
Mälardalen University Licentiate Thesis
No. 24

Deterministic Replay
Debugging of Embedded
Real-Time Systems using

Standard Components

Daniel Sundmark

March 2004

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden



Copyright c© Daniel Sundmark, 2004
ISBN 91-88834-35-2
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press



Abstract

Men and women make mistakes. They always have and they always will.
Naturally, software engineers are no exception to this rule. When software
engineers make their mistakes, these manifest in the form of buggy software.
Luckily, men and women often strive to correct the mistakes they make. In
software engineering, this process is called debugging.

In simple sequential software, debugging is fairly easy. However, in the
realm of embedded real-time software, debugging is made significantly harder
by factors such as dependency of an external context, pseudoparallelism or true
parallelism, and other real-time properties. These factors lead to problems with
execution behavior reproducibility. When a failure is discovered, we need to
be able to reproduce this failure in order to examine what went wrong. If the
erroneous behavior cannot be reproduced, we will not be able to examine the
process leading to the failure.

Previous work has proposed the use of execution replay debugging in order
to solve this problem. Execution replay is a general term for a set of methods
to record system behavior during execution and to use these recordings in or-
der to reproduce this behavior during debugging sessions. This way, we may
achieve a reproducable execution behavior for non-deterministic systems. His-
torically, many replay methods have been highly platform-dependent, craving
specialized hardware, operating system or compilers.

In this thesis, we describe a replay method, called Deterministic Replay,
able to run on top of standard components. We also describe the Time Machine,
which is the implementation of the Deterministic Replay method. Further, we
give an in-depth description of the method for pinpointing interrupts used by
the Time Machine. In addition, we present results from two case studies where
the Deterministic Replay method was incorporated into two full-scale indus-
trial real-time systems. These results show that our method of debugging multi-
tasking real-time systems not only is applicable in industrial applications, but
also that it can be introduced with little effort and small costs regarding appli-
cation performance.

Keywords: debugging, replay, real-time systems, embedded systems





To Kristina





Acknowledgements

This work has been supported by the KK Foundation (KKS) and Mälar-
dalen University.

I would like to thank everybody at the department for creating a highly
enjoyable working site. Especially, I would like to thank my fellow PhD stu-
dents Anders Pettersson and Joel Huselius for taking the time to answer my
questions and to my supervisors Henrik Thane and Hans Hansson for helping
me row this boat ashore. Furthermore, I would like to thank Thomas Nolte for
his great support, Jonas Neander for keeping the positive spirit up and Jocke
Fröberg for many interesting discussions. Many thanks to my fellow lecturers
Dag and Jukka. We’ve had many laughs and I think we give a great course.
Thanks also to Mic and professors Mats, Ivica, Christer and Lars for valuable
input and support. In addition, I would like to thank Aje, Markus, Micke, Ralf,
Leif, Manne, Johan and everybody in the floorball crew, Roger and the other
discgolfers, and Radu, Lennvall, Damir and the soccer guys. You make the
hard days seem shorter and the good days seem longer. Thanks also to Möller
and Andreas and to Katrin for keeping our house clean. Not least, I would like
to thank Harriet, Monica and Malin. We would be lost in space without you.

Naturally, I owe a lot to my family and friends. Thank you Mom and Dad
for your love and support. Thanks to Anneli, Niclas, Gösta, Margot, Janne, Git-
tan, Micke, Sara, Barbro, Sigurd, Helene, Calle, Victoria and Lovisa. Special
thanks to Grabbarna Grus: Boberg, Arnholm, Loffe, David, Wier and Gurra.
If anyone has enrichened my working hours, it’s you. Compadres de luxe!
Thanks also to stugangänget and to Mattias Sjögren for all valuable help and
companionship during my undergraduate studies. In addition, I would like to
thank sensei Enrico and everybody at the dojo.

And, of course, Kicki, you have been there for me through thick and thin.
I love you.

Muchas Gracias!

Västerås, February 2004
Karl Daniel Sundmark





Contents

Contents vii

List of Publications xi

I Thesis 1

1 Introduction 3
1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Real-Time Systems . . . . . . . . . . . . . . . . . . . 4
1.1.3 Testing and Debugging . . . . . . . . . . . . . . . . . 4

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Contributions 7
2.1 Paper A (Chapter 4) . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Paper B (Chapter 5) . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Paper C (Chapter 6) . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Paper D (Chapter 7) . . . . . . . . . . . . . . . . . . . . . . . 9

3 Conclusions 11
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



viii CONTENTS

II Included Papers 13

4 Paper A: Replay Debugging of Embedded Real-Time Systems: A
State of the Art Report 15
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Code Inspection . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Diagnostic Output . . . . . . . . . . . . . . . . . . . 18
4.1.3 Cyclic Debugging . . . . . . . . . . . . . . . . . . . 19
4.1.4 Static Analysis . . . . . . . . . . . . . . . . . . . . . 20

4.2 Complex System Debugging Issues . . . . . . . . . . . . . . 20
4.2.1 Determinism and Reproducibility . . . . . . . . . . . 20
4.2.2 Context Issues . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Ordering Issues and Concurrency . . . . . . . . . . . 23
4.2.4 Timing Issues . . . . . . . . . . . . . . . . . . . . . . 27
4.2.5 Embedded Systems . . . . . . . . . . . . . . . . . . . 29
4.2.6 Complex Debugging Summary and Problem Statement 30

4.3 Debugging by Execution Replay . . . . . . . . . . . . . . . . 33
4.3.1 Replay Debugging of Concurrent Systems . . . . . . . 33
4.3.2 Real-Time Systems Replay Debugging . . . . . . . . 35
4.3.3 Asynchronous Events Reproduction . . . . . . . . . . 35
4.3.4 On-The-Fly Race Detection . . . . . . . . . . . . . . 40

4.4 Instrumentation for Replay . . . . . . . . . . . . . . . . . . . 41
4.4.1 The Probe Effect . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Instrumentation Jitter . . . . . . . . . . . . . . . . . . 43

4.5 Deterministic Replay . . . . . . . . . . . . . . . . . . . . . . 44
4.5.1 Reproducing System-Level Control Flow . . . . . . . 45
4.5.2 Reproducing External- and Internal Data Flow . . . . 45

4.6 Replaying Long-Running Applications . . . . . . . . . . . . . 45
4.6.1 Starting a replay execution . . . . . . . . . . . . . . . 46
4.6.2 Checkpointing . . . . . . . . . . . . . . . . . . . . . 46

4.7 Related Research Projects . . . . . . . . . . . . . . . . . . . . 47
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Paper B: Replay Debugging of Real-Time Systems Using Time Ma-
chines 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Debugging Sequential Real-Time Programs . . . . . . 55
5.1.2 Debugging Multi-Tasking Real-Time Programs . . . . 56
5.1.3 Debugging by the Use of Time Machines . . . . . . . 56



CONTENTS ix

5.1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 The System Model . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 The Mechanisms of the Time Machine . . . . . . . . . . . . . 59

5.4.1 What to Record . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 How to Record . . . . . . . . . . . . . . . . . . . . . 62
5.4.3 The Historian . . . . . . . . . . . . . . . . . . . . . . 63
5.4.4 Requirements on a Starting Point for the Replay Exe-

cution . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.5 The Time Traveller . . . . . . . . . . . . . . . . . . . 66

5.5 Industrial Case Study . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Paper C: Replay Debugging of Complex Real-Time Systems: Ex-
periences from Two Industrial Case Studies 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . 75
6.1.2 Paper Outline . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Background and Motivation . . . . . . . . . . . . . . . . . . 75
6.2.1 Replay Debugging . . . . . . . . . . . . . . . . . . . 76
6.2.2 Real-Time System Debugging using Time Machines

and Deterministic Replay . . . . . . . . . . . . . . . . 76
6.2.3 ABB Robotics System Model . . . . . . . . . . . . . 77
6.2.4 SAAB Avionics System Model . . . . . . . . . . . . 79

6.3 Technique Implementations . . . . . . . . . . . . . . . . . . . 79
6.3.1 VxWorks Instrumentation . . . . . . . . . . . . . . . 79
6.3.2 ABB Robotics Instrumentation . . . . . . . . . . . . . 81
6.3.3 SAAB Avionics Instrumentation . . . . . . . . . . . . 82
6.3.4 Time Machine . . . . . . . . . . . . . . . . . . . . . 82
6.3.5 IDE and Target System Integration . . . . . . . . . . . 84

6.4 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.1 ABB Robotics . . . . . . . . . . . . . . . . . . . . . 86
6.4.2 SAAB Avionics . . . . . . . . . . . . . . . . . . . . . 87

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



x CONTENTS

7 Paper D: Pinpointing Interrupts in Embedded Real-Time Systems
using Context Checksums 93
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . 95
7.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . 96
7.1.3 Problem Formulation . . . . . . . . . . . . . . . . . . 98
7.1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . 98
7.1.5 Paper Outline . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Context Checksums . . . . . . . . . . . . . . . . . . . . . . . 98
7.2.1 Execution Context . . . . . . . . . . . . . . . . . . . 99
7.2.2 Register Checksum . . . . . . . . . . . . . . . . . . . 99
7.2.3 Stack Checksum . . . . . . . . . . . . . . . . . . . . 100
7.2.4 Partial Stack Checksum . . . . . . . . . . . . . . . . 101

7.3 Approximation Accuracy . . . . . . . . . . . . . . . . . . . . 102
7.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.1 Approximation Accuracy . . . . . . . . . . . . . . . . 106
7.4.2 Perturbation . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



List of Publications

The following articles are included in this licentiate1 thesis:

A. Replay Debugging of Embedded Real-Time Systems: A State of the Art
Report, Daniel Sundmark, MRTC Report ISSN 1404-3041 ISRN MDH-
MRTC-156/2004-1-SE, Mälardalen Real-Time Research Centre, Mälar-
dalen University, February 2004.

B. Replay Debugging of Real-Time Systems using Time Machines, Henrik
Thane, Daniel Sundmark, Joel Huselius and Anders Pettersson, In Pro-
ceedings of the International Parallel and Distributed Processing Sym-
posium (IPDPS’03), presented at the First International Workshop on
Parallel and Distributed Systems: Testing and Debugging (PADTAD),
pages 288 – 295, Nice, France, April 2003.

C. Replay Debugging of Complex Real-Time Systems: Experiences from
Two Industrial Case Studies, Daniel Sundmark, Henrik Thane, Joel Hu-
selius, Anders Pettersson, Roger Mellander, Ingemar Reiyer and Mat-
tias Kallvi, In M. Ronsse, K. De Bosschere (eds), proceedings of the
Fifth International Workshop on Automated and Algorithmic Debugging
(AADEBUG), pages 211 – 222, COmputer Research Repository2, Gent,
Belgium, September 2003.

D. Pinpointing Interrupts in Embedded Real-Time Systems using Context
Checksums, Daniel Sundmark and Henrik Thane, A version of this paper
has been submitted for publication.

1A licentiate degree is a Swedish graduate degree halfway between M.Sc. and Ph.D.
2http://www.acm.org/corr/

xi



xii LIST OF PUBLICATIONS

Besides the above articles, I have (co-)authored the following scientific pa-
pers:

I. The Asterix Real-Time Kernel Henrik Thane, Anders Pettersson and Da-
niel Sundmark, In Proceedings of the Thirteenth EUROMICRO Interna-
tional Conference on Real-Time Systems, Industrial Session, Technical
University of Delft, Delft, The Netherlands, June 2001.

II. Debugging using Time Machines: replay your embedded system’s his-
tory, Henrik Thane and Daniel Sundmark, In Proceedings of Real-Time
& Embedded Computing Conference, Chapter 22, Milan, Italy, Novem-
ber 2001.

III. Starting Conditions for Post-Mortem Debugging using Deterministic Re-
play of Real-Time Systems, Joel Huselius, Daniel Sundmark and Henrik
Thane, In Proceedings of the Fifteenth EUROMICRO Conference on
Real-Time Systems (ECRTS03), pages 177 – 184, Porto, Portugal, July
2003.

IV. Availability Guarantee for Deterministic Replay Starting Points in Real-
Time Systems, Joel Huselius, Henrik Thane and Daniel Sundmark, In
M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth Interna-
tional Workshop on Automated and Algorithmic Debugging (AADE-
BUG), pages 261 – 264, COmputer Research Repository3, Ghent, Bel-
gium, September 2003.

3http://www.acm.org/corr/



I

Thesis

1





Chapter 1

Introduction

Software engineering is hard. In fact, it is so hard that the annual cost of soft-
ware errors is estimated to range from $22.2 to $59.5 billion per year in the US
alone [1]. Few other engineering disciplines display such bleak figures. Why is
this? Are software engineers simply more incompetent than other engineers or
is there another explanation behind the multiplicity of undeliverable software
produced by these individuals. One alternative explanation would be that soft-
ware is discrete in its nature, making it impossible to interpolate between test
results. A bridge that withstands a load of 20 tons could easily be assumed to
withstand a load of 14, 15 or 17 tons. However, if you bear with us and assume
a bridge built in software, a test showing that it withstands 20 tons would not
guarantee that it could handle 14, 15 or 17 tons (or even 20 pounds for that
matter). In addition, if the software bridge would fail to withstand a load, it is
very hard to forsee in what fashion it would fail. Sure, it could collapse, but it
could also implode, move left or fall up in the sky. Software is pure abstraction
and is not bound by the laws of physics.

Yet another explanation of the poor success ratio of software projects is
the fact that software engineering is a fairly young engingeering discipline.
Methods and tools for aiding developers in their task are still in an early phase
of their development. This fact makes software engineering more arbitrary
than other engineering disciplines and the process of development is often per-
formed at the engineer’s own discretion. This is the situation we intend to
improve by our contributions.

3



4 Introduction

1.1 Basic Concepts
In order to further describe our results, we will need to establish a few basic
concepts.

1.1.1 Bugs
“It is easy to talk about ‘bug-free’ software, but because it is nonexistent, we
focus on what does exist – buggy software”, Telles and Hsieh [2].

A software bug is a defect in a program, that may (or may not) cause the
program to fail, depending on whether the bug is allowed to infect the pro-
gram execution or not. Bugs may be very simple (e.g. erroneous variable
assignments) or rather complex (e.g. improperly synchronized shared-variable
accesses). In this thesis, we adress both simple and complex bugs, but since
the latter are significantly harder to find and remove, this is where something
really has to be done.

1.1.2 Real-Time Systems
Traditionally, a real-time system is a system whose correctness not only de-
pends on its ability to produce correct results, but also on the ability of produc-
ing these results within a well-defined interval of time. Textbook examples of
such systems are ABS braking systems in cars, factory automation systems or
flight control systems.

1.1.3 Testing and Debugging
In software engineering, testing is the process of revealing the existence of
bugs in a program, whereas debugging is the process of finding them and re-
moving them. To aid the developers in the debugging process, debugger tools,
in which an erroneous program can be thourougly examined during run-time,
are often used. However, in order for an erroneous execution of a program to
be examined, the behavior of the program needs to be reproducable. For se-
quential software with no real-time requirements, execution reproducability is
trivial. If such a program is started a number of times with the same input, all
executions will exhibit identical behavior and produce identical output. Unfor-
tunately, very few systems developed in today’s industry conform to the strict
requirements of non-real-time sequential software. As the behavior of real-
time multi-tasking software is inherently harder to reproduce, regular debug-



1.2 Problem Statement 5

ging methods cannot be used to track down bugs in these systems. Therefore,
methods have been proposed for recording events and data during run-time of
otherwise non-reproducable systems and using this information to force iden-
tical execution behavior upon subsequent executions, more suited for thorough
investigation. These methods are called replay-techniques.

1.2 Problem Statement

As stated in the previous section, reproducing the execution behavior of com-
plex multi-tasking real-time systems is a non-trivial problem. This fact, com-
bined with a lack of proper general debugger tools for these systems has led to
a situation where system-integration-level and post-deployment bugs are often
very hard to track down and remove, making them very costly to handle [1].

Replay methods for recording and reproducing system behavior has been
proposed, but drawbacks in the form of specialized hardware requirements,
significant performance penalties and non-general solutions have resulted in a
situation where all hitherto proposed methods have been considered academic
artefacts with no real commercial significance to the industrial sector. The
aim of our research project, and thus of this licentiate thesis, is to remedy this
situation and to make complex system debugging by deterministic replay an
applicable industrial, as well as an academically accepted debugging method.
In short:

We aim at achieving the same level of reproducability in multi-
tasking real-time systems as the one we have in non-real-time se-
quential software.

In order not to propose yet another academic artefact, we seek to build our
method upon standard components, such as state-of-the-practice commercial
debuggers, compilers, development environments and real-time operating sys-
tems. In addition, the method we propose should be portable and feasible to
use in already existing applications.

The results presented in this licentiate thesis proposal are achieved within
the scope of the DEBUG project at Mälardalen University, and are based on the
Deterministic Replay method first proposed by Thane and Hansson in 2000 [3].



6 Introduction

1.3 Outline
The remainder of this thesis will be organized as follows: Chapter 2 will shortly
describe the technical contributions of this thesis. In Chapter 3, we will con-
clude the first part of the thesis. In the second part of the thesis, included papers
constitute Chapters 4 through 7.



Chapter 2

Contributions

In this chapter, the main technical contributions of each included paper are
presented.

2.1 Paper A (Chapter 4)

Daniel Sundmark, Replay Debugging of Embedded Real-Time Systems: A State
of The Art Report, MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-156/-
2004-1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
February 2004

Summary This state of the art report surveys the current state of embedded
real-time system debugging. We start out by giving a brief history of software
debugging. Then, we describe the problems of embedded real-time system de-
bugging by making the transition from regular sequential software debugging
through multi-tasking software debugging and to embedded real-time system
debugging. Apart from describing related work in complex system debugging,
this report also describes the basics of Deterministic Replay, the method upon
which this thesis is based.

My contribution I am the sole author of this paper.

7



8 Contributions

2.2 Paper B (Chapter 5)

Henrik Thane, Daniel Sundmark, Joel Huselius and Anders Pettersson, Replay
Debugging of Real-Time Systems Using Time Machines, In Proceedings of the
Parallel and Distributed Systems: Testing and Debugging (PADTAD) Work-
shop, Nice, France, April 2003. This paper has also been submitted as invited
journal publication.

Summary In this paper we present a new approach to Deterministic Replay
using standard components. Our method facilitates cyclic debugging of real-
time systems with industry standard real-time operating systems using industry
standard debuggers. The method is based on a number of new techniques: A
new marker for differentiation between loop iterations (as well as subroutine
calls) for deterministic reproduction of interrupts and task preemptions, an al-
gorithm for finding well-defined starting points of replay sessions, as well as a
technique for using conditional breakpoints in standard debuggers to replay the
target system. We also propose and discuss different methods for deterministic
monitoring, and provide benchmarking results from an industrial case study
demonstrating the feasibility of our method.

My contribution This paper is a joint effort. I wrote Section 5.4, discussing
the Time Machine.

2.3 Paper C (Chapter 6)

Daniel Sundmark, Henrik Thane, Joel Huselius, Anders Pettersson, Roger
Mellander, Ingemar Reiyer and Mattias Kallvi, Replay Debugging of Com-
plex Real-Time Systems: Experiences from Two Industrial Case Studies, In
Proceedings of Fifth International Workshop on Automated and Algorithmic
Debugging (AADEBUG) Gent, Belgium, September 2003.

Summary This paper describes a major Deterministic Replay debugging case
study performed on a full-scale industrial robot control system, as well as a
minor replay instrumentation case study performed on a military aircraft radar
system. In this article, we show that replay debugging is feasible for complex
multi-million lines of code software running on top of off-the-shelf real-time
operating systems. Furthermore, we discuss how replay debugging can be in-
troduced in existing systems without unfeasible analysis efforts. In addition,
we present benchmarking results from both studies, indicating that the instru-
mentation overhead is acceptable and affordable.



2.4 Paper D (Chapter 7) 9

My contribution The case studies described in this paper were carried out by
all authors. However, I wrote the paper under supervision of, and in discussion
with, the other authors.

2.4 Paper D (Chapter 7)
Daniel Sundmark and Henrik Thane, Pinpointing Interrupts in Embedded Real-
Time Systems using Context Checksums, A version of this paper has been sub-
mitted for publication.
Summary When trying to reproduce execution behavior of a system affected
by occurrences of interrupts, it is imperitive that we are able to deduce ex-
actly where these interrupts occur. This paper proposes the use of a checksum
method for pinpointing the location of occurrence of interrupts. The checksum
serves as an approximation of a unique program location marker and is based
on the contents of the register set or the stack of the program preempted by
the interrupt. This method is novel in that it neither requires any specialized
hardware nor incurs any significant overhead on the system.
My contribution This paper is written by me, under supervision of my super-
visor. I have done most of the work concerning the simulations. The work is
based on an idea by my supervisor.





Chapter 3

Conclusions

3.1 Summary
In this thesis, we have extended the Deterministic Replay method for embed-
ded real-time systems debugging. We have shown that Deterministic Replay
can be implemented using state of the practice standard components and that
it performs well in the context of full-scale industrial real-time systems. In ad-
dition, we have examined the levels of execution time perturbation introduced
by the instrumentation probes necessary for performing a Deterministic Replay
debugging.

3.2 Future Work
In Paper 6 we present results from two industrial case studies. These studies
have been very valuable when establishing the feasibility and improving the
generality of our method. In order to further enhance the generality of the
Deterministic Replay method, additional case studies should be carried out. In
addition, to be able to deterministically replay executions heavily loaded with
interrupts, we will need to further improve the levels of accuracy for the context
checksum unique markers.

