
From informal architecture diagrams
to flexible blended models⋆

Robbert Jongeling1[0000−0002−1863−3987], Federico
Ciccozzi1[0000−0002−0401−1036], Antonio Cicchetti1[0000−0003−0416−1787], and Jan

Carlson1[0000−0002−8461−0230]

Mälardalen University, Västerås, Sweden firstname.lastname@mdu.se

Abstract. For the early design and communication of software systems,
architects commonly use informal diagrams. Due to their notational free-
dom and effectiveness for communication, informal diagrams are often
preferred over models with a fixed syntax and semantics as defined by a
modeling language. However, precisely because of this lack of established
semantics, informal diagrams are of limited use in later development
stages for analysis tasks such as consistency checking or change impact
analysis. In this paper, we present an approach to reconciling informal
diagramming and modeling such that architects can benefit from analysis
based on the informal diagrams they are already creating. Our approach
supports migrating from existing informal architecture diagrams to flex-
ible models, i.e., partially treating diagrams as models while maintaining
the freedom of free-form drawing. Moreover, to enhance the ease of in-
teracting with the flexible models, we provide support for their blended
textual and graphical editing. We validate our approach in a lab set-
ting and perform an evaluative case study in an industrial setting. We
show how the approach allows architects to continue informal diagram-
ming, while also benefiting from flexible models for consistency checking
between the intended architecture and the implementation.

Keywords: architecture consistency, software design sketching, blended
modeling, flexible modeling.

1 Introduction

Software architects make extensive use of informal diagrams for early design and
communication [12]. These diagrams can be used to depict, e.g., the intended
decomposition of the system into components, the deployment of components
across various hardware systems, or the communication between various parts of
the system. The use of free-form drawing for these diagrams allows the ad hoc in-
sertion of new semantic elements and provides freedom of sharing ideas without
the inhibition of editing tools or stringent adherence to modeling languages. Be-
ing free-formed makes these diagrams easy to adopt and, in many cases, preferred

⋆ This research was supported by Software Center https://www.software-center.se

https://www.software-center.se


2 R. Jongeling et al.

to models created in modeling tools that enforce their conformity to modeling
languages. Thus, informal diagrams are vital tools for architects.

In later phases of development, architects may want to use these previously
created informal diagrams to reason about the system. For example, it is com-
monly of interest to check the completeness of the implementation by comparing
the consistency between models of the intended architecture and the implemen-
tation. Moreover, such consistency is a prerequisite for using the models for
further analysis tasks such as change impact analysis. Their lack of committed
semantics prevents informal diagrams from being used for these analysis tasks.
Therefore, the question arises: How can we benefit more from informal early
architecture diagrams for analyzing systems under development?

Based on the prevalence of informal diagrams used for communication be-
tween stakeholders, as reported in earlier surveys [19,1], modeling experts have
argued that informal modeling (often done in drawing tools and contrasted to
more formal and less flexible modeling) can be successful if limitations to their
structure are postponed as long as possible [2]. In this study, we consider the
point of limiting the structure to come at the moment when informal models
are starting to be used for analysis tasks such as consistency checking or change
impact analysis. The latter use of sketches is not uncommon; in one of the men-
tioned surveys, half of the respondents mentioned that sketches were useful to
later understand the relationships between development artefacts [1].

Analysis tasks can be better supported by considering development artifacts
as models of the system. To bridge informal diagramming and modeling, the
concept of flexible modeling proposes to extend modeling tools to support more
informal tasks [11]. Generally, flexible modeling is about providing the freedom
to deviate from the strict graphical syntax of a modeling language. Blended
modeling proposes the seamless use of multiple concrete syntaxes for the reading
and editing of models [5].

In this paper, we consider a combination of flexible and blended modeling
to provide architects with an approach to benefit from their informal diagrams
for analysis tasks. Our approach entails the definition of a grammar for a tex-
tual model that shall captures specific aspects of the diagram. A set of model
transformations then provides a round-trip synchronization between the informal
diagrams, the derived textual model, and back, so that the graphical notation
can be updated and can continued to be used after changes in the textual model.
We validate our approach in a lab setting and perform an evaluative case study
at our industrial partner.

