21] are two typical branches of path-planning algorithms. The main
contribution of these algorithms is to find collision-free paths in a static
and continuous world, in which the topology of the moving space does
not change. Moreover, when a robot starts to interact with the world,
e.g., picking an object and carrying it to another position, the robot’s
and object’s dynamics and kinematics are changed, which can cause the
initial motion plan to be unsuitable. Alami et al. [22] and Hauser et
al. [23] propose a modal structure of the robots and their working en-
vironments. Since the switch of modes is discrete, the problem is about
identifying the modes of the systems, defining the transitions among the
modes, and traversing the state spaces in order to find a trace that satisfy
some certain constraints. This is the so-called task planning in the AI
community [24]. These approaches do not guarantee correctness unless
coupled with a formal verification technique.

Integrating task and motion planning (TAMP) provides us a good
understanding of our problem: hybrid discrete-continuous search prob-
lem [25]. Research in this area often combines AI and robotics and
seeks to provide a separation of concerns by designing hierarchical frame-
works, in which high-level task planning and low-level motion planning
are separated into different layers, and connected via an intermediate
layer [11, 26]. Downward refinement in the methods proposed by Bac-
chus et al. [27] and Nilsson et al. [19] first plans at the high level and
then refines the high-level plans to low-level ones. The authors assume
that their problems fulfil the downward refinement property [27], which
is often not the case in reality. Our method, on the contrary, starts from
the low level to calculate path plans that are collision-free, and then
integrates the path-planning results into the model for task planning.
Therefore, our task-planning results are naturally collision-free.

There is an important line of work of task planning that uses temporal
logic to specify the high-level requirements of tasks [28, 29]. Linear
Temporal Logic (LTL) is the most widely used logic for requirement
specification [30, 31, 32], because of its expressive power that is able
to capture relatively complex requirements, such as repetitively filling
the water tank if the water level is lower than a certain level. Different
from these studies, we adopt Timed Computation Tree Logic (TCTL).
(T)CTL and LTL are members of a temporal logic family named CTL*

228 Paper C: Mission Plan Synthesis and Verification

[18]. Each of them has its own expressive power and thus is used in
different problems. TCTL enables one to express timed requirements
such as digging 1000m3 of stones per 24 hours, which is of high industrial
concern, in an attempt to ensure productivity when using autonomous
vehicles. Most importantly, our task planning is fully integrated with
path planning. Therefore, the results of our method comprehensively
consider both the traveling time, as well as the task execution time and
order.

In the formal methods community, task planning is being challenged
by various formalisms and methods. When the formalisms only have
stochastic models, the problems fall into a category called 1

2 -player games
[15]. In 1

2 -player games, neither agents nor environments get the control
of their behaviors and the corresponding outcome, e.g., flipping a coin.
By replacing the stochastic behaviors of agents with non-deterministic
choice of actions, 1

2 -player games are changed to 1-player games, which is
the problem that we are solving in this paper. Note that, 1-player games
assume that the environment is fully controlled by the agents, so that the
winning strategies are totally dependent on the behaviors of the agents
[15]. Besides UPPAAL, there are many other tools that aim to solve this
kind of problems, e.g., Kronos [33], LTSim [34], and SpaceEx [35]. The
major difference between our tool and these mentioned ones is that our
MALTA tool integrates path-planning algorithms and task-scheduling al-
gorithms, and has a dedicated GUI for mission planning, which provides
interfaces for extension. Adding stochastic behaviors to environments
makes the formalism represented as a 1 1

2 -player game, and changing the
stochastic behaviors of environments into non-deterministic ones that
are independent from agents makes the formalism to be a 2-player game
[15], both of which are out of the scope of this paper. There are stud-
ies that investigate synthesizing controllers from various temporal logic
specifications. Alur et al. [36, 37] propose a compositional method for
synthesizing reactive controllers satisfying Linear Temporal Logic spec-
ifications for multi-agent systems. Tumova et al. [38, 39] present their
method for motion planning of multiple-agent systems using Metric In-
terval Temporal Logic (MITL). Inspired by these works, our study aims
to bring up a methodology that is dedicated to collectively solve multi-
agent mission planning that includes two components: path finding and
task scheduling, and deal with complex environmental constraints and
timing requirements of tasks.

In the field of robotics, design and development of GUI for planning,

10.9 Conclusions and Future Work 229

execution and supervision of missions involving several autonomous ve-
hicles is getting increasingly much attention [40]. Such a GUI allows the
operator of autonomous vehicles to plan and supervise several vehicles
at the same time. Such user interfaces have been a research topic for
different use cases including delivery services [41], military applications
[42] and others [43, 44, 45]. Most of these GUI however, are designed for
specific use cases and cannot be used as a generic graphical user interface
for other domains. In this work we employ MMT which is a GUI that
can be setup to communicate with different planners and autonomous
vehicles. MMT has been used for planning and supervising underwater
autonomous vehicles previously [10].

10.9 Conclusions and Future Work

In this article, we have presented a new methodology and a toolset to
solve the mission planning problem of multiple autonomous agents. Our
methodology includes an improved version of DALi for path planning,
a timed-automata-based method for task scheduling, namely TAMAA,
and an integration of these two methods to provide a complete solution
of synthesis and verification of mission plans for multiple agents. As
the improved version of DALi considers special road conditions, such as
temporary obstacles, our method can deal with complex environments.
TAMAA is based on formal modeling and model checking, so the synthe-
sized task schedules are guaranteed to be the correct and the fastest to
finish all tasks. The integration of DALi and TAMAA requires an itera-
tive computation between path planning and task scheduling so that the
result mission plans consider both the traveling time and task-execution
time and are guaranteed to be the optimal solution. The methods have
been implemented as a toolset named MALTA, which is made of three
components. The front end of MALTA is a GUI for configuring the mis-
sion requirements and showing the results of mission planning. The back
end of MALTA, which is responsible for running computational expen-
sive functions, can be deployed locally or remotely. The middleware of
MALTA bridges the front end and back end, so the users can focus on de-
signing the map and tasks for the agents, and benefit from the algorithms
of path planning and task scheduling without knowing the technical de-
tails. We have employed the toolset to solve a mission-planning problem
of an industrial use case of an autonomous quarry. We have observed the

230 Paper C: Mission Plan Synthesis and Verification

computation time w.r.t. the numbers of obstacles, agents, heat areas,
milestones, and the granularity of the map. The experimental results
demonstrate the capability and limit of our method. An instantiated
quarry is introduced and solved to show the flexibility of our method to
fit various applications of mission planning.

There are two potential directions to extend our work in the future.
One is to enrich the path-planning and task-scheduling algorithms sup-
ported by MALTA, so that the toolset can cope with more complex
problems such as more agents or larger environments. To integrate the
toolset with machine learning techniques is another direction. As the
current task scheduling assumes the environment to be collaborative, it
can be interesting to investigate how the method can be adapted when
the environment contains some competitive agents.

Acknowledgments
We acknowledge the support of the Swedish Knowledge Foundation via
the profile DPAC - Dependable Platform for Autonomous Systems and
Control, grant nr: 20150022, and via the synergy ACICS – Assured
Cloud Platforms for Industrial Cyber-Physical Systems, grant nr. 20190-
038.

Bibliography

[1] Stan Franklin and Art Graesser. Is it an agent, or just a program?:
A taxonomy for autonomous agents. In International Workshop on
Agent Theories, Architectures, and Languages. Springer, 1996.

[2] Steve Rabin. Game programming gems, chapter a* aesthetic opti-
mizations. Charles River Media, 2000.

[3] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. In Technical Report, 1998.

[4] J. K. Lenstra. Job shop scheduling. In Mustafa Akgül, Horst W.
Hamacher, and Süleyman Tüfekçi, editors, Combinatorial Opti-
mization. Springer, 1992.

[5] Yasmina Abdeddaı, Eugene Asarin, Oded Maler, et al. Scheduling
with timed automata. Elsevier, 2006.

[6] Alessio Colombo, Daniele Fontanelli, Axel Legay, Luigi Palopoli,
and Sean Sedwards. Efficient customisable dynamic motion plan-
ning for assistive robots in complex human environments. Journal
of ambient intelligence and smart environments, 2015.

[7] Rong Gu, Eduard Paul Enoiu, and Cristina Seceleanu. Tamaa:
Uppaal-based mission planning for autonomous agents. In The 35th
ACM/SIGAPP Symposium On Applied Computing SAC2020, 30
Mar 2020, Brno, Czech Republic, 2019.

[8] Rajeev Alur and David L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126, 1994.

231

232Bibliography

[9] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John
Håkansson, Paul Pettersson, Wang Yi, and Martijn Hendriks. Up-
paal 4.0. 2006.

[10] E Afshin Ameri, Baran Cürüklü, Branko Miloradovic, and Mikael
Ektröm. Planning and supervising autonomous underwater vehi-
cles through the mission management tool. In Global Oceans 2020:
Singapore–US Gulf Coast, pages 1–7. IEEE, 2020.

[11] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Towards a two-layer framework for verifying au-
tonomous vehicles. In NASA Formal Methods Symposium. Springer,
2019.

[12] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. In Advanced Course on Petri Nets. Springer,
2003.

[13] Edsger W Dijkstra et al. A note on two problems in connexion with
graphs. Numerische mathematik, 1959.

[14] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE
transactions on Systems Science and Cybernetics, 1968.

[15] Peter Gjøl Jensen. Efficient analysis and synthesis of complex quan-
titative systems. 2018.

[16] Rong Gu, Peter Jensen, Danny Poulsen, Cristina Seceleanu, Ed-
uard Paul Enoiu, and Kristina Lundqvist. Verifiable strategy syn-
thesis for multiple autonomous agents: A scalable approach. Inter-
national Journal on Software Tools for Technology Transfer, 2022.

[17] Rong Gu, Eduard Paul Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Verifiable and scalable mission-plan synthesis for multi-
ple autonomous agents. In 25th International Conference on Formal
Methods for Industrial Critical Systems. Springer, 2020.

[18] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT press, 2008.

[19] Nils J Nilsson et al. Shakey the robot. 1984.

Bibliography 233

[20] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Over-
mars. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE transactions on Robotics and Automa-
tion, 1996.

[21] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelligence
Research, 2010.

[22] Rachid Alami, Thierry Simeon, and Jean-Paul Laumond. A geomet-
rical approach to planning manipulation tasks. the case of discrete
placements and grasps. In The fifth international symposium on
Robotics research. MIT Press, 1990.

[23] Kris Hauser and Jean-Claude Latombe. Multi-modal motion plan-
ning in non-expansive spaces. The International Journal of Robotics
Research, 2010.

[24] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning
and acting. Cambridge University Press, 2016.

[25] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon
Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Integrated task and motion planning. Annual review of control,
robotics, and autonomous systems, 2021.

[26] Gopinadh Sirigineedi, Antonios Tsourdos, Brian A White, and Rafal
Zbikowski. Modelling and verification of multiple uav mission using
smv. arXiv preprint arXiv:1003.0381, 2010.

[27] Fahiem Bacchus and Qiang Yang. Downward refinement and the ef-
ficiency of hierarchical problem solving. Artificial Intelligence, 1994.

[28] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
transactions on robotics, 2009.

[29] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal methods
for discrete-time dynamical systems. Springer, 2017.

[30] Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. Ltl-
mop: Experimenting with language, temporal logic and robot con-
trol. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2010.

234Bibliography

[31] Mingyu Cai, Hao Peng, Zhijun Li, and Zhen Kan. Learning-based
probabilistic ltl motion planning with environment and motion un-
certainties. IEEE Transactions on Automatic Control, 2020.

[32] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi. Sampling-based
motion planning with temporal goals. In 2010 IEEE International
Conference on Robotics and Automation. IEEE, 2010.

[33] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis, and Sergio Yovine. Kronos: A model-checking tool for real-
time systems. In International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems. Springer, 1998.

[34] Stefan Blom, Jaco van de Pol, and Michael Weber. Ltsmin: Dis-
tributed and symbolic reachability. In International Conference on
Computer Aided Verification. Springer, 2010.

[35] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,
Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard,
Thao Dang, and Oded Maler. Spaceex: Scalable verification of
hybrid systems. In International Conference on Computer Aided
Verification. Springer, 2011.

[36] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Compositional syn-
thesis of reactive controllers for multi-agent systems. In Interna-
tional Conference on Computer Aided Verification, pages 251–269.
Springer, 2016.

[37] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Compositional and
symbolic synthesis of reactive controllers for multi-agent systems.
Information and Computation, 261:616–633, 2018.

[38] Fernando S Barbosa, Lars Lindemann, Dimos V Dimarogonas, and
Jana Tumova. Integrated motion planning and control under met-
ric interval temporal logic specifications. In 2019 18th European
Control Conference (ECC). IEEE, 2019.

[39] Alexandros Nikou, Dimitris Boskos, Jana Tumova, and Dimos V
Dimarogonas. On the timed temporal logic planning of coupled
multi-agent systems. Automatica, 97:339–345, 2018.

Bibliography 235

[40] JW Eggers and Mark H Draper. Multi-uav control for tactical
reconnaissance and close air support missions: operator perspec-
tives and design challenges. In Proc. NATO RTO Human Factors
and Medicine Symp. HFM-135. NATO TRO, Neuilly-sur-Siene,
CEDEX, Biarritz, France, pages 2011–06, 2006.

[41] Khin Thida San, Sun Ju Mun, Yeong Hun Choe, and Yoon Seok
Chang. Uav delivery monitoring system. In MATEC Web of Con-
ferences. EDP Sciences, 2018.

[42] Youngjoo Kim, Wooyoung Jung, Chanho Kim, Seongheon Lee, Ki-
hyeon Tahk, and Hyochoong Bang. Development of multiple un-
manned aircraft system and flight experiment. In 2015 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS). IEEE,
2015.

[43] Daniel Perez, Ivan Maza, Fernando Caballero, David Scarlatti, En-
rique Casado, and Anibal Ollero. A ground control station for a
multi-uav surveillance system. Journal of Intelligent & Robotic Sys-
tems, 2013.

[44] Bae Hyeon Lim, Jong Woo Kim, Seok Wun Ha, and Yong Ho Moon.
Development of software platform for monitoring of multiple small
uavs. In 2016 IEEE/AIAA 35th Digital Avionics Systems Confer-
ence (DASC). IEEE, 2016.

[45] Espen Skjervold et al. Autonomous, cooperative uav operations
using cots consumer drones and custom ground control station. In
MILCOM 2018-2018 IEEE Military Communications Conference
(MILCOM). IEEE, 2018.

Chapter 11

Paper D: Probabilistic
Mission Planning and
Analysis for Multi-agent
Systems

Rong Gu, Eduard Enoiu, Cristina Seceleanu, and Kristina Lundqvist
Published in Proceedings of the 9th International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation, Springer,
2021.

237

Abstract

Mission planning is one of the crucial problems in the design of au-
tonomous Multi-Agent Systems (MAS), requiring the agents to calculate
collision-free paths and efficiently schedule their tasks. The complexity
of this problem greatly increases when the number of agents grows, as
well as timing requirements and stochastic behavior of agents are consid-
ered. In this paper, we propose a novel method that integrates statistical
model checking and reinforcement learning for mission planning within
such context. Additionally, in order to synthesise mission plans that are
statistically optimal, we employ hybrid automata to model the continu-
ous movement of agents and moving obstacles, and estimate the possible
delay of the agents’ travelling time when facing unpredictable obstacles.
We show the result of synthesising mission plans, analyze bottlenecks
of the mission plans, and re-plan when pedestrians suddenly appear, by
modelling and verifying a real industrial use case in UPPAAL SMC.

11.1 Introduction 239

11.1 Introduction

Multi-Agent Systems (MAS) draw a wide interest in academia and indus-
try, mostly due to their autonomous functions that ease people’s daily
lives and improve industrial productivity. Mission planning for MAS in-
volves path planning and task scheduling, and is one of the most critical
problems when designing such systems [1]. There are path-planning al-
gorithms that have already proved useful for autonomous systems, e.g.,
RRT [2] and Theta* [3]. These algorithms are able to calculate collision-
free paths towards a destination, yet they do not consider complex re-
quirements and uncertainties in the environment. For instance, if agents
need to prioritize or repetitively execute some tasks, path planning is not
enough. In addition, when the task execution time is uncertain, or some
moving objects such as humans and other machines appear irregularly
in the environment, autonomous agents need to consider these factors
when synthesising mission plans so that the resulting plans are com-
prehensive. Task scheduling algorithms are designed to solve the above
problems. However, since task scheduling is an NP-hard problem, when
the number of agents becomes large, traditional methods cannot man-
age to produce a result even for a simple instance with very restrictive
constraints [4].

In our previous work, we have formally defined and modeled the
movement and task execution of MAS [5], and proposed a combined
model-checking and reinforcement learning method [6], to synthesise
mission plans that are proved to satisfy complex requirements obtained
from industry. However, when the agents perform some uncertain ac-
tions, e.g., unstable time of moving and operating, or the environment
contains some stochastic phenomena, e.g., humans crossing the roads
unpredictably, the proposed method does not provide quantitative veri-
fication and analysis, which is best suited in these cases.

In this paper, we propose an adjusted version of our method called
MCRL (Model Checking + Reinforcement Learning) [6] to provide a
means of synthesizing and analyzing mission plans for MAS with uncer-
tainties of the type mentioned above. The method is based on Stochastic
Timed Automata (STA) and statistical model checking (by employing
UPPAAL SMC), and combines the latter with reinforcement learning.
Instead of exhaustively exploring the state space of the model and look-
ing for the execution traces that satisfy certain requirements, MCRL uses
the simulation function of UPPAAL SMC to execute the model. Then,

240 Paper D: Probabilistic Mission Planning

it adopts a reinforcement learning algorithm, namely Q-learning [7], to
accumulate the rewards of the state-action pairs gathered in the simu-
lation, and populate a Q-table that is used to guide the agents to move
safely and finish tasks within a prescribed time limit. As the STA de-
scribe the stochastic behavior of the agents and uncertain events in the
environment by probability distributions, based on which the simulation
is executed, the collected state-action pairs reflect the possible scenarios
that the agents would probably meet in the environment. Therefore, as
long as the simulation generates enough data, the synthesised mission
plans are comprehensive and optimal.

To estimate the possible delays of executing mission plans when the
agents encounter unexpected situations, e.g., pedestrians, we adopt a
hybrid-automata (HA) model of the agents that are equipped with a
state-of-the-art collision-avoidance algorithm based on dipole flow fields
[8]. By simulating and statistically verifying the HA model, we can get
the estimated travelling time of the agents [9], respectively, which is then
used to construct the STA model that is used for synthesising mission
plans. Next, statistical verification and simulation of the STA are con-
ducted in UPPAAL SMC in order to analyze the synthesised mission plans
in an environment model containing uncertainties, which is not feasible
by purely using reinforcement learning algorithms. To summarize, the
contributions of this paper are:

• An innovative approach based on MCRL for synthesizing and analyzing
mission plans for MAS that exhibit stochastic behavior.

• An effective combination of the STA and HA models of MAS, which
enables the estimation of travelling time considering unexpected situ-
ations, and thus produces comprehensive mission plans.

• An evaluation of the method showing the ability of analyzing the bot-
tleneck of mission plans and re-planning when facing unpredictable
moving obstacles.

The remainder of the paper is organized as follows. In Section 11.2, we
introduce the preliminaries of this paper. Section 11.3 presents the prob-
lem and challenges. In Section 11.4, we introduce the adjusted version of
MCRL and its combination with the HA model. Section 11.5 presents the
bottleneck analysis as well as the ability of re-planning. In Section 11.6,
we compare to related work, before concluding and outlining possible
future work in Section 11.7.

11.2 Preliminaries 241

11.2 Preliminaries
In this section, we introduce Stochastic Timed Automata and UPPAAL
SMC, reinforcement learning, and a two-layer framework that we have
proposed previously for formal modeling and verification of autonomous
agents.

11.2.1 Stochastic Timed Automata and UPPAAL SMC

(a) A STA modeling passengers
(b) A STA modeling an airport

Figure 11.1: STA modeling a scenario of passengers arriving at an airport
and taking off

UPPAAL SMC [10] is an extension of the tool UPPAAL [11], which
supports Statistical Model Checking (SMC) of Stochastic Timed Au-
tomata (STA). STA is a widely used paradigm for modeling the proba-
bilistic behavior of real-time systems. The basic elements of STA are lo-
cations and edges connecting them. Time can elapse at locations, which
is reflected by the increased values of clock variables in delayed tran-
sitions of STA, whereas transitions between locations are non-delayed.
The delays at locations follow probabilistic distributions, which are ei-
ther uniform distributions for time-bounded delays, or exponential dis-
tributions (with user-defined rates) for unbounded delays. The choices
between multiple enabled non-delayed transitions are also probabilistic.

Fig. 11.1 depicts a network of STA modeling the scenario of passen-
gers arriving at an airport and taking off. Fig. 11.1a shows the model
of passengers, who randomly arrive at the airport. The arriving time
follows the exponential distribution as it is modeled by an unbounded
delay at location Arriving. The constant “5 ” is the exponential rate
that can be replaced by any rational number. The channels (e.g., enter
and takeoff) model the handshaking interaction between STA. Note that

242 Paper D: Probabilistic Mission Planning

UPPAAL SMC only supports broadcast channels for a clean semantics
of purely non-blocking automata. When a passenger enters an airport,
the corresponding STA moves to location Leaving simultaneously with
the airport STA (Fig. 11.1b) moving from location Wait to Handling,
synchronized via the channel enter. Next, the airport STA goes to a
branch point leading to two locations, namely Crowded and Uncrowded,
respectively. The constants, “20 ” and “80 ”, are the probability weights
of the edges marked by the dashed lines in Fig. 11.1b, meaning that
the probability of entering a crowded airport is 80%, and 20% for an
uncrowded one. Delays at locations such as location Crowded are time-
bounded, as the locations are constrained by invariants (e.g., c <= 10),
so the delay time at these locations should not surpass the upper bound-
ary specified by the invariants, respectively. If the outgoing edges of such
locations are guarded by conditions, e.g., c >= 5 in our case, the STA
cannot leave the locations until the lower boundaries of the guards are
exceeded. A uniform distribution is set for the time-bounded delays by
default in UPPAAL SMC, which is also adopted in this paper. Variables
can be updated by assignments (e.g., c = 0) or C-code functions on the
edges.

11.2.2 Reinforcement Learning

Reinforcement learning is a branch of machine learning that enables
agents to learn how to take actions by themselves, in an environment.
In this paper, we employ Q-learning [7] as the reinforcement learning al-
gorithm to generate policies of movement and task execution for agents.
A policy is associated with a state action value function called Q func-
tion, where “Q” stands for “quality”. The optimal Q function satisfies
the Bellman optimality equation:

q∗(s, a) = E[R(s, a) + γ max
a′

q∗(s′, a′)], (11.1)

where q∗(s, a) represents the expected reward of executing action a at
state s, E denotes the expected value function, R(s, a) is the reward
obtained by taking the action a at state s, γ is a constant of discounting,
s′ is the new state coming from state s by taking action a, max

a′
q∗(s′, a′)

represents the maximum reward that can be achieved by any possible
next state-action pair (s′, a′). The equation means that the expected
reward of the state-action pair (s, a) is the sum of the current reward

11.2 Preliminaries 243

and the discounted maximum future reward. The Bellman equation
accumulates the Q-values of state-action pairs and guarantees the values
to converge to the maximum Q-value during the learning process [12].
In this paper, we use the simulation function in UPPAAL SMC to gather
the information of state-action pairs in files, and invoke a Java program
to parse the data and run the Q-learning algorithm, so that a Q-table is
populated.

11.2.3 A Two-Layer Framework for Formal Modelling
and Verification of Autonomous Agents

To provide a separation of concerns for the formal modeling and verifica-
tion of autonomous agents, we have proposed a two-layer framework [9].
In this framework, a static layer is responsible for mission planning and
only concerns static obstacles and milestones where the tasks are carried
out. The dynamic layer uses hybrid automata (HA) [13] to model the
continuous movement and operations of the agents in UPPAAL SMC. In
addition, UPPAAL SMC provides a “spawning” function to dynamically
generate instances of HA models during the verification, which enables
one to mimic the sudden appearance of obstacles (e.g., pedestrians),
which are considered unpredictable before the agents get close to them.