We will also look into the possibility of using the data flow analysis of
abstract interpretation in order to automatically identify which parts of the pro-
gram state that should be recorded.

11



Bibliography

[1] NIST Report. The economic impacts of inadequate infrastructure for soft-
ware testing., May 2002.

[2] M. Telles and Y. Hsieh. The Science of Debugging. The Corolis Group,
2001.

[3] H. Thane and H. Hansson. Using Deterministic Replay for Debugging of
Distributed Real-Time Systems. In Proceedings of the 12th EUROMICRO
Conference on Real-Time Systems, pages 265 – 272. IEEE Computer So-
ciety, June 2000.

12



II

Included Papers

13





Chapter 4

Paper A: Replay Debugging
of Embedded Real-Time
Systems: A State of the Art
Report

Daniel Sundmark
MRTC Report ISSN 1404-3041 ISRN MDH-MRTC-156/2004-1-SE, Mälar-
dalen Real-Time Research Centre, Mälardalen University, February 2004

15



Abstract

Testing and debugging are major parts of a software development project,
counted in time and money, as well as importance. As it is not likely that
programmers and designers will make a sudden turn to start producing totally
error-free designs or implementations, the test- and debug strategy of a soft-
ware project will have a large influence over the overall quality of the end prod-
uct. Over the years, massive resources have been spent in order to improve the
quality of software. Recent reports suggest that multi-billion dollar amounts
are spent each year on software maintenance in the U.S. alone. This in a time
when nearly all software, desktop or embedded, grows increasingly more com-
plex. Unfortunately, we have come to a point where many of the available
tools for testing and debugging are insufficient for today’s full-scale commer-
cial software. This state of the art report surveys the available commercial and
academic tools and methods for complex real-time software debugging.



4.1 Introduction 17

4.1 Introduction

Ever since computer legend Dr. Grace Murray Hopper found a dead moth in
the inner workings of the Mark II while looking for the cause of recent errors,
the term debugging has been used for denoting the process of revealing and
removing the causes of errors in computers and software. A classic debug-
ging process starts with the discovery of a failure. The observed behaviour of
an investigated system does not comply with the system specifications, mean-
ing that at some point in time, prior to the observed propagation of the error,
a bug has been executed, infecting the state of the system. When this infec-
tion violates the specifications, the system failure is observed. The process of
dynamically observing system behaviour in order to find system specification
violations is denoted testing. In software (and hardware) engineering, testing
and debugging are very tightly coupled, since traditional debugging is impossi-
ble without testing (you can not remove a bug if you do not know that it exists)
and testing is pointless without debugging (if a failure is observed and its cause
not removed, we have accomplished very little).

tfailtinf

EXECUTION

tstart

Figure 4.1: Infection, incubation time and fault propagation.

Now, we have come accross a violation of the system specifications and are
left with the actual debugging task of finding the cause of the failure and re-
moving it. However, finding a bug and observing its propagation to output are
two completely different things. Some software bugs, like trying to write with-
out access to a protected memory area, will often propagate instantly. Other
bugs, such as assigning an erroneous value to a variable, will infect the system,
but might never cause the system to fail. For example, consider the timeline
in Figure 4.1. The interval between the infection of the system tinf (the execu-
tion of the bug) and the propagation of the bug to output tfail is shaded in the
figure. In an effort to follow the medical naming paradigm we adapted so far,
we denote this interval incubation time [12]. In an ideal debugging process,
we start out at the fault propagation and, moving backwards in time along the
incubation period, we narrow down the functional and temporal domain within



18 Paper A

which the infection of the system might have occurred. If we are successful,
we will end up in tinf, pointing at the bug.

Although today there exist several tools and methods for helping program-
mers and system developers in this process, testing and debugging consume
a massive percentage of the time and money spent on software engineering
projects. Debugging is highly manual detective labour and some malignant
bugs might take months to track down, even by expert programmers using
state-of-the-practice debugger tools. Other bugs are never found. There are
fully operational safety-critical systems in use today with known, but never
found, bugs. This situation is highly problematic, but, as in the old saying
“Necessity is the mother of invention”, these difficulties have given rise to sev-
eral efforts aimed at developing new and more efficient tools and methods for
debugging.

But let us start from the beginning.

4.1.1 Code Inspection
Intuitively, when something of your own design proves faulty, you try to inves-
tigate the cause of the failure. That day when the moth flew in through an open
window at Harvard University and into the Mark II, short circuiting one of its
relays, it caused the computer to produce erroneous outputs. The spontaneous
reaction of Dr. Hopper was to open up the computer and check its internal elec-
tronic devices for “bugs”. The analogy in software development would be to
inspect the source (or machine) code in a line by line fashion for implementa-
tion errors. For a long period of time, code inspection was state-of-the-practice
debugging in software development. However, inspection of code is a strictly
static debugging practice. If variables are used in the program, all possible val-
ues of these variables must be considered when analyzing the code. A more
dynamic debugging technique where the actual program is executed might be
able to tell us what variable values result in erroneous executions.

4.1.2 Diagnostic Output
As computer programs became able to produce intermediate output, rather than
being based on the old functional paradigm of taking an input, performing
some calculation and finishing by producing an output, programmers soon re-
alized that these intermediate outputs could be used for program diagnostics.
Erroneous programs can be instrumented to produce output at strategic points
in their execution, helping the programmer to track down bugs. In a less formal



4.1 Introduction 19

language, this kind of debugging is often referred to as printf-debugging due
to the massive use of the standard C library function printf to produce the
diagnostic outputs.

4.1.3 Cyclic Debugging
However, the late moth of Mark II was found in the middle of the twentieth
century and many things have happened since. Although diagnostic output
and code inspection debugging strategies still are widely used (after all, each
time you look at a piece of code, you evaluate its functional correctness), there
are new methods as well. The most commonly used tool-based debugging
strategy today is cyclic debugging, where erroneous programs are repeatedly
re-executed and investigated in a specialized tool, enigmatically called the de-
bugger.

In a sense, debugging using a debugger is not that different from regular
code inspection. When using a debugger, we are still focusing on the exami-
nation of the source code. On the other hand, cyclic debugging is a dynamic
method and using a debugger, we are not unaware of variable assignments and
program branch selections. The role of the debugger tool is to visualize the
behaviour of the program during its execution. When a program is started in a
debugger, it is possible to follow its execution line by line in the source code.
To make the connection between the running program and the source code of
the program, compiler vendors provided the generation of a file, containing the
symbol information gathered when parsing the code. This file could then be
used to map the symbols to actual memory addresses in the program, which
allowed users to follow the states of variables during the program exectuion.
Debuggers providing this feature are called symbolic debuggers [28]. Practi-
cally all software debuggers used today are symbolic debuggers.

Another common denominator for all debuggers is the inclusion of two
basic functions. These functions are breakpointing and single-stepping. Due
to the fairly impossible task of keeping up with source code path inspection
when debugging programs in real-time, it is essential that programmers are
able to halt the execution of the program under investigation. Breakpointing
enables the programmer to place markers (breakpoints) at arbitrary locations
in the source code. As these breakpoints are encountered by the program, the
debugger tool stops the execution, making a thorough state examination of the
program possible. Once the program is in a halted state, the programmer is able
to manually single-step through the execution. After each step, the execution
is halted once again. Single stepping can be performed on an instruction-by-



20 Paper A

instruction- or an function-by-function basis and often proves to be very useful
when trying to investigate the progress of an execution and when trying to track
down variable assignments.

Apart from the next section, the remainder of this report will discuss tech-
niques based on cyclic debugging using debugger tools.

4.1.4 Static Analysis
As we mentioned code inspection in an above section, we should also mention
static analysis as a means of debugging programs. If testing is the process of
revealing the presence of bugs in a program and debugging is the process of
tracking down these bugs, static analysis can be said to be a hybrid testing- and
debugging technique. Static analysis is basically a general term for different
automated code inspection methods. These methods can be applied to pro-
grams with known bug presences, but also to programs without known bugs,
just as an assurance of robustness or as a means of ensuring a certain quality of
a program.

Static analysis tools can perform simple source code analysis, such as look-
ing for uninitialized variables or dangling pointers, but also more complex anal-
ysis, such as searching for potentially malignant shared memory accesses in
concurrent programs [27].

4.2 Complex System Debugging Issues
So, what is the problem? Apparently, several highly practical debugger meth-
ods and tools are available today for a reasonable price (in some cases even
for free). What does today’s state-of-the-practice and state-of-the-art debug-
gers lack in order to avoid the months of manual labour spent tracking down a
single deceitfully malignant bug?

4.2.1 Determinism and Reproducibility
As stated earlier, cyclic debugging is based on the concept of tracking down
bugs by reproducion of erroneous exections in an environment adapted for thor-
ough investigation. This environment is provided by the debugger tool. How-
ever, for this scheme to work, it is fundamental that we are able to reproduce
the program behaviour that we want to examine in the debugger environment.
For regular sequential programs with no interaction with an external process,



4.2 Complex System Debugging Issues 21

this is not a problem. If such a program is started an arbitrary number of times
with identical inputs, all invocations of the program will exhibit identical be-
haviours and produce identical outputs. A program with this property is said to
be deterministic. If an execution E1 of a deterministic program P with input
X leads to a failure, all subsequent executions EN , where N ≥ 2, with input
X will produce the same failure. For example, consider the program in Fig-
ure 4.2. If the program is executed with an input value of 0, it will eventually
come across a division by zero. If the execution is repeated with the same in-
put, we will again end up at the division by zero. Naturally, there is no limit on
the number of times this failure will occur. Each time this program is executed
with the input 0, we will reach the division by zero. Intuitively, the cause of
such a failure is not very hard to find, especially with the help of a debugger.

int avg(int x)
{
int y, ret;
y = getTotal();
ret = y / x;

return ret;
}

Figure 4.2: A sequential deterministic program.

Thane [29] gives a more formal description of determinism and repro-
ducibility with respect to debugging. It is stated that a system is deterministic if
its behaviour is uniquely defined by an observed set of necessary and sufficient
conditions or parameters. Reproducibility, on the other hand, requires deter-
minism and the ability to control the conditions and parameters that uniquely
define the behaviour of the system.

Using these definitions of determinism and reproducibility, a system or pro-
gram needs to be not only deterministic, but also reproducible in order to be
investigated properly by cyclic debugging. Unfortunately, not many programs
are even deterministic. In fact, when looking at commercial software today,
very few systems exhibit a deterministic behaviour. Over the years, efforts to
improve efficiency, interactivity and hardware utilization has increased overall
software complexity and determinism has often drawn the shorter straw. This



22 Paper A

path of progress has led to a situation where a massive amount of valuable soft-
ware engineering time is spent searching for bugs in non-deterministic systems
without the proper help of cyclic debugging debuggers [21].

Starting with the next section, we will try to give a clear picture of the
problems involved in cyclic debugging of non-deterministic systems.

4.2.2 Context Issues
Any useful computer system interacts in some way with its environment. In
its most basic form, an example of such interaction could be that of a program
taking a command line input, sequentially calculating something based on that
input and finishing by returning a command line output. This example system
is depicted in Figure 4.3. If the command line input given to this program is the
only parameter that can affect the output of this program and we know of this
input (after all, we gave it on the command line in the first place), to us, this
is a deterministic system. In addition, since we gave the input, we can simply
give it again and receive the same behaviour and the same output. Thus, this
program is also reproducible.

Calculation
Input Output

Figure 4.3: A basic interaction with a known and controllable external context.

This might seem somewhat trivial, but as we continue our line of reasoning
and consider the system shown in Figure 4.4, we come across a slightly more
complex situation. Suppose that the system is part of a mechatronic control
system. It can be initialized and terminated by a user, but in between these
events it leads a life of its own within a loop. This loop structure is used
to periodically sample some external process, calculate a response to these
samples and to produce actuating values based on the result of the calculation.
As the observed system behaviour is uniquely defined by the inputs read at
sampling time, this is a deterministic system. However, without the help of
some kind of recording mechanism, it is nearly impossible to reproduce these
inputs. Therefore, the system in its basic form is not reproducible and not
suited for cyclic debugging.



4.2 Complex System Debugging Issues 23

In short: A system, whose behaviour depends on parameters provided by an
outside environment, is not reproducible if we cannot control this environment.
To make the system reproducable, our only option is to gain control of these
parameters or the environment providing them.

GetInput

S1 S2
TerminationInitialization

ProduceOutput

Figure 4.4: An interaction with a known, but uncontrollable external context.

Environment Simulators

Instead of a recording mechanism that logs system inputs as they are sampled,
an environment simulator could be considered for input reproduction during
debugging. However, since reproducibility of a deterministic system calls for
a total control of the parameters that define its behaviour, environment simu-
lators are seldom used for reproducing exact behaviour of systems for debug-
ging. Although some of these simulators are capable of emulating an environ-
ment fairly exact in normal situations, they often fail to reproduce those odd
situations that often precede a system failure [28]. In addition, in the discrete
and inherently chaotic context of software, the difference between being fairly
exact and downright exact may be very significant. Therefore, environment
simulators will not be further discussed in this report.

4.2.3 Ordering Issues and Concurrency
So far, we have only focused on sequential programs, i.e. programs running in
a single thread of execution on a single processor. Looking at current state-of-
the-practice commercial software, the number of applications that fulfill these
restrictions is easily accounted for. In order to meet requirements regarding
efficiency, interactivity and hardware utilization, most applications are pseu-
doparallel (several threads of executions on the same processor) or parallel
(several threads of executions on several different or identical processors). If
the interaction with an external context described in the above section seemed



24 Paper A

troublesome with regard to cyclic debugging, it is merely a minor problem
compared to the problems introduced by the concept of concurrency. Although
debugging truly parallel systems introduces additional complexity compared
to debugging of pseudoparallel systems, the main focus of this report will be
on the latter. Henceforth, we will use the term concurrent to describe a system
that is parallel or pseudoparallel.

To see why cyclic debugging of concurrent programs has the potential to
slowly drive a programmer into early retirement, we consider a very central
question in the process of software engineering, namely:

What caused my program to fail?

This question does indicate that at some point in time, prior to the failure,
something happened that eventually led to the failure. In Section 4.1, we re-
ferred to this event as the system infection. Now, suppose this is a sequential
program and it is investigated during a few iterations in a debugger. The prob-
lem has now been narrowed down and the initial question transformed into an
equally central question of software engineering:

How come the variable x is assigned the value zero?

Apparently, the information gained during the debugging session has helped
us to the conclusion that the system failed because of the fact that a variable
holds an erroneous value. This new question becomes the platform from which
we continue our debugging. After some further investigation, the question has
transformed again:

Why are no global variables properly initialized?

This iterative process of debugging and narrowing down the scope of in-
vestigation continues until the bug is found and corrected. However, the actual
cause of the failure is not what is important here. The point we are trying to
make is that there is an ordering of events that can be followed from the system
infection up until the system failure. Analogously, there is an ordering of events
that starts at system start-up and leads to the system infection. In concurrent
systems, however, a reproducible ordering of events is not guaranteed, if even
probable. As the system will behave differently under different orderings of
events, regular cyclic debugging of concurrent systems is problematic.

As an example of this, consider a preemptive priority-based multi-tasking
system S with two tasks, A and B. The tasks share a common variable y and



4.2 Complex System Debugging Issues 25

accesses to this variable may or may not be protected by mutual exclusion con-
structs. In an test run of S, task A starts to execute and at time t0, it initializes
y to 0. At t1, task A is preempted by task B, which has a higher priority. Task
increments y and again passes control over to task A, which finishes its exe-
cution according to the system specifications and all is well. This scenario is
shown in Figure 4.5.

P
 R

 I 
O

 R
 I 

T
 Y

T I M E

A

B

y=0

t0 t1 t2 t3 t4

y++

I

Figure 4.5: A correct ordering of events in system S.

We now consider the system S to be correct under the above circumstances.
The system is deployed, but shortly after deployment, failures start to occur.
Following massive investigations, it is discovered that an interrupt I occasion-
ally temporally interacts with task A and B such that the initialization of the
shared variable y is significantly postponed. This unforeseen mishap alters the
ordering of events in the execution, leading to a system failure. The erroneous
scenario is depicted in Figure 4.6. Since ordering factors are able to alter the
behaviour of S, the system is non-deterministic with respect to input alone. For
S to become reproducible, the ordering of events upon which the behaviour of
the system depends must be known and controllable.

System-Level Control Flow

The term control flow is used to denote the path that is taken by a thread of
execution through a piece of code. The control flow contains information about
branch selections, loop iterations and recursive calls visited.

Analogously, we use the term system-level control flow to describe the se-
quence of task interleavings, preemptions and interrupts in a multi-tasking sys-
tem. The system-level control flow could also include invocations of semaphore



26 Paper A

P
 R

 I 
O

 R
 I 

T
 Y

T I M E

A

B

y=0

t0 t1t2 t3 t4

y++

I

Figure 4.6: A faulty ordering of events in system S.

primitives or other synchronization mechanisms. If we were to look back on
Figure 4.5, that picture describes a system-level flow of control from task A to
task B and back again to task A. If the critical sections accessing y are pro-
tected by mutual exclusion contstructs, the entry and exit operations of these
critical sections are also included in the system-level control flow information.
In other words, we use the system-level control flow to describe which task or
interrupt service routine has control of the CPU at any given time, at exactly
which times and locations this control is transfered to another task and why
this transfer of control occurs.

The System-Level Control Flow information is important because it lets
us derive the ordering of events significant to the behaviour of each individ-
ual execution. Typically (as in the above example), inaccurately synchronized
and protected shared-memory accesses may result in system failures. Mani-
festations of such bugs are traditionally denoted Race Conditions. In a journal
article from 1992 [20], Netzer and Miller formalize and cathegorize these Race
Conditions. The authors differentiate between two different types of races:

• General Races

General races occur in improperly synchronized programs intended to
be completely deterministic. Such a program could for instance be a
parallelization of a sequential program, where the parallel program is
forced into the same semantics as the sequential program by means of
explicit synchronization. If this syncronization fails, the program will
exhibit general races.



4.2 Complex System Debugging Issues 27

• Data Races
Data races describe the situation where critical-section accesses, inten-
ded to be atomic, are non-atomic due to erroneous use- or lack of mutual
exclusion mechanisms in the program. In other words, a data race re-
quires a possibility for a process or a task to execute a critical section ac-
cess during the same time interval that another process or task accesses
that very critical section.

Netzer and Miller also classify race conditions in another dimension. Look-
ing at which races that actually can occur, it is possible to differentiate between
feasible- and apparent races, where the apparent races are races that seem pos-
sible, looking at the semantics of the explicit synchronization constructs of a
program, whereas the feasible races are the races that can actually occur dur-
ing execution of that program. Thus, the set of all feasible races of a program
constitute a subset of the set of all apparent races of that program.

4.2.4 Timing Issues
When discussing the concept of system-level control flow, there is an im-
portant distinction to be made. System-level control flow events can be ei-
ther synchronous or asynchronous. Synchronous events are manifestations
of the internal synchronization semantics of a system (e.g., message receipts,
semaphore releases or delay calls), whereas those events categorized as asyn-
chronous occur due to corresponding events in the external temporal- or func-
tional context (such as timer- or peripheral interrupts). As a consequence,
synchronous events always occur at pre-determined locations or states of a
program (a semaphore will always be released at a semaphore_release
operation). In contrast, asynchronous interrupts can occur anywhere outside
sections protected by interrupt_disable operations. This temporally
and logically unrestricted access of asynchronous events makes the location
of occurrence of these events inherently harder to pinpoint than that of syn-
chronous events. Methods for handling this problem have been proposed and
will be discussed in Section 4.3.3.

In 1978, Lamport presented a method for achieving a total ordering of
events in a distributed system execution [15]. This paper adressed the prob-
lem of lack of a mutual timebase in multiprocessor systems. As an example,
consider a two-processor system (processor A and B) with local per-processor
clocks. As it is practically impossible to achieve a perfect synchronization of
these clocks, they will differ with a precision of, say, 2δ. Given this, ordering



28 Paper A

an event e1 occurring at local time x in processor A and an event e2 occurring
at local time x+ δ in processor B will be very difficult. In Lamport’s proposal,
this problem is solved using a distributed algorithm based on per-node logical
clocks rather than physical clocks. In addition, Lamport’s solution allows for
events on different nodes to have indistinguishable logical timestamps. Such
events are said to be concurrent.

Even if we do not focus on distributed multiprocessor systems, Lamport’s
paper makes an important point: A correct reproduction of the temporal be-
havior of an execution implies a correct reproduction of the ordering of events
in the execution. However, a correct reproduction of the ordering of events
does not necessarily imply a correct reproduction of the temporal behavior. In
a more formal notation:

T iming ⇒ Ordering, whereas Ordering 6⇒ T iming

In many systems, a correct reproduction of the ordering of synchronous
events is sufficient for acheiving a correct reproduciton of the entire system be-
havior. However, in systems with real-time requirements, such as most safety-
critical systems, alterations in the temporal behavior of an execution that do
not explicitly alter the ordering of events might nevertheless affect the correct-
ness of the system. An example of a system with this type of behavior is a
multi-tasking real-time system with hard task deadlines.

In addition, relying solely on the synchronization ordering for reproducing
non-deterministic executions will only work if the system is properly synchro-
nized. If data races exist in an execution, these will go by undetected if we
focus exclusively on the correct reproduction of the synchronization sequence.
Solutions to this problem have been proposed (discussed later in Section 4.3.4),
but all proposals aim at achieving race detection and not race reproduction.