2 Motivation and challenges

In their raw form, informal diagrams lack defined semantics as well as a workable
representation and therefore require pre-processing before they can be used for
semi-automated analysis tasks such as consistency checking or change impact
analysis. Model-based development [18] provides the means to process diagrams
in structured and tool-supported ways; by considering them as models of the



From informal architecture diagrams to flexible blended models 3

system, i.e., abstract representations with a defined syntax and semantics. To
maintain the freedom of informal diagramming while also providing the addi-
tional benefits of modeling, we aim to consider part of the informal diagrams
as models and to preserve the remaining parts of the diagrams as well. In the
remainder of this section, we discuss four challenges when we want to migrate
from informal diagrams to flexible and blended models.

Knowledge preservation from existing diagrams. The first challenge is
to preserve the knowledge captured in a potentially large set of existing informal
diagrams. Therefore, the challenge is to boost existing informal diagrams with
modeling information or to automatically replace them while maintaining their
current content. In both cases, manual migration is infeasible due to the scale
and number of existing diagrams.

Adding a textual syntax. Having a textual syntax in addition to the
existing graphical one can be beneficial for various tasks such as version control,
creating scripts that interact with the textual models, or simply because a textual
representation may be the preferable way to edit the model for some stakeholders.
Therefore, we identify the need for blended modeling [5], i.e., the use of a textual
and graphical representation of the architecture.

Synchronizing graphical and textual syntax. The textual syntax should
not replace graphical representations, but should be a supplementary means
of manipulating the models. Moreover, both representations shall be editable,
and changes to one of them shall be automatically propagated to the other.
Synchronization of textual and graphical notations brings additional challenges
in flexible modeling settings, since the layout of diagrams must be maintained
during synchronization.

Preserving the graphical layout. The layout of informal diagrams may
capture the implicit semantics of the design. Therefore, the model should be flex-
ible to include not only semantically relevant modeling information but also im-
plicit information related to the topology of the model, including, e.g., the color,
size, location, and rotation of shapes. For example, in a deployment diagram, the
placement of boxes relative to each other or the distance between them may con-
vey some meaning to architects about the relative grouping of components. Not
all of these implicit semantics are meaningful to capture in a modeling language,
nor are they easily formalized. In other modeling formalisms, e.g., UML class
diagrams, the exact arrangement of the classes carries no semantics (although it
can still be relevant for communication). However, for informal diagrams, these
implicit semantics are key, especially since diagrams are used mainly for com-
munication between architects and other stakeholders. Hence, while it may be
hard to make these implicit semantics explicit, the layout should be preserved
so that the intended meaning of informal diagrams is not lost.

3 Flexible and blended modeling of architectures

In this section, we propose an approach that meets the challenges identified in
Section 2.



4 R. Jongeling et al.

3.1 Approach overview

Our approach boosts existing informal diagrams by considering parts of them
as models. To do so, we define specific types of graphical elements (shapes)
in the informal architecture diagram as metamodel elements, and thereby all
occurrences of those shapes as model elements. Furthermore, we propose two
unidirectional transformations that (i) create a textual model from an informal
diagram, and (ii) restore a graphical representation based on the textual model,
preserving the layout of the pre-existing informal diagrams. Hence, parts of the
informal diagram that are not defined as model elements are not included in
the textual model, but are restored when transforming the textual model back
to a graphical representation. This approach allows architects to continue with
informal diagramming, also after the definition of the model. An overview of
the transformations and other parts of the approach is shown in Fig. 1. In the
following, we include a detailed description of the approach, in which we distin-
guish between the blended modeling loop and the preparation steps that define
the textual and graphical formats.

Pre-existing
informal diagram

Grammar for
textual model

Textual model

Diagram 
2 

Text

Text 
2 

Diagram

Map 
<ModelElement,
XML Fragment>

Map 
<ModelElement,
Text Fragment>

"Legend" Drawing

Legend2 
XmlFragments

Map 
<MetaModelElement,

XML Fragment>

Blended modelling 
loop

Defining textual format Defining graphical format

Transformation

Editable
element

Figure key:

optional I/O

Persisted
element

input/output

Fig. 1. Schematic overview of our flexible and blended modelling approach.

3.2 Defining textual and graphical formats

The first step of the approach is to define a grammar to which the textual
model of the architecture diagram will conform. To do so, the architects should
identify those aspects of the diagrams they have created that are of interest
for analysis. The grammar should contain concepts for each type of element in
the diagram that will be considered a metamodel element. The textual model is
obtained through the transformation Diagram2Text, which in the first iteration
of the blended modeling loop only takes as input the grammar and the informal
diagram.