Fig. 11.2a shows the HA that generates pedestrians. As long as
the number of pedestrians does not exceed a maximum number (i.e.,
“pedeNum<M”), the self-loop edge of location G0 is enabled, which in-
vokes the spawning function to generate an instance of the pedestrian
model. The constant “0.1 ” denotes the rate of the exponential prob-
ability distribution of the pedestrians’ appearance. Fig. 11.2b depicts
the HA that models the continuous linear movement of agents. The
model contains four locations, representing the four moving statuses of
agents: idle, acceleration, constantly moving, and deceleration. At the
each of the locations, the derivatives of speed and positions are regu-
lated by Newtonian laws of motion in the form of ordinary differential
equations (ODE). In a nutshell, the HA model describes the continuous
movement of agents, and thus the simulation of the model reflects the
agents’ moving trajectories when circumventing obstacles. For brevity,
we refer readers to the literature [9] for details. In this paper, we use
this HA model to generate the moving trajectories of pedestrians and
agents, and UPPAAL SMC to estimate the prolonged traveling time of
the agents caused by collision avoidance, which is used for re-planning.

244 Paper D: Probabilistic Mission Planning

(a) An example of HA generating
pedestrians

(b) An example of HA modeling the lin-
ear movement of agents

Figure 11.2: Examples of HA model in the dynamic layer of the frame-
work

11.3 Problem Description

In this section, we introduce the research problem that originates from
an industrial use case of an autonomous quarry, containing various au-
tonomous vehicles, e.g., trucks, wheel loaders, etc. For example, as
shown in Fig. 11.3, in an autonomous quarry, a wheel loader digs stones
at stone piles and loads them into trucks, which carry the stones to a
primary crusher, where stones are crushed into fractions, and proceed
to carry the crushed stones to the secondary crushers, which is the des-
tination. To accomplish their tasks and guarantee a certain level of
productivity, these autonomous vehicles need to calculate collision-free
paths and schedule their tasks (e.g., digging stones) to finish their jobs
within a time frame. In this paper, henceforth, we name path planning
and task scheduling as mission planning in general. As our solution is
generic and suits all kinds of autonomous systems that need to synthe-
sise mission plans, the autonomous vehicles in this paper are referred to
as autonomous agents [14].

In this paper, path planning is accomplished by the Theta* algorithm
[3] as the environment in the problem is a 2D map and the algorithm
is especially good at generating smooth paths with any-angle turning

11.3 Problem Description 245

Figure 11.3: An example of an autonomous quarry

points in 2D maps. Task scheduling acquires satisfaction of various re-
quirements, e.g., task assignment, execution order, and timing require-
ments. We extract the requirements of the autonomous quarry from our
industrial partner, and generically categorize them as follows:

• Task Assignment. The task must be assigned to the right milestone
containing the corresponding device.

• Execution Order. The task execution order must be correct, e.g., un-
loading into the primary crusher can start only after digging stones
finishes.

• Milestone Exclusion. Some milestones containing a device that only
allows one agent to operate at a time are exclusive when they are
occupied.

• Timing. Tasks must be completed within a prescribed time frame.

The complexity of path planning of multiple agents increases linearly
as the number of agents grows, because the path-planning algorithm
runs on each individual agent and it does not consider the paths of
other agents, as the collision avoidance is dealt with when the agents are
actually moving. In other words, the time to calculate paths for multiple
agents is the sum of the computation time of each agent. However,
the task-scheduling problem is NP-hard and involves uncertainties that
traditional methods do not consider [4].

246 Paper D: Probabilistic Mission Planning

• Uncertain execution time of tasks. The execution time of tasks is not
a fixed value, but it is a time interval between the best-case execu-
tion time (BCET) and worst-case execution time (WCET), which are
usually different.

• Uncertain movement time. Since some milestones are exclusive, when
an agent approaches an occupied milestone, it most probably should
wait until it is released. The waiting time is uncertain.

• Uncertain environment. Human workers sometimes appear in the sites
but do not always stay there. This requires the agents to avoid those
workers at all cost, and adjust their mission plans accordingly, in order
to maintain productivity.

These features make our problem even more difficult than the classic
scheduling problem. For example, if human workers appear irregularly,
it is hard to estimate their influence on the traveling time of agents. We
formulate the target problems of this paper as follows.
Overall Challenge. Given a confined environment containing multiple
autonomous agents, several predefined milestones and static obstacles,
some unpredictable moving objects or humans, a set of tasks for the
agents to finish in order to satisfy some requirements, the goal is to
synthesize mission plans for these agents, such that:

• The mission plans satisfy the requirements that are categorized previ-
ously;

• The mission plans consider the uncertainties in the environment and
handle them effectively so that the agents could finish tasks under
various conditions;

• The solution provides a means of statistical analysis of the synthesised
mission plans to investigate the bottleneck of the plans, and an ability
of re-planning when facing disturbance, e.g., pedestrians.

11.4 Mission Planning Based on Reinforce-
ment Learning and Stochastic Timed
Automata

In this section, we introduce the modelling of MAS using STA, which is
based on a method called MCRL [6]. MCRL combines model checking

11.4 Mission Planning Based on Reinforcement Learning and
Stochastic Timed Automata 247

and reinforcement learning, which enables the method to cope with large
numbers of agents and verify the synthesised mission plans. The use of
stochastic timed automata in this paper extends MCRL with the ability
of modelling stochastic behaviors. We also present some queries that are
used in this method for statistical analysis of the mission plans.

11.4.1 MCRL: Combining Model Checking and Re-
inforcement Learning for Mission Planning

Previously, we have presented the formal definitions of agent movement
and task execution and the model-generation algorithms to generate
Timed Automata (TA) for mission-plan synthesis [5]. This initial work
provides a theoretical foundation and a tool called TAMAA, based on
which a novel approach is designed to synthesise mission plans, namely
MCRL.

Overall Description of MCRL.

Figure 11.4: The process of the MCRL method

As Fig. 11.4 depicts, MCRL consists of three phases. First, it sim-
ulates the TA that models the movement and task execution of au-
tonomous agents by running the Monte Carlo simulation query in UPP-
AAL SMC. The introduction of the TA model is in the literature [6].
The multi-round simulation produces the execution traces of the model.
Some of them satisfy our requirements, e.g., finishing tasks in time, cor-
rect execution order of tasks; some traces fail, e.g., exceeding the time
limit. The successful traces are assigned with positive values, which are
calculated by (ST −FT)2, where ST is the simulation time, FT is time
of reaching the desired state, e.g., finishing all tasks; whereas a fixed
negative value is assigned to all the failed traces.

248 Paper D: Probabilistic Mission Planning

Next, the traces and their values are input into the model-training
phase, where a reinforcement learning algorithm, namely Q-learning,
is performed to generate a Q-table. The Q-table contains the state-
action pairs and their values that are accumulated by running Equation
(11.1) using the data of the input traces. This equation guarantees
that the values of state-action pairs converge, as long as the simulation
has produced enough data of execution traces. Eventually, the Q-table
is injected back to the TA model of agents, where a new TA named
conductor is created so that the behavior of the agent model is controlled
by it. The conductor TA looks up the Q-table and chooses the action
that owns the highest value among the available actions at the current
state for the agents to perform. Each agent model has its own conductor
TA so that the agents can make decisions distributedly. However, as the
Q-table contains the state-action pairs of all agents, when their actions
conflict, e.g., moving to the same exclusive milestone simultaneously,
the agents can compare their rewards of actions with others, and let
the one having the highest reward to perform. In this way, the Q-table
serves as the mission plan we intend to synthesise. In addition, since the
method utilizes random simulation and reinforcement learning instead
of pure exhaustive model checking, the solution is scalable for systems
with large numbers of agents. For a detailed introduction of the method,
we refer readers to the literature [6].

Although Q-learning strengthens MCRL’s ability of handling large
numbers of agents, the method provides no means of handling unpre-
dictable events, which is important as the environment is uncertain.
This limitation stems from the use of timed automata. This modelling
language cannot depict the stochastic events in the environment. For
example, when human workers sporadically appear in the environment,
MCRL cannot estimate the possible delay that is caused by the detour
taken by the agents to avoid humans. In addition, industries always fo-
cus on productivity. The waiting time of agents at exclusive milestones
is an unnecessary consumption of time, but it is hard to capture as the
waiting time depends on multiple factors. Original MCRL is not able to
provide this kind of analysis, as it does not use any statistical analysing
techniques.

11.4 Mission Planning Based on Reinforcement Learning and
Stochastic Timed Automata 249

11.4.2 Stochastic Timed Automata for MCRL

To overcome these shortcomings, we improve MCRL by adopting stochas-
tic timed automata (STA) as the modelling language and statistical
model checking for verification and analysis. In this section, we present
the STA model in detail such that readers understand how the movement
and task execution is modelled as STA, and how the stochastic behavior
is handled by this model.

STA of Task Execution.

Tasks in this paper are operations of the agents that need to be carried
out in a right order and at the specific milestones. For instance, in the
scenario of an autonomous quarry in Fig. 11.3, tasks for autonomous
trucks can be unloading stones into the primary crushers, charging, etc.
Collaborative tasks are the ones that need more than one agent to per-
form, e.g., loading stones at stones piles needs a wheel loader and a truck
to accomplish. For mission planning, a task can be abstracted as time
duration between the BCET and WCET, which is only permitted to start
when a set of conditions is satisfied, e.g., precedent tasks are finished,
and staying at the right milestone. The formal definition of tasks is
presented in literature [5].

Figure 11.5: The STA modeling an agent executing task T1

Fig. 11.5 depicts an example of the STA modelling an agent executing
one of its tasks, namely T1. For brevity, the execution of other tasks
for the same agent, which should be modelled in the same STA, is not
shown in this figure. Note that the variable id in this figure is the
index of the agent. The STA starts from the location named Idle that
represents the status of running no tasks. Agents are only allowed to
move at this status, hence, this location has a self-loop edge labelled by
a synchronization channel go[id] that is used to inform the movement

250 Paper D: Probabilistic Mission Planning

STA to start moving. Since the milestone that the agent is approaching
to might be occupied and exclusive, the agent probably has to wait.
The invariant on the location Idle (e.g., te[id]<=MT) and the guard
on its self-loop edge (e.g., te[id]>=MT) is for triggering the “moving”
command every MT time units, so that the agent would not wait forever
and periodically detects whether the target milestone is available. The
detection is done by the STA of agent movement, which is introduced in
the next section.

If the agent decides to execute task T1, its task execution STA trans-
fers to location T1. This edge is guarded by a Boolean expression that
is composed of four parts (see Fig. 11.5). The first Boolean expression
cp[id]==B checks if the agent is at milestone B currently, where the task
is permitted. The following function isReady(TK1) returns a Boolean
value indicating whether task T1 is not finished yet. If T1 is a collabora-
tive task, this function also decides if the collaborating agents are ready
for this task by checking if they are staying at the same right position,
which is milestone B in this case. The Boolean array named tasks stores
the execution status of tasks, namely finished or not, so tasks[TK2] here
checks if the precedent task of T1 is finished. The Boolean expression
!event[id][0] indicates that the event monitored by this agent is not ac-
tive, where the number “0 ” is the index of the event that can be replaced.
An event can be a battery-level-low warning, or a critical-damage alert,
etc., which needs to be prioritized than regular tasks, and responded
within a time frame. The task execution time is between the BCET and
WCET. Therefore, the invariant on location T1 regulates that the clock
variable should not exceed the WCET of T1, whereas the guard on the
outgoing edge of this location decides the earliest time to leave this loca-
tion to be later than the BCET. In UPPAAL SMC, the default probability
distribution of time-bounded delays is uniform distribution. Hence, the
execution time of task T1 here is between the BCET and WCET with
equal possibilities.

When the guards hold, agents can take the transition with the ex-
ecution of function start(TK1) to start T1. This function changes the
variable of the current task of the agent, and stores the current state
of the agent, as well as the corresponding action taken at this moment
into an array. The array, which represents the execution trace, will be
printed by UPPAAL SMC in the end of the data gathering phase (see
Fig. 11.4). The function finish(TK1) simply changes the variable of the
current task to Idle, and checks if all the tasks have been finished when

11.4 Mission Planning Based on Reinforcement Learning and
Stochastic Timed Automata 251

the agent should leave the environment and stop.

STA of Agent Movement

Fig. 11.6a depicts a scenario containing an intersection where pedestri-
ans keep crossing the road every once a while. An autonomous vehicle
starting from position A1 intends to go to A2. Though going straightly
to A2 is the shortest path, potential collision avoidance might increase
the travelling time, as shown by the blue trajectory. Therefore, the ve-
hicle can alternatively choose to detour via position B1, as shown by
the violet trajectory. As the HA described in Section 11.2.3 model the
probable appearance of human workers and the continuous movement
of agents equipped with a collision-avoidance algorithm based on dipole
flow fields [8], we can verify the HA model against queries in the fol-
lowing forms in order to obtain the prolonged travelling time and its
probabilities.

Pr[<=T](<> arrived) (11.2)

Pr[<=T]([] arrived imply t <= TL), (11.3)

where T is the simulation time, arrived is a Boolean variable indicat-
ing if the agent arrives at the destination or not, t is a clock variable,
and TL is an integer indicating the time limit. Query (11.2) calculates
the probability of the agent reaching the destination, and Query (11.3)
further calculates the probability of always arriving at the destination
within TL time units. The results are probability intervals and we use
the average value to estimate the probability of travelling time, which is
used in the STA of movement.

Fig. 11.6b shows a part of the movement STA modelling the move-
ment from A1 to A2. As there are two alternative paths, the STA
starts with a non-deterministic choice between two transitions to loca-
tion A1B1A2 or a branch point. The function isOver() returns a Boolean
value of whether the agent has finished all tasks and should stop. The up-
date function move(0,A1,A2) changes the current position of the agent,
and stores the current state-action pair into the array, which is similar
to the function start() in Fig. 11.5. When the agent chooses to go via
position B1, which does not have any pedestrians, the STA transfers to
the location A1B1A2 representing the duration of travelling. When the
least travelling time has passed, e.g., 15 time units travelling via B1,
the STA can transfer to location PA2, as long as the milestone A2 is not

252 Paper D: Probabilistic Mission Planning

(a) A scenario of an intersection containing pedestrians

(b) The STA modeling the possible movement of agents

Figure 11.6: A scenario of intersection and the STA modeling the move-
ment of agents

occupied. If the travelling time is uncertain by the influence of pedestri-
ans, the STA transfers to a branch point that leads to different locations
representing different probable travelling duration, e.g., location A1A2_1.
After verifying the HA of agents (see Figure 11.2 for an example) against
queries similar to Queries (11.2) and (11.3), and replacing TL with dif-
ferent numbers, we can obtain that going to position A2 straightly can
cost 10 or 18 time units, and their probabilities are 40% and 60%, re-
spectively, which are depicted in Fig. 11.6b. In the STA of movement,
a synchronization channel named go[id] is used to get commands from
the task execution STA (Fig. 11.5). So the verification of agents is for
an integrated model composing the STA of agent movement and task
execution.

In UPPAAL SMC, a simulation query composed as following randomly
executes the model for R rounds and T time units in each round,

simulate[<=T;R] {ds[0].cs,ds[0].act,ds[0].value,...}:tasks[TK1],
(11.4)

where ds is the array variable whose type is a structure, cs and act are
the elements of the structure representing the current state and action,

11.5 Statistical Verification and Analysis of the Use Case: an
Autonomous Quarry 253

respectively, value is the reward or penalty assigned to the pair. The
definitions of the states and actions are in the literature [6]. The predi-
cate in the end of the query regulates that the data in the curly brackets
are printed only when the predicate is true. In this query, when the
agent finishes task T1, the elements in ds are printed. The simulation
needs to run multiple runs for obtaining enough state-action pairs that
simulate various situations that the agents would encounter. Hence, the
Q-learning algorithm, which uses the state-action pairs as input, would
cover various cases comprehensively so that the final mission plans can
satisfy various properties in an environment model containing uncertain-
ties.

MCRL Revisited

Now that the TA of task execution and movement are adjusted to STA,
the simulation query in UPPAAL SMC would explore the state space
of the model based on the probability distributions defined in the STA.
The model-training phase that uses the state-action pairs representing
the stochastic behavior of agents would generate mission plans that are
statistically optimal.

11.5 Statistical Verification and Analysis of
the Use Case: an Autonomous Quarry

In this section, we evaluate our method by demonstrating a statisti-
cal verification and analysis on our use case: an autonomous quarry
(as shown in Fig. 11.3). The experiments are conducted in UPPAAL
4.1.24. Most of the statistical parameters are set to the default values
in UPPAAL SMC, except the probability of false negatives (α), which is
0.001, and probability uncertainty (ε), which is 0.001. The experimen-
tal scenario is depicted in Fig. 11.7. Tasks for those agents are shown
in Table 11.1. Milestones A to D are exclusive, thus only one truck is
allowed at one time. As there are two primary crushers, the trucks need
to choose one of them to perform tasks, which take uncertain execution
time. The agents must carry all the stones to the secondary crusher, and
the job need to be accomplished within a time frame.

254 Paper D: Probabilistic Mission Planning

Table 11.1: Tasks for the autonomous agents in the experiment

Task BCET WCET Precedent task Milestone

Wheel loader Dig 2 2 none Stone pile (A)
Unload 1 4 Dig Stone pile (A)

Truck

Load I 1 4 Dig Stone pile (A)
Unload I 4 4 Load I Primary crusher (B or C)
Load II 2 3 Unload I Primary crusher (B or C)

Unload II 3 5 Load II Secondary crusher (D)

11.5.1 Mission Plan Synthesis

Figure 11.7: An experimental scenario containing 4 autonomous agents

After building the STA and running MCRL by using UPPAAL SMC
and our Java program of the Q-learning algorithm, we successfully syn-
thesize mission plans for agents. By verifying queries as following, we
demonstrate the synthesized mission plans satisfy different kinds of re-
quirements that are described in Section 11.3.

• Task Assignment. Query (11.5) checks the probability of agent n per-
forming task Ti at milestone Pi. The results for all tasks in Table 11.1
are above 99.8%.

Pr[<=T]([] ten.Ti imply mn.Pi) (11.5)

• Execution Order. Query (11.6) checks the probability that when agent
n is performing task Ti, its precedent task Tj has finished. UPPAAL
SMC returns that the results for tasks that have precedent tasks are
above 99.8%.

Pr[<=T]([] ten.Ti imply ten.tasks[j]) (11.6)

• Milestone Exclusion. Query (11.7) checks the probability that when
agent n is at an exclusive milestone named Pi, other agents are not

11.5 Statistical Verification and Analysis of the Use Case: an
Autonomous Quarry 255

there. The results for milestones A to D are above 99.8%.

Pr[<=T]([] mn.Pi imply !(m0.Pi && ... && mn−1.Pi && mn+1.Pi ...))
(11.7)

• Timing. Query (11.8) checks the probability of agent n travelling
through all milestones and finishing all tasks within TL time units. If
we set TL to be 10 and 25 for wheel loaders and trucks, the results
are above 99.8%.

Pr[<=T]([] (ten.tasks[0] && ... && ten.tasks[M-1]) imply x < TL)
(11.8)

In these queries, ten and mn are the task execution STA and movement
STA of agent n, respectively, ten.tasts is a Boolean array for storing
the task execution status of agent n, namely true for finished tasks, and
false for unfinished ones, M is the number of tasks, and x is a global clock
variable that is only reset when all tasks finish.

11.5.2 Bottleneck Analysis
To perform this analysis, we verify the reformed model equipped with
Q-tables against queries in the following form of Query (11.9) to get the
waiting time at different milestones during the process of transferring
stones.

Pr[<=T](<> m0.wt[i] + m1.wt[i] + ... + mn.wt[i] > TL), (11.9)

where T is the simulation time, m0 to mn are the movement STA of agents
0 to n, wt[i] refers to the waiting time at milestone i, and TL is an inte-
ger estimating the waiting time. By setting TL to zero and replacing the
index i with the indices of milestones A to D, one can investigate the
probability of waiting at each milestone (see Fig. 11.8a). By replacing
the integer TL with different values and fixing the index i to some cer-
tain milestone, one can estimate the waiting time at the milestone and
the corresponding probability (see Fig. 11.8b). In UPPAAL SMC, the
result of a probability estimation property (e.g., Query (11.9)) is given
as a probability interval with a confidence level. Hence, the probabilities
in Fig. 11.8 are presented as ranges from the lower boundaries to the
upper boundaries. As shown in Fig. 11.8a, the probabilities of waiting
at milestones A to D are always larger than zero, and the average prob-
ability of waiting at milestone D is the highest. We specifically estimate

256 Paper D: Probabilistic Mission Planning

the waiting time at milestone D. As shown in Fig. 11.8b, the waiting
time is most likely less than 2 time units.

(a) Probabilities of waiting at milestones

(b) Waiting time at milestone D

Figure 11.8: Bottleneck analysis of the scenario in Figure 11.7

11.5.3 Travelling Timed Estimation and Re-Planning

When the autonomous agents encounter pedestrians, they must run
collision-avoidance algorithms to compute a new path to bypass the
pedestrians, and that would possibly affect the travelling time signifi-
cantly such that it is even quicker to take another path. We call the
ability of agents choosing another path when encountering moving ob-
stacles re-planning.

11.5 Statistical Verification and Analysis of the Use Case: an
Autonomous Quarry 257

(a) The number of pedestrians. Exponential rate of the
generator: 0.1. Existing time: 1

(b) The resulting movement STA in the situa-
tion with a few pedestrians

(c) The number of pedestrians. Exponential rate of the
generator: 0.2. Existing time: 5

(d) The resulting movement STA in the situa-
tion with many pedestrians

Figure 11.9: The Number and frequency of pedestrians and the move-
ment STA

258 Paper D: Probabilistic Mission Planning

In the scenario depicted in Fig. 11.7, if the number of autonomous
trucks is decreased to one, the truck is free to choose between pri-
mary crushers at milestones B and C, as no other trucks are competing
with it. Since the primary crusher at milestone C is closer to the sec-
ondary crusher, the Q-learning algorithm enables the autonomous truck
to choose milestone C rather than milestone B as the precedent posi-
tion of milestone D. We can verify this phenomenon by checking Query
(11.10):

Pr[<=T] ([] m0.D imply (viaC && !viaB)), (11.10)

where viaC and viaB are Boolean variables, which are turned to true
when the agent sets off from the starting point, i.e., milestone A, and
reaches milestones C and B, respectively, and are turned back to false
when the agent leaves milestone D. Hence, Query (11.10) checks the
probability of an agent going to location D via location C but not location
B.

However, if pedestrians keep walking near milestone C and thus block
the path (see Fig. 11.7), it could take longer time if the agent sticks
to the original path plan (i.e., travelling via milestone C). By using
the HA model depicted in Fig. 11.2a, we can generate instances of the
pedestrian model dynamically during verification. Then we verify the
HA model that describes the continuous movement of agents (see Fig.
11.2b for an example of linear movement) together with the pedestrian
model against queries in the form of Queries (11.2) and (11.3), in order
to estimate the prolonged travelling time between milestones A and C,
and the corresponding probabilities. Next, we encode the new travelling
time and its probabilities into the movement STA and synthesize mission
plans.

Fig. 11.9 shows two situations of the scenario, where pedestrians are
few and crossing the road quickly (Fig. 11.9a), as well as pedestrians
are many and walking slowly (Fig. 11.9c), which causes congestion on
the road. The situation with fewer pedestrians results in the movement
STA that is partly shown in Fig. 11.9b, where the probability of going to
milestone C quickly is 83% (i.e., t >= 3), whereas 33% is the probability
of moving slowly (i.e., t >= 10). Similarly, the situation containing many
pedestrians results in the movement STA partly depicted in Fig. 11.9d,
where the chance of agents moving slowly is much larger than the chance
of moving quickly.

Verifying Query (11.10) against the model that is partly shown in
Fig. 11.9d produces a result of a range of low probabilities, where as if

11.6 Related Work 259

query is changed to check the probability of agents going via milestone
B, the result is much higher. This shows that MCRL enables the agents
to re-plan a better path when the irregular appearance of pedestrians
influences the path plans.

11.6 Related Work

Motion-plan synthesis has arisen a wide interest of research in recent
years. Nikou et al. [15] present a method of automatic controller synthe-
sis for multi-agent systems under the presence of uncertainties. Sadrad-
dini et al. [16] propose an approach of synthesising control strategies for
positive and monotone systems, which satisfy requirements formalized
by Signal Temporal Logic, and demonstrate their method on a traffic
management case study. Wang et al. [17] propose a novel formulation
based on Partially Observable Markov Decision Processes to synthesis
policies over a vast space of probability distributions. Although having
promising results, these methods are not applied in industrial systems,
which requires solutions to be practically usable and scalable.

