
Verifying the timing of a persistent storage for stateful fog applications

Zeinab Bakhshi, Guillermo Rodriguez-Navas, Hans Hansson
Mälardalen University, Sweden, {zeinab.bakhshi, guillermo.rodriguez-navas, hans.hansson}@mdu.se

Abstract— In this paper, we analyze the failure semantics
of a persistent fault-tolerant storage solution for stateful fog
applications. This storage system is a container-based solution
that provides data availability and consistency in a distributed
container-based fog architecture. We evaluate the behavior of
this storage system with a formal model that includes all
the important time parameters and temporal aspects of the
solution. This allows us to verify data consistency and other
fault-tolerance properties of our system model while consider-
ing application startup latency, together with synchronization
intervals and delays. We prove that the solution can tolerate
failures at application, node, communication and storage level
with the ability to automatically recover from failures and
provides data consistency within the synchronization delay
defined as t time units, which we can calculate for a given
system configuration.

I. INTRODUCTION
Providing persistent storage in container-based architec-

tures is an ongoing research challenge [1]–[3]. This service
is crucial for stateful applications, in which the behavior of
the application depends on the state history, and therefore,
the state needs to be stored reliably and must be readily
available.

Deploying stateful applications in container-based and
container orchestration architectures can be achieved rely-
ing on different methods and tools, such as a deployment
controller [1] or even using third-party solutions like Ceph
storage [4]. These solutions are among the few cloud-native
approaches to solve the stateful application deployment issue.

However, these solutions also suffer from certain limita-
tions when deploying applications in the vicinity of edge
devices, like it happens in fog and edge platforms. The main
issues are that: (1) it is challenging to access states when
a component fails in these solutions because the states are
kept outside of the cluster [5]; (2) the latency might be high
since they are implemented in the Cloud; and (3) they do
not consider data consistency between different nodes in the
cluster nor different replicas of the applications.

A solution to implement local persistent storage in
container-based fog architectures, with proper support to
data consistency, was recently published [6]. This solution
provides a distributed data storage called Replicated Data
Structure (RDS) that is instantiated locally in each node of
the cluster. There is also a Storage Container (SC) in each
node. The SC is a dedicated storage application that provides
data synchronization and consistency between nodes. The
consistency protocol used in SCs is the RAFT protocol [7].

This solution was verified to fulfill fault tolerance and
eventual data consistency properties, with some simplifi-
cations of the timing performance [8]. In this work, we

build on that work and question how the delay and latency
parameters of the solution (application startup latency, data
synchronization delay, etc.) will affect very critical attributes
like data accessibility and data consistency. For that purpose,
we extend the modeling of the persistent storage solution
for container-based stateful applications [6] by adding the
indicated temporal aspects. The aim of this evaluation is
to verify whether the system fulfils (1) data availability
after component (Application, SC, Node) failure, considering
application and SC startup latency, and (2) data consistency
in the cluster within a tolerable synchronization delay t.

The remainder of this paper is structured as follows: In
Section II we provide a brief background of the application
in our use-case. In Section III we elaborate on the problem
statement according to the system model, our persistent
storage solution and timing parameters. In Section IV, we
study the related works on how concurrency and delay issues
are addressed in the literature. We specify our system model
parameters and specifications in Section V. In Section VI, we
verify our system model considering the temporal aspects.
We conclude our work in Section VII.

II. BACKGROUND OF THE APPLICATION

The stateful application that we study as a use-case in
our container-based fog architecture is a robotic application
implemented with the Robot Operating System (ROS) [9],
as presented in [6]. This application is a navigator robot
that constantly moves towards newly generated goals, while
avoiding obstacles.

The essential components of a ROS application are ROS
packages, ROS nodes and topics. Communication among
ROS nodes is implemented with a Publish/Subscribe mech-
anism via shared topics; where a topic in ROS is the com-
munication module over which nodes exchange messages
[9]. There are three different design options to containerise
our robotic application that are explained in [6], namely
(1) putting all ROS nodes in one container; (2) allocating
the ROS nodes to a number of different containers; and
(3) putting each ROS node in a single container. Design
model (1) will turn into a huge and heavy container and
design model, whereas (3) results in a huge number of
containers, especially when the robot system is complicated
with a large number of nodes. Therefore, we choose design
model (2) and put ROS nodes that are working together in
the same container. Containers are the applications in our
system model since our ROS application is encapsulated in
containers.

