
A Reliability-oriented Faults Taxonomy and a
Recovery-oriented Methodological Approach for

Systems Resilience

Carlo Vitucci ID

Technology Management
Ericsson AB

Stockholm, Sweden

carlo.vitucci@ericsson.com

Daniel Sundmark ID

Computer Science and Software Enigineering
Mälardalen University

Västerås, Sweden

daniel.sundmark@mdu.se

Marcus Jägemar ID

Sys Compute Dimensioning
Ericsson AB

Stockholm, Sweden

marcus.jagemar@ericsson.com

Jakob Danielsson ID

Sys Architecture
Ericsson AB

Stockholm, Sweden

jakob.danielsson@ericsson.com

Alf Larsson ID

Senior Specialist Observability
Ericsson AB

Stockholm, Sweden

alf.larsson@ericsson.com

Thomas Nolte ID

Division of Networked and Embedded System
Mälardalen University

Västerås, Sweden

thomas.nolte@mdu.se

Abstract—Fault management is an important function that
impacts the design of any digital system, from the simple kiosk
in a shop to a complex 6G network. It is common to classify
fault conditions into different taxonomies using terms like fault
or error. Fault taxonomies are often suitable for managing fault
detection, fault reporting, and fault localization but often neglect
to support all different functions required by a fault management
process. A correctly implemented fault management process must
be able to distinguish between defects and faults, decide upon ap-
propriate actions to recover the system to an ideal state, and avoid
an error condition. Fault management is a multi-disciplinary
process where recovery actions are deployed promptly by com-
bined hardware, firmware, and software orchestration. The
importance of fault management processes significantly increases
with modern nanometer technologies, which suffer the risk of
so-called soft errors, a corruption of a bit cells that can happen
due to spurious disturbance, like cosmic radiation. Modern fault
management implementations must support recovery actions for
soft errors to ensure a steady system. This paper describes
an extended fault classification model that emphasizes fault
management and recovery actions. We aim to show how the
reliability-based fault taxonomy definition is more suitable for
the overall fault management process.

Index Terms—Reliability, Fault management, Fault topology,
Fault taxonomy;

I. INTRODUCTION

Today’s systems are becoming more complex due to the

higher number of supported functions. As a result, faults in

the system can cause system failure, which can be fatal for

large infrastructure systems. We propose using fault manage-

ment to ensure that a faulty system can continue running

with limited but correct functionality until maintenance ac-

tion can replace the suspected faulty component according

to a planned maintenance phase. Dori et al. [1] defines a

system as: ”...an integrated set of elements, subsystems, and

assemblies that accomplish a defined objective. These include

products (hardware, software, firmware), processes, people,

information, techniques, facilities, services, and other support

elements”. The above definition emphasizes that basic but

essential functions are integral to the system design regardless

of the service complexity or components. Fault management

is one of the crucial differentiating functions. It is an always-

present system function spanning from a kiosk in a shop [2]

to complex end-to-end vertical service deployment [3]. It

could not be otherwise because the most critical value of

each product is the ability to comply with the requirements.

Therefore, particular attention is given to Quality of (user)

Experience (QoE) [4] and fault management is how a system

detects and reacts to defects and continues to work according

to its specification [5], [6]. For that reason, this paper considers

fault management as a critical service to achieve QoE and

reduce maintenance costs.

The key contribution of this paper is:

• A novel fault taxonomy that considers the product relia-

bility.

• A revised fault management architecture including the

fault isolation concept for limiting the fault propagation

into the system extending the model used by Wuhib et

al. [7].

Systems reliability has been a growing field of research in

recent years. There seem to be two directions most explored:

increasing hardware fault tolerance [8], [9], and the definition

of a better taxonomy [10], [11]. Both fault tolerance and

taxonomy research look at the single hardware component,

at embedded system-level [12], and at the architecture of

distributed systems [13].

Our proposal joins the existing works and moves attention

towards a non-frequently explored direction: fault recovering.