To model the uncertain behavior of the autonomous agents and envi-
ronment, Markov Decision Process and Probabilistic Computation Tree
Logic (PCTL) have been adopted by many studies. A solution of be-
havior verification of autonomous vehicles (AV) proposed by Sekizawa
et al. [18] considers the disturbance that causes the AV to swerve from
the planned path. Their solution uses the probabilistic model checker
PRISM to conduct the verification against PCTL properties. Al-Nuaimi
et al. [19] also employs PRISM in their design of a stochastically veri-
fiable decision making framework for AV. The authors demonstrate the
applicability of their framework in a scenario of parking bay containing
one AV, a pedestrian, and another vehicle. Ayala et al. [20] present
a solution to find control strategies for mobile robotic systems moving
in environments containing entities that are not completely observable.
Compared with these studies, our approach systematically estimates the
disturbance caused by unpredictable moving obstacles, and enables re-
planning for the autonomous agents. UPPAAL STRATEGO is designed
to synthesize strategies for stochastic priced timed games [21], and it also
implements the Q-learning algorithm as one of its algorithms for synthe-
sis. The main difference between MCRL and UPPAAL STRATEGO is
that the former supports a larger numbers of agents, and we refer the
interested readers to previous work [6] for a detailed comparison between

260 Paper D: Probabilistic Mission Planning

the methods.

11.7 Conclusions and Future Work
We present a method for automatic synthesis of mission plans for multi-
agent systems. The method is based on MCRL, which combines model
checking with reinforcement learning, and extends MCRL with the abil-
ity of handling uncertainties in the environment by employing Stochastic
Timed Automata and Statistical Model Checking. We demonstrate the
applicability of the method in an industrial use case: an autonomous
quarry, provided by VOLVO CE. The demonstration shows that the
method is capable of synthesising mission plans for MAS that satisfy
various requirements, and further analyse the bottleneck of the mis-
sion plans. When encountering disturbance of unpredictable moving
obstacles, e.g., pedestrians, the method is able to estimate the delays of
traveling time of the agents, and conduct a re-planning when it is nec-
essary. Future work includes integrating the new MCRL with our tool
called TAMAA [5], so that a complete solution of mission-plan synthesis
for MAS together with a user-friendly GUI is accomplished. Automating
the transformation of requirements into temporal logic queries is another
possible direction.

Acknowledgments
The research leading to the presented results has been undertaken within
the research profile DPAC - Dependable Platform for Autonomous Sys-
tems and Control project, funded by the Swedish Knowledge Foundation,
grant number: 20150022.

Bibliography

[1] PR Chandler and Meir Pachter. Research issues in autonomous
control of tactical uavs. In Proceedings of the 1998 American Control
Conference. ACC (IEEE Cat. No. 98CH36207). IEEE, 1998.

[2] Steven M LaValle. Rapidly-exploring random trees: A new tool
for path planning. Technical report, Computer Science Dept., Iowa
State University, 10 1998.

[3] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelligence
Research, 39:533–579, 2010.

[4] Yasmina Abdeddaı, Eugene Asarin, Oded Maler, et al. Scheduling
with timed automata. Theoretical Computer Science, 354(2), 2006.
Elsevier.

[5] Rong Gu, Eduard Paul Enoiu, and Cristina Seceleanu. Tamaa:
Uppaal-based mission planning for autonomous agents. In
35th ACM/SIGAPP Symposium On Applied Computing SAC2020.
ACM, 2019.

[6] Rong Gu, Eduard Paul Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Verifiable and scalable mission-plan synthesis for multi-
ple autonomous agents. In 25th International Conference on Formal
Methods for Industrial Critical Systems. Springer, 2020.

[7] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. 1989. King’s College, Cambridge.

[8] Lan Anh Trinh, Mikael Ekström, and Baran Cürüklü. Toward
shared working space of human and robotic agents through dipole

261

262Bibliography

flow field for dependable path planning. Frontiers in neurorobotics,
12, 2018. Frontiers Media SA.

[9] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Towards a two-layer framework for verifying au-
tonomous vehicles. In NASA Formal Methods Symposium, pages
186–203. Springer, 2019.

[10] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statis-
tical model checking for stochastic hybrid systems. arXiv preprint
arXiv:1208.3856, 2012.

[11] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer,
1(1-2):134–152, 1997. Springer.

[12] Mykel J Kochenderfer. Decision making under uncertainty: theory
and application. MIT press, 2015.

[13] Thomas A Henzinger. The theory of hybrid automata. In Verifica-
tion of digital and hybrid systems, pages 265–292. Springer, 2000.

[14] Stan Franklin and Art Graesser. Is it an agent, or just a pro-
gram?: A taxonomy for autonomous agents. In International Work-
shop on Agent Theories, Architectures, and Languages, pages 21–35.
Springer, 1996.

[15] Alexandros Nikou, Jana Tumova, and Dimos V Dimarogonas. Prob-
abilistic plan synthesis for coupled multi-agent systems. IFAC-
PapersOnLine, 50(1):10766–10771, 2017. Elsevier.

[16] Sadra Sadraddini and Calin Belta. Formal synthesis of control
strategies for positive monotone systems. IEEE Transactions on
Automatic Control, 64(2):480–495, 2018. IEEE.

[17] Yue Wang, Swarat Chaudhuri, and Lydia E Kavraki. Bounded
policy synthesis for pomdps with safe-reachability objectives. In
International Conference on Autonomous Agents and Multi Agent
Systems. IFAAMS, ACM, 2018.

Bibliography 263

[18] Toshifusa Sekizawa, Fumiya Otsuki, Kazuki Ito, and Kozo Okano.
Behavior verification of autonomous robot vehicle in consideration
of errors and disturbances. In 2015 IEEE 39th Annual Computer
Software and Applications Conference, volume 3, pages 550–555.
IEEE, 2015.

[19] Mohammed Al-Nuaimi, Hongyang Qu, and Sandor M Veres. A
stochastically verifiable decision making framework for autonomous
ground vehicles. In 2018 IEEE International Conference on Intel-
ligence and Safety for Robotics (ISR), pages 26–33. IEEE, 2018.

[20] AI Medina Ayala, Sean B Andersson, and Calin Belta. Temporal
logic control in dynamic environments with probabilistic satisfac-
tion guarantees. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3108–3113. IEEE, 2011.

[21] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Mar-
ius Mikučionis, and Jakob Haahr Taankvist. Uppaal stratego. In
TACAS. Springer, 2015.

Chapter 12

Paper E:
Correctness-Guaranteed
Strategy Synthesis and
Compression for
Multi-Agent Autonomous
Systems

Rong Gu, Peter G. Jensen, Cristina Seceleanu, Eduard Enoiu, and Kristina
Lundqvist
Submitted to Journal of Science of Computer Programming, Elsevier,
2022.

265

Abstract

Planning is a critical function of multi-agent autonomous systems, which
includes path finding and task scheduling. Exhaustive search-based
methods such as model checking and algorithmic game theory can solve
simple instances of multi-agent planning. However, these methods suffer
from state-space explosion when the number of agents is large. Learning-
based methods can alleviate this problem, but lack a guarantee of cor-
rectness of the results. In this paper, we introduce MoCReL, a new
version of our previously proposed method that combines model check-
ing with reinforcement learning in solving the planning problem. The
approach takes advantage of reinforcement learning to synthesize path
plans and task schedules for large numbers of autonomous agents, and
of model checking to verify the correctness of the synthesized strategies.
Further, MoCReL can compress large strategies into smaller ones that
have down to 0.05% of the original sizes, while preserving their correct-
ness, which we show in this paper. MoCReL is integrated into a new
version of UPPAAL STRATEGO that supports calling external libraries
when running learning and verification of timed games models.

12.1 Introduction 267

12.1 Introduction

Autonomous agents (or shortly, agents), such as driverless cars, drones,
and mobile robots, are systems that can move, carry out tasks, and col-
laborate with other agents autonomously without human intervention.
Multi-Agent Autonomous Systems (MAS) [1] consist of multiple agents
that work together in an environment and aim to achieve a common
goal, an example being a group of construction equipment quarrying,
crushing, and transporting stones. Planning for MAS involves path find-
ing and task scheduling, and is one of the most critical problems when
designing such systems [2]. There exist algorithms that solve each prob-
lem, respectively. A* [3] and rapidly-exploring random tree (RRT) [4]
are two well-known algorithms that calculate the shortest paths in an
environment with static obstacles. Algorithms for task scheduling have
also been widely researched, resulting in search-based methods [5, 6] and
learning-based methods [7, 8].

Nevertheless, approaches that solve the entire planning problem for
MAS, which also provide a correctness guarantee are often not scalable
[9, 10]. Learning-based methods address this weakness but fail to pro-
vide a formal guarantee of the correctness of their results. A united
solution that solves both path finding and task scheduling is still miss-
ing. The difficulties of finding such a solution are threefold. First, the
tasks of the agents are of different kinds. Some must be done individ-
ually, whereas some need collaborations, that is, agents gather at the
same position and start and finish a common task simultaneously. In
addition, tasks have uncertain completion time, which increases the dif-
ficulty of task scheduling dramatically. Second, tasks can be scheduled
differently: periodically (repeatedly perform A), sequentially (perform
A, then B, then C), or as a request-response pair (whenever A occurs,
perform B). Third, the complexity of solving the problem increases ex-
ponentially when the number of agents increases linearly. This difficulty
stems from the fact that task scheduling is NP-hard [11]. Solving the
problem algorithmically on MAS resulting from composing all agents’
behaviors is computationally demanding.

We have previously proposed MCRL (Model Checking + Reinforce-
ment Learning) [12, 13] as a method that combines model checking with
reinforcement learning to synthesize and verify plans of agents. MCRL
benefits from both model checking and reinforcement learning so that
the scale of the problem that MCRL can solve is larger than that of

268 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

search-based methods, and also the results (a.k.a., plans) are guaran-
teed to be correct by model checking. However, MCRL has some lim-
itations: (i) models are hard to build manually when the environment
is big or the agents are many; (ii) MCRL only supports simple tasks
that are executed individually and periodically; (iii) the resulting plan
synthesized by MCRL is larger than needed, as it contains a tabulation
of system states that are unreachable under the plan, which is impeding
understandability (by an operator) and the realizability on systems with
limited resources.

To alleviate these issues, we propose MoCReL (Model-checked Com-
pressed Reinforcement Learning). MoCReL provides functions of syn-
thesizing, verifying, and compressing plans, and it relies on modeling
MAS as (Stochastic) Timed Games in UPPAAL STRATEGO [14], which
is a tool that incorporates a symbolic model checker UPPAAL [15], a
statistical model checker UPPAAL SMC [16], a solver for Timed Games
UPPAAL TIGA [17], and solvers for Stochastic Timed Games relying on
learning algorithms [14]. Similar to MCRL, the plan synthesis in MoCReL
is an iterative process of a random simulation and reinforcement learn-
ing. The simulation explores the MAS model randomly and samples the
model’s execution traces that record the executed action at each state of
the model. Then the learning algorithm uses these traces to synthesize a
plan, which is used in the next round of simulation. This iteration ends
with a final plan generated until reaching the maximum rounds of itera-
tion, or a user-defined number of traces are sampled. Next, to guarantee
the correctness of the plan, MoCReL verifies it by model checking the
MAS model under the control of the plan, that is, the plan controls the
model to choose certain actions at different states. The selected pairs of
state and action are labeled during the verification, which in turn helps
compressing the plans. The unlabeled pairs are considered useless for
satisfying the requirements, and thus are removed from the plan. In this
way, plans are compressed while preserving the satisfied requirements.
All the activities of plan synthesis, verification, and compression are im-
plemented as an external library that is linked to UPPAAL STRATEGO,
which enables us to easily change or extend the algorithms for learning
and compression.

In summary, MoCReL overcomes the limitations of MCRL as follows,
which are the contributions of this paper:

(i) Models in MoCReL are instances of templates, which facilitates

12.2 Preliminaries 269

automatic model construction. In our experiments (Section 12.5),
we design and use a tool that is capable of generating the models
based on the templates.

(ii) The model templates also allow for more task types, such as col-
laborations among agents and tasks that are activated by events.

(iii) MoCReL’s method for plan synthesis and compression is proven to
be sound, that is, plans that are synthesized and compressed by
MoCReL must be correct.

(iv) Experiments of MoCReL on a real industrial case study shows that
the compressed plans can take down to 0.05% of the memory space
of the original plans, while preserving their properties, e.g., always
eventually finishing all tasks.

The remainder of the paper is organized as follows. In Section 12.2, we
introduce the preliminaries: timed games and strategies in UPPAAL
STRATEGO, and reinforcement learning. Section 12.3 describes the
problem of MAS planning. In Section 12.4, we describe our proposed
methods for strategy synthesis, verification, and compression in MoCReL.
Next, we present the experimental evaluation in Section 12.5. In Section
12.6, we compare to related work, and conclude the paper in Section
12.7, where we also mention directions for future work.

12.2 Preliminaries
In this section, we recall the timed automata formalism as used in the
UPPAAL tool suite, timed games, and the reinforcement learning algo-
rithm used in this paper. We denote non-negative integers as N, and
real numbers as R.

12.2.1 UPPAAL Timed Automata
A timed automaton (TA) is finite-state automaton extended with real-
valued variables [18]. The variables model the logic clocks in systems,
which are zero initially and then increase synchronously with the same
rate. UPPAAL [15] is a tool for modeling, simulation, and model checking
of UPPAAL timed automata (UTA), which is an extension of TA with data
variables, etc. A UTA is defined as a tuple:

270 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

< L, l0,Σ, V, C,E, I >, (12.1)

where L is a finite set of locations, l0 ∈ L is the initial location, Σ is
a set of actions, V is a set of data variables, C is a set of real-valued
variables called clocks, E ⊆ L×B(C, V)×Σ×2C ×L is the set of edges,
where B(C, V) is the set of guards over C and V , that is, conjunctive
formulas of clock constraints B(C) (of the form x ▷◁ n or x − y ▷◁ n,
where x, y ∈ C, n ∈ N, ▷◁ ∈ {<,≤,=,≥, >}) and non-clock constraints
B(V), and I : L 7→ B(C) is a function assigning invariants to locations.

The semantics of a UTA is defined as a timed transition system over
states q = (l, c), where l is a location, c ∈ RC is the valuations of
the clocks at this location, with the initial state q0 = (l0, c0), where c0
assigns all clocks in C to zero. There are two kinds of transitions:

(i) delay transitions: qn
d−→ q′n, where n ∈ N, c |= I(l), q′n = (l, c⊕ d)

is the next state delaying from qn, and c⊕d is obtained by incrementing
all clocks with the delay amount d such that c⊕ d |= I(l), and

(ii) discrete transitions: qn
a−→ qn+1, where qn+1 = (l′, c′) is the next

state traversing via the edge l g,a,r−−−→ l′ from qn, for which the guard g
evaluates to true in the source state qn, a ∈ Σ is an action, and valuation
of c′ on the target state qn+1 are obtained by resetting all clocks in r ⊆ C
such that c′ |= I(l′).

12.2.2 Timed Games

(a) A TG of a car (b) A TG of a charging station

Figure 12.1: An example of a network of TG.

A timed game (TG) is a UTA with its set of actions partitioned into
controllable (Σc) and uncontrollable (Σu) ones. UPPAAL STRATEGO
[14] is a tool that supports modeling and verifying TG as well as synthe-
sizing strategies to solve TG. Fig. 12.1 depicts two templates of TG in

12.2 Preliminaries 271

UPPAAL STRATEGO, which consist of locations and edges. A template
may also have local declarations and parameters and can be instanti-
ated by a process assignment (in the system definition) [15]. In a TG
template, locations (e.g., Charging) are blue circles. The double circles
(e.g., Home) denote the initial location. Clocks (e.g., t) are special vari-
ables that increase simultaneously at rate 1, when the TG is executed.
Invariants (e.g., t<=20) on locations must be true when the TG stays at
the location. Edges connecting locations denote discrete actions, which
are partitioned into controllable ones (solid lines) and uncontrollable ones
(dashed lines). Delays allow time to elapse on locations as long as the
associated invariants are not violated. Guards (e.g., t>=10) on edges
must be true when the edges are enabled for transition. Assignments on
edges reset clocks (e.g., t=0) or update data variables (e.g., fuel = 20).
A network of TG is a parallel composition of TG that can synchronize
via channels (e.g., go! is synchronized with go?).

When TG are executed, the choices of delaying at locations or exe-
cuting discrete actions are non-deterministic, whereas Stochastic Timed
Games (STG) replace the non-deterministic choices with stochastic ones.
By default, STG in UPPAAL STRATEGO apply uniform probability dis-
tributions on discrete transitions and time-bounded delays, and expo-
nential probability distributions on unbounded delays.

In this paper, we denote TG (STG) by G (P), and the semantics of a
G by SG . A run π of a G is a sequence of alternating delays (denoted by
d) and discrete transitions (denoted by a) of its SG : π = q0

d1−→ q′0
a1−→

q1
d2−→ q′1

a2−→ ...
dn−→ q′n−1

an−−→ qn If we denote the last state of a
finite run πf as last(πf), a strategy is a function that maps actions, i.e.,
either a controllable one a ∈ Σc or a delay (indicated by the symbol λ),
to each of the states. Formally, strategies are defined as follows [19]:

Definition 13 (Strategy). Let G =< L, l0,Σc∪Σu, V, C,E, I > be a TG.
A strategy σ over G is a partial function: πf → 2Σc∪{λ} \ {∅} such that
for any finite run πf ending in state ql = last(πf), if a ∈ σ(πf) ∩ Σc,
then there must exist a transition ql

a−→ ql+1 ∈ SG. □

A stochastic strategy of an STG delivers probabilities instead of def-
inite choices of actions [19]. If we denote the set of runs in SG as ΠG , a
TG under the control of a strategy σ as G | σ, the outcome of running
G | σ is a subset of ΠG , denoted as Out(G | σ). Out(G | σ) can be defined

272 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

inductively as follows1:

Definition 14 (Outcome of G | σ). Given q0 ∈ Out(G | σ), if π ∈
Out(G | σ) then π′ = last(π)

e−→ q and π′ ∈ Out(G | σ) if either one of
the following conditions hold:

1. e ∈ Σu, or

2. e ∈ Σc and e ∈ σ(last(π)), or

3. e ∈ [0, T] ⊆ R≥0 and ∀e′ < e, last(π) e′−→ q′ for some q′ s.t.
σ(q′) ∋ λ, where T is the invariant boundary on the location of
last(π). □

We will use these three conditions in the proof of Theorem 1. Let
P be a proposition and the reachability objective for G, a finite run πf
is winning w.r.t. P , if P is true at the last state of πf . A strategy σ
over a G is winning if all runs in Out(G|σ) are winning. A memoryless
strategy makes decisions on actions depending on the current state only,
that is, a function σ: last(πf) → 2Σc∪{λ} \ {∅}. In this paper, we aim to
synthesize winning, memoryless, and non-lazy strategies, that is, winning
strategies that urgently decide on a controllable action or wait until the
environment makes a move2. Strategies referred to in the rest of this
paper are all memoryless and non-lazy.

12.2.3 Model Checking and Temporal Properties
Model checking [20] traverses the state space of a formal model (e.g.,
UTA) and checks if it satisfies certain properties. The properties in this
paper are of the following forms, where p is an atomic proposition over
the locations, clocks, and data variables of the UTA:

(i) Invariance: E[] p meaning that there exists a run where all the
states satisfy p, or A[] p meaning that for all runs, p is satisfied
by all states in each run,

(ii) Liveness: A<> p meaning that for all runs, p is satisfied by at
least one state in each run.

1Definition 14 is adapted from the definition strategy outcome in the literature
[19].

2Memoryless and non-lazy strategies are shown to suffice for optimal scheduling
of Duration Probabilistic Automata [5].

12.3 Problem Description 273

12.2.4 Reinforcement Learning

Reinforcement learning (RL) [21] is a kind of machine learning method
for training agents by assigning rewards to desired behaviors and/or
penalties to undesired ones, with the purpose of maximizing the accu-
mulated rewards. Model-free RL relies on samples from the environ-
ment, which can be a virtual or a real one, to estimate the rewards of
the future state-action pairs following the agent’s current state. Model-
based RL uses the model’s predictions or distributions of state-action
pairs and their rewards to find optimal actions. Therefore, models in
the model-based RL must contain the full information of the environ-
ment and agents, which is hardly to obtain in an unexplored or partially
observed environment.

Q-learning [22] is one of the model-free algorithms, which, at the
limit, converges to the optimal policy for agents. Policies are associated
with a state-action value function called Q function. The optimal Q
function satisfies the Bellman optimality equation:

q∗(s, a) = E[R(s, a) + γ MAX
a′

q∗(s′, a′)], (12.2)

where q∗(s, a) represents the expected reward of executing action a at
state s, E denotes the expected value function, R(s, a) is the reward ob-
tained by taking the action a at state s, γ is a discounting value, s′ is the
new state coming from state s by taking action a, and MAX

a′
q∗(s′, a′)

represents the maximum reward that can be achieved by any possible
next state-action pair (s′, a′). The Bellman equation calculates the re-
wards of state-action pairs by considering both the current reward and
the discounted maximum future reward. The rewards of the pairs are
often stored in a score table. We show an example of such score tables
in Section 12.3.2.

12.3 Problem Description

In this section, we introduce the planning problem of MAS and its chal-
lenges.

274 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

12.3.1 Overall Description
MAS are designed to move and execute a series of tasks autonomously.
The actions belonging to a MAS can be categorized as: (i) movement,
and (ii) executing a task. Whenever an agent moves or starts a task, the
environment decides the ending time of the action. Now, the MAS plan-
ning is to order these two kinds of actions such that the MAS can finish
its tasks while satisfying certain requirements, e.g., never let two agents
execute the same task simultaneously, no matter how the environment
reacts. The overall goal of MAS planning is formulated as below:
Overall Goal: Given a MAS and a set of requirements, the goal of
planning is to order the agents’ actions of movement and task execution,
according to their variable ending time and occurrences of events, which
are decided by the environment, such that the MAS can finish its tasks
and satisfy the requirements.

Remark 6. One can reduce the planning problem to a path-finding prob-
lem by removing the actions of task execution, or a task-scheduling prob-
lem by removing the actions of movement. Our algorithm is capable of
solving the general problem that contains path finding and task scheduling
or only one of them.

Remark 7. The requirements can be functional ones, such as always
start task A after task B finishes, and safety ones, such as no collision
with the static obstacles in the environment happens.

12.3.2 Challenges of Solving the Planning Problem
The major challenges of this problem stem from four aspects, which get
amplified especially when solving the problem via algorithmic techniques:

• Challenge I (uncertainty): The agents’ actions have uncertain
execution time, which means agents can choose actions to perform
but cannot control how long time the actions will take. The uncer-
tainty of execution time makes static plans inefficient, since they
assign starting time to the actions without knowing their actual
ending time.

• Challenge II (variety of task constraints): Some tasks have ad-
ditional constraints, e.g., task A should always be completed be-
fore task B starts. Some tasks must be executed whenever certain
events occur.

12.3 Problem Description 275

• Challenge III (complexity): As an NP-hard problem [11], when
synthesizing and verifying plans for MAS, the state space of the
model grows exponentially when the number of agents increases
linearly as shown in the literature [9, 10].

• Challenge IV (large plans): As the state space of the problem
grows exponentially, the resulting plan can grow exponentially too.
However, some of the information in the plans may never be used.
It is time-consuming to look for the right actions in a large plan. In
some applications, it is simply impossible to store plans that take
too much memory space, such as in Airborne Collision Avoidance
System X case [23].

To give a concrete example of large plans, in Fig. 12.2, we show a
path-finding problem in a 2D space, where a robot tries to catch a cat.
Note that our mission-planning problem combines path finding and task
scheduling, which makes the model state space to be high dimensional
rather than a 2D space.

Algorithmic planning methods, such as the Dijkstra’s algorithm for
path finding [24], and the symbolic on-the-fly algorithm for solving timed
games [17], usually explore the model’s state space in a certain order
(e.g., depth-first exploration), store the preceding states of each state,
and back propagate to the initial state when finding the goal state. The
resulting plan is concise as it only contains the state-action pairs that
are correct, that is, they satisfy the requirements and reach the goal
state. Additionally, the correctness of the plan is guaranteed as the
algorithms explore the state space exhaustively [17]. However, the al-
gorithmic methods are not scalable and when the model’s state space
becomes large, they fail to solve the problem in a reasonable time [13].

A path-finding algorithm that uses reinforcement learning can allevi-
ate this problem by replacing the exhaustive state-space exploration with
random simulation [13], while in turn suffering from disadvantages that
we emphasize in the following. As depicted in Fig. 12.2a, a path plan
synthesized by reinforcement learning possibly explores multiple routes
from the robot to the cat, and results in a score table shown in Fig. 12.2b.
The score table only contains controllable actions. A robot under the
control of a plan always chooses the actions with the highest score at
each of its states. For example, initially, the robot non-deterministically
chooses one action among m11 and m12, because they have the highest
score at the state Init. These scores are accumulated gradually during

276 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

(a) An example of a plan for a path-
finding problem. Solid lines are con-
trollable actions in the plan. Dashed
lines are the uncontrollable actions of
the environment. Red lines are the ones
that guarantee to reach the destination
no matter how the environment reacts.
Black lines are useless ones that should
be removed from the plan.