Another issue related to timing is the problem of maintaining the corre-
lation between the internal- and the external timebase while simultaneously
examining a system. As an example, consider the development of an ABS-
braking system for a car. During the testing phase of the system, a failure is
discovered and the system is run in a debugger. However, breaking the exe-
cution of the system by setting a breakpoint somewhere in the code will only
cause the program to halt. The vehicle, naturally, will not freeze in the middle
of the maneuver, hence the shared time base of the system and the external
context is lost. Problems of this nature, when the intrusive examination of a
system affects the system behavior itself, are denoted Probe Effects [10], and
will be discussed later in Section 4.4.1.



4.2 Complex System Debugging Issues 29

4.2.5 Embedded Systems
In addition to the theoretical issues discussed in the above sections, there is
a more practical issue related to debugging of systems that are embedded (as
is the case of many real-time systems). Due to the embedded nature of such
systems, the number of resources for interaction is very low, making the high
interactivity needed for the debugging process troublesome to achieve. This
should be considered in contrast to debugging in desktop system environments,
where the machine used for debugging logically and physically is the same
as the one running the program being debugged. To overcome this problem,
several methods and tools have been developed. Basically, these can be divided
into two categories:

• Simulator- or Emulator-Based Embedded Debugging
Simulator-based embedded debugging solves the problem of lacking pe-
ripheral resources by using highly interactive software target simulators
or hardware target emulators instead of actual target machines during de-
bugging sessions. Running software simulators can be either operating
system-level simulators (e.g., VxWorks [14]) or hardware-level simula-
tors (e.g., gdb [24] or IAR [9]). As shown in Figure 4.7, these simulators
run as an application program on the debugger host.

Debugger Target
Simulator

Host machine

Figure 4.7: Using simulator-based debugging, the target simulator runs on the
host.

Hardware- or In-Circuit Emulators (ICE:s), on the other hand, are ded-
icated physical machines with the task of emulating a target hardware
platform, while at the same time providing an extensive interface for
system investigation.

• Remote Embedded Debugging
The other paradigm for embedded system debugging is that of remote
debugging. In this type of solution, the actual target hardware is used for



30 Paper A

executing the investigated system during debugging sessions. All com-
munication with the host (such as setting of breakpoints, investigation
of data or single-stepping) is handled over standard communication in-
frastructure (such as ethernet) by a dedicated on-target debugging task,
or by means of specialized on-target debugging ports. As depicted in
Figure 4.8, the JTAG [25] and BDM [11] standards are examples of the
latter.

Debugger

Host machine Target machine

Target
System

Debug Port

Figure 4.8: Remote debugging uses the actual target hardware for debugging.

However, in many state-of-the-practice systems, the choice of debugging
target paradigm has been made transparent to the user performing the debug-
ging, and from a host environment point-of-view, systems can be debugged
similarily regardless of the logical- and physical location of the target system.

4.2.6 Complex Debugging Summary and Problem Statement
To summarize this section, there are a few issues that have to be resolved when
trying to apply cyclic debugging to multi-tasking real-time programs. At the
start of this section, we started with a sequential, non-real-time program with
a behavior depending solely on its command-line inputs. An (easily repro-
ducible) execution of such a system is shown in Figure 4.9.

As systems are incorporated in different temporal- and environmental con-
texts, the assumption of a completely deterministic- and reproducible system
behavior will begin to crack. Interactions with external contexts and multi-
tasking will lower the probability of traditional execution reproducibility to a
negligible level. As depicted in Figure 4.10, events occurring in the temporal
external context will actively or passively have an impact on the internal state
of the system execution. In this section, we discussed issues related to context,
ordering, timing and the embedded nature of embedded systems. Now, let us
see if we can derive a less abstract problem formulation from these sections.



4.2 Complex System Debugging Issues 31

TIME

P
R

IO
R

IT
Y

Figure 4.9: Execution of a deterministic sequential program.

TIME

P
R

IO
R

IT
Y

Temporal context

External context

Figure 4.10: Execution of a multi-tasking real-time system, dependent on the
temporal- and the external context whithin which it is executing.

In order to formulate our problem correctly, it is imperitive that we are clear
on the issue of what our goal is.

We aim at achieving the same level of reproducibility in multi-
tasking real-time systems as the one we have in non-real-time se-
quential software.

Considering this, there are a number of clarifying steps we can take. First,
even though they served a logical- and (hopefully) pedagogical purpose, all
issues related to ordering can be ignored. This might seem odd, but consider
the conclusion in Section 4.2.4. Since timing implies ordering and we need
to be able to reproduce timing in order to meet our requirements, the repro-
duction of system timing will have correct reproduction of event ordering as a
consequence.

Second, from the point of view of the temporal and external contexts, the
interaction with the system manifests itself in two different ways: The con-



32 Paper A

text (or rather a peripheral device) can actively interact with the system by
means of an asynchronous interrupt. This interrupt most often has its origin in
a corresponding event in the context itself (e.g., a reset of a clock register or
a completion of an I/O transaction). The other means of interaction is when
the context is passively being read by the system (e.g., synchronous reads of
sensor values or clock registers).

Third, as the issues related to embedded systems are more of an interactive
nature and do not directly relate to reproducibility, these are not considered
at this stage. Hence, there are three and only three things that are required
for deterministic reproduction of executions for debugging on a single-node
concurrent system:

• Starting State

We need to be able to provide the exact initial state of the execution we
seek to reproduce.

• Input

Any input, initial or intermediate, to the execution must be reproduced,
such that it exactly simulates the temporal, external or random context
of the execution we desire to reproduce.

• Asynchronous Events

All asynchronous events that occurred within the execution must be re-
produced in such a way that their temporal and causal interference with
the execution is not altered.

The first item of this list of requirements is no different to that of repro-
duction of non-real-time sequential software (i.e. command-line input), albeit
slightly more difficult to implement in real-time multi-tasking software. This
requirement is analogous to that of being able to pinpoint the current location
on a map in order to use the map correctly. If you do not know where you are,
there is no use reading the map in order to get where you want to be.

The second and the third requirement simply reflect the influence of tem-
poral and external means of passive (input) or active (asynchronous events)
interaction. However, note that these requirements are based on theoretical as-
sumptions. As we shall see in the next section, due to practical reasons, some
of these requirements have been ignored, underelaborated or overelaborated in
previous work.



4.3 Debugging by Execution Replay 33

4.3 Debugging by Execution Replay

As the reproducibility problem is not unique to the scope of real-time systems,
some work has been performed in the area of deterministic reproduction of
parallel and concurrent system executions. This work has mainly focused on
solutions based on execution replay. Generally speaking, execution replay is
a set of methods for recording information of a particular system execution
during run-time (this recorded execution will henceforth be referred to as the
reference execution [12]) and to use this recorded information off-line to re-
produce the behavior of the reference execution in a replay execution. Which
on-line information to record and how to record it is a subject of debate and
each method has its own proposal. What is common for all execution replay
methods is the possibility of cyclic debugging of otherwise non-deterministic
and non-reproducible systems during the replay execution.

4.3.1 Replay Debugging of Concurrent Systems

Debugging by means of execution replay was first proposed in 1987 by LeBlanc
and Mellor-Crummey [16]. Their method is denoted Instant Replay and fo-
cuses on logging the sequence of accesses to shared objects in parallel execu-
tions. As all interactions between concurrent tasks can be modeled as opera-
tions on shared objects, this log sequence can be used to reproduce the concur-
rent program behavior with respect to the correct ordering of interactive events
between tasks. This method requires a shared object access protocol that en-
sures that only read operations on the shared objects can be truly concurrent.
Write operations have to be serialized such that for any two writes W1 and W2:

W1 → W2 ∨ W2 → W1

where the symbol → denotes the happens-before relation, as defined by
Lamport [15].

Some subsequent proposals have been extensions to the work of LeBlanc
and Mellor-Crummey. For instance, Audenaert and Levrouw have proposed a
method for minimizing recordings [2] of shared object accesses and Chassin
de Kergommeaux and Fagot included support for threads [6] in a procedural
programming extension of the Instant Replay method.

In addition, some methods have been proposed that use constructs in the
run-time environment of specific languages, such as Ada and Java, for execu-
tion recording and debuggable replay. The Ada replay method, proposed by Tai



34 Paper A

et al. in 1991 [26], records the synchronization (SYN-sequence) S of a concur-
rent Ada programs P (X) and uses this sequence to transform P to a concur-
rent Ada program P ′(X, S), which produces the same output. The Java replay
was proposed by Choi et al. in 2001 [7]. This method, denoted DejaVu, uses
the internal constructs of the Jalapeño virtual machine [1] in order to instru-
ment, log and reproduce the thread interleaving sequence of cross-optimized
multi-threaded Java programs. DejaVu also claims to be able to reproduce the
occurrence of asynchronous events. However, these events may only occur at
pre-determined yield-points in the program, making their asynchronous nature
a subject of debate.

It should be noted that none of the above actually consider the impact of
real-time events, such as interrupts, on the behavior of the system. When fo-
cusing solely on a correct reproduction of the synchronization sequence of an
execution, we might be able to detect bugs related to faulty synchronization
(general races), but we will not be able to guarantee correct reproduction of
unsynchronized accesses to shared data (data races). In addition, we cannot
reproduce the occurrence of asynchronous events such as hardware interrupts.
These problems have been adressed and some proposals will be discussed in
Sections 4.3.3 and 4.3.4.

As for intermediate input and starting conditions, all of the above proposals
assume that all necessary input and parametrization is given at the time of sys-
tem startup. Hence, the starting condition of the replay executions is given by
means of command-line input or similarily. Unfortunately, this makes replay
of programs with a periodic interaction with an external context impossible. In
addition, this might imply problems when debugging long-running programs,
as discussed in Section 4.6.

Considering the list of requirements presented in Section 4.2.6, the above
proposals lack support for asynchronous event- and intermediate input repro-
duction. This might seem a little odd, but considering the scope of these pro-
posals, these replay methods are well-suited for the area of concurrent pro-
grams running in desktop environments. In such systems, context switches,
asynchronous events and peripheral routines operate on an abstraction level far
below the one of user applications. In addition, the concurrent program which
we wish to reproduce might be one of a plentitude of programs running at the
same time on the same machine. All these concurrent programs share resources
and interact with each other in a temporal- and possibly also functional man-
ner. Concentrating on an exact reproduction of the synchronization sequence
in such an environment can be a sound design choice. However, it will leave
us with a less exact reproduction of the recorded reference executions.



4.3 Debugging by Execution Replay 35

In contrast, when dealing with a small, embedded real-time system, the
level of execution control is often higher. Dynamic spawning of tasks and
allocation of memory are rarities. In addition, since most real-time systems are
dedicated and designed for a single purpose, it is often desirable to perform a
system-level debugging rather than a program-level debugging.

4.3.2 Real-Time Systems Replay Debugging
In the area of execution replay for real-time systems debugging, results have
been very scarce and all contributions known to us apart from our work, are
at least ten years old. In 1989, Banda and Volz [4] proposed a method for
reproducing the execution behavior of real-time systems using a non-intrusive
hardware-based recording and replay mechanism. In addition to the dedicated
monitoring hardware required, this method also called for specialized com-
piler support. Similarily, Tsai et al. proposed a non-intrusive hardware-based
monitoring- and replay mechanism [33], craving a highly specialized hard-
ware platform. Tsai’s method has been criticised for an overelaborate logging
scheme.

In contrast, Dodd and Ravishankar [8] proposed a software-based replay
method for the distributed multiprocessor-node real-time system HARTS [23].
The logging is software-based in that it is performed by intrusive software
probes. However, in order for the method to work, a dedicated processor needs
to handle the monitor processing on each node.

4.3.3 Asynchronous Events Reproduction
Since very few general replay methods support reproduction of asynchronous
events, a number of specialized tools and methods for this purpose have been
proposed. When trying to replay executions containing elements of asyn-
cronous nature, it is not only the reproduction of such elements that is difficult,
but also the task of determining their exact location of occurrence.

For example, consider the execution in Figure 4.11. Two tasks, A and B

share a mutual resource and this resource is accessed within critical sections,
protected by semaphores in the code of each task (marked black in the figure).
In our example, a system clock interrupt at time t0 invokes the task scheduler
and causes task A to be preempted by task B. The latter enters its critical
section at t1 and manipulates the mutual resource. The semaphore is released
and at time t2, task B lets task A resume its execution. At t3, task A enters its
critical section and accesses the mutual resource, already manipulated by B.



36 Paper A

P
 R

 I 
O

 R
 I 

T 
Y

T I M E

A

B

t0 t1 t2 t3

Figure 4.11: Faulty execution due to erroneous event ordering.

Now, assume that this ordering of events leads to a violation of the system
specifications, i.e. a failure. We start up the debugger and try to reproduce the
error in an environment more suited for thorough system investigation. How-
ever, our inability to reproduce the clock interrupt at the exact same program
state as in the first execution leads to a different outcome in the race for the
mutual resource. As we can see in Figure 4.12, task A is now able to acquire
the semaphore before task B is scheduled for execution. Depending on the
protocol used for semaphores in the system, this might give rise to several dif-
ferent scenarios. However, we assume semaphores of a basic mutual exclusion
implementation.

P
 R

 I 
O

 R
 I 

T
 Y

T I M E

A

B

t0 t1 t2 t3 t4

Figure 4.12: Correct execution and event ordering.



4.3 Debugging by Execution Replay 37

At time t1, the clock interrupt hits the system and task B is scheduled for
execution. Since task B has a higher priority than task A, the latter is pre-
empted and B is executed up until time t2, when it tries to grab the semaphore
and enter its critical section. This time, the semaphore is already taken and
task A is resumed. At t3, A releases the semaphore and B is allowed to enter
its critical section, manipulate the resource and leave the critical section before
task A is allowed to finish at time t4. As a consequence, the outcome of this
ordering of events does not violate the system specification.

Pinpointing the Location of Occurrence of Asynchronous Events

In the above example, the source of the inability to reach the identical sequence
of system infection and error propagation is the inability to reproduce the in-
terrupts of the reference execution in a deterministic fashion. In other words,
the asynchronous events of the execution cannot be reproduced in such detail
that the erroneous states that they caused are revisited in the replay execution.

The problem of monitoring asynchronous events is the difficulty of pin-
pointing their exact location of occurrence. As we saw in the above example,
a correct reproduction of the occurrence of asynchronous events is often an
absolute necessity for correct reproduction of the overall reference execution.

As another example of this problem, consider the code in Figure 4.13.
When executed, an interrupt occurs at program counter value 0x8fac, lead-
ing to a task switch. Since this interrupt is an asynchronous event, it needs to
be recorded. We can easily store the time of the event (although this time is
too inexact to serve as an indicator of the location of occurrence of the event
since the number of instructions executed during a fixed time interval may vary
[30]), and the program counter value at which it occurred. It might seem fea-
sible to reproduce the preemption at program counter value 0x8fac during the
replay execution and thus solving the problem of pinpointing the location of
the event. However, since the interrupt occurred within a loop, this program
counter value might be revisited a number of times. There is no way of telling
during which iteration of the loop the interrupt occurred.

To solve this problem, the program counter location marker needs to be ex-
tended with a unique marker, helping to differentiate between loop iterations,
subroutine calls and recursive calls. The content of this marker should be cho-
sen such that it uniquely defines the state of the program at the occurrence of
the event.



38 Paper A

subroutine_A(){

int i, a = 0;

rdSensor(s1, &a);

for(i=0;i<10;i++){

smtUseful1(a,i);

smtUseful2(a,i);

}

}    

PC = 0x8fac

Figure 4.13: Interrupt occurs while in a loop.

Unique Marker Techniques

Previous work aimed at pinpointing the location of occurrence of asynchronous
events has focused on using different types of instruction counters (IC) as
unique markers. Basically, an instruction counter in its original form is a
counter, incremented at the execution of each instruction. Since such a counter
is infeasible to implement in software (it would require an additional incre-
menting instruction to be executed after each instruction of the application ma-
chine code), traditional instruction counters are a hardware-based feature of
some processor platforms [5][13]. To use the value of the instruction counter
as a unique marker, it is sampled at the occurrence of the asynchronous event.
Since the instruction counter differentiate between executions of single instruc-
tions, it can be used to differentiate between arbitrary program states.

Practical as they may seem, hardware-based instruction counter markers
are not without drawbacks. Firstly, very few (if any) operating systems, real-
time or regular, support the sampling of the counter value at the occurrence of
asynchronous events, making the method difficult to apply to any platforms us-
ing operating systems. Secondly, while some desktop-level processors, such as
the Intel Pentium and the PowerPC, feature instruction counter support, most
embedded processors do not. Without this hardware support, embedded pro-
cessors need another means of pinpointing asynchronous events. Therefore, in



4.3 Debugging by Execution Replay 39

SIC++

IC++

IC++

IC++

IC++

IC++

IC++

IC++

IC++PC=X

IC=0, SIC=0

Figure 4.14: Incrementations of hardware- and software-based instruction
counters.

1989, Mellor-Crummey and LeBlanc proposed the usage of a software-based
instruction counter (SIC) [17]. To avoid the problem of massive software in-
strumentation mentioned above, the SIC is more selective upon which instruc-
tions to increment. As a traditional instruction counter increments at every
instruction counter executed, the SIC only increments at branches and subrou-
tine calls. Since these instructions are the only ones that can cause program
counter values to be revisited, the SIC together with the PC value and the orig-
inal hardware-based instruction counters serve equally well as unique markers
for asynchronous events. For example, consider the program structure in Fig-
ure 4.14. Suppose each square represents an instruction and the vertical arrows
represent the sequential order of execution. In addition, suppose the square
with two outgoing arrows represents a conditional branch instruction and the
black square represents the location of occurence of an asynchronous event.
As a traditional instruction counter would increment at every instruction, the
event might have occurred at an IC value of 4, 9, 14, 19 and so on. In contrast,
the SIC only increments at the backward branch and a SIC value of 0 together
with a PC value of X pinpoints the exact same location as an IC value of 4.
Analogously, a SIC value of 1 and a PC value of X is equivalent to an IC value
of 9.



40 Paper A

Using software instruction counters, there is no need for specialized hard-
ware when pinpointing the location of occurrence of asynchronous events.
Hence, the method is more platform-independent than the traditional instruc-
tion counter. However, the SIC consumes approximately 10% of the overall
CPU utilization. In addition, it requires support from the compiler in the form
of a dedicated SIC processor register and from the operating system for sam-
pling at the occurrence of events. It also requires a tool for machine code
instrumentation that is target specific.

The instruction counter and software instruction counter techniques were
proposed as independent techniques, unbiased to any previously proposed re-
play method. However, in 1994, Audenaert and Levrouw proposed the use of
an approximate software instruction counter [3]. The proposal was part of an
extension of Instant Replay, denoted Interrupt Replay, which added support
for interrupts to the Instant Replay method. In Interrupt Replay, the run-time
logging of system interrupts is done by recording interrupt ID and an approxi-
mate SIC value. This version of SIC is incremented at entry- and exit points of
interrupt service routines and can therefore not be used to pinpoint exact loca-
tions (program states) of occurrence of interrupts. As a consequence, Interrupt
Replay is able to replay orderings of event sequences, but not with the correct
timing. In addition, the technique is dependent on the absence of interrupt races
in the system, meaning that interrupts to be replayed can not access data used
by other running threads or processes, as this invalidates correct reproduciton
of the execution.

4.3.4 On-The-Fly Race Detection
In Section 4.3.1, we stated that most previous work in the area of concurrent
systems replay debugging require programs with an explicit synchronization of
all shared memory accesses. Since this is a highly limiting restriction, methods
have been proposed to handle unsynchronized accesses to shared memory (data
races) during program execution. These methods are known as On-The-Fly
Race Detection methods and their basic idea is to search a concurrent program
for data races as it is running. As race detection is not the main focus of this
paper, we will not go into detail of how this works. However, it is of importance
that we differ between two types of race detection:

• Detection of Apparent Data Races
Detection of apparent data races is not exact in that it will detect and
report all data races, even though they are not feasible.



4.4 Instrumentation for Replay 41

• Detection of Feasible Data Races
Detection of only feasible data races is exact, since it only detects and
reports races that can actually occur. It is, however, a far more complex
and time-consuming task than the apparent race detection.

As a consequence, when using apparent race detection methods, an execu-
tion could be reported to include hundreds of data races even though none of
these could actually occur. In the worst case, this could lead to large amounts
of time spent correcting bugs that do not really exist. Unfortunately, the more
correct feasible race detection methods can not be used during traditional run-
time, since the complexity of the race detection algorithm is too high. However,
combining on-the-fly feasible race detection with a replay method, able to re-
produce the correct synchronization ordering of a concurrent program, we can
work around the complexity issue. As the correct ordering of synchronization
events already is recorded, the on-the-fly race detection algorithm can safely
be run during the replay execution. As a data race is detected, the replay is
stopped and subsequent determinism in the execution can not be guaranteed.
Some even argue that replay combined with automatic on-the-fly race detec-
tion is preferable when compared to a “passive” deterministic replay, which
correctly reproduces data races instead of detecting and reporting them. It
should be noted, however, that a replay/on-the-fly race detection method does
not provide the real-time properties needed for correct reproduction of events
of asynchronous nature.

An example of a race detection method was proposed by Ronsse and De
Bosschere [22] in 1999. Their method, RecPlay, is implemented in the form
of a hybrid replay/on-the-fly race detection tool. During run-time, RecPlay
collects the synchronization sequence of a concurrent Solaris program. Then,
during replay it uses an on-the-fly data race detection method to find data races
in the replay execution. If a race is found, the execution stops and the remainder
of the replay is invalidated.

