
Springer Nature 2021 LATEX template

Feedback-Based Resource Management for

Multi-Threaded Applications

Alessandro V. Papadopoulos1*, Kunal Agrawal2, Enrico Bini3

and Sanjoy Baruah2

1* Mälardalen University, Väster̊as, Sweden.
2 University of Turin, Turin, Italy.

3 Washington University in St. Louis, St. Louis, MO, USA.

*Corresponding author(s). E-mail(s):
alessandro.papadopoulos@mdu.se;

Contributing authors: kunal@wustl.edu; enrico.bini@unito.it;
baruah@wustl.edu;

Abstract

Reconciling the constraint of guaranteeing to always meet dead-
lines with the optimization objective of reducing waste of comput-
ing capacity lies at the heart of a large body of research on
real-time systems. Most approaches to doing so require the appli-
cation designer to specify a deeper characterization of the work-
load (and perhaps extensive profiling of its run-time behavior),
which then enables shaping the resource assignment to the appli-
cation. In practice, such approaches are weak as they load the
designer with the heavy duty of a detailed workload characterization.
We seek approaches for reducing the waste of computing resources
for recurrent real-time workloads in the absence of such additional
characterization, by monitoring the minimal information that needs to
be observable about the run-time behavior of a real-time system: its
response time. We propose two resource control strategies to assign
resources: one based on binary-exponential search and the other, on prin-
ciples of control. Both approaches are compared against the clairvoyant
scenario in which the average/typical behavior is known. Via an exten-
sive simulation, we show that both techniques are useful approaches
to reducing resource computation while meeting hard deadlines.

Keywords: feedback-based resource management, multi-core scheduling

1



Springer Nature 2021 LATEX template

2 Feedback-Based Resource Management for Multi-Threaded Applications

1 Introduction

The correctness of the run-time behavior of safety-critical applications needs to
be verified prior to their deployment. In the context of computational systems
that interact with the physical world and must take action in a timely manner,
the correctness is defined not only in terms of functionality but also timing.
Timing correctness of such systems is generally specified in terms of guarantees
of meeting pre-specified deadlines.

In order to verify timing correctness, system designers model the potential
behaviors of the system. To have a high degree of confidence that the conclu-
sions drawn based on analysis of these models will hold for actual run-time
behavior, these models are required to be conservative. Provisioning computing
resources on the basis of such conservative models tends to lead to significant
over-provisioning, and subsequently to very poor platform resource utilization
during run-time. The safety-critical systems research community has widely
recognized this problem, and a variety of approaches have been proposed
for dealing with it such as mixed-criticality analysis [1, 2] and probabilistic
analysis [3, 4] of run-time behavior.

In this paper, we will consider parallel tasks as a scenario to explore another
approach for modeling and checking the timing correctness of safety-critical
systems. Often, parallel tasks in the real-time literature are represented using
complex models such as DAGs — while these representations are accurate and
can represent the detailed internal structure of tasks, they are often difficult to
generate and expensive to analyze. In addition, for some applications, different
runs may generate different dependencies, making it difficult to represent them
using a single DAG. In this paper, we will explore measurement-based models
where, instead of modeling the full complexity of the program, we will model
parallel tasks with a couple of parameters only: the work — the total execution
needed to complete the task; and the span — the running time of the task if
it is given an infinite number of processors.

Even with this simpler model, the problem of pessimistic modeling remains.
To guarantee safety, one might estimate the work and span of the DAG to be
very large and these large values may not manifest very often (or indeed, ever)
in practice. Therefore, allocating resources based on these estimates leads to
over-allocation. Prior work [5] has considered an approach similar to the one
undertaken in mixed-criticality systems: instead of modeling the task with
just one value each of work and span, it is modeled using both its worst-
case parameters and typical case parameters. The requirement is that we must
guarantee safety in the worst case. In particular, we are given a task with
worst-case work W and worst-case span L which must be completed within
D time units (its deadline). However, we might expect that most executions
of the task will have a substantially smaller work and span. Therefore, during
run-time, one can first start by allocating fewer resources based on the typical
case, and then increase resources if the typical case assumptions do not hold.