48

2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-8810-5/22/$31.00 ©2022 IEEE
DOI 10.1109/COMPSAC54236.2022.00016

Fig. 1. Transition state of a reliability multilevel model.

This paper is structured as follows. First, we start by

introducing the fault management terminology, architecture,

and the significant characteristics of the discipline in section II.

Then, after summarizing a standard reference fault typology

in section III, we show an initial revised version in subsec-

tion III-A and a complete reliability-oriented classification in

subsection IV-A. Thanks to this new model, we describe a

typology between fault classification and recovery actions in

section V. Eventually, section VI shows a use case as an

example of the introduced typology.

II. FAULT MANAGEMENT ARCHITECTURE

Faults are often incorrectly mixed with other negative sys-

tem states such as failures and errors. We use Parhami’s [14]

definition of a system’s different working states, listed as

follows;

• Ideal: The state where the system is performing accord-

ing to its specification.

• Defective: The state where an incorrect behavior is de-

tected.

• Faulty: The state where a behavior outside specification

is manifested in the system, causing an error.

• Erroneous: The state where the system may start work-

ing with behavioral deviation from the ideal state if it

cannot execute the needed recovery actions.

• malfunction: The state where the system is working with

behavioral deviation from the ideal state.

• degraded: The state of a system able to support a

malfunction behavior thanks to tolerance provisions.

• Failed: The state where a system is not able to meet the

specification.

The transition state model described in Fig. 1 shows the pos-

sible system states. It is worth mentioning how the description

of the transition model state emphasizes the system’s ability

to avoid a failed condition using both recovery actions and

Fig. 2. The fault management system.

tolerance provisions. Defective is the state where hardware or

software may deviate from the ideal system state. Wear and

aging of the hardware may cause a defect and may, in turn,

bring the system into a faulty state. A faulty condition may or

not cause an erroneous state if no recovery action is possible.

An erroneous state may or not cause the affected system

to malfunction depending on the system’s error tolerance. A

malfunction does not necessarily mean a perceivable service-

level drawback, but if that happens, the degradation of the

service has the consequence of a failed system condition.

The transition state model must be the reference point

of every well-designed fault management process since fault

management aims to verify that the system is working accord-

ing to its functional requirements.

The fault management function is more complex than a

primary error detection mechanism. The goal of the fault man-

agement function is to guarantee that the system is working

within a specific performance range and at the full availability

of provided service. The customer perception and the product

maintenance cost are the true meaning of a guaranteed QoE.

Ensuring QoE requires a prompt reaction to the system distur-

bances that may compromise the quality of the service for the

end-user. Fault management cannot be only the supervision

of possible faults but must implement the four pillars of the

recovery attempt [15] in mind. We list these pillars as follows:

• Fault detection. Automatic collection of alarms as gener-

ated by hardware devices or system software components.

The fault detection phase may be a simple check of any

possible fault. A more complex system may be a full

monitoring mechanism in a vast range able to collect data

and metrics. The fault management can also be based

on artificial intelligence/machine learning to be able to

predict faults [7].

• Fault localization. Alarm data and metrics preparation,

increasing the value of the information provided by

the fault detection. The scope of the fault localization

is to provide a useful indication of the failure’s root

cause. For that reason, the representation of time and

temporal relation among events [16] is an important fault

localization aspect.

• Fault isolation. The fault isolation scope is to reduce the

49

fault propagation condition. It resolves the relationship

between different events, creating a priority-based alarm

classification to identify root cause interfering conditions.

Usually, it is based on hardware and software features to

mark a faulty state in an active alarm condition. One

example is the usage of temporal and memory isolation

as well as the poisoning algorithm to mark memory as

corrupted [17].

• Fault recovering. Application of specific recovery or dis-

patch actions to remove the actual root cause of the fault

indication (fixing the fault). It can also be to reshuffle

resource availability isolating and removing the faulty

component to bring back the system to an operational

state [18].

We consider the fault management described by Wuhib et

al. [7] as the baseline for our study. In Fig. 2, we extend

the baseline model by adding a fault isolation component.

