
Quality Attribute Support in a Component Technology for Vehicular Software 
 

Mikael Åkerholm, Johan Fredriksson, Kristian Sandström, and Ivica Crnkovic 
Mälardalen Real-Time Research Centre (MRTC) 

Department of Computer Science and Engineering  
Mälardalen University, Västerås, Sweden 

mikael.akerholm@mdh.se 
 
 

Abstract 
The electronics in vehicles represents a class of 

systems where quality attributes, such as safety, 
reliability, and resource usage, leaven all through 
development. Vehicular manufacturers are interested in 
developing their software using a component based 
approach, supported by a component technology, but 
commercial component technologies are too resource 
demanding, complex and unpredictable. In this paper we 
provide a vehicular domain specific classification of the 
importance of different quality attributes for software, 
and a discussion of how they could be facilitated by a 
component technology. The results can be used as 
guidance and evaluation for research aiming at 
developing component technologies suitable for vehicular 
systems. 
 
1. Introduction 
 

Component-based development (CBD) is of great 
interest to the software engineering community and has 
achieved considerable success in many engineering 
domains. CBD has been extensively used for several 
years in desktop environments, office applications, e-
business and in general Internet- and web-based 
distributed applications. In many other domains, for 
example dependable systems, CBD is utilized to a lesser 
degree for a number of different reasons. An important 
reason is the inability of component-based technologies to 
deal with quality attributes as required in these domains. 
To identify the feasibility of the CBD approach, the main 
concerns of the particular domain must be identified 
along with how the CBD approach addresses these 
concerns and what is its ability to provide support for 
solutions related to these concerns are.  

There is currently a lot of research on predicting and 
maintaining different quality attributes within the 
Component Based Software Engineering (CBSE) 
community, (also called non-functional properties, extra-
functional properties, and illities), [9][21][24][30][31]. 
Many of the quality attributes are conflicting and cannot 
be fully supported at the same time [6][15]. Thus, it is 
important for application and system developers to be 

able to prioritize among different quality attributes when 
resolving conflicts.  

We provide a domain specific classification of the 
importance of quality attributes for software in vehicles, 
and discuss how the attributes could be facilitated by a 
component technology. The discussion contribute with a 
general description of the desired quality attribute support 
in a component technology suitable for the vehicle 
domain and it indicates which quality attributes require 
explicit support. In addition, it discusses were in the 
technology the support should be implemented: inside or 
outside the components, in the component framework, on 
the system architecture level, or if the quality attributes 
are usage dependent. Quality attributes might be 
conflicting; e.g., it is commonly understood that 
flexibility and predictability are conflicting. The ranking 
provided by industrial partners gives domain specific 
guidance for how conflicts between quality attributes 
should be resolved. The results also enable validation and 
guidance for future work regarding quality attribute 
support in component technologies for software in 
vehicular systems. This guideline can be used to verify 
that the right qualities are addressed in the development 
process and that conflicting interdependent quality 
attributes are resolved according to the domain specific 
priorities. 

The starting point of this work is a list of quality 
attributes ranked according to their importance for 
vehicular systems. The list is provided through a set of 
interviews and discussions with experts from different 
companies in the vehicular domain. The results of the 
ranking from the vehicular companies are combined with 
the classification of how to support different quality 
attributes provided in [18]. The result is an abstract 
description of where, which, and how different quality 
attributes should be supported by a component 
technology tailored for the vehicular industry.  

A component technology as defined in [4] is a 
technology that can be used for building component 
based software applications. It implements a component 
model defining the set of component types, their 
interfaces, and, additionally, a specification of the 
allowable patterns of interaction among component types. 
A component framework is also part of the component 



technology, its role can be compared to the role of an 
operating system, and it provides a variety of deployment 
and run-time services to support the component model. 
Specialized component technologies used in different 
domains of embedded systems have recently been 
developed, e.g., [22][23]. There are also a number of such 
component technologies under development in the 
research community, e.g., [16][20][35]. The existence of 
different component technologies can be motivated by 
their support for different quality attributes, although they 
follow the same CBSE basic principles. It has been 
shown that companies developing embedded systems in 
general consider different non functional quality 
attributes far more important than efficiency in software 
development, which explains the specialization of 
component technologies [16]. 