(b) The score table of the plan
for this example. The first col-
umn indicates states. The grey
rows indicate the controllable ac-
tions at states. The white rows
show the scores of state-action
pairs accumulated by reinforce-
ment learning.

Figure 12.2: An example of path finding in an environment with uncer-
tain behaviors and the score table of the path plan.

the course of learning, hence, although the score of the pair (Init, m10)
ends to be −2, one cannot neglect it before the learning finishes. Another
example of useless data is the pair (C, m23). It is sampled during the ran-
dom simulation, but not used in the final plan, which initially chooses
to do actions m11 and m12, and thus never gets to state C. Besides, as the
synthesis is based on random simulations, there is no guarantee on the
correctness of the results, that is, the actions with the highest score are
not guaranteed to lead the agents towards the goal state and satisfy all
requirements. Hence, there is a need of removing the useless data from
the plan while guaranteeing the correctness of the result.
Overall challenge. In a nutshell, the overall challenge of MAS planning
is to design a method for plan synthesis that can cope with the uncertain
execution time of actions, variety of task constraints, and large state
spaces of the MAS models in real cases, and for compressing large plans
that could contain useless data. The compressed plans must have a
correctness guarantee.

12.3 Problem Description 277

12.3.3 A Motivating Example

In this section, we introduce the autonomous quarry that serves as the
industrial case-study provided by Volvo Construction Equipment (CE)
in Sweden. As depicted in Fig. 12.3, the quarry contains various au-
tonomous agents, e.g., trucks and wheel loaders. The goal of the agents is
to transport stones from stone piles to crushers. Specifically, wheel load-
ers first dig stones at the stones piles and load them into trucks. Trucks
can choose to get loaded from the wheel loaders or primary crushers.
After being loaded, the trucks carry the stones to a secondary crusher,
which is the destination of the stones.

Figure 12.3: An autonomous quarry

During the transportation, the
agents move, collaborate or work
independently, and charge timely
in order to achieve their goal,
while satisfying requirements such
as quarrying 2000m3 of stones per
day. The challenges of the use
case are as follows, which fall into
the general challenges in planning

problems of MAS (see Section 12.3.2):

• Task durations are uncertain because of the uncertainties in the
environment. For instance, when trucks are unloading stones into
a primary crusher, the speed of the conveyor belt on the primary
crusher varies, which results in different execution times of unload-
ing. Other trucks may need to wait until the previous one finishes
its work at the primary crusher, which can even influence the entire
plan (Challenge I).

• Some tasks are executed independently by agents, such as unload-
ing to secondary crushers. Some tasks require collaboration be-
tween agents, such as wheel loaders loading stones into trucks.
Some tasks must be prioritized when certain events occur, such
as the charging task that must be prioritized when the agent’s
battery/fuel level is low (Challenge II).

• According to the experience of Volvo CE, the number of agents
can vary from 2 to 8. However, our previous study has demon-
strated that synthesizing correctness-guaranteed plans by using

278 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

model checking is limited to MAS with less than 5 agents [9]. Han-
dling larger numbers of agents is challenging (Challenge III and
Challenge IV).

To overcome these challenges of MAS planning, we design an approach
called MoCReL, which is an improved version of MCRL that we have
proposed previously [12]. MCRL combines model checking with rein-
forcement learning, so it can deal with more agents than the algorithmic
methods do, however, its task types do not support collaborations and
events in MCRL, and large plans can not be compressed either. Next,
we introduce MoCReL in detail.

12.4 Strategy Synthesis, Verification and Com-
pression

In this section, we introduce the workflow of MoCReL and describe the
TG of MAS together with the important techniques that are used in
MoCReL for strategy synthesis, verification, and compression.

12.4.1 Overall Workflow of MoCReL

The workflow of MoCReL is shown in Fig. 12.4.
Step 1 : A probabilistic quantification is conducted on the TG to facili-
tate sampling over the system, effectively turning the TG into an STG
(Stochastic Timed Game).
Step 2 : Strategy synthesis takes place, which employs the Monte-Carlo
simulation in UPPAAL STRATEGO [14] to simulate the models and sam-
ple runs that satisfy certain properties. Next, the sampled runs are
passed to the reinforcement learning module to generate strategies. It-
erations between the simulation and learning continue until reaching the
limit of iteration or sampling a user-defined number of runs. In this pa-
per, we extend UPPAAL STRATEGO such that it supports using external
libraries to change the learning module [25], and implement MoCReL as
an external library3. Step 3 : When the synthesis finishes, a stochas-
tic strategy is obtained, which is then abstracted as a non-deterministic
strategy and verified.

3The introduction and an example of the library are in Appendix A.4.

12.4 Strategy Synthesis, Verification and Compression 279

Figure 12.4: Workflow of
MoCReL

Step 4 : During the verification, the model
checker inquires the external library, where
the strategy is stored, about the allowed/pre-
ferred actions at a given state. The preferred
state-action pairs are labeled as “visited”.
Step 5 : If the verification fails, we go back to
the Step 2 with an increased number of itera-
tion limit so that the new round of synthesis
can have more samples for learning. If the
verification passes, the unlabeled pairs are
removed from the strategy so that the com-
pressed strategy takes less memory space.

Models and strategies throughout the
workflow are interpreted semantically as
shown later in Subsection 12.4.4. UPPAAL
STRATEGO supports both the algorithmic
synthesis in UPPAAL TIGA [26] and the

learning-based synthesis that uses reinforcement learning [19]. Results
of the algorithmic synthesis are correct-by-construction, but the method
does not scale as it needs to explore the state spaces of the models ex-
haustively. In MoCReL, we propose a post-verification of the strategies
that are synthesized by learning. The verification is exhaustive so the
results are guaranteed to be correct. Moreover, as the verification is
conducted on the agent model controlled by a strategy, the state space
can be much reduced. Therefore, problems that are too complex to be
handled by UPPAAL TIGA can be solved by MoCReL.

12.4.2 Modeling of MAS

MoCReL models the agent behaviors into timed games (TG), including:
(i) movement TG that model the connection and traveling time between
every pair of legal positions in the environment. Legal positions are the
ones that are accessible by the agents; (ii) task execution TG that model
the switch between tasks and the idle state, and the task execution time;
(iii) monitor TG that monitor events. When an event occurs, a monitor
TG informs task execution TG to execute the corresponding task.

As a major difference between MoCReL and our previous approach
MCRL [12], the models in MoCReL are much easier to adapt to different
scenarios of the planning problem, as they are instantiated from the

280 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

model templates. One does not need to change the templates but only
instantiate the templates with different values of parameters in order to
fit in one’s own application. The figures in this section only illustrate the
brief structures of the model templates, without showing the complex
guards and functions on the edges. The full templates are shown in
Appendix A.3.

(a) (b)

(c)

Figure 12.5: Examples of trajectories and the TG template of agent
movement.

(i) Movement TG: The TG template of movement models agent trav-
eling from one point to another. The points can be anywhere except
the obstacles within the map. Since the purpose of the model is to syn-
thesize plans, the movement TG do not model the concrete trajectories
of the agents, but the traveling directions and times. Fig. 12.5c shows
the brief structure of the template of movement TG, in which locations
P1 and P2 represent any legal positions in the map. The location F1T2
models the duration of traveling from P1 to P2. Although the edge from
F1T2 to P2 is uncontrollable by agents, the invariant (timer ≤ up) and
guard (timer ≥ down) regulate that the traveling time must be within
the interval between down and up. As one template only models one
traveling direction, when the agent travels in the opposite direction, i.e.,
from P2 to P1, the traveling time is counted by another TG that models
the converse direction of movement. This TG (P1 to P2) is synchronized
with the other TG (P2 to P1) on the channel go with the index of the

12.4 Strategy Synthesis, Verification and Compression 281

agent.
Fig. 12.5 shows different modeling granularity of traveling from the

green position to the red position. Even though there exists an obstacle
between the two positions, one can model the movement as one instance
of the movement TG template, which only reflects the existence of a
movement between these two positions (the solid line in Fig. 12.5a), and
the traveling time. In this case, solving the mission-planning problem
aims at computing a high-level plan that does not concern how the agents
maneuver in order to carry out the movement safely (the dashed line
in Fig. 12.5a). Alternatively, one can model the movement as several
instances of the template, which reflect the discrete segments of the
trajectory (Fig. 12.5b). When using MoCReL to purely solve a path-
finding problem, one can model the movement from one unit of the
discrete map to another as an instance of the template. The granularity
of modeling depends on the users’ applications.
(ii) Task execution TG: Similar to the movement TG, the task execu-
tion TG do not model the concrete steps of executing a task, but only the
switch between task execution and idle, and the execution time of the
task. There are several different templates designed for different types of
tasks, such as tasks without precondition, tasks with events, and tasks
that need agents to collaborate. One can instantiate the templates ac-
cording to one’s own application by assigning values to the parameters
of the templates, such as BCET and WCET (best-case and worst-case ex-
ecution time, respectively), preconditions, and the event that activates
the task. However, the structure of the templates is the same (Fig. 12.6).

Figure 12.6: TG template
of task execution

When the agent is allowed to execute
a task, the edge from location Idle to
Executing is enabled. A task being allowed
means the following conditions are true: the
task has not been finished yet, its precondi-
tion such as some certain tasks having been
finished is true, the agent is at the right posi-
tion where the task is allowed to run, and the
events that activate the special tasks have
not occurred (respectively, occurred) if the

current one is a regular (respectively, special) task. Additionally, if a
task needs a collaboration among agents, the collaborating agents must
be ready and located at the same position.

When the task is ready but the device that is required by this task

282 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

is taken by another agent, the agent can choose to wait, i.e., transfer
to location Waiting, and change to location Executing when the de-
vice is free. When the task is being executed, the TG can leave location
Executing when the timer exceeds the BCET, and must leave the lo-
cation when it exceeds the WCET, meaning that the execution time of
the task is between BCET and WCET. One thing that is worth men-
tioning is that agents are allowed to move only when not executing any
task, i.e., the task execution TG is at the Idle location. We use a global
Boolean variable shared by the movement TG and the task execution
TG to indicate whether the agent is idle or not.

Figure 12.7: TG template of moni-
tors

(iii) Monitor TG: A monitor
monitors a signal and triggers
an event when the signal exceeds
a certain threshold. For sim-
plicity, we assume the signals to
be changing monotonically with
time. Since the tool that MoCReL
relies on, i.e., UPPAAL STRAT-
EGO, allows defining ordinary dif-

ferential equations (ODE) of continuous variables, one can eliminate this
assumption by assigning ODE to locations. However, we leave this for
the future work.

Based on the assumption, a monitor TG watches the elapse of time
instead of the signal, and triggers an event when time elapses a certain
period, meaning that the signal exceeds a certain threshold. In Fig. 12.7,
when the timer exceeds a particular constant integer (i.e., warning),
the monitor TG transfers to location Alert while updating a variable
representing the event. The corresponding task execution TG (Fig. 12.6)
is then activated in the sense that its edge for starting the task is enabled.
If the agent can finish the task before the timer reaches the limit, which
is represented by a constant integer (i.e., shutdown), the monitor TG
moves back to the initial location to restart the monitoring; otherwise,
the monitor goes to location Stop, when all controllable actions of the
agent are not allowed to be taken any more, meaning that the agent
stops operating.

We call the network of movement TG, task execution TG, and monitor
TG a MAS TG. Properties of a MAS TG can be expressed by a subset
of Computation Tree Logic (CTL) [15] that is supported by UPPAAL
STRATEGO. Since the formal models of MAS have been defined, we

12.4 Strategy Synthesis, Verification and Compression 283

can now define the planning problem formally before introducing the
approach in detail.

Definition 15 (Planning). Given a MAS TG G and a liveness property
Q in the form of A<> p, the planning problem M =< G,Q > reduces
to generate a strategy σ over G such that G can satisfy Q when it is
controlled by σ, i.e., G | σ |= Q. □

The liveness property A<> p means that G | σ will always eventually
satisfy p. As the main goal of mission planning is to find the strategy
that controls the agents to finish all their tasks eventually no matter how
the environment reacts, the liveness property is used in the synthesis.
The correctness guarantee of other requirements, such as safety, can be
achieved by the verification after a plan is synthesized. We will give
more details on these properties in Section 12.4.4.

12.4.3 Partial State-Space Observation

During the learning iteration, numerical rewards of taking an action at
a state are used by reinforcement learning (e.g., the Bellman equation
in Q learning [22]) to populate a score table of state-action pairs. When
the learning finishes, the final values of the pairs are stored in the score
table, which serves as a strategy. Before introducing how the strategy
is used, in this subsection, we introduce another important concept in
MoCReL: partial observation of the state space.

The learning algorithms need to identify the states of MAS to build
up the score tables. As a formal model, MAS TG provides a clear def-
inition of states, consisting of locations, clock values, and other data
variables (Section 12.2). However, the strategies of MAS TG do not nec-
essarily need to know all the components of states. For example, if the
planning problem does not contain timing properties, e.g., finishing the
tasks within 1 hour, the strategies can ignore all the clocks of the states,
which simplifies the problem by eliminating unnecessary details. Hence,
we use a partial observation of the state space of a MAS TG, which is sup-
ported by UPPAAL STRATEGO. One can simply provide the interesting
variables of the MAS TG to the learning algorithm so that the synthesized
strategies do not contain unnecessary information. Details of specifying
partial observability is given in Query (12.3) in Subsection 12.4.4.

284 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

12.4.4 Key Techniques of MoCReL

In this section, we will give a detailed introduction of the key techniques
used in MoCReL after the definition of strategies that we synthesize in
this paper.

Strategy Definition

What MoCReL aims to synthesize is a subset of memoryless and non-
lazy strategies that do not contain clocks. This restriction enables us to
develop an algorithm for exhaustively verifying TG under the control of
learned strategies in UPPAAL STRATEGO, which used to support ex-
haustive verification only on strategies with symbolic states. The trade-
off of the restriction is that the planning problem in this paper does
not consider timing properties. Formally, we define the strategies that
MoCReL synthesizes as follows:

Definition 16 ((Stochastic) Strategy with a Score Table). Given M =<
G,Q > as a planning problem of MAS, a (stochastic) strategy of G is a
function σ : q → A ⊆ Aq

G with a score table of state-action pairs, where
q is a state consisting of discrete variables, and Aq

G ⊆ 2Σc×{λ} is a set
of actions that are allowed by G at state q. The strategy σ is considered
to solve M if the following conditions hold, where ∥A∥ is the cardinality
of A, max(Aq

G) returns the actions with the highest score in Aq
G:

1. if ∥A∥ = 0 (i.e., σ does not contain q), then ∀a ∈ Aq
G, a ∈

max(Aq
G);

2. if ∥A∥ ≥ 1, then ∀a ∈ A, a ∈ max(Aq
G);

When ∥A∥ ≠ 1, ties among actions happen. Non-deterministic (respec-
tively, stochastic) strategies break the ties by non-deterministic (respec-
tively, uniformly-distributed) choices over A when ∥A∥ > 1, or Aq

G when
∥A∥ = 0. □

Unlike the strategies synthesized by algorithmic methods (e.g., UPP-
AAL TIGA), the ones defined in Definition 16 do not guarantee to solve
the MAS planning problem. Possible errors can exist in the design of
the reward functions of the reinforcement learning algorithm, which do
not reflect the desired properties in the planning problem, or the learning
phase is not sufficient to populate a score table that covers enough states.

12.4 Strategy Synthesis, Verification and Compression 285

We will give some examples of the design errors in Section 12.4.4 after
the query for synthesis is introduced.

In the next section, we show how MoCReL synthesizes, verifies, and
compresses strategies defined in Definition 16.

Probabilistic Quantification and Abstraction

Due to the inherent difference between the phases of synthesis and verifi-
cation, models are interpreted semantically differently in MoCReL when
being simulated from when they are being verified. This is automati-
cally done by probabilistic quantification and abstraction of the models
and strategies in MoCReL.

Figure 12.8: Model relations

Fig. 12.8 shows the transforma-
tion of the model semantics in the
workflow of MoCReL. Initially, the
MAS TG is interpreted as an STG dur-
ing strategy synthesis because ran-
dom simulation is needed in this
step. An operation called probabilis-
tic quantification changes the non-
deterministic choices of actions to

stochastic ones with concrete probability distributions. Specifically,
time-bounded delays and discrete actions are transformed into stochas-
tic ones with uniform distributions of probabilities. For example,
in Fig. 12.6, the non-deterministic choice of when to leave location
Executing is transformed to an uniformly-distributed one.

Exponential probability distributions are assigned to unbounded de-
lays on locations with only uncontrollable actions as its outgoing edges,
such as location Executing in Fig. 12.9. A constant integer of the ex-
ponential rate must be assigned to such locations (e.g., 1). If a location
has no invariant and only controllable actions as outgoing edges, such as
location Idle in Fig. 12.9, the length of delay is not considered because
we focus on non-lazy strategies, where agents urgently decide on a dis-
crete action when it is available, or delay until the environment reacts.
In this case, the discrete actions and delay are equally likely to be chosen
initially, so the model templates do not need to be changed either.

In this paper, the duration of movement and task execution are all
time bounded, so no exponential distribution exists in our MAS STG.
Hence, the model templates of movement and task execution do not

286 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

need to be changed, as the probabilistic quantification is done on the
semantic level automatically by UPPAAL STRATEGO.

Figure 12.9: A task execu-
tion STG of a task with an
unbounded execution time.
This model does not exist
in our MAS STG.

Next, synthesis based on the MAS STG
generates stochastic strategies. Specifi-
cally, the simulation samples runs of the
model and sends them to the learning al-
gorithm to accumulate the scores of state-
action pairs of the runs. During the learn-
ing phase, the probabilities of actions are
not always the same. Actions with higher
scores become more likely to be chosen
than the ones with lower scores. Unex-
plored state-action pairs are equally likely
to be chosen as the ones with the highest

scores. This arrangement is referred to as “exploration” in reinforcement
learning literature. After a user-defined number of runs is consumed by
the learning algorithm, a stochastic strategy is considered to be gener-
ated.

After the synthesis, strategies are to be verified and compressed. To
achieve verification, stochastic strategies must be transformed into non-
deterministic strategies so that they can be exhaustively model checked.
This step is called abstraction (see Fig. 12.8), which is also automatically
carried out by UPPAAL STRATEGO on the semantic level. Abstraction
eliminates the probabilistic information from a stochastic strategy by
replacing the stochastic choices of actions with non-deterministic ones,
and produces a strategy. Specifically, as defined in Definition 16, in the
phase of verification, both strategies and stochastic ones always choose
the actions with the highest scores. This is the so-called “exploitation”
in reinforcement learning literature. When ties among actions appear,
stochastic strategies equally likely choose one of these actions, whereas
strategies make the decision non-deterministically. Therefore, a strategy
may exhibit more behaviors than the stochastic strategy that the former
is abstracted from. We prove this formally as follows:

Theorem 1. Given a TG G, an STG P obtained from G by the proba-
bilistic quantification, a stochastic strategy σ◦ (Definition 16) solving P,
and a strategy σ abstracting σ◦, the following inclusion holds: Out(P |
σ◦) ⊆ Out(G | σ).

Proof. First, since P is obtained from G by the probabilistic quantifi-

12.4 Strategy Synthesis, Verification and Compression 287

cation, an uncontrollable action that is chosen non-deterministically by
G is chosen with equal probability by P. If π ∈ Out(P | σ◦) and q =

last(π), there must be a π′ ∈ Out(P | σ◦) such that π = last(π′)
e−→ q,

where e meets one of the three conditions in Definition 14. Assuming
π′ ∈ Out(G | σ), then

1. if e ∈ Σu, then last(π′)
e−→ q ∈ Out(G | σ) because σ has no

control on e, and G non-deterministically chooses e ∈ Σu. Hence,
π ∈ Out(G | σ);

2. if e ∈ Σc∩σ(q) or e = λ, then according to Definition 16, e has the
highest score in Aq

G . Then e can be chosen by σ deterministically
when ∥A∥ = 1 or non-deterministically when ∥A∥ ≠ 1. Hence,
π ∈ Out(G | σ).

Hence, π = last(π′)
e−→ q ∈ Out(G | σ). Likewise, we can inductively

prove the assumption: π′ ∈ Out(G | σ). Hence, if π ∈ Out(P | σ◦),
π ∈ Out(G | σ), that is, Out(P | σ◦) ⊆ Out(G | σ).

Theorem 1 shows that σ, as the abstraction of σ◦, may broaden σ◦’s
outcome, since the former may exhibit behaviors that do not exist in the
latter.

Example. Assume P | σ◦ contains a state qi having 10 controllable
actions, among which 4 of them have the highest score in σ◦, namely
actions a1i , a2i , a3i , and a4i , respectively. Then a run as follows is possible
in both P | σ◦ and G | σ,

... qi
a1
i−→ qi+1 → ...→ qi

a2
i−→ q′i+1 → ...→ qi

a3
i−→ q′′i+1 → ...→ qi

a4
i−→ q′′′i+1 ...

where state qi is reached 4 times when each of a1i , a2i , a3i , and a4i gets to
be chosen once. However, a run as follows is possible in G | σ but not in
P | σ◦:

... qi
a2
i−→ q′i+1 → ...→ qi

a2
i−→ q′i+1 → ...→ qi

a2
i−→ q′i+1 → ...→ qi

a2
i−→ q′i+1 ...

where a2i is chosen 4 times in row. Therefore, the post-verification on σ
is necessary for ensuring that the resulting strategy meets the require-
ments. In the next section, we enumerate other reasons for conducting
the post-verification.

288 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

Strategy Synthesis

Synthesis in UPPAAL STRATEGO is done via the following queries:

strategy policy = minE(x)[<=T]{dv}–>{cv}:<> P (12.3)

strategy policy = maxE(x)[<=T]{dv}–>{cv}:<> P (12.4)

The keyword minE(x) (respectively, maxE(x)) means simulating the
model while running the learning algorithm with the purpose of minimiz-
ing (respectively, maximizing) “x”, which can be a variable or an expres-
sion. This is the so-called “reward function” in reinforcement learning
literature. In addition, T is the maximum time for one round simula-
tion, dv is a set of expressions regarded as discrete values, and cv is a
set of expressions regarded as continuous values. These constitute the
so-called “features” in reinforcement learning literature [21].

The state space of the MAS TG is partially shown to the learning
algorithm by the values of the expressions in dv and cv. In particular,
MoCReL only allows discrete variables, hence the synthesized strategies
do not contain clocks. This limitation facilitates the verification of the
learned strategy since the preference of choice of controllable action can-
not change within zones that represent the basic construction enabling
symbolic verification of timed automata [15].

The formula “<> P” is a CTL property, and only the runs that satisfy
this property are sampled in the simulation. These runs are used as input
of the learning algorithm to calculate the scores of state-action pairs. In
particular, MoCReL uses “<> time ≥ C”, where time is a global clock
in the model that is never reset and C ∈ [0, T] is a constant integer
within the simulation time T. This formula allows all runs that simulate
the model over C time units to be passed to the learning algorithm no
matter whether the agents reach their goals or not. Hence, both good
and bad state-action pairs are passed to the learning algorithm, which
accumulates their scores by using their rewards or penalties, respectively.

When running Query (12.3) in UPPAAL STRATEGO, our new ver-
sion of the tool calls an external library, which implements the learning
algorithm of MoCReL to synthesize strategies, and stores the score ta-
ble of the strategy. With the help of the external library, one can plug
in one’s own learning algorithm or add new functions into the existing
algorithm. We show this in Section 34.

12.4 Strategy Synthesis, Verification and Compression 289

Example. Now, we revisit the path-finding problem of Section 12.3.2,
Fig. 12.2, to shown on the example concretely the necessity of verifying
the resulting strategies, which in fact follows from the one way inclusion
of Theorem 1. Assume that the cat stays at its current position for N
minutes, and that the robot wants to catch it as quickly as possible, then
the reward function can be specified as:

x = time− caught× REWARD (12.5)

The variable time is the global clock aforementioned, caught is a
binary integer (i.e, 1/0) indicating if the cat is caught by the robot or
not, and REWARD is a non-negative integer that the robot gets when it
catches the cat. It is trivial to see that the smaller the value of x is, the
better the strategy is.