We argue that the added element is essential for the fault

recovering process since it allows a better identification and

recovery of the faulty device. Moreover, it is helpful to design

fault management as follows:

• A Multi technologies area: Fault management should

not solely interest the software hardware-fault supervision

handler. Instead, efficient fault management combines

hardware, software, and system into a single holistic fault

domain.

• Applicable to multiple development scenarios:

Providers increasingly deploy services as scalable and

modular in distributed systems to meet user expectations.

A fault management design that does not consider

this service deployment trend and system characteristic

would have a severely limited domain of validity.

• Product life cycle oriented: The product quality attitude

starts from the very early stages of the product’s life. Fault

management design makes the difference if it adds value

along the entire products’ life cycle, from production to

repair centers, from function test to end-of-life.

• Based on multiple tools and sensors: Fault management

uses all possible techniques and features to improve

efficiency. Hardware Supervision, together with hardware

tests, diagnostics, behavioral observability, and, at least

at some levels, security, shall be considered tools and

sensors of fault management, so components that must

be used at the right time to perform the proper action.

III. ERROR TYPOLOGY

Fig. 3 depicts an established fault classification scheme [19].

This classification identifies the fault by component, location,

and function integrity. It is a practical example of a fault

taxonomy driven by fault supervision. Still, it doesn’t provide

any valuable information for the fault recovering state of the

fault management architecture shown in Fig. 2.

A. Revised taxonomy model

In this section, we introduce a revised model for the fault

taxonomy. Our model proposition introduces the priority-based

Fig. 3. Standard Fault Classification.

Fig. 4. Revised Fault Classification.

class (fatal, critical, and low impact fields). In addition, a ”Par-

tial” field enriches the Behavior-based class, a ”Device” field

extends the component-based class, and a ”Component” field

enhances the area-based class. The new fields aim to increase

the product’s reliability in its lifetime through improved fault

information for the fault recovering mechanism. Fig. 4 depicts

our proposal.

We describe the newly introduced fields in detail as follows:

• Behaviour-based: The behavior-based class in Fig. 3

shows ”soft” and ”hard” fields. They refer to the abil-

ity of the managed system to remain active. A ”hard”

fault identifies general system inactivity ”hard” fault. In

contrast, a ”soft” fault addresses a system that remains in

contact with the other network elements in an unreliable

working condition. We add the ”partial” classification

to be able to manage more cases in a fully reliable

system: a system that can still partly perform its task

but with lower performance. The difference between

soft and partial error is in their definition: the first one

addresses the capability of the system to remain active,

the second to work under reduced performance. It could

be a performance degradation caused by an aging issue or

the consequence of a recovering action for a malfunction

state that removes the faulty object from the list of the

available resources to let the system work, even if with

limited specifications. It is a decision taken considering

that, for the customers, a system with lower performance,

50

matching its specification, is more valuable than a system

with perhaps higher performance, but in non-reliability

conditions. For example, it is well known [20], [21]

that the customer usage of a network is lower than the

maximum system capability for most of the day. Then, a

dynamic reallocation of resource availability is possible:

the system can rethink resource usage after isolating the

faulty component in a manner that can still grant reliable

lower performance and untouched QoE in non-rush hours.

• Component-based: the ”device” fault characterization

introduced in the taxonomy is considering the ”fault

localization” phase. The possibility of having a more

exemplary fault indication is necessary to manage better

the redistribution of the hardware resources left available

in case of a partial error condition handling.

• priority-based: this classification is a new extension

to [19] and its purpose is to manage the ”fault isolation”

phase. Correct root cause analysis must consider fault pri-

ority to distinguish between primary and secondary faults.

The scope of fault management is to identify the actual

root cause of a possible faulty state. Until a primary fault

condition is active, fault management must postpone any

secondary fault analysis. Fatal is the highest primary for a

fault because it sets the system in an unstable condition.

Fault management may ignore any other type of fault

indication. Critical is a primary fault. Fault propagation

is possible because a primary fault may compromise

the working condition of other system functionalities.