The outline of the remaining part of the paper is as 
follows. Section 2 describes the conducted research 
method, and section 3 the results. Section 4 is a 
discussion of the implications of the results, regarding the 
support for quality attributes in a domain specific 
component technology. Section 5 discusses future work, 
and finally the section 6 concludes the paper.  
 
2. Method  
 

The research method is divided into three ordered 
steps:  
1. During the first step a list of relevant quality attributes 

were gathered;  
2. In the next step technical representatives from a 

number of vehicular companies placed priorities on 
each of the attributes in the list reflecting their 
companies view respectively; 

3.  Finally a synthesis step was performed, resulting in a 
description of the desired quality attribute support in a 
component technology for vehicular systems.  
 
The list of quality attributes have been collected from 

different literature trying to cover qualities of software 
that interest vehicular manufactures. In order to reduce a 
rather long list, attributes with clear similarities in their 
definitions have been grouped in more generic types of 
properties, e.g., portability and scalability are considered 
covered by maintainability. Although such grouping 
could fade the specific characteristics of a particular 
attribute, it put focus on the main concerns. In the ISO 
9126 standard [17], 6 quality attributes (functionality, 
reliability, usability, efficiency, maintainability, and 
portability) are defined for evaluation of software quality. 
However, the standard has not been adopted fully in this 
work; it is considered too brief and does not cover 
attributes important for embedded systems (e.g., safety, 
and predictability). Furthermore, concepts that sometimes 

are mixed with quality attributes (for example fault 
tolerance) are not classified as quality attributes, rather as 
methods to achieve qualities (as for example safety). 
Finally, functionality is of course one of the most 
important quality attributes of a product, indicating how 
well it satisfies stated or implied needs. However, we 
focus on quality attributes beyond functionality often 
called extra-functional or non-functional properties. 

The resulting list of quality attributes is presented 
below.  
• Extendibility - the ease with which a system or 

component can be modified to increase its storage or 
functional capacity. 

• Maintainability - the ease with which a software 
system or component can be modified to correct 
faults, improve performance, or other attributes, or 
adapt to a changed environment. 

• Usability - the ease with which a user can learn to 
operate, prepare inputs for, and interpret outputs 
from a system or component. 

• Predictability - to which extent different run-time 
attributes can be predicted during design time. 

• Security - the ability of a system to manage, protect, 
and distribute sensitive information. 

• Safety - a measure of the absence of unsafe software 
conditions. The absence of catastrophic 
consequences to the environment. 

• Reliability - the ability of a system or component to 
perform its required functions under stated conditions 
for a specified period of time. 

• Testability - the degree to which a system or 
component facilitates the establishment of test 
criteria and the performance of tests to determine 
whether those criteria have been met. Note: 
testability is not only a measurement for software, 
but it can also apply to the testing scheme. 

• Flexibility - the ease with which a system or 
component can be modified for use in applications or 
environments other than those for which it was 
specifically designed. 

• Efficiency - the degree to which a system or 
component performs its designated functions with 
minimum consumption of resources (CPU, Memory, 
I/O, Peripherals, Networks). 

 
Representatives from the technical staff of several 

companies have been requested to prioritize a list of 
quality attributes, reflecting each of the respective 
companies’ view. The attributes have been grouped by 
the company representatives in four priority classes as 
shown in Table 1. The nature of the quality attributes 
imply that no quality attribute can be neglected. It is 
essential to notice that placing an attribute in the lowest 
priority class (4) does not mean that the company could 



avoid that quality in their software, rather that the 
company does not spend extra efforts in reaching it. The 
following companies have been involved in the 
classification process:  
• Volvo Construction Equipment [33] develops and 

manufactures a wide variety of construction 
equipment vehicles, such as articulated haulers, 
excavators, graders, backhoe loaders, and wheel 
loaders. 

• Volvo Cars [34] develops passenger cars in the 
premium segment. Cars are typically manufactured in 
volumes in the order of several hundred thousands 
per year. 