4.4 Instrumentation for Replay
All replay methods require some form of recording of important system events
during the reference execution in order to be able to reproduce the system be-
havior during the replay execution. This system monitoring and recording can
be performed by means of software-, hardware- or hybrid mechanisms [32].
What type of information that should be recorded is individual for each re-
play method. However, most methods require information of synchronization



42 Paper A

races and input data, which calls for an instrumentation of the synchronization
layer (e.g., message passing- and semaphore primitives) and the I/O layer of
the system.

Intuitively, software-based instrumentation performed by software-based
probes incorporated in the system will consume a certain amount of the over-
all CPU time. Software-based instrumentation is therefore sometimes denoted
intrusive instrumentation, whereas hardware-based instrumentation is denoted
non-intrusive instrumentation. Apart from the performance drawbacks, there
are a few issues related to intrusive software- and hybrid instrumentation. These
issues are discussed in the following sections.

4.4.1 The Probe Effect

As software-based probes are intrusive with respect to the resources of the
system being instrumented, the very act of observing may alter the behavior
of the observed system. Such effects on system behavior are denoted probe
effects and their presence in concurrent software were first described by Gait
[10].

P
 R

 I 
O

 R
 I 

T 
Y

T I M E

A

B

Figure 4.15: An execution leading to a system failure.

The cause of probe effects are best described by an example. Consider the
two-task system in Figure 4.15. The two tasks (A and B) share a resource, X ,
accessed within critical sections. In our figure, accesses to these sections are
displayed as white sections within the execution of each task. Now, assume
that the intended order of the accesses to X is first access by B, then access by
A. As we can see from Figure 4.15, the intended ordering is not met and the
this leads to a system failure.



4.4 Instrumentation for Replay 43

Since the programmer is confused over the faulty system behavior, a probe
(e.g., a printf-statement), represented by the black section in Figure 4.16, is
inserted in the program before it is restarted. This time, however, the execution
time of the probe will prolong the execution of task A such that it is preempted
by task B before it enters the critical section accessing X and the failure is
not repeated. Thus, simply by probing the system, the programmer has altered
the outcome of the execution (s)he wishes to observe such that the observed
behavior is no longer valid with respect to the erroneous reference execution.
Conversely, the addition of a probe may lead to a system failure that would
otherwise not occur.

P
 R

 I 
O

 R
 I 

T 
Y

T I M E

A

B

Figure 4.16: The same execution, now with an inserted software probe, “inval-
idating” the failure.

In concurrent systems, the effects of setting breakpoints, that may stop one
thread of execution from executing while allowing all others to continue their
execution, thereby invalidating system event orderings, are also probe effects.
The same goes for replay instrumentation. If the system probing code is al-
tered or removed in between the reference- and the replay execution, this may
manifest in the form of probe effects.

4.4.2 Instrumentation Jitter

Apart from the probe effect, when using software- or hybrid-based instrumen-
tation in real-time systems, there is a less intuitive, but slightly related, prob-
lem to be considered. Real-time systems, especially hard real-time systems,
are often temporally well-designed with well-defined behaviors. The execu-
tion behavior analysis needed to achieve these properties is made easier by



44 Paper A

minimizing jitter in the system. Jitter is the term we use to denote execution
time variations for different parts of the system. For example, depending on
the number of active tasks, the state of each task, synchronization- and mes-
sage mechanisms, the time spent in the kernel task scheduling routine might
differ. These temporal variations are part of the kernel jitter.

As the jitter in the system grows, the number of possible execution paths
grows exponentially [31], making the system harder to analyze and test. Being
software-based, intrusive probes may also exhibit variations in execution time
due to different branch selections. This could lead to the somewhat strange
situation where mechanisms inserted with the intention to increase the ability to
debug the system have the side-effect of reducing the testability of the system.
In addition, even though software probes may not be part of the actual system,
they might interact with the system in a temporal manner. Therefore, replay
methods must make sure that jitter in the instrumentation during the replay
execution does not compromise the deterministic reproduction of the reference
execution.

4.5 Deterministic Replay

In Section 4.3, we stated that very little work was done in the area of real-
time systems replay debugging. However, in 2000, just after a decade of dead
calm in this field of research, Thane and Hansson proposed a software-based
approach to distributed real-time systems replay debugging, denoted Determin-
istic Replay [30]. In many respects, the Deterministic Replay method is similar
to previously proposed methods for concurrent system replay debugging, such
as Instant Replay, but in some significant respects, it differs. First, Determinstic
Replay, as proposed by Thane and Hansson, is an integrated solution, craving
instrumentation support from a specialized real-time kernel. This support en-
ables both synchronous- and asynchronous events affecting system behavior to
be monitored. Interrupts, synchronization primitive calls and task interleavings
are logged during a reference execution and reproduced during a replay execu-
tion. The possibility of deterministically reproducing asynchronous events not
only guarantees the correct ordering of events, but also correct timing. Second,
as the method allows for input-, global- and static data to be recorded during
the reference execution, this method allows for interaction with external con-
text to be replayed. Third, as the replay technology of Deterministic Replay
does not use any specialized hardware, development environment or language
support, standard debuggers can be used to perform the replay execution.



4.6 Replaying Long-Running Applications 45

4.5.1 Reproducing System-Level Control Flow
To be able to reproduce the system-level control flow, the Deterministic Re-
play method makes use of a small software probe in the kernel task switch-
or interrupt routine. This probe extracts information for each task switch as
it occurs, such as task id, type of control flow event, a timestamp and a pro-
gram counter value together with a unique marker if the task is preempted by
an asynchronous event.

In short, the information gathered by these probes is uploaded to a de-
velopment host in the case of a system failure and analysed by a host-based
application. The replay tool then sets breakpoints at all locations in the code
where task interleavings occurred during the reference execution and restarts
the systems in order to initiate the replay execution. As breakpoints are hit,
the unique marker value is analysed to determine if the correct location of the
next interleaving has been reached. If so, an interrupt or a task preemption is
simulated by slight modifications of internal kernel structures. Then, the replay
execution is resumed.

4.5.2 Reproducing External- and Internal Data Flow
In addition to the kernel-level control flow instrumentation, the system is in-
strumented by application-level software probe macros, insterted at carefully
selected locations in the application source code. The task of these probes is
to reproduce the interaction with the external context, such as readings of sen-
sors, and the internal static task data, such as structures maintaining state over
different iterations of control loops.

During the reference execution, these macros are used to monitor and log
the data, whereas during the replay execution, the macros make sure that the
correct data is fed to the system at the correct time.

4.6 Replaying Long-Running Applications
When we listed our requirements on a real-time replay method way back in
Section 4.2.6, one of the three basic imperatives was the ability to reproduce the
correct starting state of the execution to be executed. We have also stated earlier
that this is no problem when dealing with simple sequential, command-line
programs. If the same command-line input is given to such a program twice,
both executions will behave identically and produce the same output. In other
words, both executions will start at the same state and follow identical paths



46 Paper A

through the program. In fact, this not only goes for sequential programs, since
all programs, concurrent or not, have an initialization phase that is deterministic
up until a certain point.

4.6.1 Starting a replay execution
The real problem occurs when trying to replay long-running applications. Many
of today’s embedded systems have up-times spanning weeks, months or even
years. If we encounter a system failure after such an execution, replaying the
execution would be infeasible for several reasons. For instance, consider the
long-running application in Figure 4.17. At time tfail, a failure occurs. When
trying to debug this system by execution replay, due to limited memory for sys-
tem recording or unbearably long debugging sessions, it might be impossible
to reconstruct the entire execution from time t0. Suppose that a reproductive
replay execution is only feasible from time t1 up until tfail. We are then left
with the problem of starting the replay execution by first creating the global, as
well as task-local, system state of t1 in the reference execution.

P
 R

 I
 O

 R
 I
 T

 Y

T I M E

A

t
fail

B

t
0

t
1

C

Figure 4.17: A long-running reference execution.

Unfortunately, contributions related to replay of long-running executions
have been nearly nonexistent. Netzer [18] discusses the problem and uses the
term incremental replay for denoting replay executions started at another point
than system start-up. However, Netzer’s proposal only focuses on reproduction
of message communication in a concurrent message-passing system.

4.6.2 Checkpointing
Even though our scope of systems of interest lack methods for constructing
starting states different than the one of system start-up, it does not mean that it



4.7 Related Research Projects 47

cannot be done. When leaving the rather strictly restricted area of real-time- or
concurrent system replay, methods closely related to what we wish to accom-
plish start to emerge. Especially in systems handling large amounts of data,
such as large simulations, checkpointing is a well-known method for check-
pointing the state of the system at a specific point in time [19]. What we will
end up with is a snapshot of the system data area from the very instant of the
checkpoint.

Checkpoints can be taken periodically as a security measure, allowing for
executions to be resumed from a previous checkpoint in case of a system fail-
ure. Note that checkpointing is not a replay technique, but a method for repro-
ducing individual system states.

4.7 Related Research Projects

Currently, a few groups are dedicated to research within the area of replay de-
bugging. At Universiteit Gent in Belgium, a research group led by Professor
Koen DeBosschere focuses on tools and methods related to debugging of par-
allel programs [22]. Results and publications have covered instrumentation,
replay techniques and replay run-time automatic detection of data races. The
main interest of this group has been replay debugging of parallel programs,
e.g. multithreaded Java applications, rather than debugging of real-time- or
embedded systems.

Another project focused on replay debugging of multithreaded Java is the
DejaVu-project [1][7], run by IBM (J.-D. Choi, B Alpern, A. Loginov and
H.-G. Yook) at the T. J. Watson Research Centre in New York. DejaVu is a
replay method that replays the entire execution of the Jalapeno virtual machine,
making it possible to analyse and debug the run-time execution behaviour of
multithreaded Java applications.

A more hardware-oriented research towards replay debugging is conducted
at the University of Scranton by Dr. Yaodong Bi. This project suggests using
specialised hardware in order to instrument and replay the execution of em-
bedded real-time systems [33]. A small, non-intrusive monitoring processor
instruments the run-time behaviour of a real-time processor. As the real-time
processor reaches a failure, the monitoring processor can be used to replay the
execution of the real-time system. In addition to this, a visualization method
has been integrated with the monitoring and the replay tool in order to increase
the possibilities of execution behaviour analysis.



48 Paper A

4.8 Conclusions
In this paper, we have described the state of the art in embedded real-time
systems replay debugging. We have identified the main problem with real-
time system cyclic debugging (as well as debugging of other non-deterministic
systems) as that of execution behavior reproducibility. Correct reproduction
of erroneous execution behavior is a fundamental prerequisite for cyclic de-
bugging methods. As most embedded real-time systems are inherently non-
deterministic, correct execution behavior reproduction can not be guaranteed
during debugging.

Replay debugging is a general term for a set of methods, designed to record
the execution behavior of non-deterministic systems and to use these record-
ings in order to reproduce the execution behavior during debugging sessions.
We have discussed many of these methods, including those aimed at non-real-
time and real-time system debugging. Furthermore, we described the Deter-
ministic Replay method in greater detail, since this method will serve as a
foundation for the remainder of this thesis.



Bibliography

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russel, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalapeño Virtual Machine. IBM Systems Journal, 39(1), 2000.

[2] K. Audenaert and L. Levrouw. Reducing the space requirements of in-
stant replay. In Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, pages 205 – 207. ACM, May 1993.

[3] K. Audenaert and L. Levrouw. Interrupt Replay: A Debugging Method
for Parallel Programs with Interrupts. Journal of Microprocessors and
Microsystems, Elsevier, 18(10):601 – 612, December 1994.

[4] V.P. Banda and R.A. Volz. Architectural support for debugging and mon-
itoring real-time software. In Proceedings of Euromicro Workshop on
Real Time, pages 200 – 210. IEEE, June 1989.

[5] T.A. Cargill and B.N. Locanthi. Cheap Hardware Support for Software
Debugging and Profiling. In Proceedings of the 2nd International Con-
ference on Architechtural Support for Programming Languages and Op-
erating Systems, pages 82 – 83, October 1987.

[6] J. Chassin de Kergommeaux and A. Fagot. Execution Replay of Parallel
Procedural Programs. Journal of Systems Architecture, 46(10):835 – 849,
2000.

[7] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides. A
Perturbation-Free Replay Platform for Cross-Optimized Multithreaded
Applications. In Proceedings of 15th Parallel and Distributed Processing
Symposium, page 10, April 2001.

49



50 BIBLIOGRAPHY

[8] P. Dodd and C. V. Ravishankar. Monitoring and Debugging Distributed
Real-Time Programs. Software – Practice and Experience, 22(10):863 –
877, October 1992.

[9] J. Engblom and A. Ermedahl. Pipeline Timing Analysis Using a Trace-
Driven Simulator. In Proceedings of the Sixth International Confer-
ence on Real-Time Computing Systems and Applications (RTCSA). IEEE,
1999.

[10] J. Gait. A Probe Effect in Concurrent Programs. Software – Practice and
Experience, 16(3):225 – 233, March 1986.

[11] S. Howard. A Background Debugging Mode Driver Package for Modular
Microcontroller. Semiconductor Application Note AN1230/D, Motorola
Inc., 1996.

[12] J. Huselius. A Constant Queue Eviction Scheduler. Technical Report 87,
Mälardalen University, Department of Computer Science and Engineer-
ing, December 2002.

[13] M. Johnson. Some Requirements for Architectural Support of Debug-
ging. In Proceedings of the Symposium on Arhcitectural Support for Pro-
gramming Languages and Operating Systems, pages 140 – 148. ACM,
March 1982.

[14] A. Kornecki, J. Zalewski, and D. Eyassu. Learning Real-Time Program-
ming Concepts through VxWorks Lab Experiments. In Proceedings of
13th SEE&T Conference, pages 294 – 301, March 2000.

[15] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558 – 565, July 1978.

[16] T.J. LeBlanc and J.M. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay. IEEE Transactions on Computers, 36(4):471 – 482,
April 1987.

[17] J. Mellor-Crummey and T. LeBlanc. A Software Instruction Counter.
In Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 78 –
86. ACM, April 1989.



BIBLIOGRAPHY 51

[18] R. H. Netzer and M. H. Weaver. Optimal Tracing and Incremental Re-
execution for Debugging Long-Running Programs. In Proceedings of
the Conference on Programming Language Design and Implementation,
pages 313 – 325. ACM SIGPLAN, June 1994.

[19] R. H. Netzer and J. Xu. Necessary and Sufficient Conditions for Con-
sistent Global Snapshots. IEEE Transactions on Parallel and Distributed
Systems, 6(2):165 – 169, February 1995.

[20] R. H. B. Netzer and Miller B. P. What Are Race Conditions? Some
Issues and Formalizations. ACM Letters on Programming Languages and
Systems, 1(1):74 – 88, March 1992.

[21] NIST Report. The economic impacts of inadequate infrastructure for soft-
ware testing., May 2002.

[22] M. Ronsse and K. De Bosschere. RecPlay: A Fully Integrated Practi-
cal Record/Replay System. ACM Transactions on Computer Systems,
17(2):133 – 152, May 1999.

[23] K. G. Shin. HARTS: A Distributed Real-Time Architecture. IEEE Com-
puter, 24:25 – 35, May 1991.

[24] R. M. Stallman and R. H. Pesch. Debugging with GDB; The GNU Source-
Level Debugger. Free Software Foundation, 545 Tech Square, Cam-
bridge, Ma. 02139, 4.17 edition, February 1999.

[25] IEEE Std. IEEE Standard Test Access Port and Boundary-Scan Architec-
ture. Technical Report 1532-2001, IEEE, 2001.

[26] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging Concurrent Ada Pro-
grams by Deterministic Execution. IEEE Transactions on Software En-
gineering, 17(1):45 – 63, January 1991.

[27] R. N. Taylor and L. J. Osterweil. Anomaly Detection in Concurrent Soft-
ware by Static Data Flow Analysis. IEEE Transactions on Software En-
gineering, pages 265 – 278, May 1980.

[28] M. Telles and Y. Hsieh. The Science of Debugging. The Corolis Group,
2001.

[29] H. Thane. Monitoring, Testing and Debugging of Distributed Real-Time
Systems. PhD thesis, Royal Institute of Technology, KTH, April 2000.



52 BIBLIOGRAPHY

[30] H. Thane and H. Hansson. Using Deterministic Replay for Debugging
of Distributed Real-Time Systems. In Proceedings of the 12th EUROMI-
CRO Conference on Real-Time Systems, pages 265 – 272. IEEE Com-
puter Society, June 2000.

[31] H. Thane and H. Hansson. Testing Distributed Real-Time Systems. Jour-
nal of Microprocessors and Microsystems, Elsevier, 24:463 – 478, Febru-
ary 2001.

[32] H. Thane and D. Sundmark. Debugging Using Time Machines: replay
your embedded system’s history. In Proceedings of the Real-Time &
Embedded Computing Conference, page Kap 22, November 2001.

[33] J.P.P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A Noninterference
Monitoring and Replay Mechanism for Real-Time Software Testing and
Debugging. IEEE Transactions on Software Engineering, 16(8):897 –
916, August 1990.



Chapter 5

Paper B: Replay Debugging
of Real-Time Systems Using
Time Machines

Henrik Thane, Daniel Sundmark, Joel Huselius and Anders Pettersson
In Proceedings of the Parallel and Distributed Systems: Testing and Debugging
(PADTAD) Workshop, Nice, France, April 2003.

53



Abstract

In this paper we present a new approach to deterministic replay using stan-
dard components. Our method facilitates cyclic debugging of real-time systems
with industry standard real-time operating systems using industry standard de-
buggers. The method is based on a number of new techniques: A new marker
for deterministic differentiation between loop iterations (as well as subroutine
calls) for deterministic reproduction of interrupts and task preemptions, an al-
gorithm for finding well-defined starting points of replay sessions, as well as a
technique for using conditional breakpoints in standard debuggers to replay the
target system. We also propose and discuss different methods for deterministic
monitoring, and provide benchmarking results from an industrial case study
demonstrating the feasibility of our method. Previously published solutions to
the problem of debugging real-time systems have been based on the concept
of deterministic replay: where significant system events like task-switches of
multitasking software and external inputs are recorded during run-time, and
later replayed (re-executed) off-line. Previous works have been based on either
non-standard hardware, specially designed compilers or modified real-time op-
erating systems. The reliance on non-standard components has limited the suc-
cess of the approach. Even though this idea has been around for 20 years, no
industrial application for debugging of real-time systems of the method has
been presented.



5.1 Introduction 55

5.1 Introduction

Testing is the process of revealing failures by exploring the runtime behavior of
the system for violations of the specifications. Debugging, on the other hand, is
concerned with revealing the errors that cause the failures. The execution of an
error infects the state of the system, and finally the infected state propagates to
output. The process of debugging is thus to follow the trace of the failure back
to the error. In order to reveal the error it is imperative that we can reproduce
the failure repeatedly, wherefore knowledge of an initial start condition as well
as a deterministic execution from the initial state to the failure is required. For
sequential software with no real-time requirements it is sufficient to apply the
same input and the same internal state in order to reproduce a failure. For real-
time software the situation gets more complicated due to timing and ordering
issues. There are several problems to be solved in moving from debugging
of sequential programs (as handled by standard commercial debuggers) to de-
bugging of multitasking real-time programs. We will briefly discuss the main
issues by making the transition in two steps.

5.1.1 Debugging Sequential Real-Time Programs

Moving from single-tasking non-real-time programs to single-tasking real-time
programs adds the concept of interaction with, and dependency of, an exter-
nal context. The system can be equipped with sensors sampling the external
context, and actuators interacting with the context. In addition, the system is
equipped with a real-time clock, giving the external and the internal process a
shared time base. If we try to debug such a program, we will encounter two
major problems: First, how do we reproduce the readings of sensors from in
the first run? These readings need to be reproduced in order not to violate the
requirement of having exactly the same inputs to the system. Second, how
do we keep the shared time base intact? During the debug phase, the devel-
oper needs to be able to set breakpoints and single-step through the execution.
However, breaking the execution will only break the progress of the internal
execution while the external process will continue. Consider, for instance, an
ABS-breaking system in a car. During the testing phase, a failure is discovered
and the system is run in a debugger. While the system is run in the debug-
ger, the testing crew tries to reproduce the erroneous state by maneuvering the
vehicle in the same way as in the first run. However, breaking the execution
of the system by setting a breakpoint somewhere in the code will only cause
the program to halt. The vehicle, naturally, will not freeze in the middle of



56 Paper B

the maneuver and the shared time base of the internal and external system is
lost. This makes it impossible to reproduce the failure deterministically while
simultaneously examine the state of the system.

5.1.2 Debugging Multi-Tasking Real-Time Programs
In moving from debugging sequential real-time programs to debugging mul-
titasking real-time programs executing on a single processor the problem of
concurrency surfaces. When the system consists of a set of tasks, the tasks
will interact with each other both in a temporal and the functional domain.
Scheduling-events and hardware interrupts change the flow of control between
tasks in the system. In addition, the sharing of resources between tasks leads
to race conditions usually arbitrated by synchronization mechanisms.

A

B

Figure 5.1: Task A executes and enters a critical section (grey area) prior to the
preemption by task B. This leads to a violation of the system specification

Furthermore, as can be seen in Figures 5.1 and 5.2, the insertion and re-
moval of probes can cause non-deterministic races. This is known as the probe
effect [4][8], were the actual act of observation changes the behavior of the
subject of study.