III. PROBLEM STATEMENT

In order to understand the conceptual construct of the
persistent storage solution, we need a suitable representation
of the involved entities. For this, we provide a model of the
solution which comprises related components, resources and
their interactions as well as their data consistency model in
Section III-A. Then in Section III-B we formulate the timing
problem and define the properties that we need to check. For
the sake of clarity, in Table I we summarize the notation used
throughout the paper.

A. Container-based Persistent Storage System Model

In this section, we explain the system model of the
container-based persistent storage solution. This solution pro-
vides persistent and fault-tolerant data storage for container-
ized stateful application that require local and distributed
persistent data storage [8]. To better understand our system
model, we explain the concept of stateful application and
data eventual consistency in the context of our system model.

Stateful vs stateless application: the most important
reason why we proposed our solution is dealing with stateful
applications. Such as the majority of control applications,
stateful applications are reliant on their history as captured
by their states. These states need to be stored for future use
by the same and/or other applications. To better understand
the difference between stateless and stateful applications, we
define an application as a function. In stateless applications
the behavior of the function1 for a given value of the input
variable x, no matter how many times the function is called,
the result of the function will be the same. This can be
defined as

∀x ∈ X, and t, t′ ∈ T : ft(x) = ft′(x) (1)

Where in Equation 1, x is the variable (like the request)
and t and t′ are the time instants of calling the function. This
is like a read request to a fixed identity number or scanning
barcode of an object.

However, in stateful applications, the result of the function
is reliant also on previous calls to the same function (or even
on the time when the call is made). This history is captured
by state variable. This can be defined as

f(x) = f(x.state)) (2)

Where in Equation 2, x is the variable (like the request),
and state is the current state value of the system; for
instance, the current location of a moving object. In stateful
applications, the current state and the time when the function
is called affect the result of the function and therefore the
behaviour of the application.

System model: A cluster in our system consists of a
set of N =

{
N1, N2, ..., Nn

}
distributed nodes. In each

cluster there is an administrator node AN which works as an
orchestrator in the cluster. Each node is a virtual or physical
computing node. Nodes are characterized by their computing

1We assume that applications can be represented as single or multiple
iterative calls to a function, i.e. that we have read-execute-write semantic.

capacities RC
Ni

, Memory RM
Ni

, Storage RS
Ni

. Nodes host one
or more applications. We consider that the number of all
applications in the cluster is k. A node also contains an
updated list of applications running locally on it. We use
App or A interchangeably to refer to an application.
Let A =

⋃k
i=1 Ai be a set of applications to be deployed in

fog nodes. An application is characterized by its demands for
computational resources, like, RC

Ai
, Memory RM

Ai
, Storage

RS
Ai

. In addition, an application has a unique id and a storage
tag Ai

St

. Each application has a set of tasks to execute,
τ =

{
τ1, τ2, ..., τn

}
.

Applications in our system are fault-tolerant and are
automatically restarted upon failure [6]. However, they suffer
from a volatile storage issue. i.e., their volatile storage cannot
be retrieved after application failure.

Persistent Storage Solution: To solve the volatile storage
issue, we introduce the use of a local data storage system
in each node, called Replicated Data Structure (RDS). After
execution of each of the tasks, the application writes its state
in the volatile storage and in the RDS, respectively. Appli-
cations working in the same node can directly and locally
access RDS. However, if a node fails, the local data might not
be retrievable. As a remedy, we need to provide a mechanism
to distribute data in the cluster. For communication purposes
and data synchronization throughout the cluster, we propose
the use of separate Storage Containers (SC). This is to reduce
the load of synchronization from the application.

