
Blended Graphical and Textual Modelling of
UML-RT state-machines: an industrial

experience

Malvina Latifaj1[0000−0002−2754−9568], Federico Ciccozzi1[0000−0002−0401−1036],
Muhammad Waseem Anwar1[0000−0002−1193−5683], and Mattias Mohlin2

1 Mälardalen University, Väster̊as, Sweden
{name.surname}@mdh.se

2 HCL Technologies, Malmö, Sweden
mattias.mohlin@hcl.com

Abstract. The ever increasing complexity of modern software systems
requires engineers to constantly raise the level of abstraction at which
they operate to suppress the excessive complex details of real systems and
develop efficient architectures. Model Driven Engineering has emerged as
a paradigm that enables not only abstraction but also automation. UML,
an industry de-facto standard for modelling software systems, has estab-
lished itself as a diagram-based modelling language. However, focusing
on only one specific notation limits human communication and the pool
of available engineering tools. The results of our prior experiments sup-
port this claim and promote the seamless use of multiple notations to
develop and manipulate models. In this paper we detail our efforts on
the provision of a fully blended (i.e., graphical and textual) modelling
environment for UML-RT state-machines in an industrial context. We
report on the definition of a textual syntax and advanced textual editing
for UML-RT state-machines as well as the provision of synchronization
mechanisms between graphical and textual editors.

Keywords: UML-RT · HCL RTist · Xtext · QVTo · model transforma-
tion · model synchronization · blended modelling

1 Introduction

The complexity of software systems has been growing at an unbelievable pace
for decades now. Relying merely on human efforts to develop high-quality soft-
ware is presently regarded as a futile attempt. It can be argued that in the
face of this complexity, without an efficient and effective architecture, software
is inscrutable [8]. To tackle the architectural complexity of software develop-
ment, Model Driven Engineering (MDE) has emerged as a software engineering
paradigm that focuses on raising the level of abstraction when architecting soft-
ware systems [2,19]. This is done by promoting modelling languages and models,
which are closer to human understanding, instead of code, closer to machines,
as core architectural and engineering artefacts. This approach imposes limits

2 M. Latifaj et al.

to the problem-domain, facilitates the identification of relevant abstractions,
and avoids superfluousness. Together with that, MDE pledges automation by
exploiting modelling technologies that among others, enable the generation of
fully fledged code from architectural models.

Domain-specific abstractions facilitating the architectural description of soft-
ware systems are defined using formal specifications expressed in Domain Spe-
cific Modeling Languages (DSMLs), which capture the core aspects of a domain,
thus promoting productivity, efficiency and comprehensibility of domain-specific
problems.

UML is the most used architecture description language in industry [13],
the de-facto modelling standard in industry [9], and an ISO/IEC (19505-1:2012)
standard. It is general-purpose, but it provides powerful profiling mechanisms
to constrain and extend the language to achieve UML-based DSMLS, called
UML profiles; in this paper, we focus on the UML real-time profile (UML-RT)
[18], as this is the profile implemented in the commercial tool HCL RTist3 of
our industrial partner. We also leverage an open-source implementation of it
provided in the Eclipse Papyrus-RT4 tool.

1.1 Problem, motivation, and the RTist case

Domain-specific modelling tools, like RTist, traditionally focus on one specific
editing notation (such as text, diagrams, tables or forms). This limits human
communication, especially across stakeholders with varying roles and expertise.
Moreover, architects and engineers may have different notation preferences; not
supporting multiple notations negatively affects their throughput. Besides the
limits on communication, choosing one particular kind of notation has the draw-
back of limiting the pool of available tools to develop and manipulate models
that may be needed. For example, choosing a graphical representation limits
the usability of text manipulation tools such as text-based diff/merge, which is
essential for team collaboration. When tools provide support for both graphical
and textual modelling, it is mostly done in a mutual exclusive manner. Most
off-the-shelf UML modelling tools, such as IBM Rational Software Architect5

or Sparx Systems Enterprise Architect6, focus on graphical editing features and
do not allow seamless graphical–textual editing. This mutual exclusion suffices
the needs of developing small-scale applications with only very few stakeholder
types. RTist is not an exception. It provides support for modelling UML-RT
architectures and applications based on graphical composite structure diagrams,
to model structure, and state-machine diagrams, to model behavior. In addition,
the implementation of UML-RT in RTist provides support for leveraging C/C++
action code for the description of fine-grained, algorithmic, behaviors within
graphical state-machines. That is needed to enable the definition of full-fledged

3 https://www.hcltechsw.com/rtist
4 https://www.eclipse.org/papyrus-rt/.
5 http://www-03.ibm.com/software/products/en/ratsadesigner/
6 https://sparxsystems.com/

Blended Modelling of UML-RT state-machines 3

UML-RT models from which executable code can be automatically generated.
While providing means to model graphical entities and “program” algorithmic
behaviours textually, the two are disjoint, since the modelling of UML-RT is
graphical only and the textual C/C++ is injected in graphical models as a “for-
eign” entity and with almost no overlapping with graphical model elements. The
aim is instead to achieve a modelling tool that is able to make different stake-
holders to work on overlapping parts of the models using different modelling
notations (e.g., graphical and textual) in an automated manner.

1.2 Paper contribution

In this paper we describe our proposed solution for providing a fully blended
graphical-textual modelling environment for UML-RT state-machines in an in-
dustrial setting. Our experiments in a previous study with blended graphical-
textual modelling showed that the seamless use of different notations can signif-
icantly boost the architecting of software using UML profiles [1]. The results of
those experiments together with the exposed wish of RTist customers of being
able to design software via multiple notations led us to initiate this work towards
an automated support for blended modelling of UML-RT in RTist. In a prior
work [11], we describe the effort of designing, implementing and integrating a
textual notation for UML-RT state machines in RTist. In this paper, we extend
that work, and address the problem formulated in the previous section by pro-
viding the following additional research contributions.
C1. Definition of a textual editor for UML-RT state-machines with advanced
formatting features including systematic support for hidden regions which group
hidden tokens (e.g., comments, whitespaces) between two semantic tokens.
C2. Provision of synchronization mechanism between textual and graphical no-
tations to achieve a seamless blended modelling environment and validation of
the solution.

1.3 Paper outline

The remainder of the paper is organized as follows. In Section 2 we describe
the concept of blended modelling and in Section 3 we detail the design of our
proposed solution. The implementation details of the solution are presented in
Section 4, whereas the validation is discussed in Section 5. The related works
are detailed in Section 6 and the paper is concluded in Section 7 with a brief
summary and an overview of the current and upcoming enhancements to the
overall blended modelling approach.