• Bombardier Transportation [7] is a train 
manufacturer, with a wide range of related products. 
Some samples from their product line are passenger 
rail vehicles, total transit systems, locomotives, 
freight cars, propulsion and controls, and signaling 
equipment. 

• Scania [27] is a manufacturer of heavy trucks and 
buses as well as industrial and marine engines. 

• ABB Robotics [1] is included in the work as a 
reference company, not acting in the vehicular 
domain. They are building industrial robots, and it is 
the department developing the control systems that is 
represented. 

Table 1. Priority classes used to classify the 
importance of the different quality attributes 

 
Priority Description 

1 very important, must be considered 

2 important, something that one should try 
to consider 

3 less important, considered if it can be 
achieved with a small effort 

4 Unimportant, do not spend extra effort 
on this 

 
As the last step we provide a discussion where we 

have combined the collected data from the companies 
with the classification of how to support different quality 
attributes in [18]. The combination gives an abstract 
description of where, which, and how different quality 
attributes should be supported by a component 
technology tailored for usage in the vehicular industry. 

 

1

2

3

4

5

Safety

Reli
ab

ility

Predict
ability

Use
abilty

Exte
ndability

Maintaina
bility

Effic
ienc

y

Testa
bility

Secu
rity

Flexib
ility

VolvoCE Bombardier Transportation
Volvo Cars Scania
ABB Robotics 

P
rio

rit
y

 
Figure 1, the results. Y-axis: priority of quality attributes in a scale 1 (highest), to 4 (lowest). X-axis: the 

attributes, with the highest prioritized attribute as the leftmost, and lowest as rightmost. Each of the companies 
has one bar for each attribute, textured as indicated below the X-axis.  



3. Results  
 

Figure 1 is a diagram that summarizes the results. The 
attributes are prioritized by the different companies, in a 
scale from priority 1 (highest), to 4 (lowest) indicated on 
the Y-axis. On the X-axis the attributes are presented with 
the highest prioritized attribute as the leftmost, and lowest 
as rightmost. Each of the companies has one bar for each 
attribute, textured as indicated below the X-axis. In some 
cases the representatives placed an interval for the priority 
of certain attributes, e.g., 1-3 dependent on application; in 
those cases the highest priority has been chosen in the 
diagram. 

The result shows that the involved companies have 
approximately similar prioritization, except on the 
security quality attribute where we have both highest and 
lowest priority. Reasonably, the most important concerns 
are related to dependability characteristics (i.e. to the 
expectation of the performance of the systems): safety, 
reliability and predictability. Usability is a property 
important for the customers but also crucial in 
competition on the market. Slightly less important 
attributes are related to the life cycle (extendibility, 
maintainability). This indicates that the companies are 
ready to pay more attention to the product performance 
than to the development and production costs (in that 
sense a component-based approach which primary 
concerns are of business nature, might not necessary be 
the most desirable approach).  

The results also shows that ABB Robotics, included as 
a reference company outside the vehicular domain has 
also approximately the same opinion. It is not possible to 
distinguish ABB Robotics from any of the vehicular 
companies from a quality attribute perspective. These 
companies might use the same component technology 
with respect to quality attribute support; thus the results in 
the investigation indicate that the priority among quality 
attributes scale to a broader scope of embedded computer 
control systems.  
 
4. Discussion of the results  
 

A component technology may have built in support for 
maintaining quality attributes. However, tradeoffs 
between quality attributes must be made since they are 
interdependent [6][15]. We will discuss how the different 
quality attributes can be supported by a component 
technology, and suggest how necessary tradeoffs can be 
made according to priority placed by industry. The 
discussion starts by treating the attribute that has received 
the highest priority (safety), and continues in priority 
order, in this way the conflicts (and tradeoffs) will be 
discussed in priority order. As basis for where support for 

a specific quality attribute should be implemented we use 
a classification from [18], listed below: 
• Directly composable, possible to analyze given the 

same quality attributes from the components. 
• Architecture related, possible to analyze given this 

attribute for the components and the assembly 
architecture. 

• Derived attributes, possible to analyze from several 
attributes from the involved components. 