Low impact is a secondary fault. The likelihood of fault

propagation is very low. Fault management must ana-

lyze other concurrent fault conditions too. For example,

systems that operate under extreme temperatures are not

reliable [22]: the automatic temperature control policy

may reduce the CPU frequency, and the clock may lose

its stability. Fault management must consider the high-

temperature condition as the highest critical fault and

ignore all secondary fault indications. Fault Management

will evaluate CPU frequency and clock instability issues

if it detects those conditions after the High-temperature

recovering action.

• Area-based: ”Component”, ”Device” and ”Partial” fields

allow a better fault indication resolution. For example,

the fault of a particular memory array can be defined as

”partial” because the system can continue to work iso-

lating the corrupt memory array. The ”Device” field will

be equal to the ID of the memory with the problem, and

”Area-based” will be ”component” because it is limited

to memory only, without any propagation of the error to

other hardware components and without considering the

fault as at the board or node level.

IV. RELIABILITY CONSIDERATION

The revised version of the standard fault taxonomy is

incomplete. The actual reason for adding the new fields is to

improve error handling. Still, we can resume the discussion by

reconsidering the state transition model in Fig. 1 to understand

Fig. 5. Complete transition state of a reliability multilevel model.

what kind of classification is still missing. The complete

scheme indicates that a verification state is associated with

each node: the method evaluates the actions necessary to

restore the system in reliability conditions for each state.

Similarly, external actions can result in a change of state,

and Fig. 5 shows the complete scheme of the transition state

model. The full version of the transition model indicates that

any interstate movement is reversible. Furthermore, it shows

that it is required to find the best solution to deal with a fault

condition.

A. Reliability Fault classification

We add another class to the standard fault classification to

describe how a system’s reliability may change due to new

faulty conditions. The most helpful information about a fault

is which type of action is possible to recover from a non-ideal

state or if the system can react to an external event that can

change the state of the transaction state model. We distinguish

three different types of faults: ”Corrected”, ”Correctable”, and

”Uncorrectable”, described in detail as follows.

1) Corrected Fault: The system has already corrected

the fault from a self-recovering action taken by hardware,

firmware, or software. The system will remain in its current

reliability state after the recovery action. The corrected error

events are helpful for the fault prediction task, which aids

the system in making specific recovery actions based on the

fault prediction analysis results. For example, an excessive

number of corrected fault events can be an indication of system

aging, implying that specific hardware components must be

replaced [23].

2) Correctable Fault: The system marks an actual fault as

”correctable” when it knows how to counteract the fault to

avoid drawbacks to both functions and performance. During

”correctable” faults, the system is in the ”defective state” of

the reliability transition model. Therefore, it must fix the fault

to void that consecutive ”correctable faults” bring the system

51

Fig. 6. Complete transition state of a reliability multilevel model.

into an ”uncorrectable fault” state. A typical example of a

correctable fault is the memory Error Correction Code (ECC)

algorithm. When ECC reports a fault as ”Correctable”, the

hardware or the software will write the corrected value to the

memory address [24].

3) Uncorrectable Fault: The fault handler doesn’t know

how to recover from the faulty state, and the faulty component

becomes unreliable. It could be a board device or a more

severe machine check exception for the processor. A typical

uncorrectable error is when the ECC algorithm detects a

double error in the memory, and it is not able to report the

correct data value anymore [25]. It is worth mentioning that the

faulty state is not the final stage of the transition state model.

The system can consistently execute proper actions to recover

to the ideal working condition avoiding the erroneous state,

not only in case of ”corrected” or ”correctable” indications.

The discriminating factor for recovering plans is the system’s

unreliability: any possible action may request a restart of the

board to have a more stable condition. In the best case, a re-

initialization of the faulty component can recover from the

fault condition. However, it is challenging to avoid temporary

disturbances to the end-user service. The system migrates from

a faulty to an erroneous state only when all possible recovery

actions fail. For example, the system may start using only the

available resources, isolating the faulty objects. Consequently,

the limited availability of resources can partially meet the

specification: the system marks the fault as partially recovered

and will work in a degraded state. The failed condition is only

the latest stage when even a partial recovery from the system

is impossible.