2 Blended Modelling: what and why

We have previously defined the notion of blended modelling [4] as:

4 M. Latifaj et al.

the activity of interacting seamlessly with a single model (i.e., abstract
syntax) through multiple notations (i.e., concrete syntaxes), allowing a
certain degree of temporary inconsistencies.

A seamless blended modelling environment, which allows stakeholders to
freely choose and switch between graphical and textual notations, can greatly
contribute to increase productivity as well as decrease costs and time to mar-
ket. Such an environment is expected to support at least graphical and textual
modelling notations in parallel as well as properly manage synchronisation to
ensure consistency among the two. The possibility to visualise and edit the same
information through a set of diverse perspectives always in sync has the po-
tential to greatly boost communication between stakeholders, who can freely
select their preferred notation or switch from one to the other at any time. Be-
sides obvious notation-specific benefits, such as for instance, the possibility to
edit textual models in any textual editor outside the modelling environment, a
blended framework would disclose the following overall benefits.

Flexible separation of concerns and better communication. Providing
graphical and textual modelling editors for different aspects and sub-parts (even
overlapping) of a DSML like UML-RT enables the definition of concern-specific
architectural views characterised by either graphical or textual modelling (or
both). These views can interact with each other and are tailored to the needs of
their intended stakeholders. Due to the multi-domain nature of modern software
systems (e.g., cyber-physical systems, Internet-of-Things), this represents a nec-
essary feature to allow different domain experts to describe specific parts of a
system using their own domain-specific vocabulary and notation, in a so called
multi-view modelling [3] fashion. The same information can then be rendered
and visualised through other notations in other perspectives to maximise under-
standing and boost communication between experts from different domains as
well as other stakeholders in the development process.

Faster modelling activities.We have experimented with blended modelling of
UML profiles [1] and the seamless combination of graphical and textual modelling
has shown a decreased modelling effort in terms of time thanks to the following
two factors:

1. Any stakeholder can choose the notation that better fits his/her needs, per-
sonal preference, or the purpose of the current modelling task, at any time.
For instance, while structural model details can be faster to describe by using
diagrammatic notations, complex algorithmic model behaviours are usually
easier and faster to describe using textual notations (e.g., Java-like action
languages).

2. Text-based editing operations on graphical models7, such as copy&paste
and regex search&replace, syntax highlighting, code completion, quick fixes,
cross referencing, recovery of corrupted artefacts, text-based diff and merge

7 Please note that by graphical/textual model, we intend a model rendered using a
graphical/textual notation.

Blended Modelling of UML-RT state-machines 5

for versioning and configuration, are just few of the features offered by mod-
ern textual editors. These would correspond to very complex operations if
performed through graphical editors; thereby, most of them are currently
not available for diagrams. Seamless blended modelling would enable the
use of these features on graphically-described models through their textual
editing view. These would dramatically simplify complex model changes; an
example could be restructuring of a hierarchical state-machine by moving
the insides of a hierarchical state. This is a demanding re-modelling task in
terms of time and effort if done at graphical level, but it becomes a matter
of a few clicks (copy&paste) if done at textual level.

3 Design Solution

In this section, we detail the solution design, illustrated in Fig. 1, for the provision
of a blended modelling environment for UML-RT state-machines. Note that in
order to maximise accessibility to our solution, we describe the solution for an
open-source tool, Eclipse Papyrus-RT, which is orthogonal to the one in RTist
(which also is Eclipse EMF-based).

The starting point is the already existing Ecore-based DSML formalizing the
UML-RT profile (i.e., MMG), which is utilized to instantiate graphical models
(i.e., MG) in both Papyrus-RT and RTist. Using this DSML as blueprint, we
define a textual language (i.e., MMT) in Xtext8 that will be used to instantiate
textual models (i.e., MT) of UML-RT state-machines. Moreover, using Xtext’s
formatting APIs, we also customize the textual editor to preserve essential tex-
tual information, such as lines, formatting and hidden regions like comments.
This provides our first contribution C1. Subsequently, we design and implement
the synchronization mechanisms between the two notations by model-to-model
(M2M) transformations [16]. These transformations are defined on the basis of
implicit mappings between metaelements of the source and target metamodels
and implemented in terms of the operational version of the Query/View/Trans-
formation language (QVTo9) in Eclipse. QVTo supports only unidirectional
transformations, thus, to achieve bidirectionality, we defined two unidirectional
transformations; MMT2MMG, where the source metamodel is MMT and target
metamodel is MMG, and MMG2MMT, where the source metamodel is MMG and
the target metamodel is MMT. Both model transformations are horizontal as the
source and target model reside in the same abstraction level, and exogenous as
the models are expressed in different modelling languages. This makes for our
second contribution C2. Further details on the definition of the textual syntax
and synchronization mechanisms can be found in Section 3.1 and 3.2. The im-
plementation details are included in Section 4, and the validation of the solution
is detailed in Section 5.

8 https://www.eclipse.org/Xtext/
9 https://wiki.eclipse.org/QVTo

6 M. Latifaj et al.

Fig. 1: Synchronization solution design

3.1 Textual notation for UML-RT state-machines

Textual language workbench. To complement the existing graphical editor
in RTist with a textual notation and editor, a suitable language workbench needs
to be carefully selected. HCL RTist and Papyrus-RT are Eclipse-based environ-
ments that leverage the Eclipse Modeling Framework (EMF)10 as backbone.
Thereby, by choosing an EMF-based language workbench, we could leverage
EMF as a common data layer. For this reason, we chose Xtext, a framework for
the development of textual DSMLs, based on EBNF grammars. The textual ed-
itor supports an outline view, syntax highlighting, error checking, quick-fix pro-
posals, and many other features provided by Xtext. Furthermore, Xtext provides
code completion for keywords and cross-references by increasing the usability of
the language and decreasing the learning curve.