5.1.3 Debugging by the Use of Time Machines
We will in this paper present a debugging technique based on deterministic
replay [2][7][12][13], which we call the Time Machine. During runtime, infor-
mation is recorded with respect to interrupts, task-switches, timing, and data.
The system behavior can then be deterministically re-executed off-line using
the recorded history, and inspected to a level of detail, which vastly surpasses
what has been recorded since the system is deterministically re-executed such
that all calculated data is restored. We will show how entire run-time execu-
tions including: interrupts, task-switches and data can be reproduced off-line.



5.1 Introduction 57

A

B

Figure 5.2: A probe is added (black area) to investigate what went wrong. The
execution of the probe prolongs the execution of task A such that the critical
section (correctly) is first reached by task B. Thus, the error cannot be repro-
duced due to the probe effect.

We will show how the system can be debugged both forward and backwards
in time using standard debuggers like CPU instruction level simulators, JTAG
[11] debuggers, BDM [5] debuggers or In Circuit Emulators (ICE) debuggers,
with a timing precision corresponding to the exact machine code instructions
at which the events occurred.

5.1.4 Contribution

The contributions of this paper are: A method for debugging real-time systems,
which to our knowledge is

• The first method for deterministic replay of single tasking and multi-
tasking real-time systems using standard off-the-shelf debuggers and real-
time operating systems.

• The first to realize replay without instruction counters, using a novel ap-
proach, which is compiler and real-time operating system independent.

Benchmarking results from the monitoring process in a recent industrial
case study shows that our method is feasible to use in industry today.

Paper outline: Section 5.2 provides an overview of related work Section 5.3
presents the system model and section 5.4 the method for deterministic real-
time systems debugging. Benchmarking results are presented in Section 5.5.
Finally, in Sections 5.7 and 5.6 we conclude and give some hints on future
work.



58 Paper B

5.2 Related Work
With respect to related work in the field o replay debugging of concurrent pro-
grams and real-time systems most references are quite old and the advancement
in the field has been meager. Work previously published has either been rely-
ing on special hardware [15][2], or on special compilers generating dedicated
instrumented code [10][2], which has limited the applicability of their solu-
tions on standard hardware and standard real-time operating system software.
Other approaches does not rely on special compilers or hardware but lack in
the respect that they can only replay concurrent program execution events like
rendezvous, but not real-time specific events like preemptions, asynchronous
interrupts or mutual exclusion operations [12][1][16]. For a more elaborate
discussion on related work see [6]. An early version of our deterministic re-
play technique, which supported replay of interrupts, preemption of tasks and
distributed transactions, has been presented previously [13]. However, this
work assumed the existence of special off-line versions of real-time operating
systems (RTOS), which is not a plausible assumption for current commercial
real-time operating systems.

5.3 The System Model
The system software consists of a Real-Time Operating System (RTOS) and
a set of concurrent tasks and interrupt routines, communicating by message
passing or via shared memory. Tasks and interrupts may have functional and
temporal side effects due to preemption, blocking, message passing and shared
memory. We allow the execution strategy to range from interrupt driven single
program systems to multi-threaded systems with real-time kernels that support
preemptive on-line scheduling. We adopt the following non-terminating task
models for RTOSs:

• Task activation is initiated by other application tasks or the RTOS.

• One stack for each task.

• One entry and one exit from task execution. However, the execution is
contained within a while(forever) loop, or similar.

• Multiple references within task bodies to system calls which can poten-
tially block task execution.



5.4 The Mechanisms of the Time Machine 59

Of the different events that occur in the execution of the system, the occur-
rence of some are implied by the task bodies (e.g. system- and function calls)
we label these synchronous events. The occurrence of other, asynchronous
events (e.g. preemptions and interrupts), are not implied by the static code.
Thus, the recording of asynchronous events must be performed more thor-
oughly. A subset of the synchronous events may potentially block the exe-
cution of the task, and are therefore labeled as blocking system calls (e.g. the
receiving of a inter-task message). We further assume that we have access to
either instruction level simulator debuggers, JTAG debuggers [11], BDM de-
buggers [5] or In Circuit Emulator (ICE) debuggers [9]. We assume that the
debuggers have interfaces or scripting languages such that macros or programs
can be invoked conditionally at specified breakpoints, as well as access to target
memory. We assume for non-ICE based systems that the RTOSs have neces-
sary “hooks” such that task switches can be recorded during runtime (most
commercial RTOSs do).

5.4 The Mechanisms of the Time Machine

We will now in further detail discuss and describe our method for achieving
time travel and deterministic replay. The basic elements of the Time Machine
debugging method are:

1. The Recorder, which is an in-target mechanism that collects all the nec-
essary information regarding task-switches, interrupts, and data.

2. The Historian, which is the off-target system that that automatically
analyzes, and correlates events and data in the recording, and composes
these into a chronological timeline of breakpoints and predicates.

3. The Time Traveler, which interacts with the debugger and, given the
information provided by the historian, allows the recreation of the pro-
gram state (i.e. state variables, global variables, program counter, etc.)
for any given time in the scope of the memory of the historian.

This process is performed without ever changing the target executable code.
The same code (including RTOS) that is run in the target, during runtime, is
run during the replayed execution in the debugger.



60 Paper B

5.4.1 What to Record

Assuming that significant variables, like state variables, and peripheral inputs
like readings of sensor values or events like accesses to the local clock, are
identified and recorded for the application, it is possible to reproduce these off-
line. Decoupling of the external system (the real-world) and the progression of
the system is accomplished, a necessity when performing deterministic replay
of real-time systems. We label the process of recording application dependent
data as data-flow monitoring or -recording. Worth noting is that we need only
record external inputs and internal state variables since we later during replay
re-execute the system and consequently recalculate all intermediate variable
values and outputs.

for (i=0; i<10; i++) 
{ 
a = a + i; 

-------------------
b = q*2 + i; 

} 

PC=0x2340

Figure 5.3: The PC is not sufficient as a unique marker.

Multitasking

To replay and debug multitasking real-time systems we need to monitor, in ad-
dition to the data-flow, the system control-flow. Essentially, the control-flow
corresponds to a list of occurred task switches and interrupts, i.e., all transfers
of control from one task to another task, or from a task to an interrupt ser-
vice routine, and back. To identify these events, we record where and when
they occur by using timestamps and the program counter (PC). However, since
PC values can be revisited in loops (Figure 5.3), subroutines and in recursive
calls, additional mechanisms are required in order to define a unique marker
for occurred events.



5.4 The Mechanisms of the Time Machine 61

Checksum markers

In previous work, hardware and software instruction counters have been pro-
posed for this purpose [10]. However, when dealing with standard commercial
RTOSs we usually do not have the option to accurately save and restore the
instruction counter value for each task and interrupt when they are switched
in and out using the RTOS task context. Consequently a different approach is
needed. For asynchronous events, a pragmatic approach of our own design,
which is more generic with respect to operating systems and CPUs is to store
the values of stack pointer, register-bank checksums, and/or checksums of part
of the user-stack. Provided that loop-iteration counters are stored in registers,
the stack-checksum is superfluous. Otherwise, a checksum of a subset of the
user stack can be used, typically the part of the stack used by the currently
executing function. By generating checksums we can define a unique marker:
the 4-tuple

< t, PC, SP, CHKSUMS >

where SP is the stack pointer, which differentiates between function calls. The
marker is in a strict sense not unique but, as we have experienced in a great
number of applications, it is a sufficient and pragmatic approximation of a
unique marker. In order for the register checksums to operate properly, it is
required that tasks periodically reset their registers every iteration. Concerning
stack checksums, the compiler-generated code will always initialise the stack
space to zero. We have successfully applied this checksum approach on a num-
ber of different platforms:

1. Processors, among them the 8/16 bit CISC Hitatchi H8, the 32 bit RISC
NEC V850, and the 32bit CISC Intel Pentium.

2. Compilers, among them GNU GCC (Hitatchi H8, Intel x86), IAR Sys-
tems (Hitatchi H8, NEC V850).

3. Real-time operating systems, among them VxWorks, and Asterix [14].

System call markers

For synchronous events, like blocking system calls, a less elaborate approach is
needed. We make use of a per-task counter, incremented each time a potentially
blocking system call is invoked by that task. If the call actually blocks the task,
the value of the counter is recorded as a unique marker and the counter is reset.
This way we will keep track of at which system call invocation the task actually
blocked.



62 Paper B

5.4.2 How to Record

Recording can be performed in different ways, ranging from intrusive-free
hardware and usually immobile recorders, to intrusive but mobile software
recorders. In addition, there is also an option of leaving the recording mecha-
nisms in the deployed system, with the equivalent benefit of a black-box func-
tionality, similar to what is employed in airplanes. We describe three stereo-
types of recording approaches, where the appropriateness depends on the re-
sources available, the architecture of the target system, and whether or not
black-box functionality is required.

Type 1. Non-Intrusive Hardware Recorders, use in-circuit emulators (ICE)
with dual port ram. An ICE replaces the ordinary CPU; it is plugged-in into
the CPU target socket, and works together with the rest of the system. The
difference from and ordinary CPU is the amount of auxiliary output available.
If the ICE (like those from e.g., Lauterbach, and AMC) has real-time operating
system (RTOS) awareness, this type of history recorder needs no instrumenta-
tion of the target system. The only input needed is the location of the data to
monitor. ICE:s have the potential be non-intrusive since they do not steal any
CPU-cycles or target memory, due to price and space limitations these cannot
usually be delivered with the product. The application of this type of history
recorder is consequently best suited for pre-deployment lab testing and debug-
ging.

Type 2. Software Recorders, has an instrumented operating system and
application software where the histories are stored in a number of local circular
memory buffers. This type of system is intrusive in the sense that it consumes
CPU cycles and memory for storage of events. One advantage of the software
approach is that monitoring is performed from inside the system, wherefore
on-chip memory and caches are not an issue as they might be for type 1 and
type 3 recorders. It is also necessary to record data not restored during replay,
e.g. externally sampled data and state variables. In contrast to the control-flow
monitoring, which can be done automatically and application independent, the
data-flow to monitor needs to be manually identified and tagged, using monitor
wrappers. For example, Monitor(&var, log entry, sizeof(var type)); During
recording the monitor wrappers output the specified var to the log entry of the
data-flow recording log. During replay the opposite occurs; var is assigned the
value of the output as recorded. Since all such instrumentation will consume
CPU cycles, it must remain in the target system post-deployment in order to
eliminate the probe effect. This approach, in contrast to the hardware and
hybrid approaches, allow for black-box functionality.



5.4 The Mechanisms of the Time Machine 63

Type 3. Hybrid Recorders. This recorder type has hardware support and
a minimum of target software instrumentation. Software probes write history
data to specific addresses, and a hardware component snoops the bus at these
addresses, typically in the form of a modern logic analyzer (example manu-
facturers are Agilent, HP, Lauterbach, VisionICE, and Microtek.) This type
of recording system could also be intrusive free if all data manipulations and
states were reflected in the system’s external memory, and we had RTOS and
data awareness (knowledge of the kernels data structures, and variable loca-
tions). However, many micro-controllers and CPUs have on-chip memory and
caches, wherefore changes in state or data of the system are not necessarily
reflected in the external memory. As a consequence it is necessary to perform
instrumentation such that events and data monitored are recorded and stored in
external memory, temporarily bypassing the cache and on-chip memory. Data-
flow monitoring is similar to software recorders, with the additional penalty of
a computing slowdown due to cache write-throughs and access to slower exter-
nal memory. This type of history recorder is cheaper than ICE:s, but the same
argumentation for not leaving the monitoring hardware in the target system still
applies. There are however System on Chip (SoC) solutions [3] which can be
permanently resident.

5.4.3 The Historian
Once the control-flow and the data-flow of the application is recorded, the first
job for the historian is to sort the control-flow events in order of occurrence and
to construct a timeline. A control-flow event is either asynchronous (e.g. task
preemption or interrupt) or synchronous (e.g. blocking system call). For each
asynchronous control-flow event, the historian generates a conditional break-
point, such that for each PC value where asynchronous control-flow events
occurred, a breakpoint is set. These breakpoints are guarded by the condition
of the recorded unique marker, e.g.,

< t, PC, SP, CHKSUMS >

For example,

break at PC(event) if(SP == SP(event) &&
CHKSUMS_REGS(event) == (R0+R1+R2+Rn) &&
CHKSUMS_STACK(event) ==

(*(SP)+*(SP+1)+*(SP+2)+*(SP+m)))



64 Paper B

Synchronous events, on the other hand, are not represented by unique indi-
vidual breakpoints. Instead, the entry point of each blocking system call, used
by the application, that might give rise to a synchronous event is breakpointed.
The control and match of the synchronous unique marker is here managed by
the Time Traveller tool, as is the transfer of control from the executing task
to the subsequent task. A timeline, similar to that of the control-flow, is also
assembled for the data-flow. To allow a smooth correlation between data and
control-flow, both monitoring activities are closely integrated. Subsequent to
the monitoring of some of the system calls, data-flow monitoring is also per-
formed. In the following section we shall see that events mapping to these
system calls are points from which the replay can be initiated. Data restoration
can be handled on-target during replay, using the monitor-wrappers in the case
of software- or hybrid recorders, or by the debugger environment for ICE de-
buggers where we can set data breakpoints, such that when a read operation is
performed we can intercept it and restore the value before it is read.

5.4.4 Requirements on a Starting Point for the Replay Exe-
cution

In order to make use of the data-flow- and control-flow timelines generated
by the historian to achieve a deterministic re-execution, it is crucial to find a
mutual starting point for the replay. In other words, we need to figure out at
what control-flow log entry and at which data instance to start the replay re-
execution from. The most naive approach might be to start the replay from
the system start-up, where all static information of the application is known.
However, this usually calls for an unreasonable long recording in order to cap-
ture the entire history from start to failure. A more reasonable approach is to
make use of a set of cyclic buffers for recording, which often leaves us with the
problem of having to start the replay from a non-startup state.

Since the basic idea of deterministic replay is to re-execute the application
in the exact same temporal and environmental context as the recorded execu-
tion, an basic requirement is that both the control-flow- and data flow infor-
mation that constitute the replay context need to be available at the start of the
replay. Consider, for instance, the scenario in Figure 5.4. Due to the dimen-
sioning of the buffers, the control-flow timeline spans from t1 to tsysFail, while
the shortest data flow timeline spans from t2 to tsysFail. In this case, replay start-
ing points between t1 and t2 will not be valid since no data flow information
is available. Similarly, Figure 5.5 shows a scenario with an interval where no
control-flow information is available.



5.4 The Mechanisms of the Time Machine 65

Data flow

Data flow           

Control flow            

t1 t2 tsysFail

Figure 5.4: Insufficient data-flow between t1 and t2.

Data flow                  

Data flow           

Control flow

t1 t2 tsysFail

Figure 5.5: Insufficient control-flow between t1 and t2.

The requirement of available data flow at the replay starting point has to
be considered when choosing how to record data. All tasks have one or more
potential starting points for the replay. These starting points can be blocking
system calls or delays. To start the replay of the task at a specific point for
which there exists at least one entry in the control-flow log, information of the
task state and inputs needs to be retrieved from the log at the re-execution of
that point. Consider the task program in Figure 5.6. The task has two poten-
tially blocking system calls (msgQReceive and msgQSend), which both, when
causing task switches, are recorded in the control-flow buffer. However, only
one of the calls (msgQReceive) has a direct subsequent data flow monitoring
call, which stores (on-line) or restores (during replay) the task state and input.
This fact makes this call a suitable starting point for replay, while a start from
the other call has no possibility of guaranteeing a correct restoration of the task
state.

As opposed to system calls, control-flow preemption or interrupt events
are not suitable as replay starting points due to the fact that these events occur
asynchronously and would require recording of the entire task context, in order
to capture the necessary start conditions.



66 Paper B

while(FOREVER) 
{ 
msgQReceive(); 
monitor(); 
… 
msgQSend(); 
… 

} 

Figure 5.6: Suitable and non-suitable replay starting points.

5.4.5 The Time Traveller

By setting breakpoints at all blocking system calls, we can initialise the de-
terministic re-execution of the application. First, the application is reset in
the debugger and the timeline index, an index pointing at the current control-
flow event to be matched, is set to point at the first suitable starting point in
the control-flow timeline. Then, each task to be replayed is executed up un-
til it hits a breakpoint that matches a suitable starting point in the historian-
generated timeline. At this point, the recorded data flow of the suspended task
is written back into the application. The timeline index is incremented and the
next task is set up for execution. Once the data flow of all instrumented tasks
has been rewritten into the application, the replay session initialisation phase
is complete.

When the initialisation is ready, the replay will step forward as the time-
line index is incremented at each control-flow event successfully matched. In
addition, in the event of a subsequent asynchronous event for the current task
in the historian timeline, its corresponding conditional breakpoint is set, mak-
ing it possible to replay this event as that breakpoint is hit. Once breakpoints
representing asynchronous events are hit and successfully matched, they are
removed in order to enhance the performance of the replay session. From a
users point of view, this deterministic replay debug session will behave ex-
actly like a regular sequential program mimicking the exact execution of the
recorded multitasking real-time application. We can single step, insert any
number of breakpoints and inspect data without introducing the probe-effect
(as illustrated in Figure 5.7). We can even jump forth and back in time us-
ing the debugger (thus named the Time Machine), and define bookmarks by



5.4 The Mechanisms of the Time Machine 67

generating new unique markers and new guarded breakpoints. Since we have
eliminated the dependency of the external process in real-time and replaced the
temporal and functional context of the application with the virtual data flow-
and control-flow timelines produced by the historian, we can replay the system
history repeatedly.

Figure 5.7: A commercial IDE with an instruction level simulator debugger,
into which we have integrated our Time Machine technology (the lower left
window). The time line illustrates the recorded control-flow for 6 tasks; task
priorities on the vertical axis. Selecting any instance of a task re-executes the
system from an idle point (the red lowest priority task) up to the selection (it
is possible to jump back and forth). The debugger window shows the current
state. From here it is possible to single-step, watch variables, and set new
additional breakpoints.



68 Paper B

5.5 Industrial Case Study

In this section, we present extracts from a case study that we have performed
on an industrial robot control system. The entirety of the case study will be
published in a future publication, but we provide some benchmarking results
here. The developer of the investigated system is among the largest industrial
robot manufacturers in the world. Their system consists of several computing
control systems, signal processing systems and I/O units. We applied the Time
Machine to the motion control part of the system that consists of approximately
2.5 million lines of C code and is run on the VxWorks RTOS. The subsystem
for motion control is a hard real-time system, with about 70 tasks running (the
most frequent task is activated every 4ms) and multiple interrupts driving an
assortment of device drivers.

In our implementation a hook, which is a VxWorks feature, was program-
med to capture the control-flow. Also, calls to common system calls that can
change the control-flow where monitored: msgQReceive, msgQSend, sem-
Give, semTake, and taskDelay. The instrumentation of these system calls was
limited to a timestamp, a system call identifier, and a counter. For the system
call msgQReceive we also included data-flow recording.

All hitherto described instrumentation was implemented totally transparent
to the application code. The only manual instrumentation that had to be in-
serted into the application code were calls to data-flow monitors after blocking
system calls, in order to capture the state of the task (represented by specified
local and global variables). This amount of recording is sufficient since the
code is re-executed off-line. In this case study, due to the architecture of the
system, it was sufficient to capture the state after each msgQReceive call. Fig-
ure 5.8 illustrates the cost of monitoring in terms of execution time overhead
and memory usage.

5.6 Future Work

We have successfully applied the time machine approach proposed in this pa-
per in a number of applications running on different operating systems, dif-
ferent hardware, different compilers, and different debuggers. What we have
learned however, is that it is necessary to carefully analyze the target system’s
dataflow with respect to what data is re-executed, re-transmitted and what data
has external (process) origin in order to not forego something that may inhibit
deterministic re-execution or that we do not record too much. Missing out on



5.7 Conclusions 69

5 � smsgReceiveInter-process 
communication

<0,2 � s30semTake, 
semGive, 

taskDelay, etc.

System calls

0,5%2 � s378Task-switch

3%133 � s265458192 B

0,4%18 � s37971024 B

10 � s1992360 BData 
(monitor wrappers)

�
C/T in & of 

CPU utilization
Execution time 

(200MHz, 
Pentium II)

CPU 
cycles 
(max)

Nr of Bytes/functionMonitoring activity

5 � smsgReceiveInter-process 
communication

<0,2 � s30semTake, 
semGive, 

taskDelay, etc.

System calls

0,5%2 � s378Task-switch

3%133 � s265458192 B

0,4%18 � s37971024 B

10 � s1992360 BData 
(monitor wrappers)

�
C/T in & of 

CPU utilization
Execution time 

(200MHz, 
Pentium II)

CPU 
cycles 
(max)

Nr of Bytes/functionMonitoring activity

Figure 5.8: Some benchmarking results from the industrial case study.

information is a serious problem and is something we have begun to address.
We have started to look into how to automatically derive tight sets of possible
data derived from what we actually have recorded. Another issue that need to
be considered is replay of applications which use vast amounts of information,
e.g., real-time database applications. In such applications the “state variable”
(the data base) is very large and requires some kind of incremental snapshot
algorithm to be manageable

5.7 Conclusions
In summary the contribution of this paper is a deterministic replay method
for: Standard off-the shelf debuggers, and standard off-the shelf real-time op-
erating systems. We have presented different approaches to recording, and
introduced “black-box” functionality for post deployment debugging. We have
presented how to make use of conditional breakpoints in standard debuggers
to generate task-switches and interrupts at exactly the same location and time
as recorded during runtime. We have presented a novel and pragmatic unique-
marker mechanism for differentiation between loop iterations, as well as func-
tion calls. Furthermore, we have presented benchmarking results describing
the overhead introduced by our solution.