The role of SC in each node is to keep the data in the RDS
of each node synchronized and consistent. SC is a container
itself, so it supports the built-in fault tolerance mechanism
provided by containerization. Each node has at least one SC
that works as a storage application. SCs in the cluster use
the RAFT consensus protocol [7]. RAFT is an election-based
consensus protocol that provides data consistency and high
availability.
An SC is characterized by its computational demand RC

Si
,

Memory RM
Si

, Storage RS
Si

. An SC also has an unique id
and RAFT Status. This is explained in detail in [6].
Figure 1 is an illustration of our system model architecture.
This figure shows the different entities of the system and
their interactions at a high-level view.

Data Consistency: In a distributed system consisting of
N nodes, if all concurrent read actions of a specific data
element from any given number of nodes is guaranteed to
returns the same value, then the system satisfies the property
of strong consistency [10]. This means that when a data value
is changed in one node all other read requests from other
nodes must be blocked until the changes are propagated to
all the nodes. This is to guarantee that the next read operation
returns the same value. Figure 3 shows how strong data
consistency can be obtained in our system. In this figure, we
can see that a state value, which is currently X , is changed
to X ′ (by application App1). The new state X ′ cannot be
read by other applications until a full synchronization (Send,
Receive, Commit) occurs in the system. The main advantage
of strong consistency is that it guarantees consistent data.
However, this comes at the cost of blocking read operations

Fig. 1. System model artchitecture

TABLE I
SYSTEM NOTATIONS

Type Parameter Description
A Set of applications to be executed
Ai Application
RC

Ai
CPU demand of an application

RM
Ai

RAM demand of an application
Application

RS
Ai

Storage demand of an application
RC

Si
CPU demand of a Storage application

RM
Si

RAM demand of a Storage applicationSC
RS

Si
Storage demand of a Storage application

N Set of fog nodes
Ni Fog node
AN Administrator Node
RC

Ni
CPU capacity of a fog node

RM
Ni

RAM capacity of a fog node
RS

Ni
Storage capacity of a fog node

RC
AN CPU demand of an administrator node

RM
A N RAM demand of an administrator node

Node

RS
AN Storage demand of an administrator node

tapp Average Container (App or SC) startup/restart latency
Tad and Tsd in the UPPAAL model .

tS Interval periods SC needs to contact SC leaderTime
dN Communication delay between different nodes

while synchronizing.
In contrast, eventual data consistency is non-blocking. In

eventual data consistency, when no updates are executed on
the data, all read operations to that data will eventually return
the same value, yet it is possible that in some intermediate
states, simultaneous read operations in different nodes will
return different values (normally a value previously written).
The non-blocking behavior of eventual consistency offers
high availability (low latency) at the risk of returning older
data in terms of time and version. Time refers to the time
when the latest write is accessible for a read request and
version refers how many versions of the written data a read
request could have access to, i.e. in the worst case, how many
versions back in time from the most recent write the value
read could be.

Figure 2 shows eventual data consistency in our model. In

Fig. 2. Eventual data consistency in our system model

this case we can see that data are queued to be processed and
read. By leveraging eventual data consistency, completion
of application execution is fast and for systems like ours,
with multiple fault-tolerant levels, it helps to protect data
and reduces time loss.

Figure 3 shows an abstraction of strong data consistency in
our model. As shown in this figure, strong consistency comes
at the cost of high latency due to its blocking behaviour. In
addition, when the number of applications and nodes scale
up in the system, this blocking time will increase. The other
disadvantage of leveraging strong data consistency in our
system model is that when a failure occurs, i.e., SC or Node
failure, the system stops working until the failed component
is back and the new state is committed to all the nodes in
the system.

Still, in some other systems it might be required to ensure
strong data consistency. This derives from the application
requirements.

B. Timing Problem Formulation

To perform timing analysis of our system model we need
to account for timing requirements of the different system
entities, i.e., application start-up latency, application execu-
tion time, SC startup latency, SC synchronization time, etc.
These parameters makes it possible to calculate an upper
bound (i.e. worst case estimation) of the synchronization
time. We consider synchronization time as the time to fetch,
send, commit, receive data between different distributed SCs
plus network latency.