Textual notation definition. Our goal was to introduce a textual notation
(and related editor) to the already existing UML-RT profile supported by RTist.
A possible alternative was to use the underlying metamodel consumed by the
RTist’s graphical editor as an input for Xtext to automatically generate a textual
editor. However, although easy to implement, this solution generates erroneous

10 https://www.eclipse.org/modeling/emf/

Blended Modelling of UML-RT state-machines 7

and unintuitive grammar, too far from the expectations of RTist’s architects and
customers. Manually editing this generated grammar would have been a tedious
and potentially error-prone process. Therefore, we decided to design a textual
notation in terms of an Xtext grammar, from scratch. Starting from a wish-list
of RTist’s customers and architects, and using the UML-RT metamodel portion
describing state-machines as blueprint, we manually defined our UML-RT tex-
tual notation for state-machines in Xtext. The steps needed for the definition of
the grammar were the following.
1 Identify reserved keywords: When defining a DSML, it is crucial to identify
the reserved keywords used to typify the core concepts of the language. The
importance of these keywords lies in improved readability, higher language fa-
miliarity, and efficient parsing as they serve as directives for specific concepts.
The chosen keywords for the textual syntax for UML-RT state-machines are the
following: capsule, statemachine, state, initial, junction, choice, entry, exit, en-
trypoint, exitpoint, history, transition, when, on and inherits. A more detailed
description of the concepts represented by each keyword can be found in the
official documentation 11 of UML-RT by HCL.
2 Elements’ ordering strategy: Even though it is not mandatory for our lan-
guage to have a fixed order of elements, this approach enhances readability and
navigation of the textual syntax, as well as increased predictability on where
the elements created by using the graphical notation will be placed in the tex-
tual syntax. Our grammar is based on the vertical distance approach where
elements that affect each other’s understandability and are closely related [14],
are grouped together and have a low vertical distance. Furthermore, being that
this grammar prohibits cross-references before element declaration, we take the
aforementioned statement into consideration and make sure that elements that
need to be cross-referenced will be declared before the cross-reference occurs.
3 A spoonful of syntactic sugar: The majority of programming languages, in-
cluding C++, which is used as action code for behavioral state-machines, makes
use of statement terminators in the form of semi-colons. Being that one of the
main goals when introducing this textual syntax is for developers to use it jointly
with the C++ action code, we introduced consistent use of semi-colons for in-
dicating statement termination to make the grammar more conforming to C++
and to increase readability. For the same readability reasons and developers’
preferences, we also introduce colons after transition names. Furthermore, to
make the grammar more compact, we allow the declaration of multiple objects
of the same type in one single line of code. Due to the combination of the tex-
tual syntax with action code, we need to handle C++ code blocks so we can
“isolate” them and make them distinguishable from the rest of the grammar.
For this reason, we include back-ticks in order to enclose code snippets and to
make the lexer aware of where the code block begins and ends.

The overall goal during this process was to keep a fixed concrete syntax while

11 https://rtist.hcldoc.com/help/topic/com.ibm.xtools.rsarte.webdoc/pdf/RTist%20
Concepts.pdf

8 M. Latifaj et al.

simultaneously enhancing the abstract syntax, even though frequently we had to
trade-off between ease of expression in the concrete syntax and extra complexity
in the abstract syntax.

Enforcing UML-RT’s modularity. Scoping in Xtext is concerned with the
visibility of elements; therefore, the scope provider computation returns the tar-
get candidates that are visible in the current context and by a given reference.
In order to enforce the UML-RT’s modularity, it is necessary to specify a cus-
tom scope provider. The default behavior of Xtext allows establishing a cross-
reference to all the elements of a particular type that are located inside the
same Eclipse resource (i.e., project). By customizing the scope provider, we re-
strict this behaviour, and only allow cross-references for elements declared in the
same model file. The rationale behind this decision lies in the fact that multiple
model files containing different capsules can be located inside the same resource,
and a particular capsule should not be able to cross-reference the elements of
other capsules. However, a key concept in which UML-RT relies on to reuse
and extend parts of existing state-machines is the inheritance mechanism. When
capsule A inherits capsule B, the state-machine of capsule A implicitly inherits
the state-machine of capsule B. Therefore, to support inheritance, we need to
customize the scope provider so that it allows cross-references for elements not
only from the capsule itself, but also from the inherited capsule, in case there
is one. Another default behavior of Xtext consists in allowing cross-references
for all elements of a particular type declared in the same model file, regardless
of their level of nesting. This contradicts an important UML-RT concept; com-
pound transitions. Since transitions in UML-RT state-machines can not cross
state boundaries, the concept of compound transitions is applied, consisting of
multiple segments that are connected by means of pseudo-states. However, with
the default behaviour of Xtext, a transition can cross state boundaries. There-
fore, the scope provider is customized to restrict that and provide the desired
behavior in conformance with UML-RT concepts by allowing transitions to only
cross-reference pseudo states and states that are on the same level of nesting as
the transition, or their immediate entry and exit points.

Advanced textual editing features. The aforementioned steps provide a
solid platform for developing a sophisticated editor for the specification of textual
state-machines. Besides the editing features provided out-of-the-box by Xtext for
textual languages, we incorporated formatting features like text indentation and
syntax highlighting in the textual editor to simplify the specification of these
textual models. Furthermore, the support to associate both single and multiline
comments within textual specifications is provided too.

3.2 Synchronization transformations

Model transformation language. For model transformations, we chose QVTo,
which is an implementation of the Operational Mapping Language defined by

Blended Modelling of UML-RT state-machines 9

Object Management Group’s (OMG’s) Meta-Object Facility (MOF) 2.0 Query/
View/Transformation (QVT12). The reasons behind this choice were first of all
the fact that QVT is a MOF standard, and since our focus is on MOF languages,
a transformation language also based on MOF is preferred. In addition, QVTo
brings together benefits from both declarative and imperative QVT and it is very
well-suited for both exogenous and endogenous transformations, also in-place.

Transformation structure. The transformations are executed in Eclipse QVTo,
the only actively maintained QVTo implementation, adhering to its default struc-
ture composed of the modeltype declarations, the transformation declaration,
main function and mapping operations. In the following, we detail the QVTo
structure.

– Modeltype declaration: The modeltype declaration in QVTo serves as a ref-
erence to the metamodels that will be used for the transformation. When
declaring the modeltype, it is obligatory to define the name and reference.
The latter can be specified either by using the package nsURI or file location
URI. In our use case, we reference the metamodels via the nsURI which is
resolved via the global package registry in the running platform instance.
Optionally, the modeltype definition can include the conformance kind (i.e.,
strict or effective) and a set of constraint expressions (i.e., OCL expressions).
In our case we do not define the conformance kind, thus by default it assumes
an effective conformance. The rationale behind this decision is to allow the
transformations to be applied to similar metamodels. Moreover, we do not
define any constraint expressions as we have no additional restrictions over
the set of the involved models. As an example, the modeltype definition that
references MMT, is detailed in the following.

modeltype MMT uses MMT Package Name (MMT Package nsURI)

– Transformation declaration: The transformation declaration defines the name
of the unidirectional transformation and specifies the involved metamodels.
Additionally it details the direction kind of the transformation via the fol-
lowing values; in, out, and inout. As an example, the MMT2MMG transfor-
mation declaration has the following structure that details the name of the
transformation, the involved metamodels, and the direction of the transfor-
mation.

transformation MMT2MMG (in source:MMT, out target:MMG);

– Main function: The main function is also referred to as the entry point
of the transformation as it initiates the execution of the transformation by
executing the operations defined in the body of the function. As an example,
for the MMT2MMG transformation, the defined operation selects the root