• Usage dependent, need a usage profile to analyze 
this. 

• System environment context, possible to analyze 
given environment attributes. 

 
4.1. Safety  
 

Safety is classified as dependent on the usage profile, 
and the system environment context. Similarly to the fact 
that we cannot reason about system safety without taking 
into consideration the surrounding context, we cannot 
reason about safety of a component: simply safety is not a 
property that can be identified on the component level. 
But a component technology can include numerous 
mechanisms that enhance safety, or simplify safety 
analysis. However, to perform safety analysis, usage and 
environment information is needed. A component 
technology can have support for safety kernels [25], 
surrounding components and supervise that unsafe 
conditions do not occur. Pre- and post conditions can be 
checked in conjunction with execution of components to 
detect hazardous states and check the range of input and 
output, used in specification of components in e.g., 
[8][11]. Tools supporting safety analysis as fault tree 
analysis (FTA) or failure modes and effect analysis 
(FMEA) can also be provided with the component 
technology. 
 
4.2. Reliability  
 

Reliability is architecture related and usage dependent. 
The dominant type of impact on reliability is the usage 
profile but reliability is also dependent on the software 
architecture and how components are assembled; a fault-
tolerant redundant architecture improves the reliability of 
the assembly of components. One possible approach to 
calculation of the reliability of an assembly is to use the 
following elements: 
• Reliability of the components – Information that has 

been obtained by testing and analysis of the 
component given a context and usage profile. 

• Path information (usage paths) – Information that 
includes usage profile and the assembly structure. 

Combined, it can give a probability of execution of each 
component, for example by using Markov chains. 



Also common for many simple systems, the reliability 
for a function of two components is calculated using the 
reliability of the components, and their relationship when 
performing the function. An AND relationship is when 
the output is dependent on correct operation of both 
components, and an OR occurs when the output is created 
when one of the two components operates correctly.  

A component technology could have support for 
reliability, through reliability attributes associated with 
components, and tools that automatically determines 
reliability of given usage profiles, path information, and 
structural relationships.  

It is noteworthy that even if the reliability of the 
components are known it is very hard to know if side 
effects take place that will affect an assembly of the 
components. E.g. a failure caused by a component writing 
in a memory space used by another component. A model 
based on these assumptions needs the means for 
calculating or measuring component reliability and an 
architecture that permits analysis of the execution path. 
Component models that specify provided and required 
interface, or implement a port-based interface make it 
possible to develop a model for specifying the usage 
paths. This is an example in which the definition of the 
component model facilitates the procedure of dealing 
with the quality attribute. One known problem in the use 
of Markov chains in modeling usage is the rapid growth 
of the chain and complexity [29]. The problem can be 
solved because the reliability permits a hierarchical 
approach. The system reliability can be analyzed by 
(re)using the reliability information of the assemblies and 
components (which can be derived or measured).  

Reliability and Safety are not conflicting attributes. 
Reliability enhances safety, high reliability increases 
confidence that the system does what it is intended to and 
nothing else that might lead to unsafe conditions. 
 
4.3. Predictability  
 

We focus on predictability of the particular run-time 
attributes temporal behavior, memory consumption, and 
functional behavior. Predictability is directly composable 
and architecture dependent. Prediction of temporal 
behavior is well explored in research within the real-time 
community. Depending on the run-time systems 
scheduling strategy, the shared resource access and 
execution demands of the scheduled entities, suitable 
prediction theories can be chosen, e.g., for fixed priority 
systems that are most common within industry [3][28]. 
The choice of scheduling strategy is also a problem that 
has been addressed [36]. Static scheduled systems are 
more straightforward to predict than event driven systems 
that on the other hand are more flexible. Memory 
consumption can be predicted, given the memory 
consumption for the different components in the system 

[13]. However, two different types of memory 
consumption can be identified: static and dynamic. Static 
memory consumption is the most straightforward to 
predict, since it is a simple summation of the memory 
requirements of the included components. Dynamic 
memory consumption can be more complex, since it 
might be dependent on usage input, and thereby be usage 
dependent. 