If one mistakenly adopts the reward function of equation 12.5 but
Query (12.4) for synthesis, which attempts to find the state-action pairs
maximizing x, the result can still be obtained, as the synthesis is only
about accumulating scores of the pairs and populating a score table.
However, the actions that consume the longest time (i.e., time being
maximum) but never catch the cat (i.e., caught being 0) are taken as
the best actions in this result.

This example shows a possible misuse of the queries for synthesis.
Even if one uses the query and reward function correctly, the resulting
mission plan may still be wrong, because the samples for learning may
be too few to populate a score table that covers enough states, or the
MAS model is wrongly designed and violates other requirements of the
agents that are not reflected in the queries for synthesis. In a nutshell,
the learning-based synthesis does not have a correctness-guarantee on
its results.

Strategy Verification

Different from MCRL [12], the verification in MoCReL is directly con-
ducted on the MAS model under the control of a strategy, because
UPPAAL STRATEGO supports the following verification queries [14]:

A<> ϕ under σ (12.6)

Pr[<=T] ϕ under σ (12.7)

290 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

The keyword under puts the state space exploration of the MAS TG
under the control of the strategy that is synthesized and stored by the
external library of MoCReL. Query (12.6) returns an absolute answer of
true or false to the question of whether ϕ is always eventually satisfied,
whereas Query (12.7) returns the probability of satisfying ϕ.

In this paper, we extend UPPAAL STRATEGO to support Query
(12.6) on strategies that are synthesized by learning. The pseudo-code
of executing Query (12.6) is in Algorithm 6. In Appendix A.2, we il-
lustrate the execution of the algorithm with an example. Here, we
overview the algorithm briefly. To verify a liveness property like Query
(12.6), one needs to explore the model’s state space until either getting
a counter-example run violating the property, or until reaching all the
states. Specifically, a counter-example of a liveness property like Query
(12.6) must be either a loop, or a maximum run ending at an unbounded
state or a deadlock, in which all the states do not satisfy ϕ. Hence, once
such a run is found, the verification terminates with a negative result
(line 15 and line 17).

Additionally, the state space exploration must be guided by a strat-
egy. When the model checker faces controllable actions (i.e., in line 22,
isControllable(a−→) returns true)), or a delay (lines 7 and 9), it calls a
function Allow to lookup the score table of a strategy. According to Def-
inition 16, actions with the highest scores are always chosen – with ties
broken by a uniform distribution (Query (12.7)) or a non-deterministic
choice (Query (12.6)). In this way, the liveness verification is guided by
a strategy.
Example. We show several queries that can be used in the verification of
the synthesized strategy in the path-finding problem of Section 12.3.2,
Fig. 12.2.

strategy policy = minE(time - caught × REWARD)[<=100]

{robot.location}–>{}:<> time ≥ 90
(12.8)

A<> caught under policy (12.9)

A[] !collide() under policy (12.10)

Query (12.8) synthesizes a strategy named policy, which is supposed
to catch the cat within 100 time units. Query (12.9) verifies the robot

12.4 Strategy Synthesis, Verification and Compression 291

Algorithm 6: Algorithm of liveness verification (adapted from
Fig. 3 in the literature [27]): model checking G | σ against
Query (12.6)
1 Function Liveness(G, σ, ϕ):
2 ST := ∅ SD := ∅ Passed := ∅
3 Delay(G.S0,¬ϕ)
4 for Sd ∈ SD do
5 Search(Sd,¬ϕ)

6 return (true)

7 Function Delay(S, φ):
8 for S′ : S

d−→ S′ do
9 if Allow(σ, d−→) then

10 if (S′ /∈ SD) ∧ (S′ |= I(S.l) ∧ φ) then
11 push(SD, S′)

12 Function Search(S, φ):
13 S := S ∧ φ
14 if S ̸= empty then
15 if loop(S,ST) then
16 exit(false) // Loop found

17 if unbounded(S) ∨ deadlocked(S) then
18 exit(false) // Maximal run found

19 push(ST, S)

20 if ∀S′ ∈ Passed : S ⊈ S′ then
21 for Sa : S

a−→ Sa do
// If action a is uncontrollable or allowed, it can be

chosen.

22 if ¬isControllable(a−→)∨ Allow(σ, a−→) then
23 Delay(Sa, φ)
24 for Sd ∈ SD do
25 Search(Sd, φ) // Recursive all

26 Passed := Passed ∩ {pop(ST)} // Move from stack to Passed

27 Function Allow(S, action):
28 if NumControllable(S) == 1 then
29 return (true)

30 if action ∈ best(σ, S) then
31 label(σ, S, action) // Label (S, action) in σ
32 return (true)

33 else
34 return (false)

model under the control of policy to see if it can always eventually catch
the cat. Query (12.10) involves a function collide() implemented in

292 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

the model, which detects the distances from the robot to obstacles in
the environment and returns true if any one of the distances is less than
a certain value, or false otherwise. This query verifies that the collision
between the robot and obstacles never happens.

Besides the possible errors in the resulting strategies, as presented
in the path-finding example, strategies can be memory consuming for
containing too many useless data. With the help of the external library
where MoCReL is implemented, we can leverage queries in the form of
Query (12.6) to not only verify the strategy but also compress the strat-
egy.

Strategy Compression

Once an external library is linked to UPPAAL STRATEGO, the model
checker can enquire the external library when facing multiple controllable
actions. For example, when more than one agent is ready to execute a
task, the model checker without an external library simply traverses
all options non-deterministically, whereas the model checker with an
external library passes the current state and the available actions of
the state to the external library one by one, and obtains the preference
of each state-action pair. The ones with the highest score are always
preferred. In MoCReL, besides returning the preference, we also label
the state-action pairs that have the highest score as “selected” because
they will be selected and verified by the model checker.

When verifying a liveness property (e.g., Query (12.6)), the model
checker must explore all the branches of the state space to ensure that the
proposition of the property (e.g., ϕ in Query (12.6)) is always eventually
true. Therefore, if the liveness property is satisfied, the labelled state-
action pairs are “selected” from the state space and the exhaustiveness
of search guarantees them to always eventually reach the states where
the property is true. The unlabelled pairs are considered “useless” data
because without them, the property can still be satisfied. Therefore, the
strategy can be compressed by removing the unlabelled pairs (cleaning
in Fig. 12.4). By verifying the compressed strategy again, we can see
that the new strategy preserves the liveness property that is met by the
original strategy.

12.4 Strategy Synthesis, Verification and Compression 293

Algorithm 7: MoCReL algorithm
1 Function Main(G, Q, iterationNum, totalNum, goodNum, formula):
2 Strategy σ := ∅, σc := ∅
3 Stochastic Strategy σ◦ := ∅
4 STG P := ProbabilisticQuantification(G)
5 while ¬Liveness(G, σ, Q) do
6 σ◦ := Learn(P, iterationNum, totalNum, goodNum, formula)
7 σ := Abstraction(σ◦)
8 Update(iterationNum, totalNum, goodNum)

9 σc := Clean(σ)
10 return (σc)

Soundness of MoCReL

Algorithm 7 is the pseudo-code of MoCReL. Line 4 and line 7 are the
probabilistic quantification and abstraction, respectively. Line 6 runs an
algorithm that iteratively simulates and learns until a user-defined num-
ber of samples are obtained, or the iteration reaches its maximum rounds
(see Algorithm 8 in Appendix A.1). The function Liveness(G, σ,Q) at
line 5 runs Algorithm 6, which verifies if G | σ |= Q as defined in Defini-
tion 15, and labels the state-action pairs that are selected by the model
checker. Line 8 updates the parameters for learning, e.g., increasing the
number of samples (i.e., totalNum) to have a larger score table that cov-
ers more states than that of the last strategy. Line 9 compresses σ by
removing the unlabeled data.

Soundness of the Approach. When MoCReL terminates with
a synthesized strategy, the result is verified, which guarantees that the
planning problem (Definition 15) is answered correctly. Formally, MoCReL
is sound, proven by Theorem 2 below:

Theorem 2 (Soundness). Given a planning problem Q =< G, Q >,
where Q = A <> ϕ, if Algorithm 7 terminates and returns a strategy
σc, then G | σc |= Q.

Proof. Obviously, Algorithm 7 terminates with two cases:

1. Liveness(G, σ, Q) returns true (line 5 in Algorithm 7), when
Algorithm 7 will eventually return σc (line 10 in Algorithm 7);

2. Liveness(G, σ, Q) exits with a negative result (line 16 and line 18
in Algorithm 6), and no strategy is returned (line 10 in Algorithm 7
never being reached).

294 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

In Case 2, no strategy is generated, hence, we only need to prove when
Case 1 happens, G | σc |= A <> ϕ. Assuming Liveness returns true,
but G | σc ⊭ A <> ϕ, then G | σc |= E[]¬ϕ, which holds if and only if
the following two conditions hold (the code lines referred to in the rest
of the proof are all of Algorithm 6):

(i) The labeling is complete, that is, all the controllable state-action
pairs that are selected by the model checker are labeled, but G |
σc |= E[]¬ϕ, which reads that there exists a run in G | σc, in which
all the states do not satisfy ϕ;

(ii) The labeling is incomplete, that is, some pairs that are selected by
the model checker are not labeled, which makes the model checker
use the wrong actions at certain states when verifying G | σc |=
A <> ϕ and get a negative result.

In Case (i), such a run is either a loop or a run ending in a deadlock or
an unbounded state, in which all the states do not satisfy ϕ. Then the
Search function must exit with a verification result of false (line 16 and
line 18), which contradicts that Liveness returns true assumption.

In Case (ii), wherever the model checker faces a controllable action
(line 22) or a delay (lines 7 and 9), it invokes the function Allow, which
returns true when the state has only one controllable action (line 28),
or the action is labeled (line 31). Hence, when facing multiple control-
lable actions, the model checker can never select an unlabeled action.
Therefore, Case (ii) cannot happen.

In a nutshell, Case (i) and Case (ii) cannot happen, and thus G |
σc |= E[]¬ϕ does not hold, that is, G | σc |= A <> ϕ must hold when the
function Liveness returns true, that is, when Algorithm 7 terminates
and returns σc.

12.5 Experimental Evaluation
In this section, we evaluate MoCReL in several experiments to see its per-
formance in the use case of an autonomous quarry with different numbers
of agents, tasks, and task execution time. The reinforcement learning
algorithm used in the experiments is Q-learning [22]. The experiments
are conducted on an Intel Xeon E5-2678 with 256 GB of RAM running
Ubuntu 20.04 LTS. All the models, tool, and the full experiment results
can be found at: https://github.com/rgu01/MoCReL-Experiments.git.

12.5 Experimental Evaluation 295

12.5.1 Use Case Description

Fig. 12.10 depicts an autonomous quarry that is abstracted from a real
scenario, where there are two kinds of autonomous agents: wheel loaders
and trucks. Wheel loaders dig stones and load them into trucks. The lat-
ter load stones either from the wheel loaders or from a primary crusher,
before transporting the stones to their destination: a secondary crusher.
The goal of the agents is to transport a certain amount of stones. Agents
need to go to a charging station for refueling when the energy level is
low.

Figure 12.10: An autonomous quarry

To solve the MAS plan-
ning problem in this use case,
first we model the system
in the way described in Sec-
tion 12.4.2. For simplicity, the
sub-problem of path finding is
solved by the A* algorithm [3]
and our movement TG only
models the traveling between
every pair of milestones where

tasks are carried out (e.g., red dots in Fig. 12.10). Although simplified,
the state space of the problem during verification still grows exponen-
tially with the linear increase of the number of agents [9]. Task execution
TG models four types of tasks: (i) individual tasks with no precondition,
e.g., wheel loaders digging stones; (ii) individual tasks with precondi-
tions, e.g., trucks unloading stones into the secondary crushers with a
precondition: the unloading task can be carried out only after the trucks
have been loaded by wheel loaders or at primary crushers; (iii) collab-
orating tasks, e.g., wheel loaders loading stones into trucks; (iv) tasks
that are activated by events, e.g, refueling when an agent’s energy level
is low. In addition, we design a special TG named Referee (Fig. A.5 in
Appendix A.3), which judges if the goal is reached (i.e., enough stones
are transported) or the maximum simulation time has been reached. In
either case, the agents must stop, i.e., no controllable actions can be
taken. The learning algorithm partially observes the state space of the
models by detecting discrete variables such as the locations of the TG4.

According to our previous study, the method that purely uses search-
based algorithms can only solve a simplified version of this problem,

4Discrete variables can be seen in the queries of the models in the artifacts.

296 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

where task execution time is fixed and the number of agents is less than
5 [9, 13]. MCRL [12] can deal with more agents and flexible task ex-
ecution time, but collaborations and events are not supported. These
experiments include the collaboration among agents and a battery-low
event. Maps in the experiments are also complex, i.e., some models
contain 2-4 primary crushers and 1-2 secondary crushers.

12.5.2 Experiment Design
We conduct two series of experiments: 1) one where we study the syn-
thesis time and compression efficiency, and 2) one where we study the in-
fluence of the number of sampled runs on the learning efficiency. Models
that are used in both series of experiments are generated automatically
by randomly assigning values to the parameters of the environment, e.g.,
the number of agents. The parameters are reported in Table 12.1 that
we introduce in the next sub-section. The abbreviations in Table 12.1
are given as a footnote5.

The first series of experiments is conducted on the full set of models
while the second is restricted to a subset. The set of models is grouped
intro three categories:

• Category I : Models with large numbers of agents up to 6, a small
number of crushers (2), a fixed medium value of the trucks’ capa-
bilities (20), and no monitor TG for charging.

• Category II : Models with medium numbers of agents (2 - 5), large
numbers of crushers (3 - 6), a range of the trucks’ capabilities (10
- 30), and no monitor TG for charging.

• Category III : Models with small numbers of agents (2 - 3) and
crushers (2), a fixed large value of the trucks’ capabilities (50),
and 1 - 2 monitors TG for charging.

The second series of experiments is conducted on a model game6-B in
Table12.1 and its variants that change the amount of stones trucks can

5Abbreviations in Table 12.1: category (CAT), the number of wheel loaders (WL),
the number of trucks (TK), the number of primary crushers (PC), the number of sec-
ondary crushers (SC), the number of chargers (CH), the capability of trucks (CAP),
if the task execution time is time intervals or not (INT), the number of runs (RUNS),
the computation time of synthesis in seconds (STIME), the size of the original strat-
egy in MB (ORI), the size of the compressed strategy in MB (COM), the result of
verification (VER).

12.5 Experimental Evaluation 297

Table 12.1: Results of strategy synthesis, verification, and compression

CAT model WL TK PC SC CH CAP INT RUNS STIME ORI COM VER
game1-A 2 4 1 1 0 20 YES 2000 3,902 27 0.13 TRUE
game3-A 1 2 1 1 0 20 YES 200 16 0.08 0.02 TRUE
game4-A 2 4 1 1 0 20 YES 5,000 772 5.6 0.03 TRUE
game6-A 2 1 1 1 0 20 YES 200 175 0.09 0.02 TRUE
game7-A 1 4 1 1 0 20 YES 5,000 575 4.7 0.03 TRUE
game8-A 1 2 1 1 0 20 YES 200 14 0.08 0.02 TRUE

I

game9-A 1 4 1 1 0 20 YES 5,000 640 4.4 0.05 TRUE
game0-B 1 2 3 1 0 10 YES 500 92 0.9 0.2 TRUE
game1-B 1 1 4 1 0 10 YES 500 71 0.02 0.1 TRUE
game3-B 1 2 1 2 0 10 YES 100,000 17,297 1.4 0.6 TRUE
game1-E 1 3 1 2 0 30 NO 500 88 5.9 0.03 TRUE
game5-E 1 3 4 2 0 30 NO 5000 1,705 103 0.05 TRUE
game2-B 1 4 1 2 0 10 YES 100,000 800 112 - FALSE

II

game6-B 1 3 3 2 0 10 YES 100,000 893 121 - FALSE
game4-C 1 2 1 1 2 50 YES 2,000 270 9.4 0.03 TRUE
game5-C 1 2 1 1 1 50 YES 5000 410 2.8 0.03 TRUE
game3-D 1 2 1 1 1 50 NO 500 68 1.4 0.03 TRUE
game6-D 1 2 1 1 2 50 NO 500 80 2.6 0.03 TRUE
game9-D 1 2 1 1 2 50 NO 500 84 7.0 0.03 TRUE
game6-C 1 1 1 1 2 50 YES 100,000 8,629 0.7 - FALSE

III

game8-C 1 2 1 1 2 50 YES 100,000 12,457 49 - FALSE

carry at one time. For these three models, we modify the “RUNS” from
100 to 500, and for each number of “RUNS”, we synthesize a strategy and
statistically verify its probability of reaching the goal by using queries
in the form of Query (12.7). We repeat this experiment 10 times and
use the mean values of the probabilities to be the result of verification
to account for the random nature of statistical model checking.

12.5.3 Experiment Results

In Table 12.1, column “CAP” indicates the amount of stones that trucks
can transport at one time, and the target amount of stones to be trans-
ported is the same in all models. Column “VER” shows the results of
verifying queries in the form of Query (12.6). Column “RUNS” includes
the numbers of runs that are needed to synthesize a strategy, which are
picked empirically.

Synthesis time. In category I, the time of synthesizing strategies
is relatively short, respectively. Most of the cases spend several seconds
and the most difficult one (game1-A) costs more than 1 hour with the
largest strategy (27M) produced in this category. In category II, syn-
thesis time remains at the level of minutes for most of the cases. One
interesting comparison is between game3-B and game5-E in this cate-

298 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

gory. Considering the numbers of agents and milestones (e.g., crushers),
the latter is more complex than the former. However, game3-B needs
100,000 runs and more than 4 hours to synthesize a successful strategy
that passes the verification, whereas game5-E only needs 5000 runs and
half an hour. The reason is because the task execution times are fixed
in game5-E whereas the ones in game3-B are time intervals. The time
intervals cause many interleaving actions which increase the state space
of the model dramatically. When maps have chargers in category III,
the synthesis times for successful strategies are at most several minutes.
However, some models in categories II and III can be very complex so
that learning with 100, 000 runs cannot generate successful strategies.
We will discuss this in the presentation of learning efficiency.

Verification results. Overall, most of the cases (4150) in the exper-
iments pass the verification6. In some cases (e.g. game2-B in category
II), we find counter-examples in the strategies that violate the liveness
property, so they do not pass the verification. Increasing their simula-
tion time and rounds to gather more runs for learning can be helpful in
these cases. However, the fact that the models in these cases have large
state spaces makes reaching the goal state a rare event that is hard to
catch by random simulation (see the results of learning efficiency). This
phenomenon stems from the nature of reinforcement learning algorithms
that rely on random simulation.

Learning efficiency. Fig. 12.11 shows the mean probabilities of
agents reaching their goal (i.e., satisfying Query (12.7)). The original
model is game6B, in which the capability of trucks is 10, and the modified
models are game6B-7 and game6B-8, which decrease the capability to 7
and 8, respectively. The results of model game6B are not shown in the
figure because all the experiments with 100 to 500 runs generate the
same result: above 97%. The probabilities of game6B-7 and game6B-8
increase with the increasing numbers of runs. The probabilities of model
game6B-7 are lower than those of the other two models and the IQR
(interquartile ranges7) are the largest. This indicates that when reaching
the goal becomes hard, learning efficiency becomes unstable in the sense
that the probabilities of satisfaction under the learned strategy vary
dramatically.

One interesting observation is that, although the original model of
game6B cannot generate a successful strategy not even when the number

6Full results of all models can be seen: shorturl.at/dkqyE
7IQR is the difference between the 75th and 25th percentiles of the data.

12.5 Experimental Evaluation 299

Figure 12.11: Distribution of mean probabilities of satisfaction over 10
experiments

of runs is 100,000, its mean probabilities of satisfaction for the strategies
synthesized by a few runs (i.e., 100 - 500) are quite high (i.e., above
97%) with a standard deviation of 0. This phenomenon shows that
when reaching the goal becomes a rare event, the benefit of increasing
the number of runs becomes very low.

Strategy compression. The reduced sizes of compressed strategies
are up to 99.95% of the original sizes in our experiments (e.g., game5-E
in category II). Strategies that do not pass the verification are not com-
pressed and thus are shown as “-” in the column “COM” of Table 12.1.
The compressed strategies not only save memory space but also improve
the explainability of the strategies. For example, the score table of the
complete strategy in game4-A has almost 78,000 rows of data, which is
reduced to less than 50 rows in the compressed strategy8. The latter is
much more readable and explainable by humans.

Conclusion of the Experiments. The experiments show that
MoCReL can solve the MAS planning problem in complex maps with
multiple crushers and chargers. Successful strategies are verified and
compressed and the reduced sizes are significant. Counter-examples of
the liveness property can be found in unsuccessful strategies, which in-
dicate where the agents fail. Compared to MCRL, although the envi-
ronment is more complex, the task types are richer, and the number
of agents is larger, MoCReL can still solve most of the cases in a rea-
sonable time. The learning efficiency of reinforcement learning drops
dramatically when reaching the goal state becomes a rare event in the

8Please see the printed strategies of game4-A in the artifacts.

300 Paper E: Correctness-Guaranteed Strategy Synthesis and
Compression

model.

12.6 Related Work

Synthesis of strategies for MAS has been an increasingly researched area
in recent years. Andersen et al. [28] present a UPPAAL-based method for
motion planning of multi-robot systems. Their method uses reachability
queries to generate motion plans, which is not sufficient for synthesizing
comprehensive strategies that consider time intervals as the execution
time of motions. Alur et al. [29] use the game theory for compositional
synthesis of reactive controllers from Linear Temporal Logic (LTL) spec-
ifications for multi-agent systems, in which agents can be controllable or
uncontrollable. Gleirscher et al. [30] introduce an approach for synthe-
sis and verification of safety controllers for human-robot collaboration.
Křetínskỳ [31] investigate the combination of LTL, Steady-State Policy
Synthesis (SSPS), and long-run average reward (LRA) on synthesizing
policies that resolve Markov decision processes (MDP). Bersani et al.
[32] present the PuRSUE (Planner for RobotS in Uncontrollable Envi-
ronments) approach, which supports users to configure their robotic ap-
plications and automatically generate their controllers by using UPPAAL
TIGA. The main difference between our work and theirs is that their
synthesis is based on search, which is correct-by-construction, but the
scalability is limited.

In the field of combining formal methods with reinforcement learning
(RL), Behjati et al. [33] attempt to solve the state-space-explosion prob-
lem of model checking LTL properties by using RL. Bouton et al. [34]
propose a method that enforces probabilistic guarantees on agents dur-
ing the course of RL. Jothimurugan et al. [35] propose DIRL, a synthesis
approach that interleaves Djikstra’s algorithm with RL to train agents.
In comparison, the correctness guarantee provided by MoCReL is not on
the course of learning or formal specification of the rewards functions and
agent tasks. MoCReL provides post-verification of the synthesis results,
which is more scalable than verifying the original agent models.

In the area of strategy compression, Julian et al. explore several ways
of compressing strategies by using origami compression [36] or deep neu-
ral network [23][37]. Ashok et al. propose a decision-tree-based method
for concisely representing strategies [38][39]. Their tool dtControl is
able to compress strategies produced by UPPAAL TIGA. Compared with

12.7 Conclusions and Future Work 301

these methods, the strategy compression in MoCReL focuses on clean-
ing the unused data in the strategies rather than representing them in
different forms. Compression in MoCReL replying on exhaustive model
checking inherently provides safety guarantee of the strategies, which
needs extra effort to achieve in other methods [37].

12.7 Conclusions and Future Work
We present a new method, namely MoCReL, for synthesis, verification,
and compacting of strategies of multi-agent autonomous systems (MAS).
MoCReL uses reinforcement learning for synthesizing strategies and model
checking for verifying and compressing the strategies. MoCReL is in-
tegrated into UPPAAL STRATEGO, which facilitates the use of this
method. Experiments carried out on a real-word autonomous quarry
case study show that MoCReL is able to solve the planning problem of
MAS in complex maps with large numbers of agents. The compressed
strategies save up to 99.95% of the memory space taken by the origi-
nal strategies. When reaching the goal state becomes a rare event that
is hard to be captured by random simulation, the learning efficiency of
reinforcement learning drops dramatically.

An interesting direction of the future work is to investigate the use of
the counter-examples to repair the unsuccessful strategies, which would
increase the learning efficiency profoundly. Introducing clocks into the
strategies can be another challenging direction of research.

Acknowledgments
We acknowledge the support of the Swedish Knowledge Foundation via
the profile DPAC - Dependable Platform for Autonomous Systems and
Control, grant nr: 20150022, and via the synergy ACICS – Assured
Cloud Platforms for Industrial Cyber-Physical Systems, grant nr. 20190-
038.