We propose our final classification scheme in Fig. 6 that

contains all states from the standard classification scheme

and the addition of our two new classes (priority-based and

reliability-based).

V. THE RELIABILITY TOPOLOGY

Our extended classification scheme allows for a better un-

derstanding of the priority of detected errors. The classification

is no longer exclusively suitable for information classification

for fault supervision but now also enables us to identify the

recovery action for a system that is not in an ideal state.

The key passage of this new fault classification is the

orientation towards system recovery. It is a new approach for

designing the fault management framework that arises from

the awareness of the high costs of maintenance. Reporting a

fault without trying to remedy its presence produces high costs,

heavy impacts on the service, and a lousy product reputation

in customers’ perception. The successive step is to identify a

topology between the reliability class and the specific action

sequence that can recover from a faulty state because the value

of the reliability class drives the actions to solve a fault case.

Corrected faults are already resolved and should, therefore,

never interrupt the system to avoid performance drawbacks.

”Corrected” faults require no action other than the supervision

of their occurrence to be able to detect and report a suspicious

frequency. Fault prediction algorithms can use ”Corrected”

fault statistics too.

Correctable faults require action. The fault indication is

propagated in the system with an interrupt so that the system

reacts immediately to its presence and carries out the recovery

action.

Uncorrected faults are managed through exceptions and

require a restart of the faulty component as a recovery action

because the system has become unreliable.

Recovery actions include simple mechanisms such as re-

initializing objects (e.g., memory write-backs) or more com-

plex mechanisms such as re-initializing both hardware and

software, which is significantly more time-consuming. Some-

times, the re-initialization of a faulty component requires

a board restart. In other cases, the isolation of a faulty

component requests a reconfiguration of the system. One

more time, It is worth remembering that the system must

always try recovery action, not exclusively for correctable

errors. Uncorrectable fault or a high-occurrence frequency of

corrected fault may also request a recovery action sequence.

We categorize the behavior of faults into three states; soft,

partial, and hard to determine a system’s reliability level. A

fault is marked as soft when a recovery action can move

the system back into an ideal state of the transition model.

A partial state means that the recovery action identifies a

new system resource configuration isolating the uncorrectable

fault and a degraded function condition. ”Hard fault” indicates

that an uncorrectable fault is critical for the system because

it can be neither recovered nor isolated. As a result, the

fault compromises the system’s overall functionality, and the

erroneous state is unavoidable.

Fig. 7 shows the topology between the reliability class and

the recovery actions.

Our mechanism gathers a set of information for every

detected fault (see object classification in Fig. 7), which is

essential to execute all stages of the fault management frame-

work: fault detection, localization, isolation, and recovery.

Fault management events may be stored and retained for

posthumous analysis. ”Report” propagates the set of fault

information and ”log” stores them. Usually, the term ”log”

indicates the file constructed with the data associated with

the fault event. However, to avoid possible confusion, we

52

Fig. 7. Recovering actions and reliability class topology

distinguish between ”log” and ”report”: both can contain the

same information, but the ”report” is the file propagating the

information relating to a fault in the system, while the ”log”

is a file that contains error information when it occurs and

it stores, not propagates, the fault info in the system, except

for statistical analysis. Therefore, the ”report” must contain

the information necessary for the elements of superior control

to better understand the event and the best action with which

to handle it. The report propagates the set of information in

Tab. I

VI. HARDWARE SOFT ERROR IN MODERN COMPUTING

SYSTEM

The usage of technology in the nanometer range has made

the quality of the product even more critical [26]. For example,

it is well-known [27], [6] that working with the nanometer’s

technology increases the probability of the so-called hardware

soft errors for the SRAM memory devices, and the soft

errors may also be a relevant problem for the DRAM and

logic circuit. Therefore, the soft error is expected, and the

recommendation is not only to detect it but also to implement

the recovery actions, from design (preventing malfunction)

to real-time (writing back the correct value). It is no longer

enough only to supervise a fault; the complexity of new

technological solutions obliges us to remain compliant to fault

management target: detecting, isolating, and correcting any

fault indication before it becomes an irrecoverable error. Tab. II

shows the recommendation for hardware soft error handling.