We also need to know how the application, SC and
node failures affect the upper bound time of the synchro-
nization and identify problematic scenarios. For instance,
circumstances in which a SC fails several times and the

Fig. 3. Strong data consistency in our system model

synchronization cannot happen. Another example can be
when the application execution is much faster than the
storage container. In this case the system might face an issue
of outdated data. Combination of these failures with other
application failures may lead to more complicated scenarios
that also need to be understood with the help of formal
analysis.

In our analysis, we categorize the timing aspects into two
different classes: (i) the effect of adding temporal delays on
data synchronization and data consistency, and (ii) the effect
of adding temporal delays on data accessibility after different
failures. Specifically, our analysis intends to prove that our
solution satisfies the following properties:
P1 (Eventual) Data consistency is guaranteed within time t.
P2 Application, SC and node startup latency do not affect

data availability in the cluster.
Note that in order to show that our model satisfies each one
of the stated properties, we need to further break them down
into more descriptive formulas that can be comprehended
by our modeling and verification tool (UPPAAL). This also
helps us get a complete understanding of the behaviour of
the model in different states, times and events.

IV. RELATED WORKS

Delays caused by component failures may lead to data
consistency issues by means of two main mechanisms:
concurrency problems of read/write actions and delay in
synchronization [11], [12]. In this section we study these
two causes, to investigate how delay and concurrency are
dealt with in the literature and by other technologies. Since
this topic in distributed data storage systems is a broad
concept, we narrow our study down to investigate more
and study about the application requirements and the RAFT
consistency protocol [7].

First, we briefly explain how RAFT manages delay and
concurrency in processing states. Then, considering our
application explained in Section II, we discuss how concur-
rency and delay are dealt with in ROS.

A. Concurrency and Delay in RAFT

We need to know what happens when an application writes
two or more different states locally in the replicated data
structure (RDS) before data synchronization between nodes
via SC happens.

In this case, when SC sends the states to the SC leader,
the states are not the latest version or there might be a case
in which some states are missed since the latest one will
overwrite them. Studying this type of situation in RAFT,
helped us figure out that there is no single state that can
be lost in RAFT, and all logs are stamped with terms and
will be processed eventually. However, on occasions when
there is a delay in data transfer due to communication failure,
node partitioning, or the concurrency of receiving different
states from the client the RAFT leader will put the states in
a queue based on the time of the state log. Message queuing
is to ensure that all the states, no matter if they are in the
latest state or outdated, are processed.

B. Concurrency and Delay in ROS

Let us study the issue of data consistency due to delay or
concurrency in ROS. When using pure ROS in an imple-
mentation of a Robotic application, the topics are queued in
stack of messages named ’Callback’ [9]. The callback is a
function responsible to handle the topics so, different nodes
can share their messages using subscribe and publish topics
method. When the execution time of the callback function is
short enough (shorter than the execution time of a task before
publishing the next topic) the callback can handle all the
topics in order before the next one is received in the queue.
However, this ideal scenario does not always take place in
complicated multi-node ROS applications. When different
nodes want to access topics in the callback at the same
time, the callback function needs to execute topic sharing for
different nodes that their execution times overlap to another
[13]. In this type of situation, the callback function executes
the topics based on their priority in the callback message
queue.

Processing messages in the callback based on their state in
the queue helps to manage all the messages that overlap with
other messages. However, for processing critical topics, like
observing an obstacle in the vicinity of the robot, this method
pushes processing of critical messages back in the queue
and this might result in hazardous behavior of the whole
application. To solve this issue, the message priority based
on the topic criticality is introduced that prevents the critical
messages to stay back in the queue. The critical messages
will be processed with higher priority and their execution
will be highly prioritized. This is implemented using ’Node-
Handles’ [14] in ROS that create different message queues
according to the tasks’ priority.