Bibliography

[1] Eugenio Oliveira, Klaus Fischer, and Olga Stepankova. Multi-agent
systems: which research for which applications. Robotics and Au-
tonomous Systems, 27(1-2):91–106, 1999.

[2] PR Chandler and Meir Pachter. Research issues in autonomous
control of tactical uavs. In Proceedings of the 1998 American Control
Conference. ACC (IEEE Cat. No. 98CH36207). IEEE, 1998.

[3] Steve Rabin. Game programming gems, chapter a* aesthetic opti-
mizations. Charles River Media, 2000.

[4] Steven M LaValle. Rapidly-exploring random trees: A new tool for
path planning. In Technical Report, 1998.

[5] Jean-Francois Kempf, Marius Bozga, and Oded Maler. As soon
as probable: Optimal scheduling under stochastic uncertainty. In
International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 385–400. Springer, 2013.

[6] Kim Guldstrand Larsen, Adrien Le Coënt, Marius Mikučionis, and
Jakob Haahr Taankvist. Guaranteed control synthesis for continu-
ous systems in uppaal tiga. In Cyber Physical Systems. Model-Based
Design, pages 113–133. Springer, 2018.

[7] Wei Zhang and Thomas G Dietterich. High-performance job-shop
scheduling with a timedelay td () network. Advances in neural in-
formation processing systems, 8:1024–1030, 1996.

[8] Chathurangi Shyalika, Thushari Silva, and Asoka Karunananda.
Reinforcement learning in dynamic task scheduling: A review. SN
Computer Science, 1(6):1–17, 2020.

303

304Bibliography

[9] Rong Gu, Eduard Paul Enoiu, and Cristina Seceleanu. Tamaa:
Uppaal-based mission planning for autonomous agents. In
35th ACM/SIGAPP Symposium On Applied Computing SAC2020.
ACM, 2019.

[10] Maxime Bouton, Akansel Cosgun, and Mykel J Kochenderfer. Belief
state planning for autonomously navigating urban intersections. In
Intelligent Vehicles Symposium. IEEE, 2017.

[11] Yasmina Abdeddaı, Eugene Asarin, and Oded Maler. Scheduling
with timed automata. Theoretical Computer Science, 354(2):272–
300, 2006.

[12] Rong Gu, Eduard Paul Enoiu, Cristina Seceleanu, and Kristina
Lundqvist. Verifiable and scalable mission-plan synthesis for multi-
ple autonomous agents. In 25th International Conference on Formal
Methods for Industrial Critical Systems. Springer, 2020.

[13] Rong Gu, Peter Jensen, Danny Poulsen, Cristina Seceleanu, Eduard
Enoiu, and Kristina Lundqvist. Verifiable strategy synthesis for
multiple autonomous agents: A scalable approach. International
Journal on Software Tools for Technology Transfer (STTT), 24(3),
2022.

[14] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Mar-
ius Mikučionis, and Jakob Haahr Taankvist. Uppaal stratego. In
TACAS 2015: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer, 2015.

[15] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. Lectures on Concurrency and Petri Nets: Ad-
vances in Petri Nets, pages 87–124, 2004.

[16] Alexandre David, Dehui Du, Kim G Larsen, Axel Legay, Marius
Mikučionis, Danny Bøgsted Poulsen, and Sean Sedwards. Statis-
tical model checking for stochastic hybrid systems. arXiv preprint
arXiv:1208.3856, 2012.

[17] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G Larsen,
and Didier Lime. Efficient on-the-fly algorithms for the analysis
of timed games. In CONCUR 2005: International Conference on
Concurrency Theory, pages 66–80. Springer, 2005.

Bibliography 305

[18] Rajeev Alur and David L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126:183–235, 1994.

[19] Alexandre David, Peter G Jensen, Kim Guldstrand Larsen, Axel
Legay, Didier Lime, Mathias Grund Sørensen, and Jakob H
Taankvist. On time with minimal expected cost! In International
Symposium on Automated Technology for Verification and Analysis,
pages 129–145. Springer, 2014.

[20] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT press, 2008.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[22] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. King’s College, Cambridge United Kingdom, 1989.

[23] Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. Deep
neural network compression for aircraft collision avoidance systems.
Journal of Guidance, Control, and Dynamics, 42(3):598–608, 2019.

[24] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and
Clifford Stein. Introduction to algorithms. MIT press, 2009.

[25] Manfred Jaeger, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel
Legay, Sean Sedwards, and Jakob Haahr Taankvist. Teaching strat-
ego to play ball: Optimal synthesis for continuous space mdps. In
International Symposium on Automated Technology for Verification
and Analysis, pages 81–97. Springer, 2019.

[26] Gerd Behrmann, Alexandre David, Emmanuel Fleury, Kim Larsen,
Didier Lime, and Ecole Nantes. Uppaal-Tiga: Time for playing
games! (tool paper). In Proceedings of the 2007 Computer Aided
Verification. Springer Berlin Heidelberg, 2007.

[27] Gerd Behrmann, Kim G Larsen, and Jacob Illum Rasmussen. Be-
yond liveness: Efficient parameter synthesis for time bounded live-
ness. In International Conference on Formal Modeling and Analysis
of Timed Systems, pages 81–94. Springer, 2005.

306Bibliography

[28] Michael S Andersen, Rune S Jensen, Thomas Bak, and Michael M
Quottrup. Motion planning in multi-robot systems using timed
automata. IFAC Proceedings Volumes, 37(8):597–602, 2004.

[29] Rajeev Alur, Salar Moarref, and Ufuk Topcu. Compositional syn-
thesis of reactive controllers for multi-agent systems. In Interna-
tional Conference on Computer Aided Verification, pages 251–269.
Springer, 2016.

[30] Mario Gleirscher, Radu Calinescu, James Douthwaite, Benjamin
Lesage, Colin Paterson, Jonathan Aitken, Rob Alexander, and
James Law. Verified synthesis of optimal safety controllers for
human-robot collaboration. arXiv preprint arXiv:2106.06604, 2021.

[31] Jan Křetínskỳ. Ltl-constrained steady-state policy synthesis. arXiv
preprint arXiv:2105.14894, 2021.

[32] Marcello M Bersani, Matteo Soldo, Claudio Menghi, Patrizio Pel-
liccione, and Matteo Rossi. Pursue-from specification of robotic
environments to synthesis of controllers. Formal Aspects of Com-
puting, 2020.

[33] Razieh Behjati, Marjan Sirjani, and Majid Nili Ahmadabadi.
Bounded rational search for on-the-fly model checking of ltl prop-
erties. In FSE, pages 292–307. Springer, 2009.

[34] Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo Fujimura,
Mykel J Kochenderfer, and Jana Tumova. Reinforcement learn-
ing with probabilistic guarantees for autonomous driving. arXiv
preprint arXiv:1904.07189, 2019.

[35] Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Ra-
jeev Alur. Compositional reinforcement learning from logical spec-
ifications. Advances in Neural Information Processing Systems, 34,
2021.

[36] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen,
and Mykel J Kochenderfer. Policy compression for aircraft colli-
sion avoidance systems. In 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), pages 1–10. IEEE, 2016.

Bibliography 307

[37] Kyle D Julian and Mykel J Kochenderfer. Guaranteeing safety for
neural network-based aircraft collision avoidance systems. In 2019
IEEE/AIAA 38th Digital Avionics Systems Conference (DASC),
pages 1–10. IEEE, 2019.

[38] Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan
Křetínskỳ, Maximilian Weininger, and Majid Zamani. dtcontrol:
Decision tree learning algorithms for controller representation. In
Proceedings of the 23rd International Conference on Hybrid Sys-
tems: Computation and Control, pages 1–7, 2020.

[39] Pranav Ashok, Mathias Jackermeier, Jan Křetínskỳ, Christoph
Weinhuber, Maximilian Weininger, and Mayank Yadav. dtcontrol
2.0: Explainable strategy representation via decision tree learning
steered by experts. arXiv preprint arXiv:2101.07202, 2021.

Chapter 13

Paper F: Model Checking
Collision Avoidance of
Nonlinear Autonomous
Vehicle Models

Rong Gu, Cristina Seceleanu, Eduard Enoiu, and Kristina Lundqvist.
Published in Proceedings of the 24th International Symposium on For-
mal Methods, Springer, 2021.

309

Abstract

Autonomous vehicles are expected to be able to avoid static and dynamic
obstacles automatically, along their way. However, most of the collision-
avoidance functionality is not formally verified, which hinders ensuring
such systems’ safety. In this paper, we introduce formal definitions of
the vehicle’s movement and trajectory, based on hybrid transition sys-
tems. Since formally verifying hybrid systems algorithmically is undecid-
able, we reduce the verification of nonlinear vehicle behavior to verifying
discrete-time vehicle behavior overapproximations. Using this result, we
propose a generic approach to formally verify autonomous vehicles with
nonlinear behavior against reach-avoid requirements. The approach pro-
vides a UPPAAL timed-automata model of vehicle behavior, and uses
UPPAAL STRATEGO for verifying the model with user-programmed
libraries of collision-avoidance algorithms. Our experiments show the
approach’s effectiveness in discovering bugs in a state-of-the-art version
of a selected collision-avoidance algorithm, as well as in proving the ab-
sence of bugs in the algorithm’s improved version.

13.1 Introduction 311

13.1 Introduction

Autonomous vehicles (AV), such as driverless cars and robots, are be-
coming increasingly promising, hence prompting a wide interest in in-
dustry and academia. Safety of vehicle operations is the most impor-
tant concern, requiring these systems to move and act without collid-
ing with static or dynamic objects (obstacles) in the environment, such
as big rocks, humans, and other mobile machines. Algorithms like A*
[1], Rapidly-exploring Random Tree (RRT) [2], and Theta* [3] are able
to navigate the AV towards reaching their destinations, while avoiding
static obstacles along the way. However, when encountering dynamic
obstacles that could appear and move arbitrarily in the environment,
these algorithms are not enough for collision avoidance, and have to be
complemented by algorithms such as those based on dipole flow fields
[4] or dynamic window approach [5], which are capable of circumventing
dynamic obstacles.

Although many collision-avoidance algorithms are being proposed in
recent years, few of them have been formally verified, despite the fact
that formal verification is a very important tool for discovering problems
in the early stage of algorithm design. In this paper, we consider two
main challenges that can turn formal verification of AV models and their
algorithms into a daunting task: (i) nonlinearity of the vehicle kinemat-
ics, and (ii) complexity and uncertainty of the environment where AV
move. On the one hand, ordinary differential equations are used to de-
scribe the continuous dynamics and kinematics of the often nonlinear ve-
hicles. The trajectories formed by these vehicle models are consequently
nonlinear, which is the nonlinearity that we consider throughout the
paper. On the other hand, discrete decisions made by the vehicles’ con-
trol systems influence the movement of vehicles. In the model-checking
world, verification of these so-called nonlinear hybrid systems that com-
bine nonlinear continuous kinematics and discrete control is undecidable
[6, 7]. In addition, AV that aim at tracking initially planned paths are
inevitably diverted by their tracking errors caused by the inaccuracy of
their sensors and actuators, and the disturbance from the complex en-
vironment. Dynamic obstacles are unpredictable before AV sense them.
All these reasons render exhaustive model checking of models of nonlin-
ear vehicles that move in an environment containing static obstacles and
uncertain dynamic obstacles an unsolved problem.

In this paper, we solve this problem by addressing challenges (i) and

312 Paper F: Model Checking Nonlinear Collision Avoidance

(ii). First, we introduce safe zones of the trajectories formed by control-
lable nonlinear AV models, which overcomes challenge (i), as follows. If
an AV’s tracking error has a Lyapunov function, it is called controllable
in this paper, and its deviation from the reference path is bounded [8].
The boundaries of tracking errors form the safe zone of the AV, assuming
the reference path as the axis. As long as the dynamic obstacles do not
intrude into these zones, the vehicles are guaranteed to be safe. Based on
this observation, we reduce the verification of controllable AV’s nonlinear
trajectories to the verification of its piece-wise-continuous (PWC) refer-
ence trajectories, and further to the verification of discrete-time models
of trajectories. The various vehicle dynamics and kinematics, together
with the uncertain tracking errors are all subsumed by the safe zones,
so the undecidable verification problem is simplified to a decidable one,
without losing completeness.

Next, we solve challenge (ii) by leveraging the nondeterminism of
timed automata in UPPAAL STRATEGO [9]. The initialization and
movement of dynamic obstacles are modeled as timed automata, in which
their positions etc. are nondeterministically initialized and updated. In
this way, the vehicle model satisfies the liveness property only when it
is able to reach the destination, and the invariance property if there is
no collision happening under any circumstance. When multiple dynamic
obstacles are involved, the state space of the model becomes large and
the verification becomes computationally expensive or even unsolvable.
Consequently, we also propose a way of reducing the state space by
splitting the verification into multiple tractable phases.

Note that, our approach is orthogonal to the methods of controller
synthesis (e.g., [10, 11]). The latter targets the construction of motion
plans that avoid static and dynamic obstacles, whereas our method can
be used to verify the correctness of these methods, regardless of the path-
planning and collision-avoidance algorithms considered. To summarize,
our main contributions are:

1. A proven transformation of the verification of nonlinear vehicle
trajectories to the verification of PWC trajectories and discrete-
time trajectories.

2. A generic verification approach for model checking reach-avoid re-
quirements of AV equipped with different collision-avoidance algo-
rithms (Section 13.4).

13.2 Problem Description 313

3. An implementation of the approach in UPPAAL STRATEGO, and
a demonstration showing the ability of the approach to discover
bugs in a state-of-the-art collision-avoidance algorithm, and to
prove the absence of bugs in an improved version of the same al-
gorithm (Section 13.5).

Preliminaries. In this paper, we denote a vector x by x⃗, the module
of x⃗ by ||x⃗||, and multiplications between two scalars, and between a
vector and a scalar by “×”. Timed Automata is a widely-used formal-
ism for modeling real-time systems [12]. The UPPAAL model checker
[13] uses an extension of the timed-automata language with a number
of features such as constants, data variables, arithmetic operations, ar-
rays, broadcast channels, urgent and committed locations. Properties
that can be checked by UPPAAL are formalized in a simplified timed
computation tree logic (TCTL) [14], which basically contains a decidable
subset of computation tree logic (CTL) plus clock constraints. A branch
of UPPAAL, named UPPAAL STRATEGO [9], supports calling external
C-code functions written in libraries. This new feature enables us to
treat the user-designed collision-avoidance algorithm as a black box in
our model.

The remainder of the paper is organized as follows. In Section 13.2,
we introduce the systems to be verified. In Section 13.3, we concretely
define the movement and trajectories of AV and prove two theorems of
transforming the verification of nonlinear vehicle trajectories to the ver-
ification of PWC trajectories and discrete-time trajectories. A detailed
description of the verification approach and tool support is presented in
Section 13.4, followed by experiments in Section 13.5. We compare our
study to related work in Section 13.6, and conclude the paper in Section
13.7.

13.2 Problem Description
Vehicles that are capable to calculate paths to their destinations, which
avoid collision with any obstacles in the environment, and follow them
without human intervention, are called autonomous vehicles (AV). As
depicted in Fig. 13.1, when the environment contains only static obsta-
cles whose positions are already known by the AV, paths are calculated
by the path planner inside the controller of the AV. Path planners
are usually equipped with path-planning algorithms, e.g., Theta* [3] or

314 Paper F: Model Checking Nonlinear Collision Avoidance

Figure 13.1: The architecture of the controller of autonomous vehicles.
The collision-avoidance module does not exist if the environment only
contains static obstacles.

RRT [2], which explore the map (M) to find a path that avoids the static
obstacles and reaches the destination. The reference controller (gr) uses
the output of the path planner and generates a trajectory of the state
variables of the system, e.g., position and linear velocity of the vehicle,
as a reference (ξr) for the tracking controller to follow. The tracking
controller aims to produce an input to the vehicle to drive it to track the
reference trajectory. The real trajectory (ξg) follows the reference path
(ξr) with some tracking errors.

Figure 13.2: The refer-
ence trajectory is solid
black lines, and the ac-
tual trajectory is violet
dotted lines. The ini-
tial area is blue and the
goal area is yellow. The
boundaries of tracking
errors are green. Static
obstacles are grey [8].

Since the dynamics and kinematics of a
real AV are nonlinear, and tracking errors be-
tween the actual trajectory and reference tra-
jectory exist inevitably, path planners do not
guarantee the safety of AV driving. More-
over, formally verifying if the actual trajecto-
ries ever hit the static obstacles is an unde-
cidable problem, due to the model-checking
of nonlinear hybrid systems being undecid-
able [7]. Overapproximation is a method of
linearizing the vehicle model, to facilitate ver-
ification. Fan et al. [8] propose a method
that proves that, as long as the dynamics of
tracking errors has a Lyapunov function, the
tracking errors are bounded by a piece-wise
constant value, which depends on the initial
tracking error and the number of segments of

the reference trajectory. Fig. 13.2 shows an example of a reference tra-
jectory and the boundary of tracking errors. Consequently, as long as
the safe regions of AV (green color) do not overlap with the grey areas,
the actual trajectory is guaranteed to be safe.

13.3 Definitions and Verification Reduction Theorems 315

Due to this result, one can reduce the problem of verifying whether
the actual trajectory (ξg) ever overlaps with obstacles, to a simplified
problem of verifying whether the distance between the reference trajec-
tory (ξr) and the obstacles is larger than the respective boundary of
tracking error on each segment of ξr. In other words, the verification
of nonlinear vehicle trajectories is reduced to the verification of their
piece-wise-continuous reference trajectories. Although much simplified,
the problem is still undecidable as long as the piece-wise-continuous tra-
jectories are non-linear [8]. Moreover, when dynamic obstacles appear,
the verification becomes intractable, because dynamic obstacles cannot
be known completely before the AV encounters them. The controller
must be additionally equipped with a collision-avoidance module that
perceives the environment periodically, via sensors. Fig. 13.1 shows such
a controller. The path planner still calculates a path that avoids known
static obstacles and goes to the destination. The path serves as input
to the collision-avoidance module as a sequence of waypoints (positions
of turning directions, denoted as W), as well as the information of the
map (M) and dynamic obstacles (od). The command controller should
meet the following two requirements, which are the focus of verification
in this paper:

• Collision avoidance (invariance property): always circumventing
the static and dynamic obstacles;

• Destination reaching (liveness property): always eventually reach-
ing the goal area.

13.3 Definitions and Verification Reduction
Theorems

In this section, we introduce the definitions of the important concepts
used in this paper and the collision-avoidance verification theorems that
eventually reduce the nonlinear trajectory verification to discrete-time
trajectory verification. We denote AV and dynamic obstacles collectively
by the term agents.

First, let us establish an overall view of the different types of models
that are used in this section. So far, we have stated that model-checking
liveness properties (e.g., destination reaching) and invariance proper-
ties (e.g., collision avoidance) of nonlinear hybrid systems is undecid-

316 Paper F: Model Checking Nonlinear Collision Avoidance

able. Note that hybrid systems are described by syntactic models with
an underlying semantics defined as hybrid transition systems (HTS),
used in the following definitions. As depicted in Fig. 13.3, the contin-

Figure 13.3: Overall description of models and their decidability

uous trajectories of agents are modeled as HTS. By incorporating the
tracking errors of agents, the continuous trajectories are simplified into
piece-wise-continuous (PWC) trajectories. However, the verification of
PWC trajectories is still undecidable, so we transform the PWC tra-
jectories into discrete-time trajectories, whose verification is decidable.
Furthermore, the two-step transformation from continuous trajectories
to discrete-time trajectories is proved to preserve the liveness and in-
variance properties that we want to verify (Theorem 3 and Theorem 4).

13.3.1 Definitions of Maps, Agent States, and Tra-
jectories

In this section, we first define the agent states and the map where agents
move. Next, we define the command controllers and agent-state trajec-
tories.

Definition 17 (Map). A map is a 4-tuple M =< X ,Ou, I,G >, where
(i) X ∈ Rd is the moving space, with d ∈ {2, 3} being the dimension of
the map, (ii) Ou ⊆ X is the unsafe area, (iii) I ⊆ X is the initial area
of AV, and (iv) G ⊆ X is the goal area where the AV aims to go.

An example of a map is illustrated in Fig. 13.2.

Definition 18 (Agent State). Given a map M =< X ,Ou, I,G >, an
agent state is a 5-tuple S =< p⃗, v⃗, a⃗, θ, ω >, where (i) p⃗ ∈ X is the
position vector, (ii) v⃗ is the linear velocity vector, ||v⃗|| ∈ [0, Vmax] ⊂

13.3 Definitions and Verification Reduction Theorems 317

R≥0, (iii) a⃗ is the acceleration vector, ||⃗a|| ∈ [Amin, Amax] ⊂ R, (iv)
θ ∈ [−π, π] ⊂ R is the heading, and (v) ω ∈ [Ωmin,Ωmax] ⊂ R is the
rotational velocity.

The agent states are states of AV and dynamic obstacles. Some
elements in the tuple of agent states S evolve continuously and some
are assumed to change instantaneously. We define the trajectories of
the evolution of the agent states in Definition 20. Before that, we first
define the controller of AV, where dynamic obstacles (Od) are instances
of agent states S, as follows:

Definition 19 (Controller). Given a map M, and a set of dynamic
obstacles Od, we define a command controller of AV as a 3-tuple C =<
pl, ca,Λ >, where (i) pl : M −→ W is a path-planning function, W ⊆
X is a set of waypoints, (ii) ca : M × W × Od −→ Λ is a collision-
avoidance function, and (iii) Λ = {ACC ,BRK ,TR+,TR−,STR} is a
set of commands.

The commands are signals sent from the controllers to the actuators
of the AV: ACC means acceleration, BRK means brake, TR+ and TR−

mean turning counter-clockwise and clockwise, respectively, and STR
means moving straightly at a constant speed. An example of the AV’s
controller architecture is shown in Fig. 13.1. When an AV starts to
move, the transitions of its agent states form a trajectory, in which its
position, linear velocity, and heading evolve continuously according to
corresponding dynamic functions, whereas its acceleration and rotational
velocity change discretely based on the commands.

Definition 20 (Continuous Trajectory). Given an AV, whose command
controller is C =< pl, ca,Λ >, we define its movement by a hybrid tran-
sition system < S, s0,Σ, X,→>, where S is a set of states, s0 is the
initial state, Σ ⊆ Λ is the alphabet, X = Xd ∪ Xc is a set of variables
combining discrete variables in Xd and continuous variables in Xc, and
→ is a set of transitions defined by the following rules, with kinematic
functions of the AV denoted by f :

• Delayed transitions: < p⃗, v⃗, a⃗, θ, ω >
∆t−−→< p⃗′, v⃗′, a⃗′, θ′, ω′ >, where

t ∈ Xc, p⃗′ = p⃗+
∫ u

l
v⃗dt, v⃗′ = v⃗ +

∫ u

l
a⃗dt, a⃗′ = a⃗, θ′ = θ +

∫ u

l
ωdt,

ω′ = ω, l ∈ R≥0 and u ∈ R>0 are the upper and lower time bounds,
respectively, and ∆t = u− l;

318 Paper F: Model Checking Nonlinear Collision Avoidance

• Instantaneous transitions: < p⃗, v⃗, a⃗, θ, ω >
cmd−−−→< p⃗′, v⃗′, a⃗′, θ′, ω′ >,

where p⃗′ = p⃗, v⃗′ = v⃗, a⃗′ = ca(⃗a, cmd), θ′ = θ, ω′ = ca(ω, cmd),
cmd ∈ Σ.