From informal architecture diagrams to flexible blended models 5

To define the transformation Diagram2Text , it is necessary to define which
shapes of the diagram are to be considered as metamodel elements. This infor-
mation can be directly included in the transformation or fed to the tool by means
of a “legend”, which is a separate diagram in which the metamodel elements are
defined by example. For example, if all yellow rectangles in a diagram are to
be considered as instances of the metamodel element “component”, then the leg-
end should contain a single yellow rectangle named “component”. Then, using
the transformation Legend2XmlFragments, we create a map of the metamodel
element to the XML fragment, in this case from the metamodel element “com-
ponent”. The legend is used to transform newly added elements in the textual
representation to a graphical representation, in transformation Text2Diagram.
Conversely, if no new elements are defined in the textual model, the entire dia-
gram can be reconstructed based on the map of the model element to the XML
fragment stored during transformation Diagram2Text.

As we will see in Section 4, transformations Diagram2Text and Text2Diagram
are currently implemented manually. This is a limitation of the implementation,
but not of the approach. In future work, our aim is to automatically generate
the transformations inside the blended modeling loop provided a grammar for
the textual model and a legend drawing.

3.3 Blended modeling loop

The middle part of Fig. 1 labeled “Blended modeling loop” refers to the syn-
chronization between the informal diagram and the derived textual model. We
follow a cycle of the loop starting from the box “Pre-existing informal diagram”.
Given the initial diagram and the grammar, the transformation Diagram2Text
results in (i) a textual model of the architecture, containing all the model ele-
ments identified in the diagram; and (ii) a map of the model elements to XML
fragments, containing for each of the identified model elements an XML frag-
ment containing their corresponding graphical representation as obtained from
the diagram file.

After changes to the textual model, we can reconstruct the diagram from
the textual model by transformation Text2Diagram. Each model element in the
textual model is expanded to its graphical representation using either (i) the
XML fragment stored during the previous transformation Diagram2Text or (ii)
the XML fragment as a result of transformation Legend2XMLFragments. The
latter option is used for elements that are newly added or changed in the textual
representation and therefore do not occur in the stored map of model elements to
XML fragments. Therefore, although both inputs corresponding to these options
are marked as optional in Fig. 1, exactly one of them must be used to expand each
model element. Thus, Text2Diagram makes use of the preserved layout informa-
tion associated with the model elements during transformation Diagram2Text.
Furthermore, transformation Text2Diagram also restores the remainder of the
diagram, i.e., those shapes that were not considered model elements. To do so, it
replaces in the original diagram only those shapes that were identified as model
elements in the previous step and leaves the remaining shapes unaltered.



6 R. Jongeling et al.

To some extent, the layout information of the textual representation is pre-
served as well; the Text2Diagram transformation produces a map that contains
an associated text fragment for each model element, which includes all the text
after the previously occurring model element and until the model element itself.
Hence, all comments related to an element are preserved and are later restored
when re-running the Diagram2Text transformation. This input is marked as op-
tional because, during the first time the transformation is executed, no such text
fragment information is known, and therefore, is not used.

The approach is thus flexible, as it allows the user to continue to com-
bine modeling and drawing by preserving the existing diagram layout in its
entirety, except for the added, modified, or deleted model elements. Moreover,
synchronization between textual and graphical representations makes the ap-
proach blended. Thus, we have obtained flexible and blended models from infor-
mal architecture diagrams.

4 Implementation1 and validation

In this section, we describe our implementation, validate it by showing how
the textual and graphical representations can be automatically synchronized
while preserving their layout, and show how architects in our industrial setting
benefited from our approach for establishing consistency checks between the
architecture model and the implementation.

4.1 Implementation and validation in lab setting

To demonstrate the approach, we implemented it by boosting the functionality
of the drawing tool diagrams.net with a grammar to capture some aspects
of pre-existing informal diagrams in textual models. We now show an example
architecture diagram, a corresponding grammar, and transformations for round-
tripping between the diagram and the textual model.