Predictability is not in conflict with the higher 
prioritized attributes reliability and safety. Predictable 
behavior enhances safety and reliability, e.g., 
unpredictable behavior cannot be safe because it is 
impossible to be sure that certain actions will not take 
place. 
 
4.4. Usability 
 

Usability is a rather complex quality attribute, which is 
derived from several other attributes; it is architecture 
related and usage dependent. Usability is not directly 
related to selection of component technology. Software in 
embedded systems (the most common and important type 
of software in vehicular systems) is usually not visible 
and does not directly interact with the user. However, 
more and more human-machine interaction is 
implemented in underlying software. In many cases we 
can see how the flexibility of software is abused - there 
are many devices (for example in infotainment) with 
numerous buttons and flashing screens that significantly 
decrease the level of usability. Use of a component 
technology may however indirectly contribute to usability 
– by building standard (user-interface) components, and 
by their use in different applications and products, the 
same style, type of interaction, functionality and similar 
are repeated. In this way they become recognisable and 
consequently easier to use. 

Usability as discussed above is not in obvious conflict 
with any of the higher prioritized quality attributes. 

 
4.5. Extendibility 
 

Extendibility is directly composable and architecture 
related. It can be supported by the component technology 
through absence of restrictions in size related parameters, 
e.g., memory size, code size, and interface size. 
Extendibility is one of the main concerns of a component 
technology and it is explicitly supported – either by 
ability of adding or extending interfaces or by providing a 
framework that supports extendibility by easy updating of 
the system with new or modified components.  

Extendibility is not in direct conflict with any of the 
higher prioritized attributes. However, conflicts may arise 
due to current methods used for analysis and design of 
safety critical systems real-time systems, the methods 



often results in systems that are hard to extend [5]. 
Predictability in turn enhances extendibility, since it 
makes predications of the impact of an extension 
possible. 
 
4.6. Maintainability 
 

Maintainability is directly composable and architecture 
related. A component technology supports maintainability 
through configuration management tools, clear 
architectures, and possibilities to predict impacts of 
applied changes.  

Maintainability is not in obvious conflict with any of 
the higher prioritized attributes. But as for extendibility, 
current state of practice for achieving safety, 
dependability and predictability results in systems that 
often are hard to maintain [5]. Maintainability increases 
usability, while good predictability in turn increases 
maintainability since impacts of maintenance efforts can 
be predicted.  
 
4.7. Efficiency 
 

Efficiency is directly composable and architecture 
related. Efficiency is affected by the component 
technology, mainly through resource usage by the run-
time system but also by interaction mechanisms. Good 
efficiency is equal to low memory, processor, and 
communication medium usage.  

In the requirements for a software application it might 
often be the case that a certain amount of efficiency is a 
basic requirement, because of limited hardware resources, 
control performance, or user experienced responsiveness. 
In such cases the certain metrics must be achieved, but 
efficiency is potentially in conflict with many higher 
prioritized quality attributes. Safety related run-time 
mechanisms as safety kernels, and checking pre- and post 
conditions consume extra resources and are thus in 
conflict with efficiency. Reliability is often increased by 
redundancy, by definition conflicting with efficiency. 
Methods used for guaranteeing real-time behavior are 
pessimistic and result in low utilization bounds [19], 
although it is a widely addressed research problem and 
improvements exist, e.g., [2][10]. 
 
4.8. Testability 
 

Testability is directly composable and architecture 
related. A general rule for testability is that simple 
systems are easier to test than complex systems; however, 
what engineers build is not directly related to the 
technology itself. Direct methods to increase testability 
provided by a component technology can be built in self 
tests in components, monitoring support in the run-time 

system, simulation environments, high and low level 
debugging information [32].  

Testability is not in conflict with any of the higher 
prioritized quality attributes. On the contrary, it supports 
several other attributes, e.g., safety is increased by testing 
that certain conditions cannot occur, predictions are 
confirmed by testing, maintainability is increased if it is 
possible to test the impact of a change. However, 
efficiency tradeoffs might have to be done to enable 
testing. A problem with many common testing methods is 
the probe effect introduced by software probes used for 
observing the system [14]. If the probes used during 
testing are removed in the final product, it is not the same 
system that is delivered as the one tested. To avoid this 
problem, designers can choose to leave the probes in the 
final product and sacrifice efficiency, or possibly use 
some form of non-intrusive hardware probing methods, 
e.g., [12]. Reliability implemented by fault tolerance 
decrease testability, since faults may become hidden and 
complicate detection by testing.  
 