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 3

0 V D

m

M

time
#

co
re
s

Fig. 1 The parallel task begins execution at time-instant 0 with a deadline at time-instant
D. It executes upon m processors over the interval [0, V ), and upon M processors over
the interval [V,D). (The x-axis thus denotes time, and the y-axis, the number of assigned
processors.)

This research.

In this work, we develop an approach to conserve resources in the typical case
(where the computational requirements of the task are smaller than the worst-
case parameters), while still guaranteeing that the task will meet deadlines
even if the task does manifest its worst-case execution. Our particular approach
is sketched below and exemplified by Figure 1.

1. We assume we have a single periodic or sporadic task that must be scheduled
on M processors within D time units of arrival. The worst-case work W and
span L parameters of a task are known — no job of the task has a larger
work or span than specified by these parameters. Further, we assume that
it is feasible to schedule this task on M processors in the worst case.

2. However, typically jobs of the task have a smaller work and span — this
typical case may not be known or may change over time.

3. The scheduler first allocates m ≤ M processors to the job for V < D time
units — the expectation is that most of the time (in the typical case) the
job will complete within this time, thereby conserving computing resources.

4. If the job does not complete within this time, all processors are allocated
for the remaining time D − V .

The goal is to compute m and V such that the job completes within its dead-
line even in the worst case — where it has work as large as W and span as large
as L. The values of m and V are related, once we pick one, the other is con-
strained. There may be many pairs (m,V ) which satisfy this criterion — we
want to pick the largest V and smallest m such that the jobs complete by time
V in the typical case while still completing by time D in the worst case. If the
typical case values of work and span are known and remain constant, we can
use those to pick appropriate values of m and V . However, these parameters
may be unknown and may change over time as the task releases a sequence of
jobs. We propose a generalization that does not require additional char-
acterization of run-time behavior (beyond the worst-case characterization
that is needed to assure safety). Our generalized approach is based on moni-
toring past executions and making resource-allocation decisions based on the



Springer Nature 2021 LATEX template

4 Feedback-Based Resource Management for Multi-Threaded Applications

information that is obtained via such monitoring. We explore different tech-
niques, drawn from the sub-disciplines of control theory and algorithm design,
for making such resource-allocation decisions.

Contributions and Organization.

This paper makes the following contributions:

1. Section 3 provides a general strategy for calculating m and V — in par-
ticular, given an instantiation of one parameter, how we can safely set the
other parameter while guaranteeing safety. In Section 4 we instantiate this
scheduling strategy to situations in which some additional information, viz.
the typical case values of the parameters characterizing the parallel tasks,
are known. These sections are a simplified restatement of work from [6].

2. In Section 5, we derive, and prove correct, algorithms for scheduling such
tasks in the general situation where these typical-case parameters are not
known, and furthermore when these typical-case values may vary over time.
In this section, we explore two general strategies, one based on binary-
exponential search, and one based on proportional control algorithms. Both
these strategies observe the behavior of the task over time and continually
change the settings of m and V to maximize utlization of the system.

3. In Section 6, we evaluate the effectiveness of our proposed algorithms via a
wide range of simulation experiments on synthetically-generated workloads.
These experiments indicate that both our algorithms perform well, but
have different characteristics. The binary-exponential algorithm converges
quickly but has a larger variation compared to the control-based algorithm.

In addition to the above section, Section 2 explains the model and its moti-
vations, we briefly review the related work in Section 7 and conclude in
Section 8 by placing this work within a larger context of the resource-efficient
implementation of hard real-time systems.

2 Measurement-based modeling and scheduling
of parallel tasks

In this section, we flesh out the details of a measurement-based model for
representing parallel tasks and describe a general strategy for scheduling tasks
that are modeled in this manner. We will first motivate the model informally
in Sections 2.1 and 2.1. Then, a formal definition of the model is provided in
Section 2.3.