Bibliography

[1] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides. A
Perturbation-Free Replay Platform for Cross-Optimized Multithreaded
Applications. In Proceedings of 15th Parallel and Distributed Processing
Symposium, page 10, April 2001.

[2] P. Dodd and C. V. Ravishankar. Monitoring and Debugging Distributed
Real-Time Programs. Software – Practice and Experience, 22(10):863 –
877, October 1992.

[3] M. El Shobaki. A Hardware- and Software Monitor for High-Level Sys-
tem On Chip Verification. In Proceedings of IEEE International Sympo-
sium on Quality Electronic Design, pages 88 – 95. IEEE, 2001.

[4] J. Gait. A Probe Effect in Concurrent Programs. Software – Practice and
Experience, 16(3):225 – 233, March 1986.

[5] S. Howard. A Background Debugging Mode Driver Package for Modular
Microcontroller. Semiconductor Application Note AN1230/D, Motorola
Inc., 1996.

[6] J. Huselius. Debugging Parallel Systems: A State of the Art Report .
Technical Report 63, Mälardalen University, Department of Computer
Science and Engineering, September 2002.

[7] T.J. LeBlanc and J.M. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay. IEEE Transactions on Computers, 36(4):471 – 482,
April 1987.

[8] C.E. McDowell and D.P Helmbold. Debugging Concurrent Programs.
ACM Computing Surveys, 21(4):593 – 622, December 1989.

70



BIBLIOGRAPHY 71

[9] M. Meerwein, C. Baumgartner, T. Wieja, and W. Glauert. Embedded
Systems Verification with FPGA-Enhanced In-Circuit Emulator. In Pro-
ceedings of the 13th International Symposium on System Synthesis, pages
143 – 148, 2000.

[10] J. Mellor-Crummey and T. LeBlanc. A Software Instruction Counter.
In Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 78 –
86. ACM, April 1989.

[11] IEEE Std. IEEE Standard Test Access Port and Boundary-Scan Architec-
ture. Technical Report 1532-2001, IEEE, 2001.

[12] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging Concurrent Ada Pro-
grams by Deterministic Execution. IEEE Transactions on Software En-
gineering, 17(1):45 – 63, January 1991.

[13] H. Thane and H. Hansson. Using Deterministic Replay for Debugging
of Distributed Real-Time Systems. In Proceedings of the 12th EUROMI-
CRO Conference on Real-Time Systems, pages 265 – 272. IEEE Com-
puter Society, June 2000.

[14] H. Thane, A. Pettersson, and D. Sundmark. The Asterix Real-Time Ker-
nel. In Proceedings of the Industrial Session of the 13th EUROMICRO
International Conference on Real-Time Systems. IEEE Computer Society,
June 2001.

[15] J.P.P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A Noninterference
Monitoring and Replay Mechanism for Real-Time Software Testing and
Debugging. IEEE Transactions on Software Engineering, 16(8):897 –
916, August 1990.

[16] F. Zambonelli and R. Netzer. An Efficient Logging Algorithm for In-
cremental Replay of Message-Passing Applications. In Proceedings of
the 13th International and 10th Symposium on Parallel and Distributed
Processing, pages 392 – 398, 1999.





Chapter 6

Paper C: Replay Debugging
of Complex Real-Time
Systems: Experiences from
Two Industrial Case Studies

Daniel Sundmark, Henrik Thane, Joel Huselius, Anders Pettersson, Roger Mel-
lander, Ingemar Reiyer and Mattias Kallvi
In Fifth International Workshop on Automated and Algorithmic Debugging
(AADEBUG) Gent, Belgium, September 2003.

73



Abstract

Deterministic replay is a method for allowing complex multitasking real-time
systems to be debugged using standard interactive debuggers. Even though
several replay techniques have been proposed for parallel, multi-tasking and
real-time systems, the solutions have so far lingered on a prototype academic
level, with very little results to show from actual state-of-the-practice commer-
cial applications. This paper describes a major deterministic replay debugging
case study performed on a full-scale industrial robot control system, as well
as a minor replay instrumentation case study performed on a military aircraft
radar system. In this article, we will show that replay debugging is feasible
in complex multi-million lines of code software projects running on top of off-
the-shelf real-time operating systems. Furthermore, we will discuss how replay
debugging can be introduced in existing systems without impracticable analy-
sis efforts. In addition, we will present benchmarking results from both studies,
indicating that the instrumentation overhead is acceptable and affordable.



6.1 Introduction 75

6.1 Introduction
ABB is a world leading manufacturer of industrial robots for industrial au-
tomation. Out of all deployed industrial robots to date, ABB has delivered
about 50 percent. Out of those 50 percent, 70 percent are deployed in the car
manufacturing industry. SAAB Avionics is a major supplier of electronic war-
fare technology on the international market. The main focus of the company
is electronic warfare systems, such as display systems, tactical reconnaissance
systems and electromagnetic technology services. Avionics products can for
example be found in the Swedish fighter aircraft Gripen, the American F-15
and the NH- 90 helicopter.

6.1.1 Contribution
In this paper, we present results from two industrial case studies performed
in cooperation with the above companies. With these case studies, we show
that our recent research results have not merely been academic artifacts, but
contributions to a fully operational method of debugging full-scale industrial
real-time systems. In addition, we present benchmarking results from both case
studies, showing that the overhead incorporated in the system by instrumenta-
tion is acceptable.

6.1.2 Paper Outline
The rest of this paper is organized as follows: Section 6.2 will give a back-
ground and a motivation to the case studies as well as short descriptions of the
systems studied. Section 6.3 describes the implementations of our method in
the investigated systems. In Section 6.4, instrumentation benchmarking results
are presented. Finally, Section 6.5 and Section 6.6 conclude the paper and
discuss future work.

6.2 Background and Motivation
It is no secret that testing, debugging and maintenance constitute the largest
percentage of the overall cost of an average industrial software project. In a
recent study, NIST [11] has shown that more than $59 billion/year is spent on
debugging software in the U.S.A. alone. As the average complexity of software
applications increase constantly it is now common that testing and debugging



76 Paper C

constitute more than 80% of the total life cycle cost [11]. A known fact is also
that bugs are introduced early in the design but not detected until much later
downstream in the development cycle, typically during integration, and early
customer acceptance test. For embedded real-time software this fact makes the
situation really difficult, since most failures that are detected during integration
and early deployment are extremely difficult to reproduce. This makes debug-
ging of embedded real-time systems costly since repetitive reproductions of the
failure is necessary in order to find the bug. The lack of proper tools and meth-
ods for testing and debugging of complex real-time systems does not help the
situation. The reason why ABB Robotics and SAAB Avionics systems were
chosen as case study subjects was based on their high level of software- and
overall technical complexity. In addition, the systems operate in safety-critical
and high availability environments, where failures might be very costly, mak-
ing system validation and verification even more important.

6.2.1 Replay Debugging
During the mid-eighties, in an effort to address the problems with inadequate
tools for debugging of complex systems, LeBlanc and Mellor-Crummey pro-
posed a method of recording information during run-time and using this in-
formation to reproduce the exact behavior of the execution off-line [9]. This
method, called Instant Replay, allowed otherwise unfit cyclic debugging tech-
niques to be used for debugging nondeterministic systems. Instant Replay, as
many of its successors [1][4][12][13][3], was focused on debugging of non-
real-time concurrent programs, thereby concentrating mainly on the correct
reproduction of synchronization races and, in some cases, on-the-fly detection
of data races. However, some methods for debugging of complex real-time
systems have also been proposed [5][16]. These methods have called for the
availability of specialized hardware and non standard instrumentation tools in
order to work satisfactorily. They have also been mere academic prototypes
and not suited for the complexity of real world software applications.

6.2.2 Real-Time System Debugging using Time Machines and
Deterministic Replay

In our previous work on debugging of embedded real-time systems, we have
proposed a replay method for recording important events and data during a
reference execution and to reproduce the execution in a subsequent replay ex-
ecution [14][15][7]. As for most replay debugging methods, if the reference



6.2 Background and Motivation 77

execution fails, the replay execution can be used to reproduce the failure repeat-
edly in a debugger environment in order to track down the bug. Our method
allows replay of real-time applications running on top of standard commer-
cial real-time operating systems (RTOS) and uses standard cyclic debuggers
for sequential software. There is no need for specialized hardware or special-
ized compilers for the method to work and the software based instrumentation
overhead has so far proven acceptable. This allows our probes to be left per-
manently in the system, making post-mortem debugging of a deployed system
possible while at the same time eliminating the risk of experiencing probe ef-
fects [6] during debugging. We refer to our method as Deterministic Replay.
The tool that is used to “travel back in time” and investigate what sequence
of events that led to a failure is referred to as the Time Machine and consists
of three major parts: The Recorder which is the instrumentation mechanism
(similar to the black-box or flight recorder in an airplane), the Historian which
is the post-mortem off-line analysis tool and the Time Traveler which is the
mechanism that forces the system to behave exactly as the reference execution
off-line.

The main objective of performing the case studies was to validate the ap-
plicability of the Time Machine method to existing complex real-time systems.
The basic questions were:

• Would it be possible to reproduce the behavior of such complex target
systems?

• How do we minimize the analysis and implementation effort required in
order to capture the data required from such complex target applications?

• Would the instrumentation overhead (execution time and data bandwidth)
be sufficiently low for introduction in real-world applications?

6.2.3 ABB Robotics System Model
To validate our ideas, we had the opportunity to work with a robotics system
that is state-of-the-art in industrial manufacturing automation. The system is a
highly complex control system application running on top of the commercial
Wind River RTOS VxWorks. However, in order to avoid the somewhat im-
possible mission of analyzing and instrumenting an approximate of 2.5 million
lines of code in an academic project, we focused on instrumenting five central
parts in the target system:

• The operating system.



78 Paper C

• The application’s operating system abstraction layer.

• The inter-process communication abstraction layer.

• The peripheral I/O abstraction layer.

• The state preserving structures of each individual task.

All instrumentation was system wide and application-transparent except
for the state preserving structures in the tasks. A more thorough description of
the instrumentation will be given below. For an overview, see Figure 6.1.

Out of an approximate total of 70 tasks, we choose to record the state (in-
ternal static variables) of the three most frequently running tasks. Thus, we
limited the instrumentation efforts for parts of the data flow recording. How-
ever, these three tasks constituted the major part (approximately 60%) of the
CPU utilization and their data flow constituted more than 96% of the overall
system data flow bandwidth.

Robotics System-Level Control Flow Model

In general, task activations in the robotics system are dependent on message
queues. Basically, each task is set to block on a specific message queue until
a message is received in that queue. When a message is received, the task is
activated, performs some action, and is finally set to wait for another message
to arrive. Chains of messages and task activations, in turn, are initiated by oc-
currence of external events, such as hardware interrupts at arrival of peripheral
input.

Robotics Data Flow Model

We divide the Robotics data flow model into three parts: The per-task state
preserving structures, the inter-process communication and peripheral I/O. As
for the state preserving structures, each task has its own local data structure
used to keep track of the current task state. This structure holds information of
message data, static variables and external feedback. Naturally, this structure
alters during execution as the state of the task changes.

The inter-process communication is handled by the use of an IPC layer
implemented on top of the message queue primitives in VxWorks. This layer
extends the functionality of the original message queue mechanisms. Finally,
peripheral I/O, such as motion control feedback is received through a peripheral
I/O layer.



6.3 Technique Implementations 79

6.2.4 SAAB Avionics System Model

In addition to the Robotics system, we also performed a minor case study in
a military aircraft radar system. In short, the task of the system is to warn the
pilot of surrounding radar stations and to offer countermeasures. This study
was less extensive in that it only covered a part of the instrumentation aspect
of the Time Machine technology. The full scale Saab Avionics radar system
holds about 90 ADA tasks running on top of the Wind River VxWorks RTOS.
However, in the scope of the case study, a reduced system with 20 central tasks
was investigated.

Dataflow was limited to inter process messages. As in the robotics case,
task activations in the Avionics system are controlled by message arrivals on
certain queues.

6.3 Technique Implementations

To be able to facilitate replay, there were three things we needed to achieve:
First, we needed to instrument both the VxWorks real-time kernel and the ap-
plication source codes in order to be able to extract sufficient information of
the reference execution. Second, we needed to incorporate the replay function-
ality into the WindRiver integrated development environment (IDE). We used
the Tornado 2 version of the IDE as this is the standard IDE for developing
VxWorks real-time applications. Third, we needed to add the Time Machine
mechanisms used to perform the actual replay of the system. Even though the
Tornado 2 IDE features a VxWorks-level simulator, both recording and replay
execution were performed on the actual target system. In the next sections, we
will discuss these steps one by one.

6.3.1 VxWorks Instrumentation

A common denominator for the Robotics system and the Avionics system is
that they both run on top of the Wind River VxWorks RTOS. In order to ex-
tract the exact sequence of task interleavings, it was essential to be able to in-
strument the mechanisms in VxWorks that directly influence the system-level
control flow. Therefore, we instrumented semaphore wait and signal opera-
tions, message queue blocking send and receive, task sleep function taskDelay
as well as preemptive scheduling decisions.



80 Paper C

Blocking System Call Instrumentation Layer

To instrument the blocking task delay-, semaphore- and message queue prim-
itives mentioned above, we added an instrumentation layer on top of the Vx-
Works system call API. This layer replaces the ordinary primitives with wrap-
pers including the added functionality of instrumentation. Apart from this in-
strumentation, the wrappers use the original primitives for system call opera-
tion.

Task Switch Hook

With the blocking system call instrumentation layer, we are able to monitor
and log what possibly blocking system calls are invoked. However, in order to
see which of the invoked calls actually leads to task interleavings, we need to
be able to insert probes into the scheduling mechanisms of the kernel. Fortu-
nately, VxWorks provides several hooks, implemented as empty callback func-
tions included in kernel mechanisms, such as a TaskSwitchHook in the task
switch routine. These hooks can be used for instrumentation purposes, mak-
ing it possible to monitor and log sufficient information of each task switch in
order to be able to reproduce it.

Preemption Instrumentation

As some of the task interleavings are asynchronous, that is, their occurrence are
initiated by asynchronous events such as hardware interrupts, they do not have
an origin in the logic control flow of task execution that blocking system calls
do. To reproduce these events and interleavings correctly in a replay execution,
we need to be able to pinpoint and monitor their exact location of occurrence.
In other words, we need some sort of unique marker to differentiate between
different program states. The program counter value of the occurrence of the
event is a strong candidate for such a unique marker. However, as program
counter values can be revisited in loops, subroutines and recursive calls, ad-
ditional information is needed. To provide such data, we use the information
of the task context available from the task control block in the TaskSwitch-
Hook. This task context is represented in the contents of the register set and
the task stack. To avoid the massive overhead introduced by sampling the en-
tire contents of these areas, we use checksums instead [15]. Although these
checksums are not truly unique, they strongly aid in differentiating between
program states.



6.3 Technique Implementations 81

Application

VxWorks

RTOS abstraction 
layer

Inter-process
abstraction  

I/O abstraction
layer

Instrumentation

Figure 6.1: Instrumentation layer in the system model.

Other solutions to this problem have been proposed, such as hardware in-
struction counters [2] and software instruction counters [10], but these are not
suitable in the VxWorks case due to lack of kernel instrumentation possibilities,
large overheads or specialized hardware requirements.

6.3.2 ABB Robotics Instrumentation
In contrast to the system-level control flow instrumentation, which is handled
on the VxWorks RTOS level, some of the data flow instrumentation needs to
be handled on the application level. This is due to the fact that all of the data
used to represent the state of the task execution need to be identified explicitly
in the source code and instrumented for recording. Such data include static and
global variables and structures holding information that can be altered during
the entire temporal scope of system execution.

As stated in Section 6.2.3, in the Robotics system, these data are grouped
together in static structures, individually designed for each task. To minimize
the amount of information stored in each invocation of a task, we used filters
that separated the type of data that was prone of changes during run-time from
the type of data that was assigned values during system initialization and kept
these values throughout the execution. The latter are not recorded during run-
time. These filters were constructed from information gathered empirically
during test-runs of the system.

To be able to reproduce interaction with an external context and inter-task
communication, the peripheral I/O and the inter-task communication message
queues are instrumented in two operating system abstraction layers, similar
to that described in Section 3.1.1. This solution gives the instrumentation a



82 Paper C

quality of transparency, making it less sensitive to changes in the application
code.

However, the part of the data flow recording that is concerned with the
reproduction of state preserving structures is performed by probing functions
inserted at various locations in the application code. A more thorough discus-
sion on how and where these probes should be inserted in the code is given in
our previous papers [15][8]. A summarizing overview of system instrumen-
tation can be viewed in Figure 6.1. In the figure, the gray area represents the
instrumentation layer, which is slightly integrated into different parts of the
RTOS and some application abstraction layers.

6.3.3 SAAB Avionics Instrumentation

Since both the Robotics and the Avionics system run on top of VxWorks and
the RTOS-level instrumentation is application independent, the instrumenta-
tion of the Avionics system-level control flow was implemented in a very sim-
ilar fashion. However, one aspect had to be taken into account. In contrast to
the Robotics system, the Avionics system was implemented in Ada. As the
Ada runtime environment is added as a layer on top of VxWorks, this layer had
to be altered in order to be able to monitor rendezvous and other Ada synchro-
nization mechanisms. This instrumentation allowed for the Ada runtime envi-
ronment to use instrumented versions of the VxWorks synchronization system
calls instead of the original versions.

As for the data flow, this study focused on inter-process communication.
Messages were logged in cyclic buffers, dimensioned on a per-process basis,
at the receiver. State preserving structures and peripheral I/O were not con-
sidered as in the ABB Robotics case. However, the benchmark figures of the
inter-process communication recordings give a hint of the overall overhead in-
corporated in a full-scale instrumentation.

6.3.4 Time Machine

Once the code is properly instrumented, we are able to record any execution of
the system in order to facilitate replay of that very execution. The next step is
to implement the mechanisms of the time machine that actually performs the
replay. These mechanisms were implemented in an add-on to the Tornado 2
IDE.



6.3 Technique Implementations 83

T I M E

CF buffer

tmin tfail

DF buffer A

DF buffer B

DF buffer C

tstart

Figure 6.2: Pruning of buffer entries. Entries to the left of tmin are discarded.

The Historian – Starting the Replay Execution

In our Time Machine replay system, the task of the Historian is to analyze the
data flow- and system-level control flow recordings of a reference execution.
We used basic cyclic FIFO buffers for recording. Combined with the fact that
the cyclic buffers are of a finite length and memory resources are scarce, this
rarely leads to a situation where all recorded information is available at the
end of the reference execution. As these recordings most often will be of a
different temporal length, some sort of pruning is needed in order to discard
those entries that are out of the consistent temporal scope of all buffers. In other
words, all tasks that are to be replayed needs information from both the control
flow recording (one per system) and data flow recordings (one per task). Since
buffers are dimensioned using a discrete number of entries and not continuous
time, we will practically always end up in a situation where some buffers cover
a longer span of time than others. As this information is unusable, it must
be detected and discarded. This operation is performed by the Historian as
depicted in Figure 6.2.

In addition, the Historian has the responsibility to find a consistent state
from which the replay executions can be started [8]. Again considering Fig-
ure 6.2, if such a starting point exists, it is located in between tmin and tfail,
where sufficient information of all instrumented tasks is available. When this
operation is performed, the Historian sets up the structures in the target system
used to reproduce the data flow of the reference execution. A more elaborate
description on how a starting state is found and a replay execution is prepared
is presented in a recent paper by Huselius et. al. [8].



84 Paper C

The Time Traveler

As the replay execution is started, the Time Traveler interacts with the debug-
ger and, given the information provided by the Historian and the breakpoints
visited in the program, allows recreation of the system state for any given time
in the scope of the replay execution [15].

6.3.5 IDE and Target System Integration

Tornado 2 is an integrated development environment including a text editor, a
project/workspace handler, a gcc compiler, a target simulator and a gdb-based
debugger, capable of performing multi-threaded debugging with no require-
ments on deterministic reproduction of execution orderings.

Tornado 2 IDE Architecture and WTX

Debugging in the Tornado 2 environment is performed by means of remote
debugging. That is, the debugging session is executed on-target and controlled
from the development environment via communication with an on-target task.

To handle all communication with the target system, a hostbased target
server is included in the Tornado 2 IDE. All tools that seek interaction with
the target system are able to connect as clients to the target server and issue
requests of target operations. To provide tool vendors with a possibility to
create their own add-ons to the Tornado 2 IDE, a programming interface is
provided. The Wind River Tool Exchange (WTX) API enables developers to
create tools that communicate and interact directly with the VxWorks target
server. For the implementation of our Time Machine system, the Historian and
the Time Traveler were integrated and implemented as a WTX tool, able to
connect with a running target server and to force a replay execution upon the
system running on that target. The structure of the Tornado 2 IDE, the Time
Machine and the target system interactions is depicted in Figure 6.3.

Wdb Task

To handle the on-target debugging operation, VxWorks provides a dedicated
task, the Wdb task. This task handles requests of breakpoints, watches, single-
stepping and other debugging functions from the IDE. These functions are used
by the Time Traveler via the WTX interface and the target server in order to
control the replay execution.



6.3 Technique Implementations 85

Time
Traveler

Target
SystemW

T
X Wdb task

Target server

Tornado 2 IDE and tools

HOST

REPLAY TOOL TARGET

Figure 6.3: Target system, IDE and Time Machine integration.