4.9. Security 
 

Security is usage dependent and dependent on the 
environment context, meaning that it is not directly 
affected by the component technology. However, 
mechanisms increasing security can be built in a 
component technology, e.g., encryption of all messages, 
authorization of devices that communicate on the bus.  

Methods to increase security that can be built in a 
component technology are often in conflict with higher 
prioritized quality attributes, e.g., encryption is in conflict 
with efficiency since it require more computing, and with 
testability since it is harder to observe the system. 
Furthermore security has a low priority, and the methods 
to achieve it are not dependent on support from the 
component technology. Hence, security can be 
implemented without support from the component 
technology.  
 
4.10. Flexibility 
 

Flexibility is directly composable and architecture 
related. A component technology can support flexibility 
through the components, their interactions, and 
architectural styles to compose systems. Methods 
increasing flexibility in a component technology can be, 
e.g., dynamic run-time scheduling of activities based on 
events, run-time binding of resources, and component 
reconfiguration during run-time. 

Flexibility has received the lowest priority of all 
quality attributes, and is in conflict with many higher 
prioritized attributes, e.g., with safety since the number of 
different hazardous conditions increases, with testability 



since the number of test cases increases and it may not be 
possible at all to create a realistic run-time situation thus 
not to test the actual system either. On the other hand 
flexibility increases maintainability, since a flexible 
system is easier to change during maintenance. It is not 
possible to use completely static systems with no 
flexibility at all when user interaction is involved, but 
regarding to the numerous conflicts with higher 
prioritized quality attributes it should be kept to a 
minimum in component technologies for this domain. 

 
4.11. Quality Attribute Support in a Component 
Technology for the Automotive Domain 
 

Having presenting the basic characteristics of quality 
attributes related to component technologies, and 
identification of present conflicts, and suggestions on 
how to resolve the conflict we give a brief description of 
the resulting suggestion of support for quality attributes in 
a component technology tailored for vehicular systems in 
table 2.  

 
Table 2, component technology support for 

particular attributes 
 

Quality attribute Support 

Safety Safety cannot be fully supported by 
a component technology. However, 
safety kernels surrounding 
components and support for 
defining pre- and post conditions 
are suggested as support.  

Reliability Reliability is supported to a large 
extent by a component technology. 
We suggest reliability attributes 
associated with components, path 
information including usage profile 
and assembly structure, and tools 
for analysis. There should also be 
support for redundant components 
when necessary. 

Predictability Predictability is supported to a 
large extent. Associated to the 
components, attributes such as 
execution time, and memory 
consumption can be specified. 
Tools for automated analysis can 
be provided with the technology. 

Usability Usability is not directly supported 
by a component technology. 

Extendibility Extendibility is well supported. 

The interfaces should be easy to 
extend and it should be easy to add 
new components to an existing 
system. There should be no size 
related restrictions with respect to 
memory, code, and interface. 

Maintainability Maintainability is well supported 
by a component technology. The 
support is provided through 
configuration management tools, 
and the fact that using well defined 
components gives a clear and 
maintainable architecture,  

Efficiency Efficiency is suggested to be 
supported to a fairly high level. We 
suggest support through small and 
efficient run-time systems, 
however not to the cost of 
suggested safety and reliability 
related run-time mechanisms. 

Testability Testability is supported to a large 
extent. The support is suggested to 
be monitoring possibilities in the 
run-time system, simulation and 
debug possibilities. 

Security Security is not directly supported. 

Flexibility Flexibility is not directly 
supported. 

 
5. Future Work  
 

We will continue with research towards enabling 
CBSE for automotive systems. One part is to continue 
investigating the requirements on quality attributes from 
the domain, with our present and other industrial partners. 
Another part is an analysis of particular component 
models to investigate their abilities of supporting these 
quality attributes. A third part is to enable support for 
quality attributes in the component technologies we are 
developing as prototypes suitable for the domain 
AutoComp [26] and SaveComp [16], but we will also 
asses to which extent other existing component 
technologies can be used in order to meet the industrial 
requirements.  