A run of the transition system defined above over a duration U is a
trajectory of agent states, also described by the function ξ : [0, U] → S.
Henceforth, we name the agent-state trajectory as trajectory for brevity,
and denote ξ(t) as a point of ξ at time t, the projection of ξ on a dimen-
sion of an agent-state as ξ↓dimension, e.g., positions on a trajectory
are ξ↓p⃗. The continuous variables of actual trajectories of agents are
generated by their nonlinear kinematic functions, yet these variables are
piece-wise-continuous (PWC) in reference trajectories (see Fig. 13.2).
More specific, a reference trajectory ξr is a sequence of concatenated
trajectory segments ξr,1 ⌢ ... ⌢ ξr,k. The concatenating points {p⃗i}ki=0

are the waypoints calculated by path-planners, where the discontinuity
of the vehicle’s heading θ happens. Therefore, the definition of agent
movement on a reference trajectory changes as follows:

Definition 21 (Reference Trajectory). Let us assume an AV, whose
command controller is C =< pl, ca,Λ >, and a PWC trajectory ξr of the
AV, which is a sequence of trajectories ξr,1 ⌢ ... ⌢ ξr,k concatenated by a
set of waypoints {P⃗i}ki=0. Then, the AV’s movement along the reference
trajectory is a hybrid transition system similar to that of Definition 20,
and its transitions are defined by the following rules:

• Delayed transitions on ξr↓p⃗ ̸⊆ {P⃗i}ki=0: < p⃗, v⃗, a⃗, θ, ω >
∆t−−→

< p⃗′, v⃗′, a⃗′, θ′, ω′ >, where p⃗′ = p⃗+(v⃗+ a⃗×∆t
2)×∆t, v⃗′ = v⃗+ a⃗×∆t,

a⃗′ = a⃗, θ′ = θ, ω′ = 0;

• Instantaneous transitions: < p⃗, v⃗, a⃗, θ, ω >
cmd−−−→< p⃗′, v⃗′, a⃗′, θ′, ω′ >,

where p⃗′ = p⃗, v⃗′ = v⃗, a⃗′ = ca(⃗a, cmd),

θ′ =

{
arctangent(P⃗i, P⃗i+1), if p⃗ ∈ {P⃗i}k−1

i=0 ,

θ, if p⃗ ̸∈ {P⃗i}k−1
i=0

, ω′ = 0

Intuitively, when an agent is moving along its reference trajectory
(ξr), its heading (ξr↓θ) remains unchanged before it arrives at a way-
point, which means the rotational velocity (ξr↓ω) is irrelevant and re-
mains 0. Therefore, the reference trajectory is infeasible to be tracked
exactly by the agents. Although the integration of ξr↓p⃗ and ξr↓v⃗ on de-
layed transitions is simplified to polynomial functions, the nonlinearity of

13.3 Definitions and Verification Reduction Theorems 319

ξr↓p⃗ still renders undecidability. The trigonometric function in the def-
inition also causes a computational difficulty when running verification.
In practice, we use linear speed vector (v⃗) to describe both the linear
speed and the orientation of the agent. The acceleration (ξr↓a⃗) changes
instantaneously based on the commands from the command controller.
Last but not least, the trajectories of dynamic obstacles are similar to
Definition 20, but without a well-defined controller. On their instan-
taneous transitions, accelerations and rotational velocities are changed
arbitrarily within the valid ranges.

13.3.2 Collision-Avoidance Verification Reduction

We use ξr and ξg to denote the reference and actual trajectory of AV,
respectively, and ξo for the actual trajectories of dynamic obstacles.

Figure 13.4: A dynamic ob-
stacle is at the red cross,
while the current position
of AV on the reference path
is the yellow dot. The
safety-critical area is dark
green.

Let d(var1, var2) denote the distance
between var1 and var2, e.g., d(p⃗i, ξj↓p⃗) is
the distance from position p⃗i to trajectory
ξj↓p⃗, and d(ξi↓p⃗,Ou) is the distance from
trajectory ξi↓p⃗ to static obstacles. For
brevity, we omit the projection when using
this notation, i.e., d(p⃗i, ξj↓p⃗) = d(p⃗i, ξj).
Let ξ(t1, t2) denote a segment of trajec-
tory ξ between time points t1 and t2. The
problem of verifying if AV hit static ob-
stacles Ou is relatively simple, as Ou does
not change. However, checking if AV hit

moving obstacles is different and much harder, because both trajectories
are formed dynamically while the agents are moving. Dynamic obsta-
cles might meet an AV’s reference trajectory, yet far enough from its
current position(see Fig. 13.4). Therefore, we introduce the concept of
safety-critical segments:

Definition 22 (Safety-Critical Segment). Let C be the current time.
Given a trajectory ξ, a time span of length T ∈ R>0, we define a safety-
critical segment sc(ξ) of ξ, as ξ(C − T,C + T)1.

The length of time-span T , so that the safety-critical area covers
the actual current position of AV, can be delivered by design engineers

1When C < T , sc(ξ) = ξ(0, C + T).

320 Paper F: Model Checking Nonlinear Collision Avoidance

with knowledge of vehicle dynamics, so this is not within the scope of
this paper. Now, instead of checking if any part of the AV’s entire
trajectory (ξg) overlaps with a moving obstacle’s trajectory (ξo), we
check if the safety-critical segments of these two trajectories (sc(ξg) and
sc(ξo)) overlap.

Definition 23 (Collision-Avoidance Verification). Given a map M =<
X ,Ou, I,G >, a nonlinear AV, whose actual continuous trajectory is
ξg, and a set of dynamic obstacles whose trajectories are in set Ξo, we
say that the collision-avoidance verification of the AV’s actual trajectory
equates with verifying that condition ξg↓p⃗ ∩ G ̸= ∅ ∧ ξg↓p⃗ ∩ Ou = ∅ ∧
sc(ξg↓p⃗) ∩ sc(ξo↓p⃗) = ∅ holds, where ξo ∈ Ξo.

Since model-checking ξg is undecidable, we prove next that its verifi-
cation can be reduced to one over the PWC trajectory ξr that ξg tracks.

Theorem 3 (Non-linearity to PWC). Assume the collision-avoidance
verification condition of Definition 23, a position p⃗g ∈ G whose distance
to the closest boundary of G is B, and that the tracking errors of the
AV have a Lyapunov function. Then, it follows that if the condition
ξr↓p⃗ ∩ {p⃗g} ≠ ∅ ∧ d(ξr,Ou) > L ∧ d(sc(ξr), sc(ξo)) > L, with L ∈ R>0

and L ≤ B holds, then the collision-avoidance condition of Definition 23
holds too.

Proof. Based on Lemmas 2 and 3 proven by Fan et al. [8], if the tracking
errors of the AV have a Lyapunov function, its ξg is bounded within a
certain distance to its ξr. Let the distance be L, then d(ξg, ξr) < L ≤ B.
Hence, if ξr↓p⃗ ∩ {p⃗g} ≠ ∅, then ξg↓p⃗ ∩ G ≠ ∅. Since d(ξr,Ou) > L >
d(ξg, ξr) and d(sc(ξr), sc(ξo)) > L > d(ξg, ξr), then ξg↓p⃗ ∩ Ou = ∅ ∧
sc(ξg↓p⃗) ∩ sc(ξo↓p⃗) = ∅. □

Note that these two problems are not equivalent. When the actual
trajectory is not colliding with any obstacles, the distance from the ref-
erence trajectory to the obstacles could be less than L. The method of
calculating L is not the concern of this paper. We refer the reader to
literature [8] for details.

13.3.3 Discretization of Trajectories
Although the verification of nonlinear trajectories is simplified by The-
orem 3, model-checking PWC trajectories is still difficult. PWC trajec-
tories are described by hybrid systems, in which variables, e.g., p⃗ and

13.3 Definitions and Verification Reduction Theorems 321

v⃗, change continuously (specifically, p⃗ is nonlinear), whereas variables,
e.g., θ, a⃗ and ω, change instantaneously (Definition 21). Unfortunately,
the algorithmic verification of such model is undecidable [15]. To make
the problem tractable, we discretize PWC trajectories into a discrete-
time model, where the movement of agents (including AV and dynamic
obstacles) is sampled synchronously:

Definition 24 (Discrete-Time Trajectory). Given a PWC trajectory
named ξr, whose concatenating points (waypoints) are {P⃗i}ki=0, a dis-
cretized trajectory ξrd of ξr is a run of a corresponding discrete-time
transition system < D, d0,Π,→>, where D is the set of states, d0 is
the initial state, Π ⊆ Λ ∪ {sync} is the set of labels consisting of con-
troller commands and a label for synchronization with other discretized
trajectories, and → is a transition relation, in which the instantaneous
transitions of θ, a⃗ and ω remain the same as defined in Definition 21,
and the delayed transitions are sampled at the time points when ∆t = ε,
where ε ∈ R>0 is the granularity of sampling:

• if ∆t < ε, < p⃗, v⃗, a⃗, θ, ω > does not change,

• if ∆t = ε, < p⃗, v⃗, a⃗, θ, ω >
∆t,sync−−−−−→< p⃗′, v⃗′, a⃗′, θ′, ω′ >, where θ′ =

θ, ω′ = ω, a⃗′ = a⃗, v⃗′ =

{
v⃗ + a⃗× ε, if ||v⃗ + a⃗× ε|| < Vmax,
v⃗

||v⃗|| × Vmax, if ||v⃗ + a⃗× ε|| ≥ Vmax
,

p⃗′ =

P⃗i, if p⃗+ (v⃗ + a⃗×ε

2)× ε ≻ P⃗i,

p⃗+ (v⃗ + a⃗×ε
2)× ε,

if p⃗+ (v⃗ + a⃗×ε
2)× ε ≼ P⃗i

To denote if the position passes (resp., does not pass) the next way-
point, we use the syntactic sugar ≻ (resp., ≼). The algorithm of judging
this is given in literature [16]. Intuitively, when the time interval ∆t
is less than a small period ε, the environment is not observed, so the
trajectories of the agents are not sampled; when ∆t reaches ε, the agent
states are observed and sampled. When an agent reaches or passes its
target waypoint in the current period ε, it stops at the waypoint until
the next period comes when the new waypoint and heading are updated
by the instantaneous transitions.

Dynamic obstacles do not have pre-computed waypoints but appear
and move arbitrarily in the map. However, a reasonable obstacle would
not change its direction too frequently, e.g., every sampling period. We
design dynamic obstacles such that, initially, they choose their starting

322 Paper F: Model Checking Nonlinear Collision Avoidance

agent-states arbitrarily. Then, they keep moving for N sampling periods
before choosing a new agent-state as a target. The straight path be-
tween the current and target positions is a reference trajectory that the
dynamic obstacle tracks in the next N periods, and the tracking errors
are also bounded.

The agents’ accelerations and rotational velocities are assumed to be
changing discretely in these definitions. If the assumption is violated in
some applications, one can discretize these two variables in the same way
as in the discretization of position and linear velocity. Next, we prove
a theorem that reduces the verification of PWC reference trajectories to
the one of discrete-time trajectories.

Theorem 4. (PWC to discrete-time trajectories). Assume a map M =<
X ,Ou, I,G >, a set of trajectories Ξo formed by dynamic obstacles, with
the maximum linear velocity V , a reference trajectory ξr of an AV with
concatenating points {P⃗i}ki=0, whose safety-critical segment is sc(ξr), and
synchronized and discretized trajectories ξrd of ξr, and ξod of ξo ∈ Ξo

with a granularity of sampling ε ≤ L
||V || ; here, L = La + Lo, where

La is the tracking-error boundary of the AV, and Lo is the smallest
tracking-error boundary among dynamic obstacles2. Then, if p⃗g ∈ G,
and ξrd↓p⃗∩{p⃗g} ≠ ∅∧ d(ξrd,Ou) > L∧ d(sc(ξod), sc(ξr)) > L, it follows
that ξr↓p⃗ ∩ {p⃗g} ≠ ∅ ∧ d(ξr,Ou) > L ∧ d(sc(ξo), sc(ξr)) > L.

Proof. By substituting ∆t in the delay transitions of Definition 21 with
ε, we can see that ξrd(ε) is a sampling of the reference trajectory ξr(t)
at the time points when ∆t = ε. Hence, ξrd↓p⃗ ⊆ ξr↓p⃗. Therefore, if
ξrd↓p⃗∩{p⃗g} ≠ ∅, which means ξrd can reach p⃗g, then ξr↓p⃗∩{p⃗g} ≠ ∅ as
well.

Based on Definition 24, waypoints {P⃗i}ki=0 ⊆ ξrd↓p⃗, where turning
occurs. Therefore, if ti and ti+1 are two consecutive sampling points of
ξrd, the line segment connecting ti and ti+1 must be on ξr, denoted by
ξrd(ti, ti+1). Therefore, if d(Ou, ξrd(ti, ti+1)) > L3, then the concatena-
tion of {ξrd(ti, ti+1)}n−1

i=0 , which is ξr, satisfies d(Ou, ξr) > L.
For ξo ∈ Ξo, similarly, ti and ti+1 are two consecutive sampling

points. As depicted in Fig. 13.5, ξo(ti, ti+1) and ξr(ti, ti+1) are the seg-
ments of sc(ξo) and sc(ξr), respectively. Assume d(sc(ξod), sc(ξr)) > L,
but d(sc(ξo), sc(ξr)) ≤ L, which means d(ξod(ti), ξr(ti, ti+1)) > L

2When no dynamic obstacle is detected, Lo is zero.
3Computation of d(Ou, ξrd(ti, ti+1)) is in a more detailed version of this paper

[16].

13.4 Verification Approach and Tool Support 323

Figure 13.5: The trajectory of a dynamic obstacle is red. The reference
trajectory of AV is black. Dotted greens lines are the boundaries of
tracking errors.

and d(ξod(ti+1), ξr(ti, ti+1)) > L, but d(ξo(ti, ti+1), ξr(ti, ti+1)) ≤
L, then ξo(ti, ti+1) and ξr(ti, ti+1) must be intersecting, and thus
d(ξo(ti), ξo(ti+1)) > L (see Fig. 13.5). Based on Definition 24, d(ξo(ti),
ξo(ti+1)) = ||(v⃗ + a⃗×ε

2)× ε|| ≤ ||V || × ε. Therefore, ||V || × ε > L, which
contradicts the assumption ε ≤ L

||V || . Hence, if d(sc(ξod), sc(ξr)) > L,
then d(sc(ξo), sc(ξr)) > L. □

Based on Theorems 1 and 2, the reach-avoid verification of discretized
trajectories is sufficient to entail that of nonlinear trajectories. The
reach-avoid verification of discrete-time transition systems is decidable
[6]. Therefore, the undecidable problem of model-checking nonlinear
trajectories of agents is successfully simplified to a decidable one over
discrete-time trajectories. In the next section, we introduce our approach
of verifying the discrete-time models.

13.4 Verification Approach and Tool Support

In our verification approach, we employ UPPAAL Timed Automata (UTA)
[13] to build the discrete-time model of the agents, and UPPAAL STRAT-
EGO as the model checker to execute the verification. The latest version
of UPPAAL STRATEGO provides a function of calling external libraries.
This function enables us to design a model for verification without know-
ing the implementation details of algorithms, hence modeling them as
black boxes. Although UPPAAL STRATEGO is mainly designed for
strategy synthesis of stochastic timed games, our approach only lever-
ages its function of exhaustive model checking. The semantics of UTA
is timed transition systems. When discretizing time in timed transition
systems, one gets discrete-time transition systems, which can be used to
model the discrete-time trajectory of agents (Definition 24). Our UTA

324 Paper F: Model Checking Nonlinear Collision Avoidance

templates are designed to act only at the end of each sampling period si-
multaneously, so within the sampling periods, nothing happens but only
time elapses. Therefore, the semantics of our UTA templates is shown
to be conservatively abstracted by the discrete-time transition seman-
tics, with the discretizing step being equal to the sampling period of the
discrete-time trajectories.

13.4.1 General Description of the Approach

Fig. 13.6 shows the workflow of the verification approach. The input
of the approach is the parameters of the agents (i.e., AV and dynamic
obstacles) and their boundary of the tracking errors, as well as the envi-
ronment (e.g., static obstacles). In Step 1, users provide their nonlinear

Figure 13.6: The workflow of the verification approach

vehicle models, which are for calculating the boundary of tracking errors.
This module is the approach provided by Fan et al. [8], which is not the
focus of this paper. We simply use the output of this approach in our
models for verification. In Step 2, users configure the parameters of the
approach, which are used for instantiating the UTA models. Parameters
regulate the minimum and maximum values of the elements of agent
states, e.g., linear velocity. The detailed specification of the parame-
ters is in literature [16]. In Step 3, UTA templates of the discrete-time
models are instantiated into UTA models based on the configured pa-
rameters. Note that the user-programmed collision-avoidance algorithm
is embedded in the models as executable libraries, e.g., Dynamic-Link
Libraries (DLL) in Windows, or Shared Object (SO) in Linux. After the
instantiation of UTA, the model checker verifies the model by traversing
its state space, calling the external libraries when necessary, and check-

13.4 Verification Approach and Tool Support 325

ing if the vehicle model avoids all obstacles and reaches the destination
under all circumstances. If the verification result is “true”, the algorithm
is guaranteed to be correct under the current parameter configuration;
otherwise, counter-examples are returned by the model checker for the
users to debug their algorithm or change the configuration of the param-
eters (Step 4).

13.4.2 Design of the UTA Templates and CTL Prop-
erties

There are four UTA templates that are well designed to be reusable. The
figures and the detailed description of the templates are in our technical
report [16]. First, we overview the UTA templates:

• AV Parameter Template. Based on Definition 24, after being
initialized, the AV parameters (e.g., position, speed) either stay un-
changed or update their values at the end of the sampling periods,
simultaneously. Therefore, we define this template for updating
the AV parameters periodically. Instances of this template are pa-
rameters of AV, hence, users can add their parameters of AV simply
by instantiating this template. The update of AV parameters are
synchronized by the controller template.

• AV Controller Template. The AV controller template mainly
accomplishes three jobs: initializing the AV parameters; invoking
the UTA of AV parameters periodically; making decisions, such as
turning at waypoints, or calling the external function of collision
avoidance when seeing an obstacle.

• Obstacle Initialization Template. As depicted by its name,
this template is responsible for initializing moving obstacles. For
each parameter of the obstacle (e.g., position, speed), the template
traverses the range of its value and nondeterministically chooses
one to be the initial value of the parameter. Therefore, when run-
ning the exhaustive model checking in UPPAAL STRATEGO, all
the values are enumerated and verified.

• Obstacle Movement Template. This template is for updat-
ing the obstacle’s parameters periodically. At every end of the
sampling period, the AV controller UTA invokes the AV param-
eter UTA as well as the obstacle movement UTA. In this way,

326 Paper F: Model Checking Nonlinear Collision Avoidance

sampling the AV and dynamic obstacles is synchronized at the
same moments. Note that this template updates the acceleration
and heading of the obstacle every N periods, N > 1. As afore-
mentioned, reasonable obstacles do not change their direction and
acceleration too frequently.

The CTL properties that formalize the reach-avoid requirement are as
following:

• Obstacle avoiding: A[]!collision, where collision is a Boolean
variable that is updated every sampling period. When the dis-
tances from the safety-critical segment of AV to any of the ob-
stacles in the map is less than the boundaries of tracking errors,
collision is turned to true, and remains false elsewhere. There-
fore, this query asks: for all execution paths, is collision always
avoided?

• Destination reaching: A<>controller.STOP, where STOP is a
location in UTA of AV’s controller. When controller goes to
location STOP, it means that the AV has reached the destination.
Therefore, this query asks: for all the execution paths of the model,
does AV eventually reach the destination?

13.4.3 Reduction of the State Space of the UTA Model

Figure 13.7: The green arrow is the
reference path. The green circle is
the AV. The crosses are the dynamic
obstacles, where red and grey ones
are invalid positions, and the green
cross is valid.

To explore all the possible be-
haviors of dynamic obstacles, in
the worst-case scenario, we would
have to explore the entire map,
and enumerate all possible values
of linear speeds, rotational speeds,
and headings of dynamic obsta-
cles. This generates a huge state
space of the model that can be
infeasible to check. In this sec-
tion, we introduce how to reduce
the state space of the UTA model

without damaging the completeness of the verification.
Reduction of Initial Values of Parameters. Even though the dy-
namic obstacles can appear at any positions in the map, some positions

13.5 Experimental Evaluation 327

are too far away from the AV to be relevant at the current period, and
some are too close to the AV to be possible to be avoided. Hence, we
categorize positions into three classes, namely safety-critical area, closest
area, and valid area. Fig. 13.7 depicts these three kinds of areas. The
safety-critical area is defined in Definition 22.

Positions from which the distance to the safety-critical segment of
the reference path is shorter than or equal to V × n× ε is called closest
area, where V is the velocity of the dynamic obstacle, ε is the sampling
period, and n ∈ N is a coefficient whose value depends on the physical
limitations of the AV. Obstacles appearing within the closest area are
impossible to be avoided, so they should be excluded from the valid
initial positions. Similarly, positions from which the distance to the
safety-critical segment is greater than V × n× ε and less than or equal
to V × m × ε are called valid area, where m ∈ N is a coefficient for
calculating the detection period of sensors. Obstacles outside this area
cannot enter the safety-critical area within the current detection period,
so they should be excluded from the verification in this period.

Collision-avoidance algorithms can turn the AV to any angle, so any
heading of the dynamic obstacles can be dangerous. Hence, the initial
value of heading is within π to −π and cannot be reduced, and same for
the linear velocity.
Phased Verification. Another way of handling large state spaces is
to split the verification into several phases, and in each phase, the state
space is constrained under a solvable level. For example, when the trav-
eling time of AV is long, the entire journey can be split into multiple
sections. As long as the concatenating states between consecutive phases
are unchanged, the logic conjunction of verification results of each phase
implies the result throughout the entire verification.

13.5 Experimental Evaluation

The experiments are conducted on a server with Ubuntu 18.04, 48 CPU,
and 256 GB memory. The verification is executed in UPPAAL 4.1.20-
stratego-74 [9].

4The models and external library: https://github.com/rgu01/FM2021.

328 Paper F: Model Checking Nonlinear Collision Avoidance

13.5.1 The Collision-Avoidance Algorithm to be Ver-
ified

In the following experiments, we employ a state-of-the-art algorithm
to demonstrate the ability of our verification approach. The algorithm
is based on dipole flow fields [4], and calculates static flow fields for
all objects in the map, and dynamic dipole fields for moving objects.
When the AV starts to move, the static flow fields generate attractive
forces along the reference path to draw the AV to move towards the
closest waypoint. When it encounters a dynamic obstacle, dipole fields
are generated dynamically and centered by these two moving objects.
Magnetic moments are thus calculated in these dipole fields, which push
the moving objects away from each other. Therefore, the AV could
possibly deviate from its planned path when meeting dynamic obstacles,
and thus, it might encounter some static obstacles that are not taken into
account by the reference path. Static flow fields now generate repulsive
forces surrounding these static obstacles and push the AV away from
them. Formulas for calculating these fields and forces can be found in
the literature [4]. This algorithm has not been comprehensively verified
considering all possible scenarios of dynamic obstacles.

13.5.2 Verification Results

In this study, we verify the model containing a C-code library that im-
plements this algorithm, by using our approach. We demonstrate how
to find the potential problems of this newly-designed algorithm by us-
ing counter-examples returned from the approach, followed by verifying
iteratively the improved version.
Experiment Design. We report in Table 13.1 several statistics rele-
vant to the obtained results. For each scenario S, we vary the following
aspects relevant in real scenarios: (i) WP representing the number of
waypoints, (ii) TT that stands for the travelling time of AV, (iii) DO,
the number of dynamic obstacles, and (iv) VA, the number of allowed
velocities of dynamic obstacles. In scenarios S1 and S2, we use one
phase of verification and one allowed velocity, which means that the dy-
namic obstacle can appear at any moment, always moving at the highest
speed throughout the verification. S3 is similar to S1 but it prolongs the
travelling time of the AV, and thus, the verification is split into three
phases (S3.1 - S3.3). In S4, the dynamic obstacle has three possible

13.5 Experimental Evaluation 329

Table 13.1: Verification results of the improved version of the algorithm.