12 https://www.omg.org/spec/QVT/1.3/About-QVT/

10 M. Latifaj et al.

metalelements (i.e., metaelements at the highest level) of MMT, and filters
out the StateMachine metaelement. Additionally, it invokes the SM2SM()

“top-level” mapping rule that maps the StateMachine metaelement of MMT

to the StateMachine metaelement of MMG.

main() {
src.rootObjects()[MMT::StateMachine] -> map SM2SM();
}

– Mappings: The transformations in QVTo are executed by means of map-
ping operations. Each mapping operation consists of a signature, an optional
guard (i.e., when clause), a mapping body, and an optional post condition
(i.e., where clause). The signature of the mapping operation minimally in-
cludes the following elements:
Mapping Type: A mapping operation can either be an abstract mapping or
a concrete mapping (non-abstract). An abstract mapping operation is dis-
tinguished by the abstract keyword which indicates that the mapping can
not be invoked in isolation. Such mapping operations are common when the
target metaelement is abstract and are usually inherited by other mappings
with concrete target types.
Metaelements: QVTo does not strictly require the fully qualified name of the
metaelements that are to be mapped (i.e, metamodelName::metaelementName),
but in the presence of source and target metamodels that contain similar con-
cepts, the fully qualified name is used to resolve possible ambiguities.
Mapping Name: Serves to identify the mapping and it is always unique.
As an example of a mapping signature, in the following we detail an ab-
stract mapping between the concrete State metaelement of MMT and the
abstract State metaelement of MMG, where we use the fully qualified name
to separate them from one another.

abstract mapping MMT::State::State2State() : MMG::State { ... }

Moreover, a mapping declaration can include mapping guards described with
OCL expressions and distinguished by the when keyword. If the guard eval-
uates to true, it restricts the execution of the mapping operation only to a
subset of elements; alternatively, the mapping operation is not invoked.
Finally, the body of the mapping operation is populated by assigning ERef-
erences and EAttributes of the source metaelement to corresponding ERef-
erences and EAttributes of the target metaelement. For EReferences, a type-
dependent mapping operation is invoked by using the map keyword. When
invoking the mapping on a single element, the element is followed by a dot
which precedes the map keyword. Alternatively, when invoking the mapping
on a collection of elements (i.e., Set, Bag, Sequence, or OrderedSet), the
latter is followed by an arrow which precedes the map keyword. Moreover,
the self and result variables, refer to the source and target metaelements,
respectively. As an example, in the following we detail a regular mapping

Blended Modelling of UML-RT state-machines 11

between State and CompositeState that is extended with a mapping con-
dition.

mapping MMT::State::State2CMPState() : MMG::CompositeState
when {not(self.states -> isEmpty() ...)}
{
result.choicePoints := self.choice.map Choice2Choice();
result.name := self.name; }

To conclude the definition of the synchronization transformations, we detail
two additional QVTo concepts that we used for this purpose: inherits and
disjuncts. Inheritance enables the reuse of other mapping operations with
the condition that the signature of the mapping which is inheriting must con-
form to the signature of the mapping that is being inherited. In short, the
source and target metaelements of the inheriting mapping operation must
either be the same or subtypes of the source and target metaelements of
the inherited mapping, respectively. This feature allows for a more compact
code and increased readability as the operations are defined once in the in-
herited mapping and reused in each inheriting mapping. In the following,
we provide an example of these mapping operations. Mapping operation
State2SimpleState inherits mapping operation State2State. The signa-
tures are conformant as the source metaclasses are the same, while the target
metaclass of the inheriting mapping (i.e., State2SimpleState), is a subtype
of the output metaclass of the inherited mapping (i.e., State2State). By
inheriting this mapping, in the State2SimpleState mapping operation, we
do not need to rewrite what is already defined in the State2State map-
ping operation, as it is automatically invoked when the State2SimpleState
mapping operation is executed.

mapping MMT::State::State2SimpleState() : MMG::SimpleState
inherits MMT::State::State2State { ... }

Moreover, mapping operations can be defined as disjunctions of multiple
other mappings, which are then extended with distinct guards. When in-
voking such operation, the guards of the mapping operation alternatives
specified after the disjuncts keyword are sequentially checked. When the
first guard evaluates to true, the corresponding mapping operation is in-
voked; alternatively if they all evaluate to false it returns null. The body
of such mapping operations is always empty, because that part of the code
is unreachable. This concept is primarily applied to operations transforming
abstract types that are extended by multiple subtypes. In this case, the alter-
native mapping specified after the disjunct keyword, consists of subtypes
of the original mapping.

12 M. Latifaj et al.

mapping MMT::State::StateDisjunct() : MMG::State
disjuncts MMT::State::State2SimpleState,
MMT::State::State2CompositeState { }

4 Implementation

In this section we present the implementation details of the proposed solution
and show examples both of the textual syntax and model instances after applying
the model transformations for synchronization.

4.1 Textual language and editor for UML-RT

Based on the aforementioned approach (see Section 3.1), in this section we detail
the implementation specifics of the textual language and editor in Eclipse Xtext.
We focus particularly on the customization of the scope provider in Xtext to
enable inheritance and compound transitions in our textual UML-RT, as well as
on the customization of the Xtext’s formatter for advanced textual editing and
formatting features.

Customization of the scope provider. Listing 1.1 provides a snippet of the
customized scope provider in Xtext for supporting the concept of inheritance.
The conditional if statement in Line 1 checks whether the current capsule in-
herits another capsule. If this condition evaluates to true, the EObject is down
casted to a Capsule object in Line 3. Depending on the instance type of the
context’s container, the desired elements of the inherited capsule are added to
the list of eligible candidates that the scope provider will return as detailed in
Lines 4-6.

1 if (rootCapsule.getSuperclass () != null) {
2 parentinheritance = rootCapsule.getSuperclass ();
3 Capsule inheritedCapsule = (Capsule) parentinheritance;
4 if (context.eContainer () instanceof StateMachine) {
5 transitionfrom.addAll(inheritedCapsule.getStatemachines ().getStates ());
6 ...
7 }
8 }

Listing 1.1: Inherited capsule scope provider

Listing 1.2 provides instead a snippet of the customized scope provider in
Xtext for supporting the concept of compound transitions. The eContainer()

method in Line 2 is used to return the containing object of the context object.
The list of objects T F in Line 3, is initialized to be used for storing all the eligible
candidates that can be cross-referenced. The block of code to be executed if the
specified condition of the if statement in Line 4 evaluates to true, down casts
the currentParent EObject into a StateMachine object and uses the addAll()
method to add all elements of a specific type that are contained in the state-
machine as the context element, to the list.