C. Discussion

In modeling our solution we consider that the complexity
of ROS application implementations underlies inside the
containers. This means that since we are encapsulating our
ROS application in a container we are going to use the same
methods in ROS to manage concurrency and delay in mes-
sage exchanges. However, we also need to consider that by
adding SC as another layer to our system to manage storing
and distributing state data in the cluster, this extra layer is
also prone to failure and probable delay in communication
and synchronization. Meaning that even if we consider that
messages with higher priority based on their critical state
(i.e., observing an obstacle) are going to be processed faster
in the callback queue, if the SC, the node, or communication
between the nodes fails, the critical messages are not going
to be received and processed on time.

For this type of failure and state loss, we can implement a
fail-safe mode as follows: if ROS nodes do not receive a topic
from the node with the critical state for a defined threshold,
then the Robotic application will stop working and notify a
higher entity, which will handle the fail-safe mode.

According to this discussion we draw a conclusion regard-
ing the synchronization method: after reviewing the methods
used in RAFT and ROS, we decide that we continue the
modeling to be a non-blocking synchronization method. We
are aware that it is not going to provide us with strong
consistency, however, we need to confirm our system model
will satisfy the consistency properties defined in P1.

V. SYSTEM MODEL SPECIFICATIONS

There are some temporal aspects that are crucial and
that we need to incorporate into our system model: (1)
startup latency period; (2) synchronization/communication
delay; (3) accumulative application execution time; and (4)
synchronization frequency. We further explain each of these
parameters as follows:

(1) The startup time latency refers to the sum of two
parameters: container creation and deployment time. The
average startup latency differs for each type of container and,
for this reason, application containers and SCs have different
startup latency.

(2) The synchronization delay refers to the total time
required for an SC to communicate to the RAFT leader and
send/receive states and commit/fetch them. The average time
of communication between nodes (and RAFT protocol delay)
is also considered along with this time.

(3) The accumulative application execution time refers to
the sum of the execution time of each task in an application,
and is denoted as C.

We have two approaches for measuring deployment (cre-
ation plus startup latency) and execution time of the con-
tainers. The first one is using a Python3 code than measures
deployment and execution time for n rounds and provides
min, average and max time. The second one, is using
Docker Container Inspect to measure start and end time of
a container. In both cases we need to terminate and remove
the container after execution to see the results. However,

there are other methods like using the “Sysbench” tool that
measures execution time, CPU, RAM usage of the container
as well.

There are different parameters that affect the result of
execution time of an application. For instance, the input
load/size, computational resources of the device the appli-
cation is running on, etc. Our measurement is simple. We
make an assumption that all the nodes in the cluster have the
same computational resources. We also consider that input
of the application has a fixed load/size. This is to simplify
the current measurement since the objective of this work is
not measuring performance parameters and we just need an
estimation of startup latency and execution time.

After running the application for n rounds in one device,
we measured the minimum, average and maximum execution
time. We consider the application execution time as the
maximum time calculated in our measurements.

(4) The synchronization frequency period is the interval
period between each synchronization occurrence. By using
this parameter, we can evaluate the level of data consistency
in our model.

VI. VERIFICATION OF THE PROPOSED SOLUTION

We used the UPPAAL [15] verification tool to model,
analyze, validate and formally prove the functionality of our
proposed solution in [8]. We stick to the same verification
tool and investigate the effect of adding temporal aspect to
our model using UPPAAL and by defining a new set of
properties.

A. Expanded Criteria

In [8], we defined In-scope and out-of-scope parameters and
metrics to narrow the borders of our verification. Here we
want to add the parameters and measurements that were
excluded as out of scope in our previous work to have a
thorough evaluation of our solution. The expanded criteria
in this work are as follows:

• Data consistency level considering the synchronization
time between SCs and RDSs

• Application and SC startup latency and their impact on
the accessibility of states

• Timing effect of synchronization delay to application
and SC functionality

It still remains to evaluate the scalability of our solution.
This shall be covered in future work.

B. Temporal aspects added to the application model

The first state of the application is the deployment state
where the application creation and deployment time are
considered. We use tapp to denote the sum of these two
times.
When an application is deployed, it starts to execute the set
of tasks as τ explained in Section III. The complexity of the
tasks are packaged into the containers so, we consider the
accumulated task execution for each application. To be on
the safe side we consider the maximum of all, denoted C.