S Environment Obstacles Avoiding Obstacles Reaching Destination
WP TT DO VA NOS CT Result NOS CT Result

S1 2 25 1 1 547,617 2.7 s true 545,505 5.5 s true
S2 6 25 1 1 411,747 1.8 s true 411,168 3.6 s true
S3 2 85 1 1 3,222,290 15.3 s true 3,217,767 31.8 true

S3.1 1 30 1 1 1,532,082 7.4 s true 1,527,811 15.7 s true
S3.2 1 30 1 1 1,183,792 5.5 s true 1,185,550 11.4 s true
S3.3 1 25 1 1 506,416 2.4 s true 504,406 4.7 s true
S4 2 15 1 3 12,317,809 1.0 mins true 12,498,924 2.1 mins true
S5 2 15 2 1 1,398,011 7.6 s false 226,896,902 43.2 mins true

velocities, which means its velocity has three initial values and changes
arbitrarily during the verification. S5 increases the number of dynamic
obstacles to 2, which means there could be at most 2 dynamic obstacles
in the map at the same time. For each scenario S, we report the number
of states (NOS) and the computation time (CT) needed to verify two
requirements, namely obstacle avoiding and destination reaching (see
Section 13.4.2 for details). These two values are useful indicators of our
approach’s performance dealing with various scenarios. All the dynamic
obstacles are detected only when they get close to the AV, i.e., they are
not foreknown by the AV.
Problems Discovered by Counter-examples. Initially, the pro-
posed collision-avoidance algorithm could not pass the reach-avoid ver-
ification in any of these scenarios, and we have discovered several prob-
lematic scenarios by analyzing the counter-examples returned from our
approach:
Problematic scenario 1. When there is only one dynamic obstacle
whose maximum velocity is less than the maximum velocity of AV, the
dipole flow fields generated by the algorithm sometimes draw the AV
to the obstacle instead of pushing the obstacle away from it, until their
distance is too short (see Fig. 13.8a). This happens because the magnetic
moments could push or draw the moving objects. Here, we improve
the algorithm by simply turning the direction of the magnetic moments
before the AV and the dynamic obstacle get too close.
Problematic scenario 2. When the dynamic obstacle and AV move
directly towards each other, the dipole fields can only generate magnetic
moments on the line of their moving directions, which drive the AV to
its opposite direction but on the same line. When the dynamic obstacle
keeps moving towards the same direction, the AV can only move back-

330 Paper F: Model Checking Nonlinear Collision Avoidance

(a) Problematic scenario 1

(b) Problematic scenario 2

Figure 13.8: Problematic scenarios discovered by counter-examples.
AV’s discretized trajectory is blue dots. The dynamic obstacle’s dis-
cretized trajectory is red dots. AV’s reference path is the green line. For
differentiation, positions that are too close but belong to different time
points are represented by small and large dots in scenario 2. An and Om

indicate the AV and obstacle, respectively, n and m are time points.

wards until its distance is longer than a certain value and turns 180◦

towards its next waypoint, which soon lets the AV get close to the dy-
namic obstacle again and turn backward (see Fig. 13.8b). According to
the counter-examples, this scenario keeps happening iteratively until the
AV stops at the boundary of the map, and is hit by the dynamic ob-
stacle eventually. This is the so-called “livelock” scenario that was also
discovered by Gu et al. [17]. To overcome this, we force the AV to turn
slightly when its heading is opposite to a dynamic obstacle’s heading.
Experimental Results. Although the improved algorithm passes the
verification in S1-S4, our results suggest that it still cannot satisfy the
obstacle-avoiding requirement in the last scenarios (S5) that contain
more than one dynamic obstacle (see Table 13.1). Note that the destinat-
ion-reaching property is still satisfied in S5, because the vehicle models
are not designed to stop when a collision happens. The rationale of
this design is that collisions do not necessarily stop a car from continu-
ing moving. We want to see if the dipole-flow field algorithm can draw
the vehicle to its destination anyway when it deviates from the planned
paths. Counter-examples are found relatively fast in S5, even though
it is more complicated than other scenarios. We leave the further im-

13.6 Related Work 331

provement of the algorithm to deal with multiple agents as a future work.
The experiments have demonstrated the approach’s ability of discovering
problems in the early stage of designing collision-avoidance algorithms,
and proving the absence of errors in some scenarios for the improved
version of the algorithm.

13.6 Related Work

Mitsch et al. [18] propose a method to verify safety properties of robots.
Their method is based on hybrid system models and differential dy-
namic logic for theorem proving in KeYMaera. Abhishek et al. [19, 20]
also use KeYMaera for collision-avoidance verification. Their models
consider the realistic geometrical shapes of vehicles, as well as the com-
bination of maneuvers and braking. Heß et al. [21] propose a method
to verify an autonomous robotic system during its operation, in order to
cope with changing environments. Our work differs from the above stud-
ies in the following aspects: we prove that the reach-avoid verification
of nonlinear vehicle models can be simplified to a decidable problem
of verifying discrete-time models. In addition, our approach provides
counter-examples that are useful to improve the algorithms.

Shokri-Manninen et al. [22] have proposed maritime games as a
special case of Stochastic Priced Timed Games and modelled the au-
tonomous navigation using UPPAAL STRATEGO. Their models do not
consider the nonlinear kinematics of the vessels, and the options of ma-
neuvers for collision-avoidance are limited. O’Kelly et al. [23] have
developed a verification tool, called APEX, and have investigated the
combined action of a behavioral planner and state lattice-based motion
planner to guarantee a safe vehicle trajectory. In contrast, our approach
provides users a generic interface to verify their specific vehicle models
equipped with their own collision-avoidance functions. This feature is
beneficial to finding bugs in the early stage of designing new algorithms,
or employing modified ones.

Although our work relies on the theorems proposed by Fan et al. [8],
our work is orthogonal to theirs, that is, their work can be used for the
initial construction of reference paths that avoid static obstacles, and our
method can be used to verify the dynamic collision-avoidance function
of moving obstacles.

332 Paper F: Model Checking Nonlinear Collision Avoidance

13.7 Conclusions and Future Work
In this paper, we propose a verification approach to formally verify reach-
avoid requirements of autonomous vehicles, assuming nonlinear trajec-
tories of movement. We overcome the difficulty of verifying nonlinear
hybrid vehicle trajectories by transforming the latter into discrete-time
trajectories whose verification we prove sufficient to guarantee meeting
the requirements of the original nonlinear ones. Moreover, we engage
tool support (i.e., UPPAAL STRATEGO) that provides users a generic
interface to configure and verify their own vehicle models equipped with
different collision-avoidance algorithms. We show the abilities of our ver-
ification method by model checking a state-of-the-art collision-avoidance
algorithm based on dipole flow fields, which discovers bugs not detectable
by simulation or testing.

Some interesting directions of future work include: (i) exploring ways
of handling complex vehicle models that represent more detailed kine-
matic features, and (ii) statistical verification of the cases where the dis-
tances between dynamic obstacles and AV are smaller than the tracking-
error boundaries but collisions do not necessarily occur.

Acknowledgments
We acknowledge the support of the Swedish Knowledge Foundation via
the profile DPAC - Dependable Platform for Autonomous Systems and
Control, grant nr: 20150022, and via the synergy ACICS – Assured
Cloud Platforms for Industrial Cyber-Physical Systems, grant nr. 20190-
038.

Bibliography

[1] Steve Rabin. Game programming gems, chapter a* aesthetic opti-
mizations. Charles River Media, 2000.

[2] Steven M LaValle. Rapidly-exploring random trees: A new tool
for path planning. Technical report, Computer Science Dept., Iowa
State University, 10 1998.

[3] Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner. Theta*:
Any-angle path planning on grids. Journal of Artificial Intelligence
Research, 39:533–579, 2010.

[4] LanAnh Trinh, Mikael Ekström, and Baran Çürüklü. Dipole
flow field for dependable path planning of multiple agents. In
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, September 2017.

[5] D. Fox, W. Burgard, and S. Thrun. The dynamic window ap-
proach to collision avoidance. IEEE Robotics Automation Magazine,
4(1):23–33, 1997.

[6] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin
Varaiya. What’s decidable about hybrid automata? Journal of
computer and system sciences, 57(1):94–124, 1998.

[7] Gerardo Lafferriere, George J Pappas, and Sergio Yovine. A new
class of decidable hybrid systems. In International Workshop on Hy-
brid Systems: Computation and Control, pages 137–151. Springer,
1999.

333

334Bibliography

[8] Chuchu Fan, Kristina Miller, and Sayan Mitra. Fast and guaranteed
safe controller synthesis for nonlinear vehicle models. In Interna-
tional Conference on Computer Aided Verification, pages 629–652.
Springer, 2020.

[9] Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Mar-
ius Mikučionis, and Jakob Haahr Taankvist. Uppaal stratego. In
TACAS. Springer, 2015.

[10] Jonathan A DeCastro, Javier Alonso-Mora, Vasumathi Raman,
Daniela Rus, and Hadas Kress-Gazit. Collision-free reactive mission
and motion planning for multi-robot systems. In Robotics research,
pages 459–476. Springer, 2018.

[11] Chuchu Fan, Zengyi Qin, Umang Mathur, Qiang Ning, Sayan Mitra,
and Mahesh Viswanathan. Controller synthesis for linear system
with reach-avoid specifications. IEEE Transactions on Automatic
Control, 2021.

[12] Rajeev Alur and David L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126:183–235, 1994.

[13] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
In International journal on software tools for technology transfer,
pages 134–152. Springer, 1997.

[14] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-Checking
in Dense Real-Time. Information and computation, 104(1):2–34,
1993.

[15] André Platzer. Differential-algebraic dynamic logic for differential-
algebraic programs. Journal of Logic and Computation, 20(1):309–
352, 2010.

[16] Rong Gu, Cristina Seceleanu, Eduard Paul Enoiu, and Kristina
Lundqvist. Formal verification of collision avoidance for nonlinear
autonomous vehicle models. Technical report, Mälardalen Univer-
sity, April 2021.

[17] Rong Gu, Raluca Marinescu, Cristina Seceleanu, and Kristina
Lundqvist. Formal verification of an autonomous wheel loader by
model checking. In Proceedings of the 6th Conference on Formal
Methods in Software Engineering, pages 74–83. ACM, 2018.

Bibliography 335

[18] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André
Platzer. Formal verification of obstacle avoidance and navigation
of ground robots. The International Journal of Robotics Research,
36(12):1312–1340, 2017.

[19] Aakash Abhishek, Harry Sood, and Jean-Baptiste Jeannin. Formal
verification of braking while swerving in automobiles. In Proceedings
of the 23rd International Conference on Hybrid Systems: Compu-
tation and Control, pages 1–11, 2020.

[20] Aakash Abhishek, Harry Sood, and Jean-Baptiste Jeannin. Formal
verification of swerving maneuvers for car collision avoidance. In
2020 American Control Conference (ACC), pages 4729–4736. IEEE,
2020.

[21] Daniel Heß, Matthias Althoff, and Thomas Sattel. Formal verifi-
cation of maneuver automata for parameterized motion primitives.
In 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1474–1481. IEEE, 2014.

[22] Fatima Shokri-Manninen, Jüri Vain, and Marina Waldén. Formal
verification of colreg-based navigation of maritime autonomous sys-
tems. In International Conference on Software Engineering and
Formal Methods, pages 41–59. Springer, 2020.

[23] Matthew O’Kelly, Houssam Abbas, Sicun Gao, Shin’ichi Shiraishi,
Shinpei Kato, and Rahul Mangharam. Apex: Autonomous vehicle
plan verification and execution. SAE World Congress, 2016.

Appendix A

A.1 Algorithm of Synthesis
Algorithm 8 is the simplified pseudo-code of running Query (12.3) in
UPPAAL STRATEGO. Details of this algorithm are in the literature [26].

A.2 Algorithm of Verification and Labeling
In Algorithm 6, line 3 passes the initial state S0 of the TG G and the
negation of the state formula of Query (12.6), i.e., ¬ϕ, to the function
Delay, which adds the symbolic succeeding states of S0 via restricted de-
lay transitions. The definition of restricted delay transitions is presented
in literature [27]. In this paper, we adapt this function on symbolic states
(i.e., zones) by using difference bounded matrices (DBM) in UPPAAL.
Fig. A.1 shows an example of a UTA modeling a traffic light and its sym-
bolic semantic model - a Zone Graph. The action transitions and delay
transitions are arrows labeled with a and d, respectively. An example of
symbolic states that are used in the Delay function is <Red, c=0> in
Fig. A.1b. Briefly, if the action is the only controllable action at state S,
the function Allow returns true directly, which is the case at the initial
state in Fig. A.1b; otherwise, it looks up the strategy and finds the set
of the best actions that have the highest score at the current state (i.e.,
best(σ, S)). If the current action belongs to the set, it is allowed and we
call the label function to label the state-action pair as visited (line 31).

When the delay transition is allowed in the function Delay, we con-
tinue to check if the succeeding state S′ is not in the stack SD and

337

338Chapter A.

Algorithm 8: Simplified algorithm behind the minE-query
(adapted from Algorithm 1 in the literature [26])
1 minE(tg, iterationNum, totalNum, goodNum, formula)
2 int iterations = 0
3 int bestFitness = ∞
4 Strategy best = empty
5 Strategy aStrategy = empty
6 for iterations < iterationNum do
7 int totalRuns = 0
8 int goodRuns = 0
9 for totalRuns < totalNum do

10 Run aRun = simulate(tg , aStrategy)
11 if aRun satisfies formula then
12 aStrategy = learn(aRun)
13 goodRuns ++
14 if goodRuns ≥ goodNum then
15 break

16 totalRuns ++;

17 if goodRuns ≥ goodNum then
18 fitness = evaluate(aStrategy)
19 if fitness < bestFitness then
20 bestFitness = fitness
21 best = aStrategy

22 iterations ++

23 return best ;

(a) An example of TG

(b) The Zone Graph of the TG

Figure A.1: An example of a TG and its semantic model.

A.2 Algorithm of Verification and Labeling 339

satisfies the invariant at the location of the current state (I(S.l)) and
the restriction (φ) (line 10). The restriction φ is actually ¬ϕ, which
means the state space exploration only visits the states where the state
formula ϕ of Query (12.6) is false, because the verification of a liveness
property aims to find a run where ϕ is false at all states as the counter-
example. If S′ satisfies the condition (line 10), it is pushed into the stack
SD for further exploration. In Fig. A.1b, after delaying at the initial lo-
cation, two symbolic states can be reached, which are passed to function
Search as the value of parameter S. The restriction ¬ϕ is also passed
to function Search as the value of parameter φ.

In function Search, we first check if the current state S satisfies φ
(line 13, which returns an empty state when φ is false at S, and S itself
when φ is true). At line 15, the function checks if there is a loop in the
state space by checking if the current state S is in the stack ST . If a
loop exists, an unsatisfactory run (the runs where no state satisfies ϕ) is
found and thus the algorithm exists with a negative result of verification;
otherwise, we check if the maximum run is found (line 17). According
to the definition in the literature [27], a run is maximal if either it ends
in a state with no outgoing transitions, ends in a state from which an
unbounded delay is possible, or is infinite. When such runs are found,
no further symbolic state exists and thus the algorithm exists with a
negative result of verification; otherwise, the algorithm pushes S into
ST and continues to explore the unvisited states (line 20). For example,
in Fig. A.1b, both succeeding states of the initial state are pushed into
SD and explored by function Search. The state <Green, c≥15> ends at
a deadlock, whereas the state <Green, c≥10 ∧ c≤15> has two actions,
that is, a controllable action and an uncontrollable one. Both actions
end to the same state <Reg, c=0>.

Similar to the function Delay, line 22 explores the succeeding states
via controllable actions that are allowed by the strategy σ, or uncontrol-
lable actions. If a controllable action is allowed, its succeeding states
are recursively explored at line 25. For example, at the state <Green,
c≥10 ∧ c≤15> in Fig. A.1b, we can either choose the uncontrollable
action without asking the strategy, or choose the controllable action af-
ter asking the strategy, and then continue to explore the state space in
the same manner.

Assume we instantiate a model of the TG in Fig. A.1a, namely
trafficLight, and we want to verify a liveness property: A<> traffic-
Light.Red, by following algorithm 6, we will get a negative result of veri-

340Chapter A.

fication with a counter-example returned, that is, a trace from the initial
state «Green, c=0> to the state <Green, c≥15>.

A.3 Templates of the TG models

Figure A.2: The TG template of agent movement

Figure A.3: A TG template of agent task execution

A.3 Templates of the TG models 341

Figure A.4: The TG template of agent monitors

Figure A.5: The Referee TG

342Chapter A.

A.4 Overview of the External Library of MoCReL

The new extension of UPPAAL STRATEGO supports calling external
libraries that are implemented by C/C++. An example of the implemen-
tation is in: https://github.com/DEIS-Tools/stratego$_$external$_
$learning. The library must contain the following functions so that
UPPAAL STRATEGO can invoke it correctly:

1 // Allocates an instance of a learner
2 void* uppaal_external_learner_alloc(bool minimization, size_t

d_size, size_t c_size, size_t a_size);
3 // Deallocation code for object
4 void uppaal_external_learner_dealloc(void* object);
5 // print out strategies
6 char* uppaal_external_learner_print(void* object);
7 // Deep-copy function of an instance of a leaner
8 void* uppaal_external_learner_clone(void* object);
9 // Called for each sample in a trace

10 void uppaal_external_learner_sample_handler(void* object, size_t
action, double* from_d_vars, double* from_c_vars, double*
t_d_vars, double* t_c_vars, double value);

11 // Return the values of state-action pairs in the strategy
12 double uppaal_external_learner_predict(void* object, bool

is_search, size_t action, double* d_vars, double* c_vars);
13 // Batch-completion call-back
14 void uppaal_external_learner_flush(void* object);

When running MoCReL in UPPAAL STRATEGO, the function alloc is
firstly called, which instantiates the learner. Next, when Query (12.3)
is executed, UPPAAL STRATEGO simulates the model to sample runs,
which are passed to the learner by calling the function sample_handler.
During the simulation and verification, wherever the model has more
than one controllable actions, function predict is called for looking up
the strategy and returning the value of the action at the current state.
This value can be used as the probability or the weight of choosing that
action, which is introduced in Subsection 12.4.4. Additionally, when
under verification (Query (12.6) is being executed), MoCReL marks the
chosen state-action pairs in the function predict so that the strategies
can be compressed after the verification passes. One can print the strat-
egy by using a query saveStrategy(path) in UPPAAL STRATEGO. It
will call the function print to print the strategy to the specific file in a

https://github.com/DEIS-Tools/stratego$_$external$_$learning
https://github.com/DEIS-Tools/stratego$_$external$_$learning

A.4 Overview of the External Library of MoCReL 343

standard format.

Errata

This errata sheet lists errors and their corrections for the doctoral dissertation
of Rong Gu, titled “Formal Methods for Scalable Synthesis and Verification of
Autonomous Systems - Mission Planning and Collision Avoidance”, Mälardalen
University, 2022.
ISBN: 978-91-7485-552-4.

• Location: Page 155

Error: Completeness in Table 9.4

Correction: Completeness in Table 9.4 is strictly connected to the satis-
faction of liveness queries in the form of A<> P under opt, and not the
method’s completeness meaning that whenever a valid strategy exists, the
algorithm must find it, in which sense MCRL is not complete.

• Location: Page 287

Error: Example of two runs. One exists in both non-deterministic strate-
gies and stochastic strategies but one exists only in non-deterministic
strategies.

Correction: Both runs in the example can exist in non-deterministic strate-
gies and stochastic strategies. However, nondeterministic choices assume
“indifferent” probability, which means any run is possible. We remove the
example but keep the conclusion of inclusion relation reached by Theorem
1 at Page 286.

	mdu_titelsidor_D359
	mdu_spikblad_D359
	Gu_Doctoral_Dissertation
	Dissertation
	Introduction
	A Two-Layer Framework for Modeling and Verifying Autonomous Systems
	Mission Planning for Multi-Agent Autonomous Systems
	Reach-Avoid Verification of Nonlinear Agents
	Dissertation Overview

	Preliminaries
	Formal Verification and Synthesis
	Formal Verification
	Synthesis

	Modeling Languages and Tools
	Timed Automata and UPPAAL
	Hybrid Automata and UPPAAL SMC
	Timed Games and Strategies

	Path Finding and Collision Avoidance
	Theta* Algorithm
	Collision Avoidance based on Dipole Flow Fields

	Reinforcement Learning

	Research Problem
	Problem Description
	Research Goals

	Research Methods
	Dissertation Contributions
	A Two-Layer Framework for Modeling and Verifying Autonomous Systems
	Overall Description of the Framework
	Communication between the Two Layers

	Mission Planning in Different Environments
	Mission Planning in Deterministic Environments
	Mission Planning in Non-deterministic Environments
	Mission Planning in Stochastic Environments
	Correctness-Guaranteed Mission Plan Compression

	Model-Checking Reach-Avoid Requirement of Nonlinear Agents
	Modeling Nonlinear Agents
	Solution A: Statistical Model Checking
	Solution B: Exhaustive Model Checking

	Validation on Industrial Systems
	Research Goals Revisited

	Related Work
	Multi-Layer Frameworks for Agent Design and Verification
	Mission Planning of Agents
	Verification of Agents

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

	Included Papers
	Paper A: Towards a Two-layer Framework for Verifying Autonomous Vehicles
	Introduction
	Preliminaries
	Hybrid Automata and UPPAAL SMC
	Theta* Algorithm
	Dipole Flow Field for Collision Avoidance

	Use Case: Autonomous Wheel Loader
	A Two-level Framework for Planning and Verifying Autonomous Vehicles
	Pattern-based Modeling of the Dynamic Layer
	Patterns for the Execution Unit
	Patterns for the Control Unit
	Encoding the Control Unit Patterns as Hybrid Automata

	Use Case Revisited: Applying Our Method on AWL
	Formal Model of the Control Unit
	Statistical Model Checking of the AWL Formal Model

	Related Work
	Conclusions and future work
	Bibliography

	Paper B: Verifiable Strategy Synthesis for Multiple Autonomous Agents: A Scalable Approach
	Introduction
	Preliminaries
	Timed Automata and Timed Games
	Stochastic Timed Games and Stochastic Strategies
	UPPAAL, UPPAAL TIGA, and UPPAAL STRATEGO
	Reinforcement Learning

	Problem Description and Analysis
	An Industrial Case Study: The Autonomous Quarry
	Problem Analysis
	Non-determinism and Scalability of Mission Planning

	Overall Description of the Solutions
	Solution 1: Game-Theoretic Synthesis
	Overall Description of TAMAA
	Mission-Plan Synthesis by TAMAA
	Synthesizing Strategies in UPPAAL TIGA

	Solution 2: Simulation-Based Synthesis
	State-Space Exploration of TAMAA
	Learning Strategies

	Tool Support
	Integration of Task Scheduler and UPPAAL STRATEGO

	Experimental Evaluation
	Design of Experiments
	Results of Experiments
	Discussion of the Experimental Results

	Related Work
	Conclusions and Future Work
	Bibliography

	Paper C: Synthesis and Verification of Mission Plans for Multiple Autonomous Agents under Complex Road Conditions
	Introduction
	An Industrial Case Study: The Autonomous Quarry
	Preliminaries
	Timed Automata and UPPAAL
	Devices for Assisted Living (DALi)

	Mission Planning Methodology
	Improved DALi for Path Planning
	TAMAA for Task Scheduling
	Mission Planning with DALi and TAMAA

	Description of the Tool
	Overall Description
	Mission Management Tool
	Environmental Configuration with MMT
	Mission Plan Demonstration in MMT

	Evaluation
	Methodology
	Comparison of DALi optimizations
	Comparison of A* and DALi
	Evaluation of the Approach with Heat Areas and Temporary Obstacles
	Results for Multiple Agents

	Adaptability of MALTA: a Special Industrial Use Case
	Adjustments of the Models
	Additional Adaptation of Queries and Models
	Synthesis Results

	Related Work
	Conclusions and Future Work
	Bibliography

	Paper D: Probabilistic Mission Planning and Analysis for Multi-agent Systems
	Introduction
	Preliminaries
	Stochastic Timed Automata and UPPAAL SMC
	Reinforcement Learning
	A Two-Layer Framework for Formal Modelling and Verification of Autonomous Agents

	Problem Description
	Mission Planning Based on Reinforcement Learning and Stochastic Timed Automata
	MCRL: Combining Model Checking and Reinforcement Learning for Mission Planning
	Stochastic Timed Automata for MCRL

	Statistical Verification and Analysis of the Use Case: an Autonomous Quarry
	Mission Plan Synthesis
	Bottleneck Analysis
	Travelling Timed Estimation and Re-Planning

	Related Work
	Conclusions and Future Work
	Bibliography

	Paper E: Correctness-Guaranteed Strategy Synthesis and Compression for Multi-Agent Autonomous Systems
	Introduction
	Preliminaries
	UPPAAL Timed Automata
	Timed Games
	Model Checking and Temporal Properties
	Reinforcement Learning

	Problem Description
	Overall Description
	Challenges of Solving the Planning Problem
	A Motivating Example

	Strategy Synthesis, Verification and Compression
	Overall Workflow of MoCReL
	Modeling of MAS
	Partial State-Space Observation
	Key Techniques of MoCReL

	Experimental Evaluation
	Use Case Description
	Experiment Design
	Experiment Results

	Related Work
	Conclusions and Future Work
	Bibliography

	Paper F: Model Checking Collision Avoidance of Nonlinear Autonomous Vehicle Models
	Introduction
	Problem Description
	Definitions and Verification Reduction Theorems
	Definitions of Maps, Agent States, and Trajectories
	Collision-Avoidance Verification Reduction
	Discretization of Trajectories

	Verification Approach and Tool Support
	General Description of the Approach
	Design of the UTA Templates and CTL Properties
	Reduction of the State Space of the UTA Model

	Experimental Evaluation
	The Collision-Avoidance Algorithm to be Verified
	Verification Results

	Related Work
	Conclusions and Future Work
	Bibliography

	
	Algorithm of Synthesis
	Algorithm of Verification and Labeling
	Templates of the TG models
	Overview of the External Library of MoCReL

	9_D359_Errata_Gu_Doctoral_Dissertation.pdf