Blended Modelling of UML-RT state-machines 13

1 else if (reference == HclScopingPackage.Literals.TRANSITION__FROM) {
2 EObject currentParent = context.eContainer ();
3 List <EObject > T_F = new ArrayList <>();
4 if (currentParent instanceof StateMachine) {
5 StateMachine s = (StateMachine) currentParent;
6 T_F.addAll(s.getStates ());
7
8 for (State states : rootCapsule.getStatemachines ().getStates ()) {
9 transitionfrom.addAll(states.getEntrypoint ());

10 transitionfrom.addAll(states.getExitpoint ());
11 }
12 }
13 return Scopes.scopeFor(T_F , N_C , IScope.NULLSCOPE);

Listing 1.2: Compound transitions scope provider

Customization of the textual editor Parsing and serialization are two major
concepts in Xtext associated with the textual model and Abstract Syntax Tree
(AST), respectively. The instance of a grammar in the editor, technically referred
to as XtextResource, is represented through a textual model. The equivalent
AST is generated from the textual model through the parser. On the other
hand, the serializer converts the AST into the equivalent textual model. The
conversions between textual model to AST and vice versa are very frequent and,
therefore, Xtext supports the exploitation of built-in APIs to customize certain
functionalities that may be required before or after the conversions from one to
the other. We exploited the built-in APIs for customizing our textual editor.

The synchronizations targeted in our solution between the textual and graph-
ical models lead to frequent changes in the AST related to the textual model,
like deletion or addition of textual elements. In this case, the line numbers and
other hidden region elements like comments need to be updated in the textual
editor. Furthermore, the formatting of the text needs to be preserved in the tex-
tual editor after synchronizations since it brings along semantic information in
most cases. To achieve this, we utilized Xtext’s formatting infrastructure. In par-
ticular, we extended the AbstractFormatter2 class to implement a customized
state-machine formatter, composed of two core functions (i.e., Lines and Hidden
Regions). The Lines function updates the sequence of lines in the textual editor
according to the synchronized changes to the AST. Hidden Regions instead pre-
serves the place of hidden regions that group all hidden tokens (e.g., whitespace,
newlines, tabs and comments) between two semantic tokens upon changes to the
AST.

4.2 Synchronization

Based on the aforementioned approach (see Section 3.2), in this section, we de-
tail the implementation specifics of the synchronization model transformations
in Eclipse QVTo. Synchronization mechanisms are provided in terms of two uni-
directional M2M transformations; MMT2MMG and MMG2MMT. The majority
of metaelements between the two metamodels require a one-to-one mapping,
thus the mapping rules are rather straightforward. In the following, for each

14 M. Latifaj et al.

model transformation, we discuss the mapping operations that highlight a few
interesting and less simple cases.

Textual to graphical synchonization – MMT2MMG

– The StateMachinemetaelement behaves as a root element both in MMT and
MMG. Nevertheless, there is a notable difference between the two. In MMT,
StateMachine has multiple children and its containment of elements State
has a zero-to-many (0..*) cardinality. Instead, in MMG, StateMachine has
a one-to-one (1..1) cardinality to CompositeState. In short, whilst in MMT

StateMachine can contain many States as immediate children, in MMG

the StateMachine can only contain one CompositeState as its immediate
child, and in turn CompositeState would contain the other elements. Con-
sequently, when transforming a StateMachine in MMT to a StateMachine

in MMG, two possible narratives need to be taken into account. First, if we
consider a model instance of MMT (i.e., MT) and the StateMachine of this
model instance contains only one State and no other immediate children,
State is transformed to a CompositeState in MG (i.e., model instance of
MMG) as detailed in Lines 4-5 in Listing 1.3. Otherwise, if the StateMachine
in MT contains more than one immediate state, when transforming to a
StateMachine in MG, a CompositeState object is created (Lines 9-10) and
the immediate children of the StateMachine in MT are assigned as immedi-
ate children (Line 11) of the CompositeState in MG.

1 mapping text:: StateMachine ::SM2SM() : graph:: StateMachine{
2 result.name:=self.name;
3

4 if (self.states -> size() = 1 and self.initialtransition -> isEmpty () and
self.transition -> isEmpty () and self.junction -> isEmpty () and self

.choice -> isEmpty ()) {
5 result.top := self.states -> first().map State2CMPState ();
6 }
7

8 else {
9 var cs := object graph:: CompositeState {};

10 top :=cs;
11 cs.substates := self.states.map toState ();

Listing 1.3: StateMachine to StateMachine

– With respect to states, MMT considers only the State metaclass, while MMG

makes a distinction between SimpleState and CompositeState, which ex-
tend the State metaclass. Thus, when transforming a State, the mapping
operations in Lines 1-9 in Listing 1.4 need to be extended with mapping
guards that determine if the State metaclass will be transformed to a
SimpleState or CompositeState. Moreover, an additional mapping opera-
tion is defined in Lines 13-14, which is a disjunction of the aforementioned
mapping operations and is invoked in Line 10. Upon its execution, the guards
of State2SimpleState and State2CMPState are checked in a sequential or-
der. For a State to be transformed to a SimpleState, the State should have
no children. To evaluate that we use the OCL expression isEmpty(), which

Blended Modelling of UML-RT state-machines 15

evaluates whether the collection is empty or not, in Line 3. Alternatively,
a CompositeState has children, thus in Line 8 we use the OCL expression
notEmpty().

1 mapping text::State:: State2SimpleState () : graph:: SimpleState
2 inherits text:: State:: State2State
3 when {self.states -> isEmpty () and self.entrypoint -> isEmpty () and self.

exitpoint -> isEmpty () and self.junction -> isEmpty () and self.
choice -> isEmpty () }

4 { }
5

6 mapping text::State:: State2CMPState () : graph :: CompositeState
7 inherits text:: State:: State2State
8 when {self.states -> notEmpty () or self.entrypoint -> notEmpty () or self.

exitpoint -> notEmpty () or self.junction -> notEmpty () or self.
choice -> notEmpty ()}

9 {
10 substates := self.states.map State2StateDisjunct ();
11 ...
12 }
13 mapping text::State:: State2StateDisjunct () : graph :: State
14 disjuncts text:: State:: State2SimpleState , text::State:: State2CMPState
15 {}

Listing 1.4: State to SimpleState and CompositeState

Graphical to textual synchronization – MMG2MMT

– SimpleState and CompositeState metaelements in MMG both have to be
transformed to State in MMT. Hence, two corresponding mapping opera-
tions are defined in Line 1 and Line 4 in Listing 1.5. In this particular sit-
uation, a disjunctive mapping operation (i.e., State2StateDisjunct()) is
introduced in Line 10. Contrary to the first two mapping operations where
a mapping body is defined, this operation specifies a list of mapping op-
erations (i.e., SimpleState2State and CMPState2State) which are evalu-
ated when the mapping operation is invoked. The invocation of the oper-
ation occurs in Line 7 when trying to map substates to states as the
EType for substates is the abstract metaclass State which is extended by
SimpleState and CompositeState.