Example architecture diagram An example architecture diagram is shown
in Fig. 2. The example is an extended version of the architecture diagram en-
countered in the industrial setting discussed in Section 4.2. The diagram shows
several layers that represent hardware, drivers, services, and others. The different
columns roughly represent groupings of functionality. In addition, the diagram
contains the components and their position within the layers and columns. Com-
ponents are distinguished between in-house developed components (yellow) and
third-party components (blue). Dependencies between components are indicated
by means of dashed arrows. The example is an anonymized (by removing the

1 The reader is encouraged to have a look at our replication package with our
implementation and demo videos, in the following GitHub repository: https://
github.com/RobbertJongeling/ECSA-2022-replication-package.

https://github.com/RobbertJongeling/ECSA-2022-replication-package
https://github.com/RobbertJongeling/ECSA-2022-replication-package


From informal architecture diagrams to flexible blended models 7

Fig. 2. Example anonymized informal diagram of an instance architecture.

names of layers and components) and extended (by adding dependencies) ver-
sion of a real architecture diagram of the company that could not be shared for
intellectual property reasons.

Defining a grammar We aim to capture three aspects of the diagram: lay-
ers, components as residing in layers, and dependencies between the compo-
nents. In this implementation, we create the grammar shown in Listing. 1.1
using TextX [6], which is based on Xtext [21], but does not rely on the Eclipse
ecosystem; instead, it allows for grammar specification in Python. The choice of
Python is motivated from an industrial perspective to ease the adoption of the
approach.

Listing 1.1. Grammar specification for textual model, expressing an architecture in
terms of components, dependencies, and layers.

Architecture:
(’components ’ ’{’ components += Component ( "," components

↪→ += Component)* ’}’ )
(’dependencies ’ ’{’ dependencies += Dependency ( ","

↪→ dependencies += Dependency)* ’}’ )
(’layers ’ ’{’ layers += Layer ( "," layers +=Layer)* ’}’ )*

;
Component:

’component ’ name=ID
(’inlayers ’ ’{’ layers +=[ Layer] ( "," layers +=[ Layer])* ’

↪→ }’ )*



8 R. Jongeling et al.

;
Dependency:

(’from’ fromcomp =[ Component ])
(’to’ tocomp =[ Component ])

;
Layer:

’layer ’ name=ID
;
//lines starting with # are comments
Comment:

/\#.*$/
;

The grammar is limited to the properties of the architecture that we want
to model. Additional properties of the components could also be included in the
model, e.g., whether they are third-party, open-source, or in-house developed.
In this example, we consider that this additional information included in the
diagram is not needed in the model and show that it is nevertheless preserved
in the blended modeling loop.

Creating a “legend” drawing The legend contains shapes for all metamodel
elements that occur in the grammar. Fig. 3 shows the legend drawing that is used
as input to derive the shapes of the metamodel elements “layer”, “component”,
and “dependency”. Since the approach is based on the XML representation of
the diagram, a requirement when using multiple shapes is that they have a
different shape definition (e.g., rectangles and rounded rectangles could have the
same “shape” value and would thus be indistinguishable). In the example legend,
the element “layer” is defined as a polygon, the component and the third-party
component are both rectangles, but with different styles.

Transforming diagrams to text and back The transformations, like the
grammar, are also implemented in Python. To process the diagram, the first

component
layer

third_party_component

dependency

Fig. 3. “Legend” defining the shapes of the metamodel elements layer, component, and
dependency.



From informal architecture diagrams to flexible blended models 9

step of the transformation Diagram2Text obtains a readable XML string from
the persisted format. To create the textual model, first all shapes that denote
model elements are collected, and then relationships between model elements
are identified. During generation of the textual model, it is checked if there is an
existing map of model elements to textual fragments that was created during a
previous iteration of the blended modeling loop. If so, the textual representation
of these model elements is restored; if not, they are newly created based on the
grammar. When creating the textual model, for each model element, the XML
fragment corresponding to its graphical representation is stored.

To recreate the diagram, the transformation Text2Diagram replaces all the
identified model elements in the existing diagram with those model elements of
the textual model. If they already exist, then their graphical representation is
taken from the map of model elements to XML fragments. For new components,
layers, and dependencies, we rely on the legend to derive the representation of
the component. In the current implementation, the legend also determines the
position of the new element; hence the new elements are rather crudely placed in
the diagram with no regard to the pre-existing layout. This is an implementation
detail and not a limitation of the approach.

To validate the transformations, we performed a test for a scenario in which
we work with the example diagram. First, we run the transformation Dia-
gram2Text. Second, we removed a component, changed a dependency, added a
new component, and added a new layer in the textual model. We then executed
the transformation Text2Diagram. We successfully obtained the new elements
and maintained the layout of the unchanged elements. We then moved around
elements in the graphical layout and re-run the transformation Diagram2Text,
we observe in the textual model that the “inlayers” attribute of the moved com-
ponent has been updated to reflect its current position. A demo video of this
procedure is included in the replication package linked at the beginning of this
section.