TABLE II
RESULT OF EXPERIMENT WITH PROPERTIES

Property Formula Result
P1-1 A[] O.SendtoSC imply (O.t<=T) Satisfied
P1-2 E<>O.SendtoSC and (O.t>T)! Satisfied
P1-3 A[] O.SendtoSC imply (O.t>0) Satisfied

P2-1 A[] A1.App execution imply rep data struct[1] ==last committed [1] or
rep data struct[1] ==pre last[1] and x<C Satisfied

P2-2 A[] A0.App execution imply rep data struct[0] ==last committed [0] or
rep data struct[0] ==pre last[0] and x<C Satisfied

Fig. 4. Application and Storage Container Automata

The next stage of an application after application execution
is writing its state locally both on the volume and the RDS.
The average writing time for an application is also added to
our system model design.

Algorithm 1. Application Functionality Pseudocode
1 τ =

{
τ1, τ2, ..., τn

}
/ / Task s e t

2 J =
{
j1, j2, ..., jn

}
/ / E x t e r n a l s t a t e s

3 i d := App id
4 F e t c h i n t e r n a l s t a t e ()
5

6 While Running Tasks ()
7 {
8 f o r τ = 0; τ <= n− 1; τ ++{
9 Run τ ()

10 Wait () <= C
11 i f τ >= n or t <= C
12 Commit s e l f s t a t e ()
13 / / Commiting A p p l i c a t i o n ’ s s t a t e l o c a l l y i n RDS
14 }
15 i f (r e a d e x t e r n a l (t rue)) {
16 F e t c h e x t e r n a l s t a t e ()
17 f o r j = 0; j <= n− 1; j ++{
18 } e l s e {} }

C. Temporal aspects added to the SC model

The SC is created to serve two purposes (1) creating RDS and
(2) data synchronization between RDS on different nodes.
The first one is a one-time task and the second one is a
constant task to perform synchronization. We use tSC to
denote the sum of creation and deployment time for the
SC. For the synchronization time, we have two parameters,
synchronization delay and synchronization frequency, shown
as T and F respectively in the UPPAAL model.

Algorithm 2. Storage Container Functionality Pseudocode
1 i f (r e p d a t a s t r u c t . empty ())
2 F u l l s y n c h r o n i z a t i o n () = {} ;

3 / / F e t c h d a t a from SC l e a d e r
4 } e l s e {
5 f o r (i d =0; id<=num apps −1; i d ++){
6 L o c a l s y n c h r o n i z a t i o n (i d) }
7 / / F e t c h d a t a from RDS
8 f o r (j =0 ; j<=num ext apps −1; j ++){
9 E x t e r n a l s y n c h r o n i z a t i o n () }

10 / / F e t c h e x t e r n a l s t a t e s from SC l e a d e r
11 While SC working (t rue) {
12 f o r (i d =0; id<=num apps −1; i d ++){
13 i f (r e p d a t a s t r u c t [i d] = ! l r e p d a t a s t r u c t l o g [i d

]) {
14 / / send u p d a t e t o l e a d e r by append ing t h e l o g
15 S y n c h r o n i z e i n t e r n a l s t a t e (i d)
16 t i m e o u t () < t }
17 } f o r (j =0 ; j<=num ext apps −1; j ++){
18 i f (l r e p d a t a s t r u c t [j] = ! r e p d a t a s t r u c t [j]) {
19 / / u p d a t e e x t e r n a l s t a t e
20 S y n c h r o n i z e e x t e r n a l s t a t e (j)
21 t i m e o u t ()< t } }

D. Application and Node Failures Behavior and Temporal
Aspects
In order to model the behavior of the system in presence of
failures we added two automata to the system modeling: (1)
Application failure and (2) Node failure.