1 mapping graph:: SimpleState :: SimpleState2State () : text:: State
2 inherits graph ::State:: State2State {}
3

4 mapping graph:: CompositeState :: CMPState2State () : text:: State
5 inherits graph ::State:: State2State
6 {
7 result.states := self.substates -> map State2StateDisjunct ();
8 ...
9 }

10 mapping graph::State:: State2StateDisjunct () : text:: State
11 disjuncts graph :: CompositeState :: CMPState2State ,
12 graph:: SimpleState :: SimpleState2State {}

Listing 1.5: SimpleState and CompositeState to State

– Transitionmetaclass in MMG can be transformed to either HistoryTransition,
InitialTransition, InternalTransition or Transition in MMT, all ex-
tending the Transitions metaclass, depending on the source and/or target

16 M. Latifaj et al.

vertices it connects. First, the T2Ts() mapping operation is defined, which
details the creation of the TransitionBody and the assignment operations
for its children. This is then inherited by all other mapping operations that in
their signature include Transition as source and a subtype of Transitions
as target. Inheritance eliminates the need to rewrite the operations that are
already defined in T2Ts() such as the creation of the TransitionBody and
the corresponding assignments. In addition, all mapping operations that map
Transition to subtypes of Transitions include a mapping guard (i.e., when
clause) that specifies the type of vertices that the Transition must connect,
to be transformed to a specific subtype of Transitions. The mapping body
of these mapping operations details the assignments of the sourceVertex

and targetVertex properties of the source metaelement, to from and to

properties of the target metaelement, respectively as shown in Lines 18-19 in
Listing 1.6. The mapping operation that is invoked on them is a disjunction
of other mapping operations in which the source and target metaelements are
subtypes of the source and target metaelements of the original mapping (i.e.,
Vertex2VertexDisjunct). This is because the types of the source and tar-
get metaelements of the invoked mapping (i.e., Vertex2VertexDisjuncts)
must conform to the types of properties from and to.

1 mapping graph:: Vertex :: Vertex2VertexDisjunct () : text:: Vertex
2 disjuncts graph :: CompositeState :: CMPState2State , graph :: SimpleState ::

SimpleState2State , graph:: EntryPoint :: EntryPoint2EntryPoint , graph::
ExitPoint :: ExitPoint2ExitPoint ,graph:: ChoicePoint :: ChoicePoint2Choice
, graph :: JunctionPoint :: JunctionPoint2Junction {}

3

4 mapping graph:: Transition ::T2Ts() : text:: Transitions
5 {
6 var TransitionBodyObject := object text:: TransitionBody{

transitionguard := self.guard.map Guard2TransitionGuard ();
7
8 };
9 transitionbody := TransitionBodyObject;

10 result.name := self.name;
11 }
12 mapping graph:: Transition ::T2T() : text:: Transition
13 inherits graph :: Transition ::T2Ts
14 when {not(self.sourceVertex.oclIsTypeOf(InitialPoint) or
15 self.targetVertex.oclIsTypeOf(DeepHistory) or
16 self.sourceVertex = null or self.targetVertex = null)}
17 {
18 result._from := self.sourceVertex.map Vertex2VertexDisjunct ();
19 result.to := self.targetVertex.map Vertex2VertexDisjunct ();
20 }
21

22 mapping graph:: Transition ::T2HT() : text:: HistoryTransition
23 inherits graph :: Transition ::T2Ts
24 when {self.targetVertex.oclIsTypeOf(DeepHistory)} { ...}
25

26 mapping graph:: Transition :: T2INI_T () : text:: InitialTransition
27 inherits graph :: Transition ::T2Ts
28 when {self.sourceVertex.oclIsTypeOf(InitialPoint)} {...}
29

30 mapping graph:: Transition :: T2INT_T () : text:: InternalTransition
31 when {self.sourceVertex = null and self.targetVertex = null} {...}

Listing 1.6: Transition to Transitions

Blended Modelling of UML-RT state-machines 17

– Triggermetaclass in MMG can be transformed to either Trigger, PortEvent
Trigger, or MethodParameterTrigger in MMT depending on which of the
mapping guards (i.e., when clause) evaluates to true. Hence, three corre-
sponding mapping operations are defined. The PortEventTrigger consists
of a Port and Event separated by a dot (e.g., port.event), thus in order for
a Trigger in MMG to be transformed to a PortEventTrigger in MMT it
should match the pattern defined in Line 7 in Listing 1.7. Moreover, the
Port and Event metaclasses in MMT have no correspondence in MMG there-
fore they should be created as new elements. Lines 9-17 detail the creation
of Port and Event metaclasses and the assignment of the name attribute
for each of them. The same procedure is applied to transform Trigger

in MMG to MethodParameterTrigger in MMT and to create the Method

and Parameter metaelements. The MethodParameterTrigger consists of a
Method followed by parentheses, which may or not contain a Parameter (e.g.,
method(parameter)). In this case, the mapping condition specifies that the
name of the Trigger in MMG should match the pattern specified in Line 19.

1 mapping graph:: Trigger :: Trigger2Trigger () : text:: Trigger
2 when {not(self.name.matches(".*\\(.*") or self.name.matches(".*\\..*"))}
3 {
4 result.name := self.name;
5 }
6 mapping graph:: Trigger :: Trigger2PETrigger () : text:: PortEventTrigger
7 when {self.name.matches(".*\\..*")}
8 {
9 var PortObject := object text::Port{

10 name := self.name.substringBefore(".");
11 };
12 port := PortObject;
13 var EventObject := object text::Event{
14 name := self.name.substringAfter(".");
15 };
16 event := EventObject;
17 }
18 mapping graph:: Trigger :: Trigger2MPTrigger () : text::

MethodParameterTrigger
19 when {self.name.matches(".*\\(.*")}
20 { ... }

Listing 1.7: Trigger to Trigger, PortEventTrigger, and
MethodParameterTrigger

5 Validation and discussion

The M2M transformations detailed in this paper make possible the synchroniza-
tion between multiple notations. As such, the correctness of the unidirectional
transformations and the consistency between them is crucial.