TABLE I
REPORT INFORMATION, FOR COMPONENT IN A FAULTY STATE

object pa-
rameter

Value Comment

ID unique object identity tag
Status No Fault Used to cease a previosuly trig-

gered faulty/defective case
Faulty
Defective
Degraded

Reliability Correctable An action may recover the er-
ror condition

uncorrectable Object is not trustable, it can-
not continue to work

corrected fault has been identified, iso-
lated, and corrected

device info Ethernet port
Equipment clock
temperature sensor
memory device
etc.

location node where the fault is located
board
device offset
absolute memory
address

Error rate an implicit indication that a
fault must be detected based on
a filtering mechanism, through
occurrences or consecutive er-
ror occurrences within a time-
based windows

Timing a global timestamp info, show-
ing when the fault event is set,
or fault entry is added to a
report (or log)

Recovery
action

Re-initialization of
the object

which type of action is
needed to recover from the
faulty/defective state

Restart of the board
Restart of the board
and board test
Change Repair action is needed

Recovery
time

Time according to the general
recovery escalation principle,
i.e., the time within a new oc-
currence of the same fault es-
calates to the next step

The recommendation addresses fault occurrence reduction in

the design phase and fault isolation and recovery strategy in

the run-time phase.

A. Use case: Error Correction Code (ECC)

Error correction code (ECC) is a mathematical process

widely used to protect the data stored in memory from corrup-

tion. It uses a single bit to detect errors in a more significant

number of bits and provides an algorithm to recreate corrected

data in real-time. Since most computer systems move data

in chunks of 64 bits, the ECC algorithm generates seven

extra bits per 64 bits of data. In case of a single-bit error,

the ECC algorithm can notify the correct value and the

event to the system. Several ECC technologies are available,

and the hardware takes recovering actions depending on the

implemented process. E.g., the single-error correction and

53

TABLE II
PRINCIPLES FOR SOFT ERROR MEASURE [28]

Principles Mitigation
techniques

Action

Reduction 1 Change in materials
2 Work on physical structure
3 Reduction in areas where soft

error occur
Isolation 1 Work on circuit configuration

2 Identification of parts with and
without substantial function

Correction 1 Automatic correction in hard-
ware

2 Automatic correction in the
equipment control program

3 Correction in accordance with
maintenance personnel opera-
tion

double error detection (SECDED) or the Hamming code that

are extremely popular ECC mechanisms [29]. Since ECC can

detect and correct a corrupted bit, it is an excellent example

because hardware uses the reliability class to report bit error

detection to the system depending on the implemented ECC

algorithm. Hardware, firmware, and software can take different

recovering actions based on the value of the reliability class.

Tab. III shows the application of the topology to the case of

ECC memory fault. The ECC use case helps to understand

the concept behind our research: each system component

and technology reacts continuously to a fault indication. The

ultimate goal is not ”fault detection” but the ”fault recover-

ing”. Hardware, software, and higher management components

analyze the fault information as detected, take an active

part in the correction of the fault, and participate in the

processing of the fault during its propagation in the system.

Our solution emphasizes the weight of the choral action of

fault recovering. Without multi-level orchestration between

hardware and software for fault information processing, a

system can only detect the error. The absence of a continuous

fault recovery attempt compromises the product service more

or less seriously. Moreover, it generates a wrong perception

of the product for the end-user.