(1) Application Failure: Using the Application failure
automaton, we want to verify that Applications and SCs
on each node are mortal and still fault-tolerant. Meaning
that they are prone to failures but they will be recovered
automatically. Figure 5-A shows the UPPAAL automaton,
modeling the application failure. As is shown in this figure,
activation of Application and SC failure is done through
channels in UPPAAL. This automaton starts from the initial
location Working that shows that both Applications and
SCs are working.

When an error occurs for any application (including
SCs) the automaton moves to App_Failure location. The

Fig. 5. Application and Node Failure Automata

Fig. 6. Leader and Observer Automata

error! signal is then sent to an application or SC. This
forces the automaton in which the signal error! is received
to move to the Failure location. Figure 4-A and 4-B show
the application and SC automata respectively, including the
failure states.

For each of the Apps and the SCs, a separate automaton
is defined, since failure of one App/SC (automaton) should
not affect the other App/SC automata. As shown in figures
4 and 5 (a), when a failure is triggered in the application
failure automaton, it is the id indicated in the channel that
determines which container (App or SC) must transit to the
failure location. When an App or a SC fails and reaches the
failure state it must transition to its initial state afterwards.
However, when an application fails, its own state in its local
variable or internal state must be turned to 0 (empty)
as a consequence of the failure.

(2) Node Failure:
The node failure automaton is to verify that when a node
fails (i) all applications and SC(s) working on it will fail as
well and (ii) RDS as the local storage will also fail and all
local states/data will be lost.

Like the Application failure automaton the node failure
automaton also starts from the Working location. When a
node failure is activated with the error signal, each of the
App(s) and SC(s) in the same node will reach the failure
state in their own automaton. In the node failure automaton
this is done through committed locations (which prevents
any delay before taking the next transition) to avoid time
elapsing. Since when a node fails all working entities on
it will fail. These committed locations activate a sequence
of failures for App(s) and SC(s), one by one with no time
elapsed between them.

When all the App(s) and SC(s) in the node fail, then
they all will start from their initial state, after recovery. The
recovery is also done using committed locations and each
recovery channel activates a recovery channel in the relevant

automata (App or SC).

E. Temporal Aspect added to the Leader model
The Leader automaton is a simplified single location

automaton that models the RAFT leader with clock y.
Figure 6-A shows the UPPAAL model of this automaton.
There are two synchronization channels in this automaton
update_L_to_SC! and update_SC_to_L?. The first
one is triggered when sending update states to the SC and
the second one is triggered when receiving state updates from
SC. There is also an update edge in Leader automaton that
is activated when the value of external(s) states are updated.

Time F is defined to show the lower bound and upper
bound of staying in the location Leader in Leader automa-
ton.

F. The Observer Automaton
In order to verify the timing property P1, we need to

introduce an additional automaton (see Fig 6-B) which is
composed with the rest of the system. This automaton acts
as an external observer and does not interfere with the model
previously described.

This automaton starts from location SendtoLeader
with clock t set to 0. When the update_SC_to_L? signal
is received from the SC automaton the automaton moves to
the SendtoSC location and reset the clock t.

From this point on, the clock value again increases with
time. When the signal update_L_to_SC? is received
from Leader, the Observer automaton switches to the initial
location SendtoLeader and reset the clock t.

To measure the synchronization time in the SC automata
we use an Observer automata which acts as a clock precision
monitoring entity. This helps us measure the upper bound
and lower bound of the synchronization clock of the SC
automata. The Observer automata is defined as O in our
modeling system declaration. P1-1 is a property in the first
category of properties (P1) we want to examine in this work.

G. Properties

Table II gives the formula and the status of each property in
our extended model. In this subsection we explain each of
these properties with an interpretation of their result status.

P1 refers to the data consistency properties within the
defined synchronization time.

In P1-1 captures that T is an upper bound of clock t in
the synchronization process.

P1-2 captures that it is not possible that the upper bound
increase more than T . This property is not satisfied, which
captures the impossibility of the clock t to go beyond the
synchronization time defined as T .
To capture that we defined synchronization time not as an
immediate action, we defined P1-3. Intuitively this property
implies that the synchronization time is always greater than
0. Intuitively, it shows that clock t in the Observer automata
is always greater than 0 while synchronizing.
P2-1 and P2-2 are driven from the second category of
properties. Intuitively these properties indicate that data is
available after failure before the application execution.