4.2 Evaluative case study

In addition to the above validation on a constructed example, we evaluated
our approach by implementing it in a concrete industrial setting and using the
textual model for consistency checking between an intended architecture and a
corresponding implementation.

Industrial setting We collaborated with a group of software architects who
design and maintain the software architecture for several variants of embedded
systems developed in their company. The group has created a reference archi-
tecture that is used as a template for deriving the architecture of new products.
In practice, architecture descriptions are drawings similar to UML deployment
diagrams, but are instead informal diagrams created in Microsoft Visio. When a
new product is created, the reference architecture diagram is copied and compo-
nents are deleted or added as required for that particular product, analogously



10 R. Jongeling et al.

to clone-and-own practices common in the software product line engineering
domain.

The created diagrams are similar to the one shown in Fig. 2. However, since
the architects are only interested in checking the consistency between included
components between the architecture and implementation, we ignore dependen-
cies, the origin of components (third-party or in-house developed) and what
layers they belong to.

Need for consistency checking In the studied setting, informal diagrams,
such as the one shown in Fig. 2, are used mainly for communication. The abil-
ity to edit them freely provides architects with a highly accessible way to make
changes. However, now the group has run into the limitations of these diagrams,
since the desire has arisen to check the consistency between specific instance ar-
chitectures and their implementations. Consistency is relevant, since throughout
evolution of the system, features and software components may be added, and
thereby the instance architecture diagram might go out of date, making it no
longer a suitable artifact to use for reasoning about the system.

Envisioned way of working We discussed with architects what way of work-
ing could be adopted to facilitate consistency checks between their intended
architecture and the corresponding implementation. The following steps were
seen as a typical scenario for creating an instance architecture. Step 1 is to du-
plicate the reference architecture and in the new diagram remove, edit, and add
software components to customize an instance architecture. Step 2 is then to
create a list (textual representation) of the software components in the instance
(this is automated by transformation Diagram2Text in our approach). Step 3 is
to analyze consistency by checking that the components included in the instance
architecture and those included in the implementation are the same. Once de-
fined, the consistency check can be scripted and executed repeatedly throughout
the system’s evolution.

Consistency check implementation To check the consistency between the
architecture diagrams and their implementation, we compare the components
included in both. Currently, there are no explicit links between the code and
the diagram. In this setting, the architecture and implementation should be
considered consistent if they include the same components. Hence, to create a
consistency check for this setting, it is required to obtain from the diagram the
components it depicts and to obtain from the software implementation a list of
the components it contains. Fig. 4 shows an overview of the final consistency
check implemented.

In Script A (in Fig. 4), a list of components is extracted from the software
configuration files, based on several rules that determine whether or not an en-
try should be considered a component. These rules were defined after discussions
with the group of architects and a few iterations to narrow down an exact defini-
tion. To extract components from the architecture diagram, we first applied our



From informal architecture diagrams to flexible blended models 11

ComponentComponentComponentComponent Component

Configuration
files

Architecture
model

synchronized  
notations

Component

Architecture
drawing

Indexer
Script 

A

Indexer
Script 

B

Script 
C

Consistency 
checking

Fig. 4. Consistency checking source code and architecture by first extracting sets of
components from configuration files (Script A) and textual model (Script B) as obtained
from the informal architecture diagram, and then comparing these sets (Script C).

approach as outlined in Section 3 to enhance the informal architecture diagram
with modeling information. We define a grammar that expresses the architecture
as a set of components (a simplified version of the grammar shown in Listing 1.1)
and use our approach to transform the diagram into a textual model conform-
ing to the grammar. In Script B (in Fig. 4), we then extract the names of all
the components by obtaining all “component” model elements from the textual
model file.

Script C (in Fig. 4) then compares the sets of components obtained from the
configuration files and the textual architecture model. When executing consis-
tency checks in the industrial setting, we identified about 50 components in the
architecture and about 40 components in the implementation. According to the
architects, this discrepancy is due to an inaccurate model. We found that the
model included more boxes marked as components than boxes that should be
considered as components. Therefore, in this case, the consistency check provided
feedback on the quality of the modeling, rather than on the implementation.