 
6. Conclusions 
 

We have presented a classification of the importance 
of quality attributes for software made by some 
companies in the vehicular domain; the results showed 
that the companies agreed upon the priority for most of 



the attributes. The most important concerns showed to be 
related to dependability characteristics (safety, reliability 
and predictability). Usability received a fairly high 
priority. Slightly less important attributes where those 
related to the life cycle (extendibility, maintainability), 
while security and flexibility received the lowest priority. 
We also included a company outside the domain in the 
investigation, it turned out that they also agreed upon the 
classification; it might be that the classification scale to a 
broader scope of embedded systems.  

Furthermore, we have discussed how the attributes 
could be facilitated by a component technology, and were 
in the technology the support should be implemented: 
inside or outside the components, in the framework, or if 
the quality attributes are usage dependent. The discussion 
is concluded by a brief suggestion of quality attribute 
support for a component technology.  
 
Acknowledgements 
 

We would like to thank our industrial partners for their 
time, and the interest they have shown in discussing 
quality attributes. Thanks to Joakim Fröberg from Volvo 
CE, Jakob Axelsson from Volvo Cars, Mattias Ekman 
from Bombardier Transportation, Ola Larses and Bo 
Neidenström from Scania, and Bertil Emertz from ABB 
Robotics. 
 
References  
 
[1] ABB Robotics Homepage:  http://www.abb.com/robotics 
[2] T. F. Abdelzaher, V. Sharma, C. Lu, A utilization bound for 

aperiodic tasks and priority driven scheduling, IEEE 
Transactions on Computers, 53(3) 334 - 350, Mar 2004 

[3] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, Fixed 
Priority Pre-emptive Scheduling: A Historical Perspective. 
Real-Time Systems journal, Vol.8(2/3), March/May, 1995. 

[4] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. 
Long, J. Robert, R. Seacord, and K. Wallnau. Technical 
Concepts of Component-Based Software Engineering, 
Volume II. Technical Report CMU/SEI-2000-TR-008, 
Software Engineering Institute, Carnegie-Mellon University, 
May 2000 

[5] A. Burns, and J. A. McDermid, Real-time safety-critical 
systems: analysis and synthesis, Software Engineering 
Journal 9(6) 267 - 281, Nov. 1994 

[6] M. Barbacci, M. H. Klein, T. A. Longstaff, C. B. Weinstock, 
Quality Attributes, Technical Report, Software Engineering 
Institute, Carnegie Mellon University, 1995.  

[7] Bombardier Transportation Homepage: 
http://www.transportation.bombardier.com/ 

[8] J Chessman, and J. Daniels, UML Componets – A simple 
process for specifying Component-Based Software, Reading, 
MA: Addison-Wesley, 2000. 

[9] I. Crnkovic, and M. Larsson, Classification of quality 
attributes for predictability in component-based systems, In 

DSN 2004 Workshop on Architecting Dependable Systems 
Florence, Italy , June 2004. 

[10] C. Deji; A. K. Mok,, K. Tei-Wei, Utilization bound 
revisited, IEEE Transactions on Computers, 52(3) 351 – 361, 
March 2003 

[11] D. D´Souza, and A. C. Wills, Objects, Components and 
Frameworks: The Catalysis Approach, Reading, MA: 
Addison-Wesley, 1998. 

[12] M. El Shobaki, and L. Lindh, A Hardware and Software 
Monitor for High-Level System-on-Chip Verification, Proc. 
of the IEEE International Symposium on Quality Electronic 
Design, March 2001.  

[13] A. V. Fioukov, E. M.  Eskenazi, D. K. Hammer, M. R. V.  
Chaudron, Evaluation of static properties for component-
based architectures, Proc. 28th Euromicro Conference, 2002.  

[14] J. Gait. A probe effect in concurrent programs. Software 
Practise and Experience, 16(3):225–233, March 1986. 