The validation is conducted for RTist and Papyrus-RT by applying the model
transformations to instances (i.e., models) of MMG and MMT. The representation
of the graphical instance MG is detailed in Fig. 4, while the representation of the
textual instance MT is detailed in Fig. 5. Fig. 4a details the graphical editor of
MG, whereas Fig. 4b details the Exeed editor (an extended version of the built-
in tree-based reflective editor provided by EMF) of MG. Alternatively, Fig. 5a

18 M. Latifaj et al.

details the Xtext editor of MT, whereas Fig. 5b details the Exeed editor of MT.
We have included the Exeed editor for both instances, as it conveys additional
structural information that is not glaring in the other editors. In the following
we describe the execution of the validation process.

1 The correctness of the model transformations is validated by carrying out
testing of the MMG2MMT and MMT2MMG model transformations at the unit
level [21]. To carry out this procedure, we have defined a functional decompo-
sition diagram for each model transformation. Such diagram, can facilitate the
identification of the test subjects, as the nodes of the diagram (i.e., mapping op-
erations) will represent the subjects. Additional consideration has been given to
guarantee that the test cases cover all the mapping operations of a given model
transformation. The metaelements of the input metamodels will be considered as
test inputs whereas the expected output will be represented by a regular expres-
sion. For a test case to pass, the expected output of a given mapping operation
must match the actual output. The latter is the result that we get after the ex-
ecution of the mapping operation. In the following we use the CMPState2State
mapping operation defined in the MMG2MMT model transformation to exemplify
our manual testing process. In Fig. 2 we detail only a portion of the decompo-
sition diagram to highlight CMPState2State. Then we extract the input of the
CMPState2State mapping operation, which is the CompositeState. In Fig. 3 we
detailed an instance of MMG, which is used to test the CMPState2State mapping
operation.

Fig. 2: Decomposition diagram portion Fig. 3: Input

The expected output after the execution of the CMPState2State on the in-
stance of MMG detailed in Fig. 3 is as follows. The CompositeStateTop included
in the StateMachine SM in MG must be transformed to a CompositeState Top
included in the StateMachine SM in MT. Lastly we execute the transformations
and check whether the actual output is same as the expected output.

<hcl:StateMachine name=“SM”>
<states name=“Top”>
</hcl:StateMachine>

2 The second step involves validating the consistency between the two model
transformations. For achieving this, we apply the MMG2MMT model transforma-
tion to MG detailed in Fig. 4. The output is MT detailed in Fig. 5. We then apply
the MMT2MMG model transformation to the output of the MMG2MMT model

Blended Modelling of UML-RT state-machines 19

(a) Graphical editor (b) Exeed Editor.

Fig. 4: Graphical model

transformation. The output of the MMT2MMG model transformation must be
identical to the instance of MG detailed in Fig. 4 for the QVTo transformation to
be considered consistent. The model transformations are revised until full con-
sistency is achieved. In addition to the testing results, architects at HCL have
assessed both the usability and usefulness of the textual notation, as well as the
synchronization mechanisms between notations.

On another note, by inspecting the instances of MMG and MMT detailed
in Fig. 4 and Fig. 5 respectively, we can highlight the most significant differ-
ences in terms of semantics and structure. For instance, CompositeState A and
SimpleState B in MMG are transformed into State A and State B in MMT,
respectively, where State A is the parent of State B. Although the structure
is identical, there exist semantic differences between SimpleState B and State

B, because SimpleState B cannot contain other elements, whilst State B can.
For transitions, if we consider the same transformation, it is the opposite. For
instance, Transition T0 in MMG is transformed into InitialTransition T0

in MMT and Transition T7 in MMG is transformed into HistoryTransition

T7 in MMT. Alternatively, structural differences are prominent when creating
new metaelements instead of transforming them (because of the lack of a corre-
sponding source metaelement). This is the case of TransitionBody, Port, Event,
Method, and Parameter metaelements in MMT. For instance, Transition T1 in
Fig. 4 has two children, Trigger and ActionChain, whilst Transition T1 in
Fig. 5 has only one child, TransitionBody, which contains the PortEventTrigger
and TransitionOperation. Another interesting difference is that whilst in Fig. 4
Transition T7 and Deep History H reside on the same level (i.e., they are sib-
lings), in Fig. 5 Deep History H is a child of Transition T7. The reason for
this is to allow the user to initialize DeepHistory when writing Transition T7,
and not before initializing it, and then reference it in Transition T7.

20 M. Latifaj et al.

(a) Xtext editor (b) Exeed Editor

Fig. 5: Textual model

6 Related Work

The Action Language for Foundational UML (Alf) [17] is a textual language
standardized by the Object Management Group (OMG) for representing UML
models. Since its underlying semantics are indicated by a limited subset of UML,
named Foundational UML (fUML), the Alf syntax is restricted within its bounds
and does not support state-machines as they are not available in the fUML
subset. tUML is a textual language for a limited subset of the standard UML
metamodel targeted at real-time embedded systems that consists of class dia-
grams, composite structure diagrams, and state diagrams. The implementation
of tUML has been carried out to have a very close proximity to the UML meta-
model. Consideration has been given to propose tUML to OMG as an extension
of Alf, being that the latter lacks support for state-machines [10]. There also
exists a plethora of tools and modeling languages that support textual notations
for UML models. Earl Grey [15] is a textual modeling language that supports the
creation of UML class and state models. MetaUML [6] is a MetaPost library for
creating UML diagrams using textual notations, and it supports class diagrams,
package diagrams, component diagrams, use case diagrams, activity diagrams,
and state diagrams. The textual notation is not only used to define the elements
and their relationships but also their layout properties. PlantUML 13 is an open-
source tool that supports the generation of both UML and non-UML diagrams
from a textual language. Among the most important UML diagrams they sup-
port are sequence diagrams, class diagrams, activity diagrams, state diagrams,
and more. Umple [12] is an open-source modeling tool that can be used to add
UML abstractions to programming languages (i.e., Java, C++, PHP, and Ruby)
and create UML class and state diagrams from a textual notation. The gener-
ated graphical view for class diagrams can be edited, while for state-machines,

13 http://plantuml.com/guide

Blended Modelling of UML-RT state-machines 21

it is read-only. Textual, executable, and translatable UML (txtUML) [5] is an
open-source project that supports the creation of models from a textual notation
and generates the corresponding graphical visualization. TextUML Toolkit 14 is
an open-source IDE that allows the creation of UML2 models from a textual
notation. This toolkit is available on Cloudfier, as a plug-in for Eclipse IDE and
as a standalone command-line tool.