4.3 Experiences from the studied industrial setting

To evaluate our implementation, we have asked the architects of the group to
use our tool for a typical task for them: deriving a new instance architecture
and modifying it. The architects have copied the existing graphical reference
architecture diagram and derived the textual representation using our tool. The
textual representation was then modified by removing and adding components.
Finally, the architects recreated a graphical representation of the model, where
all components had the same layout as before (except for the newly created
components, which are placed at a default location in the diagram).

The architects could use our implementation and agree that the functional-
ity meets their requirements as listed in Section 2. As we showed, the imple-
mentation allows for the creation of automated consistency checks between the



12 R. Jongeling et al.

architecture and implementation due to (i) capturing the semantics of the in-
formal diagram and (ii) providing an accessible format for the obtained model
elements. Finally, we allow the architects to keep using the graphical format they
are used to and the topology contained within existing diagrams by means of
the synchronization transformations in the blended modeling loop. One of the
main benefits the architects experienced was that our approach allowed them to
implement consistency checks and thereby showcase the benefits of modeling to
their colleagues.

5 Discussion

5.1 When to use this approach

Our approach provides the following benefits to architects:

1. a textual model capturing aspects of the informal diagrams that are of in-
terest for analyzing the system under development;

2. the ability to continue informal diagramming, supported by synchronization
of the textual model and the informal diagram that preserves its layout; and

3. the ability to only partially model the architecture, since not all aspects of
the diagram have to be included in the textual model.

Our approach has value when applied in settings with pre-existing architec-
ture diagrams. In such settings, it may not be straightforward to migrate those
diagrams to models with strict semantics. Then, a flexible approach allows the
continued use of informal diagrams mixed with some stricter semantics for cer-
tain aspects of the diagrams. Moreover, the blended modeling of our approach
allows one to maintain the layout of the diagrams, which is useful, e.g., in those
cases where the layout conveys implicit semantics.

Our intention is to provide a small degree of modeling in settings in which
diagrams are used so that the benefits of modeling can be shown. We showed
that the approach can support complex graphical model elements, such as con-
nections and hierarchies. However, supporting intricate informal diagrams that
contain many of these complex constructs would require significant effort in the
customization of the transformations to appropriately map these (connected)
shapes to model elements. Therefore, for more complex graphical needs, it would
still be a better option to use an existing modeling language (and the tools that
support it) or to develop a DSML in a language workbench. In the evaluative
setting, the approach sufficiently captures the model, since we are only interested
in capturing the components as model elements.

5.2 Approach limitations

We identified several limitations of our approach that were acceptable in the
studied industrial setting but may restrict its applicability in other settings.

To be able to use the approach, architects should be able to capture in a gram-
mar the concepts from their drawing that are of interest for analysis. This task



From informal architecture diagrams to flexible blended models 13

becomes more challenging with more complex diagrams. Moreover, there might
be cases where capturing the semantics of the drawing is made more difficult
because the same notation is used to represent different concepts, in which case
our approach cannot distinguish them. Nevertheless, when we consider grammar
as a formalization of the ideas currently implicit in the architecture, we believe
that architects should be able to perform this task.

A related challenge is scaling up the approach to deal with larger and more
complex informal diagrams. In our example, the choice of components, layers,
and dependencies was made to show that the approach can handle at least three
commonly used graphical representations of elements: (i) stand-alone shapes,
(ii) containment of shapes in other shapes, and (iii) connectors between shapes.
Validating that we can continue to differentiate between different concepts in
more complex diagrams remains a task for future work.

The nature of this approach is that the emerging workflow is not very robust
to mistakes. For example, using unknown shapes in the diagram will cause them
to not be recognized as model elements by the transformations. A way to address
this weakness could be to provide custom shape sets as a way to provide a palette
for the graphical syntax. In future work, we aim to study these and other means
to provide robust ways to combine informal diagramming and modeling.

Our current implementation is based on diagrams.net, but our approach is
not limited to it. The approach relies on matching model elements with frag-
ments of their graphical representation, which is not limited to the XML-based
persistence format of one particular tool. Supporting other drawing tools is a
direction for future work.

5.3 Considered alternative approaches

Initially, we considered providing architects with a domain-specific modeling
language (DSML) that would completely replace their need for informal drawing.
To this end, we defined a grammar using Xtext [21] and created a graphical
syntax for it using Sirius [8]. The intention was to maintain the graphical syntax
that the architects were already using in their drawings, but it turned out to
be too challenging to replicate some specific aspects of the existing graphical
notation when developing this DSML. More problematically, the resulting tool
was considered too heavyweight to be easily adopted in the studied industrial
setting, since using the developed DSML requires architects to use an Eclipse
instance with some plug-ins. Finally, we rejected the alternative of developing a
new DSML following the realization that architects prefer to be able to maintain
their current informal modeling practices.