VII. CONCLUSION

In this paper, we extended the modeling and evaluation of
our previously proposed persistent fault-tolerant storage solu-
tion for container-based architectures [6]. We added temporal
aspects related to our work [8] to improve the evaluation
of our system. These temporal aspects refer to application
startup latency and synchronization delay between nodes in
a cluster. We evaluated our solution in presence of these
newly introduced timings. The results indicates that our
solution provides fault-tolerance and data availability in case
of application and node failure. In addition, we verified that
the data consistency property is satisfied within t time units
in our system model. Where t is the tolerable synchronization
and communication delay of the proposed SC. In our future
work we will target the scalability and performance of our
solution.

ACKNOWLEDGMENT

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No
764785 and also from the VINNOVA project 2018-02437.

REFERENCES

[1] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F.
Khendek, “Microservice based architecture: Towards high-
availability for stateful applications with kubernetes,” in
2019 IEEE 19th International Conference on Software Qual-
ity, Reliability and Security (QRS), 2019, pp. 176–185.

[2] H. V. Netto, L. C. Lung, M. Correia, A. F. Luiz, and L. M. S.
de Souza, “State machine replication in containers managed
by kubernetes,” Journal of Systems Architecture, vol. 73,
pp. 53–59, 2017.

[3] H. V. Netto, A. F. Luiz, M. Correia, L. de Oliveira Rech,
and C. P. Oliveira, “Koordinator: A service approach for
replicating docker containers in kubernetes,” in 2018 IEEE
Symposium on Computers and Communications (ISCC),
IEEE, 2018, pp. 00 058–00 063.

[4] L. Mercl and J. Pavlik, “Public cloud kubernetes storage
performance analysis,” in International Conference on Com-
putational Collective Intelligence, Springer, 2019, pp. 649–
660.

[5] Z. Bakhshi Valojerdi, “Persistent fault-tolerant storage at the
fog layer,” Mälardalen University, 2021.

[6] Z. Bakhshi Valojerdi, G. Rodriguez-Navas, and H. Hans-
son, “Fault-tolerant permanent storage for container-based
fog architectures,” in Proceedings of the 2021 22nd IEEE
International Conference on Industrial Technology (ICIT),
2021.

[7] D. Ongaro and J. Ousterhout, “In search of an under-
standable consensus algorithm,” in 2014 {USENIX} An-
nual Technical Conference ({USENIX}{ATC} 14), 2014,
pp. 305–319.

[8] Z. Bakhshi, G. Rodriguez-Navas, and H. Hansson, “Using
uppaal to verify recovery in a fault-tolerant mechanism
providing persistent state at the edge,” in 2021 26th IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA), 2021, pp. 1–6.

[9] J. M. O’Kane, A gentle introduction to ROS, 2014.
[10] P. Bailis and A. Ghodsi, “Eventual consistency today: Lim-

itations, extensions, and beyond,” Communications of the
ACM, vol. 56, no. 5, pp. 55–63, 2013.

[11] N. Ben-David, G. E. Blelloch, M. Friedman, and Y.
Wei, “Delay-free concurrency on faulty persistent memory,”
ser. SPAA ’19, Phoenix, AZ, USA: Association for Comput-
ing Machinery, 2019, pp. 253–264, ISBN: 9781450361842.

[12] O. T. Lee, S. M. Kumar, and P. Chandran, “Erasure coded
storage systems for cloud storage—challenges and opportu-
nities,” in 2016 International Conference on Data Science
and Engineering (ICDSE), IEEE, 2016, pp. 1–7.

[13] N. Valigi, “Lessons learned building a self driving car on
ros,” in Robot Operating System (ROS), Springer, 2021,
pp. 127–155.

[14] M. CHIABERGE and S. RAPISARDA, “Ros-based data
structure for service robotics applications,” 2019.

[15] UPPAAL Model Checker, UPPAAL Official Website,
https://https://uppaal.org/.