[15] D. Haggander, L. Lundberg,and J. Matton, Quality attribute 
conflicts - experiences from a large telecommunication 
application, In proceedings of the Seventh IEEE 
International Conference on Engineering of Complex 
Computer Systems, 2001.  

[16] H. Hansson, M. Åkerholm, I. Crnkovic, M. Törngren, 
SaveCCM – a component model for safety-critical real-time 
systems, Component Models for Dependable Systems 
(CMDS), France, September, 2004 

[17] ISO/IEC standard specification, Software engineering -- 
Product quality -- Part 1: Quality model, ISO/IEC 9126-1, 
2001 

[18] M. Larsson, Predicting Quality Attributes in Component-
based Software Systems, Phd Thesis, Mälardalen University 
Press, March 2004. 

[19] C. I. Liu and J. W. Layland. Scheduling Algorithms for 
Multiprogramming in a Hard-Real-Time Environment. 
Journal of the ACM, 20(1), 1973. 

[20] M. de Jonge, J. Muskens and M. Chaudron, Scenario-Based 
Prediction of Run-time Resource Consumption in 
Component-Based Software Systems, Proceedings of the 6th 
ICSE Workshop on Component-Based Software 
Engineering: Automated Reasoning and Prediction, May, 
2003. 

[21] G. A. Moreno, S. A. Hissam, and K. C. Wallnau, Statistical 
Models for Empirical Component Properties and Assembly-
Level Property Predictions: Towards Standard Labeling, In 
Proceedings of 5th Workshop on component based software 
engineering, 2002. 

[22] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, 
P. Müller, C. Zeidler, T. Genssler, R. van den Born, A 
Component Model for Field Devices Proceedings of the First 
International IFIP/ACM Working Conference on Component 
Deployment, Germany, June 2002. 

[23] R. van Ommering, F. van der Linden, and J. Kramer. The 
Koala component model for consumer electronics software. 
IEEE Computer, 33(3):78–85, March 2000 

[24] R.H. Reussner, H.W. Schmidt, and I. Poernomo. Reliability 
prediction for component-based software architectures. 
Journal of Systems and Software, 66(3):241–252, 2003. 

[25] J. Rushby, Kernel for safety, in Safe and Secure Computing 
Systems, Blackwell Scientific Publications, Londres, 1989. 

[26] K. Sandström, J. Fredriksson, and M. Åkerholm, 
Introducing a Component Technology for Safety Critical 



Embedded Real-Time Systems, In International Symposium 
on Component-based Software Engineering (CBSE7) 
Edinburgh, Scotland , May 2004. 

[27] Scania Homepage: http://www.scania.com/ 
[28] O. Redell, M. Törngren, Calculating exact worst case 

response times for static priority scheduled tasks with offsets 
and jitter. In: Proc. Eighth IEEE Real-Time and Embedded 
Technology and Applications Symposium, IEEE (2002) 

[29] H. Schmidt and R. H. Reussner, Parametrized Comtracts 
and Adapter Synthesis, In Proceedings of 5th ICSE 
workshop on CBSE, 2001. 

[30] H.W. Schmidt. Trustworthy components: Compositionality 
and prediction. Journal of Systems and Software, 65(3):215–
225, 2003  

[31] J. Stafford, and J. McGregor, Issues in the Reliability of 
Composed Components, Proceedings of 5th workshop on 
component based software engineering, 2002. 

[32] H. Thane, Monitoring, Testing and Debugging of 
Distributed Real-Time Systems, Ph D Thesis , Royal 
Institute of Technology, May 2000. 

[33] Volvo Construction Equipment Homepage: 
http://www.volvo.com/constructionequipment  

[34] Volvo Cars Homepage: http://www.volvocars.com/  
[35] K. C. Wallnau. Volume III: A Technology for Predictable 

Assembly from Certifiable Components, Technical report, 
Software Engineering Institute, Carnegie Mellon University, 
April 2003, Pittsburgh, USA 

[36] J. Xu and D. L. Parnas. Priority Scheduling versus Pre-run-
time Scheduling. Journal of Real-Time Systems, 2000. 

 
 