There have been a handful of attempts at providing textual syntax for UML-
RT and we have been involved in some of them. Calur [7] provides a textual
syntax only for UML-RT’s action language, not state-machines. Unlike our ap-
proach, both eTrice15 and Papyrus-RT16 provide a kind of all-or-nothing ap-
proach. They both provide syntax for both structure and behaviour, but the
entire model is described as either textual or graphical, whereas in our approach
the user can select only parts of the model to be represented textually. This
allows the user to retain the ability to use existing RTist tooling for graphical
modelling. Note also that our textual notation for UML-RT state-machines has
been designed and implemented to maximise user experience of architects and
engineers, as their throughput thanks to the possibility of blended modelling.

7 Outlook

In this work, we have reported on our work to provide a seamless blended graph-
ical and textual modelling environment for UML-RT state-machines. Our pro-
posed solution involves the provision of (i) a textual notation as complement
to the existing graphical notation for UML-RT state-machines and (ii) ad hoc
synchronization mechanisms between the metamodels underlying the two nota-
tions. The synchronization mechanisms have been designed as model-to-model
transformations and implemented using the operational implementation of the
QVT language in Eclipse. With regards to the limitations of this approach, we
argue that the solution is language-agnostic (i.e., applicable to UML-RT state
machines only). For any other language, the related editors and transformations
have to be re-done from scratch. On a similar note, if the metamodels evolve,
the model transformations would have to be manually updated.

For that reason, future work involves the definition of a mapping language
that allows the definition of explicit mappings between arbitrary metamodels
(MMs), and automatic generation of synchronization transformations via Higher
Order Transformations (HOTs). The HOTs are transformations that take as in-
put and/or generate as output other model transformations [20]. Given two MMs
defined, a mapping model, conforming to the mapping language, would conceive
the mapping rules for synchronizing models conforming to the two MMs. The
mapping model together with the two MMs would be given in input to a set of
HOTs that we are currently designing. The outputs of the HOTs are synchroniza-
tion model transformations, as the ones defined manually in Operational QVT

14 ttp://abstratt.github.io/textuml/
15 https://www.eclipse.org/etrice/
16 https://www.eclipse.org/papyrus-rt/

22 M. Latifaj et al.

for the solution presented in this paper. The type of generated transformations
(i.e., endogenous, exogenous, out-of-place, in-place) depends on the nature of
the two MMs.

In fact, this architecture and the HOTs in it would entail multiple usage
scenarios, as follows. In case the MMs are two entirely disjoint (but somehow
connected/dependent) languages, the generated transformations provide syn-
chronization across different languages (either same or different notations). In
case the MMs represent two notations of the same language, the generated trans-
formations provide synchronization across different notations of the language. In
addition, in case the target MM represents an evolution of the source MM, the
generated transformations provide co-evolution mechanisms for models conform-
ing to MM.

This work is run in the context of an international consortium across 4 coun-
tries within the ITEA3 BUMBLE project17. In that context, we will run more
extensive controlled experiments and industrial case-studies too. An important
element of the dissemination plan consists in leveraging the different opportu-
nities provided in the Eclipse community, including Eclipse conferences (e.g.,
EclipseCon Europe) and marketing. We will also collaborate with the Eclipse
Working Groups, Papyrus and Capella Industry Consortia to reach out to in-
dustrial MDE tool users. We plan to disseminate results via research forums (con-
ferences, workshops), corporate presentations, participation to industrial events
like expos, on-line community forums for Eclipse, social media, fact sheets, and
wikis.

Acknowledgments

This work was supported by Vinnova through the ITEA3 BUMBLE project (rn.
18006). We would like to thank Ernesto Posse for his great support in technical
discussions related to the UML-RT textual implementation in Papyrus-RT.

References

1. Addazi, L., Ciccozzi, F.: Blended graphical and textual modelling for UML pro-
files: A proof-of-concept implementation and experiment. Journal of Systems and
Software 175, 110912 (2021)

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in prac-
tice. Synthesis lectures on software engineering 3(1), 1–207 (2017)

3. Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Multi-view approaches for software and
system modelling: a systematic literature review. Software & Systems Modeling
(2019)

4. Ciccozzi, F., Tichy, M., Vangheluwe, H., Weyns, D.: Blended Modelling
– What, Why and How. In: MPM4CPS workshop (September 2019),
http://www.es.mdh.se/publications/5642-

17 https://blended-modeling.github.io/

Blended Modelling of UML-RT state-machines 23

5. Dévai, G., Kovács, G.F., An, Á.: Textual, Executable, Translatable UML. In:
OCL@ MoDELS. pp. 3–12. Citeseer (2014)

6. Gheorghies, O.: Metauml: Tutorial, reference and test suite (2005)
7. Hili, N., Posse, E., Dingel, J.: Calur: an action language for UML-RT. In: 9th

European Congress on Embedded Real Time Software and Systems (ERTS 2018)
(2018)

8. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley
Professional (2000)

9. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: Procs of ICSE. pp. 471–480. IEEE (2011)

10. Jouault, F., Delatour, J.: Towards Fixing Sketchy UML Models by Leveraging Tex-
tual Notations: Application to Real-Time Embedded Systems. In: OCL@MoDELS.
pp. 73–82 (2014)

11. Latifaj, M., Ciccozzi, F., Mohlin, M., Posse, E.: Towards automated support for
blended modelling of uml-rt embedded software architectures. In: 15th European
Conference on Software Architecture ECSA 2021, 13 Sep 2021, Virtual (originally
Växjö), Sweden (2021)

12. Lethbridge, T.C., Abdelzad, V., Orabi, M.H., Orabi, A.H., Adesina, O.: Merging
modeling and programming using Umple. In: International Symposium on Lever-
aging Applications of Formal Methods. pp. 187–197. Springer (2016)

13. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: A survey. IEEE Trans. on Soft. Eng. 39(6), 869–891
(2012)

14. Martin, R.C.: Clean code: a handbook of agile software craftsmanship. Pearson
Education (2009)

15. Mazanec, M., Macek, O.: On General-purpose Textual Modeling Languages. In:
Dateso. vol. 12, pp. 1–12. Citeseer (2012)

16. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic notes in
theoretical computer science 152, 125–142 (2006)

17. Object Management Group (OMG): Action Language for Foundational
UML (Alf), Version 1.1. OMG Document Number formal/2017-07-04
(http://www.omg.org/spec/ALF/1.1) (2017)

18. Selic, B.: Real-time object-oriented modeling. IFAC Proceedings Volumes 29(5),
1–6 (1996)

19. Selic, B.: The pragmatics of model-driven development. IEEE software 20(5), 19–
25 (2003)

20. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: European Conference on Model Driven Architecture-
Foundations and Applications. pp. 18–33. Springer (2009)

21. Tiso, A., Reggio, G., Leotta, M.: Unit Testing of Model to Text Transformations.
In: AMT 2014–Analysis of Model Transformations Workshop Proceedings. p. 14
(2014)