2.1 Motivation: Revising existing models

As stated in Section 1, several excellent DAG-based models for representing
parallel real-time code have been developed in the real-time community; how-
ever, there are some classes of real-time applications for which such models
have proved unsuitable. This may be for one or more of the following reasons:



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 5

1. The internal structure of the parallel code may be very complex, with multi-
ple conditional dependencies (as may be represented in e.g., the conditional
DAG tasks model [7, 8]) and (bounded) loops. Explicit enumeration of all
possible paths through such code in order to identify worst-case behavior
may be computationally infeasible.1

2. If some parts of the code are procured from outside the application devel-
opers’ organization, the provider of this code may seek to protect their
intellectual property (IP) by not revealing the internal structure of the code
and instead only providing executables — this may be the case if, e.g.,
commercial vision algorithms are used in a real-time application.

3. Explicitly representing the internal structure of the DAG generated by some
code can be exponential in the size of the code. In addition, algorithms
for the analysis of systems represented using DAG-based models tend to
have run-time pseudo-polynomial or exponential in the size of the DAG.
Therefore, in aggregate, these runtimes may become too large to be useful
in practice.

4. Particularly for conditional code, it may be the case that the true worst-case
behavior of the code is very infrequently expressed during run-time.

For pieces of parallel real-time code possessing one or more of the charac-
teristics discussed above, DAG-based representations may not be appropriate
for schedulability analysis; alternative representations are needed. Let us now
discuss what such a representation should provide.

2.2 Approach: Identifying relevant characteristics of
parallelizable real-time code

In modeling parallelizable real-time code that is to be executed upon a mul-
tiprocessor platform, a prime objective is to enable the exploitation of the
parallelism that may be present in the code by scheduling algorithms, to
enhance the likelihood that we will be able to meet timing constraints. We are
interested here in developing predictable real-time systems — systems that can
have their timing (and other) correctness verified prior to run-time. To enable
a priori timing verification, decades of research in the parallel computing com-
munity suggest the following two timing parameters of a piece of parallelizable
code are particularly significant:

1. The work parameter W denotes the cumulative worst-case execution time
of all the parallel branches that are executed across all processors. Note
that for non-conditional parallelizable code this is equal to the worst-case
execution time of the code on a single processor (ignoring communication
overhead from synchronizing processors).

2. The span parameter L (also called the critical path length in the literature)
denotes the maximum cumulative worst-case execution time of any sequence

1We point out that techniques for approximating the worst-case behavior of complex conditional
parallelizable code have been proposed with regards to specific scheduling algorithms such as
global fixed-priority [7], global EDF [8] or federated [9].



Springer Nature 2021 LATEX template

6 Feedback-Based Resource Management for Multi-Threaded Applications

of precedence-constrained pieces of code. The total running time of the
program on any number of processors is at least equal to its span.

The relevance of these two parameters arises from well-known results in
scheduling theory. While scheduling a DAG to minimize its completion time
is NP-hard in the strong sense, Graham’s list scheduling algorithm [10], which
constructs a work-conserving schedule by executing at each instant in time an
available job upon any available processor, performs fairly well in practice. In
particular, it has been proved in [10] that the response time R of the DAG,
which is the time elapsing from the release to the completion of the DAG, is
guaranteed to be no larger than

R ≤ W − L

M
+ L (1)

when the DAG is scheduled over M machines. The analogous term makespan
is often used in the scheduling community.

A little thought makes it clear that this bound is (2 − 1
M )-competitive —

no scheduler can finish the job in less than R/(2 − 1
M ) time — suggesting

that list scheduling is a reasonable algorithm to use in practice. In fact, most
run-time scheduling algorithms for DAGs upon multiprocessors use different
flavors of list scheduling.