We also looked for alternatives for blended architecture modeling and con-
sidered PlantUML. Although it is easy to define the components in its textual
notation, positioning them in the graphical notation is not supported by de-
sign. Indeed, PlantUML’s GraphViz-based generator creates the graphical view
of the model, and the user should not want to control the relative positioning of
elements too much.



14 R. Jongeling et al.

5.4 Other threats to validity

External validity is related to the generalizability of the findings [16]. Because of
the ubiquity of informal diagrams for architecture and the common desire to use
them for analysis tasks, we see a broad applicability of our approach. Still, we
need to be careful when claiming that our findings with respect to the usefulness
of our approach are general. Future work is required to analyze the suitability of
our proposed blended and flexible modeling to other problems in other settings.

6 Related Work

Sketching software architectures has a long history. Tools have been proposed
that limit the interpretation of skecthes into existing diagrams, e.g., converting
sketches of UML use case diagrams to proper models. Further sketching tools
have provided more freedom and other usability features to support sketching
for software design [15]. Our approach extends these by providing the possibility
to treat the diagram as a model.

Among the existing approaches to textually describe models, there are a
large number of text-to-UML tools such as PlantUML [3]. What is typically not
supported in these tools is controlling the topology of graphical models, since
this is not always relevant for the semantics of the model. However, there are
many situations where the layout of the model also conveys semantics [7], such
as in our studied setting, where the arrangement of the components has meaning
for the architects.

The flexible modeling paradigm [11] can be approached from two directions.
Researchers have also begun exploring the support of informal notation in exist-
ing modeling tools, e.g., to supplement UML and OCL models [10]. The other
direction, studied in this paper, is to consider to what extent we can include
formal modeling inside an existing informal diagramming tool. Similar initia-
tives have been undertaken; for example, it was shown how DSMLs can be cre-
ated from graphical examples [14] in order to involve domain experts in DSML
development. Our approach is able to additionally consider the non-modeling
elements of the drawing and maintain its overall layout during a round-trip from
graphical to textual notation and back. Additionally, FlexiSketch was developed,
which is a tool that allows the user to first create a free-form sketch and then
create a metamodel by annotating certain shapes in sketches with metamodel
elements [20]. In our approach, we propose to benefit from a pre-existing mature
and commonly used drawing tool as the source of informal diagrams and, in
addition, provide a textual notation for flexibly created models.

Our solution requires manual specification of the metamodel elements. An-
other approach has shown the possibility of deriving metamodels by automati-
cally selecting candidate elements and letting the user judge the candidates [4]. A
further difference between common flexible modeling approaches and ours is that
we do not infer types for later models, but instead boost an existing drawing with
modeling concepts. Treating drawings as models has previously been explored,



From informal architecture diagrams to flexible blended models 15

by transforming annotated drawings into an intermediate model representation
that can be interacted with using Epsilon model management tools [13,22]. Our
approach is more flexible than bottom-up metamodeling [17] or metamodeling
by example, since it allows for continued mixing of drawing and modeling, even
after the instantiation of the underlying metamodel.

Another proposal for a flexible interpretation of icons for a concrete graphical
syntax relies on associating model elements with snippets of vector graphics that
represent them [9]. However, the approach does not provide a round trip to a
textual notation and does not explicitly consider the layout of the graphical
model.

In summary, our approach adds to the existing literature by allowing the
migration from informal diagrams in existing drawing tools to flexible textual
models that can be used for analysis, while maintaining the freedom of drawing
by providing synchronization between the informal diagram and textual model.

7 Conclusion

In this paper, we showed an approach to benefit more from existing informal
architecture diagrams by considering them, in part, as models. We describe our
implementation and validate it in a lab setting. Additionally, we conducted an
evaluative case study in an industrial setting where flexible models are used for
consistency checking between the architecture and the implementation, while
informal diagrams are continued to be used for communication between archi-
tects and other stakeholders. Our approach creates flexible models out of the
diagrams; since it requires only their partial consideration as models, other as-
pects of the diagram can remain in free form. Moreover, our approach creates
blended models due to our synchronization mechanism between the diagrams
and textual models. The benefit of this approach is that users may continue
using the informal graphical notations they were used to, but, in addition, they
can benefit from the syntax and semantics brought by modeling. In future work,
we plan to study how we can implement flexible and blended modeling in more
robust and general ways for use cases where it can be useful.