VII. CONCLUSIONS AND FUTURE WORK

The quality of the service is a discriminating element

of any product and can cause an unsatisfactory end-user

QoE. Investing in fault management where reliability comes

to have a dominant position also means saving a lot of

resources for the maintenance task. Maintenance task means

intervention by qualified personnel in site, repair centers

activities, and troubleshooting. It is well-known to be of a

significantly higher magnitude than any reliability design

cost in the early life of the product. In a future task, we

want to analyze the cost of the fault and the cost of fault

management in a more structured manner. We want to verify

if the same fault may have a different cost if fixed by a

well-designed fault management strategy or maintenance

TABLE III
RELIABILITY TOPOLOGY FOR ECC USE CASE

ECC fault
type

discipline recovery action

corrected HW no action, hardware already
corrected the single bit corrup-
tion
number of corrected error are
available for statistics

Correctable HW corrected value reported to the
software

FW write back to the physical
memory

SW patrol or manual scrubbing:
time based background walk
through the whole memory to
correct detected fault, avoiding
a second bit corruption in the
same row to cause an uncor-
rectable fault.

Uncorrectable HW Two or more errors detected.
ECC process is not able to fix
the problem

SW Memory pollution. Mark the
memory as corrupted, avoid the
fault propagation to the soft-
ware, in case the corrupted
memory is going to be used

SW Memory initialization. Most of
the time, a soft error is recov-
ered by means of memory re-
initialization

SW warm restart, when a re-
initialization of the memory
cannot be done without
shutting-down the applications

Uncorrectable,
persistent

HW+FW+SW walk through consecutive
warm restart to detect if fault
has been fixed

SW Persistent fault row could be
removed from the list of avail-
able memory (degraded func-
tion)

activity. The integration between supervision-oriented and

reliability-oriented taxonomy enables a new fault handling

approach where fault recovery is central. Thanks to the new

taxonomy, it is simpler to provide a topology that maps a

fault indication into the domain of the action taken to recover

from a faulty state before it becomes an erroneous (or, even

worse, a failed) state. This topology will be the starting point

for a future reworking of the fault management framework.

We think the new framework will also establish a series

of hardware and software requirements for next-generation

products.

REFERENCES

[1] D. Dori, H. Sillitto, R. M. Griego, D. McKinney, E. P. Arnold, P. God-
frey, J. Martin, S. Jackson, and D. Krob, “System definition, system
worldviews, and systemness characteristics,” IEEE Systems Journal,
vol. 14, pp. 1538–1548, 6 2020.

[2] Eazy-Q, “Queue management system — queuing — que solution
—.” [Online]. Available: https://www.smartmatrixuae.com/service-cat/
queue-management-solution/

54

[3] ETSI, “Ts 128 545 - v16.1.0 - 5g; management and orchestration; fault
supervision (fs) (3gpp ts 28.545 version 16.1.0 release 16),” 2020. [On-
line]. Available: https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

[4] P. Brooks and B. Hestnes, “User measures of quality of experience: why
being objective and quantitative is important,” IEEE Network, vol. 24,
no. 2, pp. 8–13, 2010.

[5] I. Chih-Lin, S. Kukliński, T. Chen, and L. L. Ladid, “A perspective of
o-ran integration with mec, son, and network slicing in the 5g era,” IEEE
Network, vol. 34, pp. 3–4, 11 2020.

[6] S. Cherrared, S. Imadali, E. Fabre, G. Gossler, and I. G. B. Yahia,
“A survey of fault management in network virtualization environments:
Challenges and solutions,” IEEE Transactions on Network and Service
Management, vol. 16, pp. 1537–1551, 12 2019.

[7] F. Wuhib, C. Fu, and M. Soualhia, “A look at
automated fault management with machine learning - ericsson,”
2019. [Online]. Available: https://www.ericsson.com/en/blog/2019/6/
automated-fault-management-machine-learning

[8] Y. Chen, G. Lin, E. Crowe, and J. Granderson, “Development of a unified
taxonomy for hvac system faults,” Energies, vol. 14, p. 5581, 9 2021.

[9] M. Smara, M. Aliouat, S. Harous, and A.-S. K. Pathan, “Robustness im-
provement of component-based cloud computing systems,” The Journal
of Supercomputing, 9 2021.