2.3 Formal System Model

We now provide a formal definition of our model, by describing in detail our
workload model. A parallel task is characterized by

• W is a conservative estimate of the total computational requirement of the
job over all the processors (the work),

• L is the conservative estimate on the longest path of dependencies in the
task (the span) and

• D denotes the relative deadline parameter: a correct execution requires that
the response time upper bound of (1) is no greater than D that is

W − L

M
+ L ≤ D (2)

In this paper, we consider the scheduling of a single such task upon a dedicated
bank of identical processors. We point out that our results are directly applica-
ble to the scheduling of multiple recurrent —periodic or sporadic— real-time
DAGs where each instantiation of the task is called a job. We assume that
we have a multiprocessor or a multicore where each task is assigned a set of
dedicated processors for execution and need not worry about the other tasks
running on the same machine. Here, we assume that each periodic/sporadic
task satisfies the additional constraint that its relative deadline parameter is
no larger than its period parameter (i.e., they are constrained-deadline tasks).



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 7

2

4

1

2

5 3 5

5

5

5

11

4

1

3

1

3

4

5

6

12

Fig. 2 Illustrating the notions of worst-case work and span. Numbers in vertices represent
the required processing time of the vertex, while arrows denote precedence between vertices.
The figure shows five possible realizations of a DAG with worst-case work and span respec-
tively equal to equal to W = 20 and L = 12. We observe that the general notions of work
and span generalize DAGs with very different dependencies, possibly even fully independent
vertices (fourth case) or just sequential work (fifth case). The only requisite is that the work
and span of the realization do not exceed the worst-case values.

We assume that timing correctness is specified assuming that W and L
are correct estimates: the code is required to complete execution within the
specified relative deadline D provided its work and span parameters are no
larger than W and L respectively.

Note that the work and span parameters are not, in themselves, fully
descriptive of the program itself. Consider the examples in Figure 2.
The work and span (W,L) of the individual DAGs in these figures are
(20, 12), (20, 10), (20, 12), (20, 6), (12, 12) respectively. However, a particular
task may generate many different DAGs varying from instance to instance. If
we had a program that could generate all these jobs, then we would define the
worst-case work and span as defined in our model as 20 and 12, respectively.
In particular, even if the program could only generate the last two DAGs, we
would still define the worst-case work as 20 and the worst-case span as 12 even
though no individual instantiation of the program can simultaneously have
work of 20 and the span of 12.

3 Sufficient schedulability conditions

As described in Section 1 and illustrated in Figure 1, given a task modeled
by the parameters (W,L,D) as described above that is to be implemented
upon an M -processor platform, we want to compute m and V such that we
can both (i) guarantee safety and (ii) improve performance in the typical case.
In this section, we will compute the sufficient schedulability conditions which
guarantee safety. In particular, we will derive the relationship between m and
V such that any values that satisfy this relationship can ensure that the job
will complete by its deadline. In later sections, we will use this condition to
calculate specific values that can be used to get good performance in the typical
case.

Suppose that we are given values of m and V (with 0 < m ≤ M and 0 ≤
V ≤ D), and the run-time algorithm schedules the task on m processors using
list scheduling. If the task completes execution within V time units, correctness
is preserved since V ≤ D. It remains to determine sufficient conditions for
correctness when the task does not complete by time-instant V .



Springer Nature 2021 LATEX template

8 Feedback-Based Resource Management for Multi-Threaded Applications

Figure 1 depicts the processors that are available for this task if it does
not complete execution within V time units, thereby resulting in the run-time
scheduler allocating the additional (M−m) processors. (These processors may
have been allocated to other, non real-time work over the period [0, V ) or they
may be put to sleep to conserve energy). We will now derive conditions for
ensuring that the task completes execution by its deadline at time-instant D
when executing upon these available processors, given that its work parameter
may be as large as W and its span parameter, L.