References

1. Baltes, S., Diehl, S.: Sketches and diagrams in practice. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
pp. 530–541 (2014)

2. Bucchiarone, A., Ciccozzi, F., Lambers, L., Pierantonio, A., Tichy, M., Tisi, M.,
Wortmann, A., Zaytsev, V.: What is the future of modeling? IEEE Software 38(2),
119–127 (2021)

3. Cabot, J.: Text to UML and other “diagrams as code” tools – Fastest
way to create your models (March 2020), https://modeling-languages.com/
text-uml-tools-complete-list/

https://modeling-languages.com/text-uml-tools-complete-list/
https://modeling-languages.com/text-uml-tools-complete-list/


16 R. Jongeling et al.

4. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific modeling languages
from end-user demonstration. In: 2012 4th International Workshop on Modeling
in Software Engineering (MISE). pp. 22–28. IEEE (2012)

5. Ciccozzi, F., Tichy, M., Vangheluwe, H., Weyns, D.: Blended modelling-what, why
and how. In: 2019 ACM/IEEE 22nd MODELS-Companion. pp. 425–430. IEEE
(2019)

6. Dejanović, I., Vaderna, R., Milosavljević, G., Vuković, Ž.: TextX: A Python tool
for Domain-Specific Languages implementation. Knowledge-Based Systems 115,
1–4 (2017)

7. Di Vincenzo, D., Di Rocco, J., Di Ruscio, D., Pierantonio, A.: Enhancing syn-
tax expressiveness in domain-specific modelling. In: 2021 ACM/IEEE MODELS
Companion. pp. 586–594. IEEE (2021)

8. Eclipse Foundation: Sirius - the easiest way to get your own modeling tool (2022),
https://www.eclipse.org/sirius/

9. Fondement, F.: Graphical concrete syntax rendering with svg. In: European Con-
ference on Model Driven Architecture-Foundations and Applications. pp. 200–214.
Springer (2008)

10. Gogolla, M., Clarisó, R., Selic, B., Cabot, J.: Towards facilitating the exploration
of informal concepts in formal modeling tools. In: 2021 ACM/IEEE MODELS-C.
pp. 244–248. IEEE (2021)

11. Guerra, E., de Lara, J.: On the quest for flexible modelling. In: Proceedings of
the 21th ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS). pp. 23–33 (2018)

12. Hasselbring, W.: Software architecture: Past, present, future. In: The Essence of
Software Engineering, pp. 169–184. Springer, Cham (2018)

13. Kolovos, D.S., Matragkas, N.D., Rodríguez, H.H., Paige, R.F.: Programmatic Mud-
dle Management. XMMoDELS 1089, 2–10 (2013)

14. López-Fernández, J.J., Garmendia, A., Guerra, E., de Lara, J.: An example is
worth a thousand words: Creating graphical modelling environments by example.
Software & Systems Modeling 18(2), 961–993 (2019)

15. Mangano, N., Baker, A., Dempsey, M., Navarro, E., van der Hoek, A.: Software
design sketching with calico. In: Proceedings of the IEEE/ACM international con-
ference on Automated software engineering. pp. 23–32 (2010)

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering 14(2), 131 (2009)

17. Sánchez-Cuadrado, J., Lara, J.d., Guerra, E.: Bottom-up meta-modelling: An in-
teractive approach. In: International Conference on Model Driven Engineering Lan-
guages and Systems. pp. 3–19. Springer (2012)

18. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25 (2006)
19. Störrle, H.: How are conceptual models used in industrial software development?

a descriptive survey. In: Proceedings of the 21st International Conference on Eval-
uation and Assessment in Software Engineering. pp. 160–169 (2017)

20. Wüest, D., Seyff, N., Glinz, M.: Flexisketch: a lightweight sketching and meta-
modeling approach for end-users. Software & Systems Modeling 18(2), 1513–1541
(2019)

21. Xtext: Xtext – language engineering made easy! (2022), https://www.eclipse.
org/Xtext/

22. Zolotas, A., Kolovos, D.S., Matragkas, N.D., Paige, R.F.: Assigning semantics to
graphical concrete syntaxes. XM@ MoDELS 1239, 12–21 (2014)

https://www.eclipse.org/sirius/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/

	From informal architecture diagramsto flexible blended models 