Breakpoints

Breakpoints play a central role in the interaction between the time machine
and the target system. As described by the Deterministic Replay method [15],
breakpoints are set at every point of possible task interleaving and as they are
encountered in the target system, their occurrence is echoed from the Wdb task
through the WTX and into the event handler of the Time Traveler. Based on
the individual features of each breakpoint, the state of the replay execution can
be deduced and the Time Traveler replay engine will force the desired behavior
on the target system

Debugging Mode

Debugging in VxWorks can be performed in two different modes: Task mode
and system mode. The difference is that when in system mode, an encountered
breakpoint will halt the entire system, including the operating system. In task
mode, a breakpoint will only halt the task that encountered it, leaving all other
tasks free for execution.

Ideally, since the investigated applications are pseudoparallel, system mode
debugging should be used. This would help in guaranteeing the correct order-
ing of events and task interleavings in the replay execution since no task is able



86 Paper C

to continue execution and corrupt the system-level control flow if the entire
system is halted. However, we experienced problems when trying to reproduce
this ordering in system mode debugging regarding incapability of task suspen-
sion. This is due to the fact that no tasks can be explicitly suspended from
execution by an external operation (such as requests made from the time trav-
eler tool) in system mode debugging. In addition, the locking of the Wdb task
substantially complicated communication between the target system and the
IDE, making thorough investigation of the target state more difficult. There-
fore, task mode debugging is used and the correct ordering of events in the
replay execution is explicitly forced upon the system by means of the Time
Traveler replay engine.

6.4 Benchmark
One of the issues of these case studies was to investigate whether the overhead
incorporated by system-level control flow- and data flow instrumentation was
acceptable in a full-scale complex industrial real-time application or not. In or-
der to resolve this issue, we performed benchmarks measuring instrumentation
mechanism CPU load and memory usage in both systems. Since the instrumen-
tation is yet to be optimized and the benchmarking tests are performed under
worst-case scenario conditions, many results might be rather pessimistic.

6.4.1 ABB Robotics

In the ABB robotics case, we timestamped the entry and the exit of all instru-
mentation and recording mechanisms. This gave us a possibility of extracting
the execution time of the software probes. In addition, we measured the fre-
quency and recording size of the data flow instrumentation mechanisms. The
achieved results are presented in Figure 6.4. The bytes per function column
shows the number of bytes logged by each iteration of an instrumentation func-
tion, and as each task instance has one and only one data flow instrumentation
function, this figure also represents the number of bytes stored in each task in-
stance of a task. The CPU cycles and the Time columns present the execution
time spent in each instrumentation function and the CPU utilization column
shows the percentage of all CPU time spent in each instrumentation function.
Where results are left out, these are discarded due to their insignificant interfer-
ence with memory or CPU utilization. We note that task 3 has a combination of
a high frequency and large state preserving structures, resulting in the largest



6.5 Conclusions 87

-0.230-System calls

0.052378-Task-switch

3133265458192Data, task 3

-5--Inter-process 
communication

0.41837971024Data, task 2

-101992360Data, task 1

CPU utilization 
(%)

Time 
(� s)

CPU 
Cycles

Bytes per 
function

Instrumentation 
activity

-0.230-System calls

0.052378-Task-switch

3133265458192Data, task 3

-5--Inter-process 
communication

0.41837971024Data, task 2

-101992360Data, task 1

CPU utilization 
(%)

Time 
(� s)

CPU 
Cycles

Bytes per 
function

Instrumentation 
activity

Figure 6.4: Benchmarking results from the Robotics study.

monitoring overhead (3% CPU utilization).

6.4.2 SAAB Avionics
As the data instrumentation in the Avionics system is performed solely on mes-
sage queues, the data flow benchmark is made in a per-queue fashion. Since
there are major differences in message arrival frequencies and message size
between the different queues, only the six most memory-consuming message
queues are presented in the benchmark results. Out of the 17 instrumented mes-
sage queues, these six consume 99% of all message queue memory bandwidth.
The results of the Avionics benchmarking study are shown in Figure 6.5, pre-
sented in the form of memory utilization for logging (in the bytes/second col-
umn) and CPU utilization (in the rightmost column). As in the robotics case,
it is the combination of a high frequency and a large size of data (such as the
one of Queue A and Queue E) that has the most significant implications on the
instrumentation memory utilization.

6.5 Conclusions
With this paper, we have shown that complex real-time system debugging is
feasible using the Deterministic Replay technique and the Time Machine tool.
This is true not only for specialized academic systems, but also for full-scale



88 Paper C

421528115Queue E

3152115Queue F

7354915Queue D

3752515Queue C

0.03---System-level 
control flow

135915Queue B

1.9

53408960Queue A

CPU util. 
(%)

Bytes/
sec.

Data size 
(bytes)

Msg frequ-
ency (Hz)

Instrumentation 
activity

421528115Queue E

3152115Queue F

7354915Queue D

3752515Queue C

0.03---System-level 
control flow

135915Queue B

1.9

53408960Queue A

CPU util. 
(%)

Bytes/
sec.

Data size 
(bytes)

Msg frequ-
ency (Hz)

Instrumentation 
activity

Figure 6.5: Avionics system benchmarking results.

industrial real-time systems. Furthermore, we have shown that it is possible
to achieve a high level of transparency and portability of the method by plac-
ing much of the instrumentation in system call-, inter-process communication-
and peripheral I/O layers, rather than in the application source code. Both
case studies presented here indicate a small CPU utilization overhead of 0.03–
0.05% for system-level control flow instrumentation. The data flow instru-
mentation has proven more temporally substantial, but has stayed in the fully
acceptable interval of 1.9–3.0%. As for memory utilization, the ABB Robotics
instrumentation required a bandwidth of 2 MB/s and the Saab Avionics system
called for approximately 12-15 kB/s for both system-level control flow and data
flow logging. Looking at the size of these systems and the resources available,
such a load is definitely affordable.

6.6 Future Work

We have successfully applied the time machine approach in a number of appli-
cations running on different operating systems, hardware and debuggers [15].
However, we have learned that it is necessary to carefully analyze the target
system’s data flow with respect to what data is re-executed, re-transmitted and
what data has external origin in order not to forego something that may inhibit



6.6 Future Work 89

deterministic re-execution or that we do not record to much. Missing out on
information is a serious problem and is something we have begun to address.
We have started to look into how to automatically derive tight sets of possible
data derived from what we actually have recorded. Another issue that needs to
be considered is replay of applications which use vast amounts of information,
e.g., real-time database applications. In such applications the “state preserving
variables” are very substantial and require some kind of incremental snapshot
algorithm to be manageable.



Bibliography

[1] K. Audenaert and L. Levrouw. Interrupt Replay: A Debugging Method
for Parallel Programs with Interrupts. Journal of Microprocessors and
Microsystems, Elsevier, 18(10):601 – 612, December 1994.

[2] T.A. Cargill and B.N. Locanthi. Cheap Hardware Support for Software
Debugging and Profiling. In Proceedings of the 2nd International Con-
ference on Architechtural Support for Programming Languages and Op-
erating Systems, pages 82 – 83, October 1987.

[3] J. Chassin de Kergommeaux and A. Fagot. Execution Replay of Parallel
Procedural Programs. Journal of Systems Architecture, 46(10):835 – 849,
2000.

[4] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides. A
Perturbation-Free Replay Platform for Cross-Optimized Multithreaded
Applications. In Proceedings of 15th Parallel and Distributed Processing
Symposium, page 10, April 2001.

[5] P. Dodd and C. V. Ravishankar. Monitoring and Debugging Distributed
Real-Time Programs. Software – Practice and Experience, 22(10):863 –
877, October 1992.

[6] J. Gait. A Probe Effect in Concurrent Programs. Software – Practice and
Experience, 16(3):225 – 233, March 1986.

[7] J. Huselius. Debugging Parallel Systems: A State of the Art Report .
Technical Report 63, Mälardalen University, Department of Computer
Science and Engineering, September 2002.

[8] J. Huselius, D. Sundmark, and H. Thane. Starting Conditions for Post-
Mortem Debugging using Deterministic Replay of Real-Time Systems.

90



BIBLIOGRAPHY 91

In Proceedings of the 15th Euromicro Conference on Real-Time Systems
(ECRTS03), pages 177 – 184, July 2003.

[9] T.J. LeBlanc and J.M. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay. IEEE Transactions on Computers, 36(4):471 – 482,
April 1987.

[10] J. Mellor-Crummey and T. LeBlanc. A Software Instruction Counter.
In Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 78 –
86. ACM, April 1989.

[11] NIST Report. The economic impacts of inadequate infrastructure for soft-
ware testing., May 2002.

[12] M. Ronsse and K. De Bosschere. RecPlay: A Fully Integrated Practi-
cal Record/Replay System. ACM Transactions on Computer Systems,
17(2):133 – 152, May 1999.

[13] K.-C. Tai, R.H. Carver, and E.E. Obaid. Debugging Concurrent Ada Pro-
grams by Deterministic Execution. IEEE Transactions on Software En-
gineering, 17(1):45 – 63, January 1991.

[14] H. Thane and H. Hansson. Using Deterministic Replay for Debugging
of Distributed Real-Time Systems. In Proceedings of the 12th EUROMI-
CRO Conference on Real-Time Systems, pages 265 – 272. IEEE Com-
puter Society, June 2000.

[15] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson. Replay Debug-
ging of Real-Time Systems Using Time Machines. In Proceedings of Par-
allel and Distributed Systems: Testing and Debugging (PADTAD), pages
288 – 295). ACM, April 2003.

[16] J.P.P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A Noninterference
Monitoring and Replay Mechanism for Real-Time Software Testing and
Debugging. IEEE Transactions on Software Engineering, 16(8):897 –
916, August 1990.





Chapter 7

Paper D: Pinpointing
Interrupts in Embedded
Real-Time Systems using
Context Checksums

Daniel Sundmark and Henrik Thane
Submitted for publication.

93



Abstract

When trying to track down bugs in programs using cyclic debugging, the
ability to correctly reproduce executions is imperative. In sequential non-real-
time software, this is straightforward. However, when program execution is
affected by preemptive interrupts, this will have severe effects on the ability
to reproduce program behaviors deterministically, since a faithful reproduction
requires exactly the same interrupt to hit the program at the exact same instruc-
tion. In previous methods, the problem of reproducing interrupts correctly
has been solved using different kinds of instruction counters. However, these
counters are problematic, since they induce large execution time perturbation,
demand for specialized hardware or provide inexact pinpointing. This makes
them highly unfit for resource-constrained embedded real-time systems. In
addition, all previous methods require specialized platform-specific tools (e.g.
special compilers) in order to function. In this paper, we propose an alterna-
tive method for pinpointing interrupts in embedded real-time systems using
context checksums, which is not dependent on specific hardware features or
special compilers - but which rather can be applied to any system.

Although context checksums in some cases also proves inexact or am-
biguous, we will show that they serve as a practical method for pinpointing
and reproducing interrupts in embedded real-time systems. Furthermore, our
method performs perfectly well with standard development tools and operating
systems, requires no additional hardware support and, in the worst case, con-
sumes merely a tenth of the execution time of existing software-based methods
for pinpointing interrupts.



7.1 Introduction 95

7.1 Introduction
Cyclic debugging is the process of examining the behavior of a faulty execution
in an iterative fashion, thereby narrowing down the temporal and functional
scope within which the system infection (the execution of a bug) might have
taken place. By doing this, the bug can hopefully be found and safely removed.

7.1.1 Background

Cyclic debugging is trivial as long as the programs under investigation are de-
terministically reproducible (i.e. their execution behavior depends only on in-
put parameters provided and controlled by the user). However, correct repro-
duction of execution behavior has always been a problem during cyclic de-
bugging of non-deterministic programs. Since such programs exhibit different
execution behavior over different executions, encountered failures are hard to
reproduce and therefore hard to investigate in depth.

Interrupts are a major source of non-determinism in program executions.
As an interrupt occurs, the ongoing CPU activity is halted, the state of the
executing program is stored and the interrupt is handled by an interrupt service
routine. To reproduce this scenario (e.g. for debugging reasons), we need to be
able to correctly reproduce the occurrence of the interrupt. In other words, we
must make sure that the interrupt preempts the execution of the CPU activity
at the exact same state during the replay as it did in the first execution.

An intuitive solution might be to make use of the program counter value
at the occurrence of the interrupt. If we can make sure that the interrupt is
forced upon the program at the same program counter value during debugging,
the program will be interrupted at the correct instruction. However, program
counter values might be revisited. For instance, a loop with ten iterations could
execute each instruction in the loop during each iteration of the loop. Us-
ing solely the program counter, we have no possibility of distinguishing an
interrupt occurring at some arbitrary program counter value during the third
iteration of the loop from one occurring at the same instruction during the sev-
enth iteration of the loop. Consequently, additional information is needed to
uniquely pinpoint the state of occurrence of interrupts. We need some sort of a
unique marker.

In our research, we have proposed a method, Deterministic Replay [13],
for recording and reproducing (or replaying) the execution behavior of non-
deterministic real-time systems. The technique presented and evaluated in this
paper is incorporated into the Deterministic Replay method, allowing replay



96 Paper D

debugging of interrupt-driven embedded real-time systems.

7.1.2 Related Work

Traditionally, the simplest unique marker technique is the instruction counter.
In its basic form, this is a mechanism that counts machine code instructions as
they are executed. When an interrupt occurs, the instruction counter is sam-
pled along with the program counter in order to pinpoint the exact location of
ocurrence. The following sections will deal with the basic instruction counter
as well as altered versions.

Instruction Counters

In order to be able to count each instruction as it is executed, there is an obvious
need for some kind of specialized hardware [6][5]. Doing this in software
would call for an instrumentation of the assembly code, adding an incrementing
instruction after (or before) each instruction. Not only would this significantly
slow down overall system performance, it would also double the size of the
code part of the program (assuming all instructions are of the same size).

The hardware required to count instructions is not a complicated mecha-
nism, but a simple counter incremented on each instruction execution cycle.

Even though the hardware instruction counter technique solves the problem
of uniquely pinpointing the location of occurence of interrupts, the method
has drawbacks. One of the more significant problems is lack of the hard-
ware needed in modern state-of-the-practice embedded microprocessors. Even
though some of the larger processors available today have registers capable of
performing instruction counting [1], this is no standard component in smaller
or embedded processors. In addition, for many existing hardware platforms,
there is reason to doubt the accuracy of the provided instruction counters [9].

Another problem is the sampling of the instruction counter. For appli-
cations using an Operating System (OS) or a Real-Time Operating System
(RTOS), this may call for OS- or RTOS support. For example, consider an in-
terrupt occurring at time tevt. At time tevt + δ, the hardware instruction counter
is sampled. Obviously, we will receive the instruction counter value of the
latter, giving us a sampling error equal to the number of instructions executed
during δ. This might be problematic, especially if δ varies from time to time,
due to interrupt service routine- or kernel jitter.



7.1 Introduction 97

Software Instruction Counters

In 1989, Mellor-Crummey and LeBlanc proposed the use of a software instruc-
tion counter (SIC) [8], suitable for applications and systems running on top of
platforms not equipped with the instruction counter hardware. As stated in
the previous section, a software-based instruction counter performing the same
task as a traditional hardware instruction counter would incur an intolerable
overhead on the system. Thus, the software counterpart had to be much more
restrictive when selecting upon which instructions to increment.

The SIC idea is based on the fact that only backward branches in a program
can cause program counter values to be revisited. For instance, in a sequen-
tial program without backward branches, no instruction will be executed more
than once. In such a system, the program counter is a unique marker, defin-
ing unique states in the execution. However, using structures such as loops,
subroutines and recursive calls will require backward branches. Due to perfor-
mance reasons, the implementation of the SIC not only increments on back-
ward branches, but also on forward branches. In short, the SIC is implemented
as a register-bound counter, requiring special compiler support. In addition, a
platform-specific tool is used to instrument the machine code with increment-
ing instructions before each branch. According to the authors, the SIC incurs
an execution overhead of approximately 10 % in the instrumented programs.

The problem of getting the correct instruction counter value at sampling
time tevt + δ is not solved using software instruction counters, although we are
only interested in the number of backward branches rather than the number of
instructions during δ.

In 2002, Kim et. al. proposed an “enhanced software instruction counter”
[7], which operated similarily to the original instruction counter. The enhanced
software instruction counter managed to achieve an approximate 4 – 22% over-
head reduction rate (i.e., a resulting CPU utilization overhead of about 9%)
by analysing the machine code and separating deterministic scopes from non-
deterministic scopes, and only instrumenting the non-deterministic scopes.

In 1994, Audenaert and Levrouw proposed the use of an approximate soft-
ware instruction counter [4]. Their method was denoted Interrupt Replay. In
Interrupt Replay, the run-time logging of system interrupts is done by recording
interrupt ID and an approximate SIC value. This version of SIC is incremented
at entry- and exit points of interrupt service routines and can therefore not be
used to pinpoint exact locations (program states) of occurrence of interrupts.
As a consequence, Interrupt Replay is able to reproduce orderings of interrupts
correctly, but the interrupts will not be reproduced at the correct instruction.



98 Paper D

7.1.3 Problem Formulation
As discussed in the above section, several methods have been proposed for
pinpointing and reproducing interrupts. However, due to variouos drawbacks,
none of these methods has been fully accepted. All instruction counter methods
require platform-dependent specialized development tools, such as specialized
compilers, in order to function. When discussing embedded systems, addi-
tional drawbacks become significant. Very few embedded microcontrollers are
equipped with sufficiently accurate hardware instruction counters. Turning to
software instruction counters, these will require approximately 10 % of the
overall execution time, a hard to meet requirement in resource constrained sys-
tems.

Consequently, a different approach, more adapted to the requirements of
embedded systems and able to perform using standard development tools, is
needed.

7.1.4 Contribution
In this paper, we present a novel method for pinpointing interrupts, suitable for
embedded real-time systems. In our method, we use an approximation of the
state of the preempted program at the time of the interrupt as a marker. This
approximation is represented in the form of the stack pointer and a checksum
of the execution environment of the program, such as the registers or (part
of) the program stack. Our method imposes an execution time overhead of
approximately 0.002 – 0.37 % (27 – 5000 times less than that of the SIC) and
requires no additional hardware support to function.

7.1.5 Paper Outline
The remainder of this paper is organized as follows: In Section 7.2, our method
is described in detail. In Section 7.3, we address the issue of the accuracy of our
approximative method and in Section 7.4, we evaluate this accuracy through
simulation. Here, we also evaluate the system perturbation of our method. In
Section 7.5, we conclude the paper and Section 7.6 discuss future work.

7.2 Context Checksums
The basic idea of our method is to reproduce interrupts by recording the pro-
gram counter values and unique markers of their occurrence. In order to repro-



7.2 Context Checksums 99

duce these interrupts, a debugger breakpoint is set at each interrupted program
counter address and the program is restarted in the debugger. As a breakpoint
is hit, the unique marker of the current execution is compared to the recorded
unique marker value. If these markers match, we consider this interrupt to be
pinpointed and an interrupt is forced upon the system.

In this section, we will describe how our method uses the stack pointer
together with approximations of the data in the execution context as unique
markers. As an introduction, we will describe our concept of the execution
context.

7.2.1 Execution Context
If we look back upon the example formulated in Section 7.1.1, where a program
counter value is indistinguishably revisited a number of times, a good solution
in theory would be to make use of the loop counter together with the program
counter value as a unique marker. Unfortunately, not all loops have loop coun-
ters. In a more general sense, it is very hard to determine exactly which parts
of the program execution context that differentiate between specific loop iter-
ations, subroutine calls or recursive calls. Ideally, we would base our unique
marker on the entire content of the execution context in order to be able to
differentiate between loop iterations. However, considering the amount of data
used to represent this context, we face a practical problem when recording it
during execution due to the massive perturbation to the system. Consequently,
we need to derive a subset of the execution context suitable for unique marker
use.

The program execution context is basically a set of data stored in registers,
on the stack or on the heap. Since the processor registers are small and very
fast, these hold the most current parts of the execution context. And, since
they are small and very fast, they make exellent candidates as a basis for the
execution context-based unique markers.

7.2.2 Register Checksum
One solution would be to store the contents of each processor register. How-
ever, in most embedded systems, computing- as well as memory resources are
scarce. Storing all registers at each interrupt might incur an intolerable per-
turbation on the memory usage of the system. In our method, we handle this
problem by separately storing the stack pointer, as it is invaluable for differen-
tiating between recursive calls, and calculating and storing a checksum of the



100 Paper D

contents of the remaining registers. By doing this, we destroy information, but
still preserve an approximative representation of the register contents from the
time of the interrupt.

The register checksum operation is a simple addition of all processor regis-
ters. Overflow of the accumulated checksum is ignored. Hence, if the processor
is equipped with eight general-purpose 16-bit registers (R0...R7), the register
checksum CR is calculated as follows:

CR = (R0 + R1 + ... + R7) mod 216

Due to the modest size and the ease of access of processor registers, the
computational cost of calculating a register checksum is very small. However,
since the register checksum is based solely on the processor registers, its main
disadvantage is that it only covers a minor subset of the execution context. If
an interrupt occurs within a loop and the actual parameters differentiating be-
tween iterations are not included in this subset, we will not be able to uniquely
pinpoint the occurrence of the interrupt.

7.2.3 Stack Checksum

In order to capture those interrupt occurrences not successfully pinpointed by
the register checksum, we must expand the interval of execution context in-
cluded in the context checksum.