[10] S. Bruning, S. Weissleder, and M. Malek, “A fault taxonomy for service-
oriented architecture.” IEEE, 11 2007, pp. 367–368.

[11] G. P. Bhandari and R. Gupta, “Extended fault taxonomy of soa-based
systems,” Journal of Computing and Information Technology, vol. 25,
pp. 237–257, 1 2018.

[12] S. Shu, Y. Wang, and Y. Wang, “An approach to architecture-based
fault tolerance evaluation with fault propagation,” Proceedings of 2015
the 1st International Conference on Reliability Systems Engineering,
ICRSE 2015, 12 2015.

[13] M. Barranco, S. Derasevic, and J. Proenza, “An architecture for highly
reliable fault-tolerant adaptive distributed embedded systems,” Com-
puter, vol. 53, pp. 38–46, 3 2020.

[14] B. Parhami, “Defect, fault, error, ..., or failure?” IEEE Transactions on
Reliability, vol. 46, pp. 450–451, 1997.

[15] M. Nouioua, P. Fournier-Viger, G. He, F. Nouioua, and Z. Min, “A
survey of machine learning for network fault management,” pp. 1–27,
2021.

[16] M. Steinder and A. S. Sethi, “A survey of fault localization techniques
in computer networks,” Science of Computer Programming, vol. 53, pp.
165–194, 2004.

[17] A. Kleen, “hwpoison — the linux kernel documentation,”
2009. [Online]. Available: https://www.kernel.org/doc/html/latest/vm/
hwpoison.html

[18] A. Menychtas and K. G. Konstanteli, “Fault detection and recovery
mechanisms and techniques for service oriented infrastructures,” pp.
259–274, 10 2011.

[19] E. Moridi, M. Haghparast, M. Hosseinzadeh, and S. J. Jassbi, “Fault
management frameworks in wireless sensor networks: A survey,” pp.
205–226, 4 2020.

[20] H. D. Trinh, L. Giupponi, and P. Dini, “Urban anomaly detection by
processing mobile traffic traces with lstm neural networks,” Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks workshops, vol. 2019-June, 6 2019.

[21] J. L. Bejarano-Luque, M. Toril, M. Fernandez-Navarro, C. Gijon, and
S. Luna-Ramirez, “A deep-learning model for estimating the impact of
social events on traffic demand on a cell basis,” IEEE Access, vol. 9,
pp. 71 673–71 686, 2021.

[22] T. Instruments, “The engineer’s guide to temperature sensing,” vol. 2019.
[23] T. Liu, C. C. Chen, W. Kim, and L. Milor, “Comprehensive reliability

and aging analysis on srams within microprocessor systems,” Microelec-
tronics Reliability, vol. 55, pp. 1290–1296, 8 2015.

[24] V. Sridharan, N. D. Bardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems the
good, the bad, and the ugly,” ACM SIGPLAN Notices, vol. 50, pp. 297–
310, 4 2015.

[25] A. Lanzaro, A. Pecchia, M. Cinque, D. Cotroneo, R. Barbosa, and
N. Silva, “A preliminary fault injection framework for evaluating
multicore systems,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7613 LNCS, pp. 106–116, 2012. [Online]. Avail-
able: https://link.springer.com/chapter/10.1007/978-3-642-33675-1 9

[26] K. Kang, H. Kufluoglu, K. Roy, and M. A. Alam, “Impact of negative-
bias temperature instability in nanoscale sram array: Modeling and
analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, pp. 1770–1781, 10 2007.

[27] I.-T. K.139, “Reliability requirements for telecommunication systems
affected by particle radiation,” 2018. [Online]. Available: https:
//www.itu.int/ITU-T/recommendations/rec.aspx?rec=13718&lang=en

[28] I.-T. K.131, “Design methodologies for telecommunication systems
applying soft error measures,” 2018. [Online]. Available: https:
//www.itu.int/ITU-T/recommendations/rec.aspx?id=13454&lang=en

[29] S. Mukherjee, “Error coding techniques,” Architecture Design for Soft
Errors, pp. 161–206, 1 2008.

55