As we already used the registers, the remainder of the execution context is
located on the stack and on the heap. In our method, we chose to work with
the program stack contents. This has two reasons: First, implementing a stack
checksum calculation in an instrumentation probe [10] is significantly easier
than implementing a heap checksum in the same probe. The stack area is well
defined, continuous and often easy to access from within the probe. Second,
without having extensive proof of this, we assume that variables influencing the
program control flow, such as loop counters, are often allocated on the stack
rather than on the heap.

The checksum operation of the stack checksum is identical to the one per-
formed in order to calculate the register checksum. Here, the subset of the
execution context included in the checksum is bounded by the boundaries of
the stack of the executing program. Hence, on a 16-bit architecture, the stack
checksum CS is calculated using the following formula:

CS = (SSP + SSP+1 + ... + SSB) mod 216



7.2 Context Checksums 101

In the above formula, SX denotes the byte at stack address X . SP denotes
the value of the stack pointer at the time of the interrupt and SB denotes the
value of the stack base of the interrupted program.

The stack checksum should be viewed upon as a complement to the regis-
ter checksum rather than a stand-alone solution for pinpointing interrupts. The
reason for this is the fact that the execution overhead of the stack checksum
exceeds the overhead of the register checksum to such an extent that the per-
turbation of the latter becomes negligible. In addition, discarding the option
of using a register checksum when choosing a stack checksum solution will
eliminate the possibility of detecting changes in register-bound variables over
loop iterations.

Instrumentation Jitter

Apart from the sheer size issue, there is another property that separates the reg-
ister checksum from the stack checksum. In the case of the register checksum,
we always use the same number of elements in order to calculate the check-
sum. If the processor has eight registers, the checksum will always calculate
the register checksum by accumulating the values stored in these eigth regis-
ters. Hence, we can guarantee a constant execution time as far as number of
instructions are concerned.

Using a stack checksum, the situation is different. The stack base of a
program is constant whereas the stack pointer varies over time. This implies
a variable size of the program stack and thus a variable execution time of the
stack checksum calculation, depending on the size of the stack at the time of
the interrupt.

Variations in execution time of software are usually referred to as jitter. In
multi-tasking systems (such as most embedded real-time systems), designers
try to keep the jitter to a minimum, since it comprises the testability and an-
alyzability of the system [11]. Therefore, jitter introduced by instrumentation
activities (such as the stack checksum calculation) may complicate testing of
sensitive systems, even though the instrumentation was included in order to
increase the analyzability.

7.2.4 Partial Stack Checksum
To reduce the execution time perturbation and the problem of large instrumen-
tation jitter when using the stack checksum technique, the developer has the
option of not including the entire program stack in the stack checksum. A



102 Paper D

partial stack checksum CP would be calculated similarily to the original stack
checksum (once again on a 16-bit platform):

CP = (SSP + SSP+1 + ... + SSX) mod 216

However, the upper boundary SX of the stack interval to be included in the
checksum is chosen such that:

SP ≤ SX ≤ SB

By using this formula, we once again reduce the percentage of the execu-
tion context included in the stack checksum, thereby reducing the accuracy of
the unique marker approximation. In turn, we obtain the following benefits:

• Eliminating instrumentation jitter
By defining SX in terms of a constant positive offset to SP (denoted x

in Figure 7.1) such that the interval [SP, SX ] delimits a constant num-
ber of bytes on the stack, we make sure that the stack checksum will be
calculated using a constant number of instructions. This will eliminate
the instrumentation jitter of the checksum calculation (not considering
cache effects or similar). In the case where the size of the fixed inter-
val [SP, SX ] exceeds the size of the actual program stack (i.e. when
SX > SB), this can be detected and the remaining instructions can be
simulated using additions of zero to the checksum or similar.

• Reducing instrumentation overhead
Intuitively, reducing the percentage of the stack included in the stack
checksum will reduce the execution time of the stack checksum calcu-
lation. If total elimination of instrumentation jitter is no major require-
ment, a reasonable candidate for SX may be the base of the stack for
the current subroutine. Many processors are equipped with a dedicated
register holding the value of this base pointer (BP in Figure 7.1) to the
current scope of execution.

7.3 Approximation Accuracy
In the above section, we have proposed a set of unique marker approximations
designed to be able to pinpoint locations of occurrence of interrupts. As our
method is inexact, this raises questions of how accurate these approximations



7.3 Approximation Accuracy 103

h()

g()

P
ro

gr
am

 S
ta

ck

SB

BP

SP

SX

x

Figure 7.1: Different delimiter alternatives for the stack checksum. The g()
and h() intervals represent stack intervals for subroutine execution scopes for
g and h respectively.

are. In this section, we will discuss the ambiguity of our method, starting by
describing our method in a more formal notion.

Given a program P , we define SP to be the set of states that can be reached
in an arbitrary execution of P . Each element s ∈ SP is made up of a tuple
< pcs, envs >, where pcs is an executable address in the program code and
envs is a reachable program environment. Furthermore, an execution EP of P

is defined as an ordered set of visited states. Hence, in a more formal notion,
given an execution EP that is preempted by an interrupt at state si, our aim is
to uniquely identify si.

If no information is extracted during the execution, we know nothing of
when the interrupt preempted the program. As far as we know, the interrupt
may have occurred anywhere during the execution. In other words, there is no
element s ∈ EP that can be disqualified from being the potential state of the
interrupt.

By identifying the program counter of the state of the interrupt pci, we
are able to eliminate a large subset of the set of visited states in the program
execution. Those states for which pc 6= pci can be discarded from further
investigation. However, we are still left with a set of inseparable states, since
we cannot differentiate between the various state environments.



104 Paper D

Adding the stack pointer and the register- and stack checksum will aid in
further pruning the execution state set. Using these, we have access to an
approximative representation of the program environment of si.

Using these prunings, we will end up with a non-empty set Ei for which
the following is true:

Ei = {s : s ∈ EP ∧ pci = pcs ∧ envi ≈ envs}

Ideally, at this stage Ei will include exactly one element (the actual state
of the interrupt). Unfortunately, we cannot guarantee that the environment
approximation and the program counter value are not valid for other states in
EP . The reason for the inability of differentiating between si and other states
in EP is twofold:

• Insufficient scope of execution context

Intuitively, including a smaller scope of execution context in the con-
text checksum will increase the risk of leaving important variables out.
Thus, a register checksum alone will provide less accuracy than a reg-
ister checksum combined with a stack checksum. If we are dependent
on variables located on the heap, which are addressed by memory di-
rect machine code operations, typically possible in a CISC architecture,
neither register- nor stack checksums will be of any use.

• Checksum ambiguity

As the checksum by default is a non-reversible operation, two com-
pletely different stacks or sets of registers may give rise to the exact same
checksum. For example, both 1 + 3 + 5 and 7 + 2 + 0 equals 9, even
though they contain entirely different terms. In addition, since overflow
is handled in no other way than a simple modulo operation, our method
will not differ between a checksum of 1 and one of 2n + 1, where n is
the number of bits in the checksum.

It should be noted that our method will not fail in pinpointing the correct
state of the interrupt si. The problem is that it also might find false positives,
i.e. it might pinpoint other states as well. Due to the fact that the interrupt-
matching set Ei is ordered (states are ordered in the same sequence as in which
they were visited in the original execution), in our current implementation, the
method will choose the state that is reached first. Yet the question remains,
how frequently do we find the correct state?



7.4 Simulation 105

P
 R

 I 
O

 R
 I 

T
 Y

T I M E

P

t

I

Figure 7.2: Execution of program P preempted at time t by interrupt I

7.4 Simulation

In order to evaluate the approximation accuracy and the level of perturbation
of our method, we have conducted a number of tests. In the accuracy tests, a
tailor-made program P was written, executed and preempted by an interrupt I .
Our test platform was the IAR Embedded Workbench (EW) [2], a commercial
integrated development environment for embedded systems. We used the NEC
V850 (a RISC architecture processor) version of EW and our tests were per-
formed using the Deterministic Replay implementation on the EW V850 target
simulator. Using the cycle counter of the simulator, we were able to simulate
interrupts after a fixed number of clock cycles.

In our experiments, both P and I were implemented as real-time tasks run-
ning on top of the Asterix real-time operating system [12]. By varying the time
t (or rather the number of clock cycles during t), we can cause I to preempt P

at different states of its execution (see Figure 7.2). The accuracy tests and their
results are described further in Section 7.4.1. As for the perturbation tests, these
were performed on a full-scale industrial robotics application [10] running on
top of an Intel PII 400 MHz processor and the commercial VxWorks real-time
operating system [3]. These tests will be further discussed in Section 7.4.2.

There are several reasons for choosing different test platforms for different
experiments. In a way, it would be desirable to use the full-scale industrial
application for the accuracy tests as well. However, using a tailor-made pro-
gram instead, it is possible to force execution scenarios upon the method in
such a way that it is tested more thoroughly. In addition, due to the current
implementations, applications running on top of Asterix are significantly more
manageable with respect to interactive debugging. This is an invaluable prop-



106 Paper D

sr1 sr2 sr3 sr4P main

100

1

2

4

8

Figure 7.3: The structure of test program P .

erty when examining and comparing program states during run-time.
The perturbation tests were performed on an actual 2.5 million LOC in-

dustrial application with approximately 70 tasks in order to produce results
relevant to other existing industrial applications.

7.4.1 Approximation Accuracy
To be able to test the accuracy of the context checksum methods under different
circumstances, the program P was written such that its properties could be eas-
ily changed. Over all tests, however, P preserved its basic structure (depicted
in Figure 7.3). In short, P consists of a main function and four subroutines
sr1..sr4. In a loop with 100 iterations, P main calls sr1, which in turn per-
forms some calculations and calls sr2. The sr2 subroutine, in turn, calls sr3
in two loop iterations. From sr3, sr4 is called four times. In its structure, sr4
has a loop that iterates eight times.

On the lowest subroutine level, this yields 6400 iterations (100 ∗ 1 ∗ 2 ∗
4 ∗ 8) in the sr4 loop for each execution of P , meaning that each instruction
in this loop is visited 6400 times. As a consequence, in an execution of P ,
every instruction of the sr4 loop will result in 6400 states in EP . All of these
states will have identical program counter values, but different environments.
Hence, P is well suited for examination of how well our method will perform
regarding differentiation between states with identical program counter values.
In our tests, we used four different allocation schemes in order to investigate
the performance of our method. These schemes were modeled such that the
allocation of variables were placed in different parts of the execution context:

1. Stack Allocation 1

In this scheme, all variables (loop counters and calculation variables)
were allocated on the stack of each subroutine. No parameters were
passed.



7.4 Simulation 107

2. Stack Allocation 2

This scheme allocated like Stack Allocation 1, but also passed parame-
ters explicitly between subroutines.

3. Heap Allocation 1

In this scheme, all variables were allocated globally. No parameters were
passed.

4. Heap Allocation 2

All variables were allocated globally and parameters were passed be-
tween subroutines.

Each of these schemes were tested using the register checksum, the stack
checksum and the partial stack checksum. In our test, we used the scope of
the current subroutine as a delimiter of the partial stack interval (correspond-
ing to the [SP, BP ] interval in Figure 7.1). All in all, this yielded 12 different
test scenarios. These scenarios were tested by executing P during t time units.
At time t, P is preempted by an interrupt and the unique marker and the pro-
gram counter are sampled. Then, P is deterministically re-executed until the
program counter and the unique marker matches those that were sampled. At
this point, we compare the current state of execution with the original interrupt
state by comparing the values of a set of globally defined loop counters. If the
states match, we consider the test successful.

As stated in Section 7.4, by varying t, we can cause the interrupt to preempt
the program at different states each time. In our tests, we started at a t value
of 10000 clock cycles and in increments of 200, we raised it to 18000 cycles.
This produced 41 test cases in each of the 12 test scenarios. The reason for the
sparse number of tests is that they had to be performed by hand.

Each test case yields a binary outcome (either the interrupt is successfully
pinpointed, or it is not). Looking at the cumulative success rate percantage in
relation to the number of test cases, most test scenarios exhibit a benign curve
(see Figure 7.4). However, some curves do not seem to converge nicely after
41 test cases (e.g. Figure 7.5). For these test scenarios, we doubled the number
of test cases in order to get a more stable success rate. For graphs from all
simulations, see Appendix A.

In Figure 7.6, the results of the accuracy simulations are shown. Naturally,
since the partial stack checksum and the stack checksum are complementary
techniques to the register checksum, these always exhibit a better accuracy.
If all variables are allocated on the stack, the stack checksum techniques will



108 Paper D

Converging success rate

0

10

20

30

40

50

60

70

1 5 9 13 17 21 25 29 33 37 41

Number of test cases

C
um

ul
at

iv
e 

su
cc

es
s 

pe
rc

en
ta

ge Register
checksum, heap
allocation 2

Figure 7.4: For this test scenario, the cumulative success percentage converges
after 41 test cases.

Non-converging success rate

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41

Number of test cases

C
um

ul
at

iv
e 

su
cc

es
s 

pe
rc

en
ta

ge Register
checksum, stack
allocation 2

Figure 7.5: This test scenario gives rise to a non-converging cumulative suc-
cess rate. After 41 test cases, it is hard to tell where the curve is going. Conse-
quently, more test cases are needed.



7.4 Simulation 109

49%59%*93%100%Partial stack 
checksum

73%68%*100%100%Stack 
checksum

46%54%45%*42%Register 
checksum

Heap 
allocation 2

Heap 
allocation 1

Stack 
allocation 2

Stack 
allocation 1

49%59%*93%100%Partial stack 
checksum

73%68%*100%100%Stack 
checksum

46%54%45%*42%Register 
checksum

Heap 
allocation 2

Heap 
allocation 1

Stack 
allocation 2

Stack 
allocation 1

Figure 7.6: Success rates for different unique marker techniques. Those figures
marked with an asterisk are based on 82 test cases rather than 41.

outperform the register checksum techniques by far. However, if all variables
are allocated on the heap, the difference is not that significant. It should also
be noted that a checksum of parts of the stack in many cases performs nearly
as well as a full stack checksum.

7.4.2 Perturbation
As the unique marker checksums need to be sampled during run-time at the
occurrence of an interrupt, this imposes a perturbation to the execution of the
context switch. However, contrary to the perturbation of the SIC, discussed in
Section 7.1.2, the size of this perturbation is not proportional to the number of
branches in the code, but to the number of interrupts in an execution.

In order to test the level of perturbation of our method, we measured the
execution-time perturbation of the checksum calculations in a full-scale indus-
trial robotics system [10]. While letting the system perform some simple robot
arm movements, we sampled the unique markers at interrupt occurrences as
well as the execution time of the unique marker code. The upper and lower
boundaries of the instrumentation execution time is presented in Figure 7.7.

As we can see from the figure, the instrumentation jitter of the stack check-
sum execution is several magnitudes larger than that of the register checksum.
The alterations in stack checksum execution time are mostly due to differences
in the size of the stack at the time of the interrupt, whereas the register check-
sum execution time alterations are due to cache effects (since the registers are
sampled from the task control blocks rather than the actual hardware registers).

Regarding the level of perturbation, this could be compared with that of



110 Paper D

0.003 - 0.37%0.002 - 0,007%Overall 
perturbartion

0.40 µs0.37 µsBCET

0.11 ms1.75 µsWCET

Stack 
checksum

Register 
checksum

0.003 - 0.37%0.002 - 0,007%Overall 
perturbartion

0.40 µs0.37 µsBCET

0.11 ms1.75 µsWCET

Stack 
checksum

Register 
checksum

Figure 7.7: Perturbation levels for stack- and register checksum.

the software instruction counter [8], which requires approximately 10 % of the
overall CPU utilization.

7.5 Conclusions

In this paper, we have presented an alternative approach for pinpointing in-
terrupts in embedded real-time systems. The need for non-standard tools for
previous methods leads to problems when trying to port these methods to dif-
ferent platforms, processors, operating systems or compilers. Furthermore,
these methods suffer from drawbacks such as insufficient hardware support
[6][5], inexact pinpointing of interrupts [9][4] or large execution time pertur-
bation [8].

For our method, simulations suggest a worst-case success rate performance
of 42 % for the register checksum, 49 % for the partial stack checksum and 68
% for the stack checksum. As more variables are allocated on the stack, the
performance increases significantly. In the best test cases, both the stack check-
sum and the partial stack checksum produce perfect results. This is achieved
with an instrumentation perturbation at least ten times lower than that of the
software instruction counter. Furthermore, our method only makes use of stan-
dard compilers, operating systems and platforms and requires no specialized
hardware in order to function correctly.



7.6 Future Work 111

7.6 Future Work
Considering a full program execution, we might have to deal with pinpointing
not only one, but maybe two, four, or even hundreds of preemptive interrupts.
Suppose that an execution is preempted by ni interrupts. If the probability of
pinpointing one interrupt correctly is Pi and the interrupts are uncorrelated,
the probability of reproducing the entire execution with all interrupts in place
is P ni

i
. With large numbers of interrupts, the probability of correctly repro-

ducing the entire execution will be unacceptably low. Therefore, we will look
further into possibilities of significantly raising the probability of pinpointing
sequences of interrupts.



112 Paper C

Appendix A
In this section, we present graphs from all test scenarios. All graphs display
the evaluation of the cumulative success rate with respect to the number of test
cases run. Figures 7.8 through 7.10 display the cumulative success rate curve
of the original register-, stack- and partial stack checksum tests respectively.
Figure 7.11 displays the evaluation of the cumulative success rate for the three
test scenarios that were simulated with the double number of test cases.

Register Checksum

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Number of test cases

C
u

m
u

la
ti

v
e

 s
u

c
c

e
s

s
 p

e
rc

e
n

ta
g

e

stack allocation 1

heap allocation 1

stack allocation 2

heap allocation 2

Figure 7.8: Cumulative success rate of the register checksum simulations.



Appendix A 113

Stack Checksum

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Number of test cases

C
u

m
u

la
ti

v
e

 s
u

c
c

e
s

s
 p

e
rc

e
n

ta
g

e

stack allocation 1

heap allocation 1

stack allocation 2

heap allocation 2

Figure 7.9: Cumulative success rate of the stack checksum simulations.

Partial Stack Checksum

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Number of test cases

C
u

m
u

la
ti

v
e

 s
u

c
c

e
s

s
 p

e
rc

e
n

ta
g

e

stack allocation 1

heap allocation 1

stack allocation 2

heap allocation 2

Figure 7.10: Cumulative success rate of the partial stack checksum simulations.



114 Paper C

Extended Checksum Simulations

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Number of test cases

C
u

m
u

la
ti

v
e

 s
u

c
c

e
s

s
 p

e
rc

e
n

ta
g

e

register checksum, stack

allocation 2

stack checksum, heap

allocation 1

partial stack checksum,

heap allocation 1

Figure 7.11: Cumulative success rate of the extended checksum simulations.



Bibliography

[1] Intel Architecture Software Developer’s Manual 24319202, 1999.

[2] www.iar.com, February 2004.

[3] www.windriver.com, February 2004.

[4] K. Audenaert and L. Levrouw. Interrupt Replay: A Debugging Method
for Parallel Programs with Interrupts. Journal of Microprocessors and
Microsystems, Elsevier, 18(10):601 – 612, December 1994.

[5] T.A. Cargill and B.N. Locanthi. Cheap Hardware Support for Software
Debugging and Profiling. In Proceedings of the 2nd International Con-
ference on Architechtural Support for Programming Languages and Op-
erating Systems, pages 82 – 83, October 1987.

[6] M. Johnson. Some Requirements for Architectural Support of Debug-
ging. In Proceedings of the Symposium on Arhcitectural Support for Pro-
gramming Languages and Operating Systems, pages 140 – 148. ACM,
March 1982.

[7] D. Kim, Y.-H. Lee, D. Liu, and A. Lee. Enhanced Software Instruction
Counter Method for Test Coverage Analysis of Real-Time Software. In
Proceedings of IEEE International Conference on Real-Time Computing
Systems and Applications (RTCSA), March 2002.

[8] J. Mellor-Crummey and T. LeBlanc. A Software Instruction Counter.
In Proceedings of the Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 78 –
86. ACM, April 1989.

115



116 BIBLIOGRAPHY

[9] O. Oppitz. A Particular Bug Trap: Execution Replay Using Virtual Ma-
chines. In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth
International Workshop on Automated Debugging (AADEBUG), pages
269 – 272. COmputer Research Repository (http://www.acm.org/corr/),
September 2003.

[10] D. Sundmark, H. Thane, J. Huselius, A. Pettersson, R. Mellander,
I. Reiyer, and M. Kallvi. Replay Debugging of Complex Real-Time Sys-
tems: Experiences from Two Industrial Case Studies. In M. Ronsse, K. De
Bosschere (eds), proceedings of the Fifth International Workshop on Au-
tomated Debugging (AADEBUG), pages 211 – 222. COmputer Research
Repository (http://www.acm.org/corr/), September 2003.

[11] H. Thane and H. Hansson. Testing Distributed Real-Time Systems. Jour-
nal of Microprocessors and Microsystems, Elsevier, 24:463 – 478, Febru-
ary 2001.

[12] H. Thane, A. Pettersson, and D. Sundmark. The Asterix Real-Time Ker-
nel. In Proceedings of the Industrial Session of the 13th EUROMICRO
International Conference on Real-Time Systems. IEEE Computer Society,
June 2001.

[13] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson. Replay Debug-
ging of Real-Time Systems Using Time Machines. In Proceedings of Par-
allel and Distributed Systems: Testing and Debugging (PADTAD), pages
288 – 295). ACM, April 2003.