Let W ′ and L′ denote the work and span parameters of the amount of
computation of the parallel task that remains at time-instant V (these are
strictly positive quantities since the task is assumed to not have completed
execution by time-instant V ). This remaining computation executes upon M
processors. By Equation (1) the response time R of the DAG is upper bounded
by

R ≤ V +

(
W ′ − L′

M
+ L′

)
(3)

Consider the time period until V in this execution and say that there were
X time steps where all m processors were busy and Y time steps where not all
processors are busy. Since the remaining span reduces on each time step when
all processors are not busy (and may reduce on the other time steps as well),
we have L− L′ ≥ Y . Therefore, X = V − Y ≥ V − (L− L′). Hence the total
amount of execution occurring over [0, V ) is at least

Xm ≥
(
V − (L− L′)

)
m,

from which it follows that

W ′ ≤ W − V m+ (L− L′)m (4)

Substituting Inequality (4) into (3), the response time upper bound becomes
equal to:

V +

(
W − V m+ Lm− L′ m− L′

M
+ L′

)
= V +

(W − V m+ Lm

M
+ L′ (1− m+ 1

M

))
(5)

Sincem ≤M , the upper bound of (5) is maximized when L′ is large as possible;
i.e., L′ = L (the physical interpretation is that the entire critical path executes
after V ). Substituting L′ ← L into Expression (5), we get the following upper
bound on the response time:

V +
(W − V m+ Lm

M
+ L

(
1− m+ 1

M

))
= V +

(W − V m− L

M
+ L

)



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 9

Correctness is guaranteed by having the response time bound be ≤ D, that
is: (

V +
(W − V m− L

M
+ L

))
≤ D

⇔
(
V − V m

M

)
≤

(
D − W − L

M
− L

)
⇔ V

(
1− m

M

)
≤

(
D − W − L

M
− L

)
(6)

The condition of (6) is thus the sufficient schedulability condition we seek:
values of m and V satisfying (6) guarantee correctness.

4 Resource allocation when typical parameter
values are known

In this section, we will assume that we have some additional prior informa-
tion — namely, we know typical or nominal values of the work and span
parameters — WT and LT . These parameters bound the work and span val-
ues of a “typical” invocation of the task and are derived via measurements or
more optimistic analysis techniques. For the remainder of this section only, the
expectation is that these values exist and are known. Later in Section 5, we
will consider the case where the DAG does not exhibit any typical behavior. It
will be then our proposed logic that infers the values that are to be assigned
to the WT and LT parameters.

We saw in Section 3 that choosing the parameters m and V satisfying
the condition of (6) ensures the correctness of the scheduling algorithm. We
will use the nominal parameters to pick a particular pair of values from this
space. Our goal here is efficiency : we want to use the minimum amount of
computational resources under the typical circumstances. Therefore, we want
to minimize the product of m and V .

By Inequality (1), we know that upon m processors a typical invocation
(an execution with work and span bounded by WT and LT respectively, will
complete no later than

(
(WT − LT )/m+ LT

)
. Hence, the assignment of

V ←
(WT − LT

m
+ LT

)
(7)

guarantees that if the DAG work and span do not exceed the typical values WT

and LT , respectively, only m cores are used and processing capacity is saved.
Equation 7 makes it clear that the two parameters in the product mV

have an inverse relationship — as m decreases, V increases. However, we can
also see that due to the additive LT in the equation, we want to pick the
minimum feasible m to minimize the product. Recall that we must pick these
values to satisfy Eq. (6) to guarantee feasibility in the worst-case — therefore



Springer Nature 2021 LATEX template

10 Feedback-Based Resource Management for Multi-Threaded Applications

substituting this value V , we get(WT − LT

m
+ LT

)(
1− m

M

)
≤

(
D − W − L

M
− L

)
(8)

as a sufficient schedulability condition, which is equivalent to

am2 + bm+ c ≥ 0

with a, b, and c assigned the following values:

a ← LT

b ← M
(
D − (L+ LT )

)
− (W − L) + (WT − LT )

c ← −M (WT − LT )

By finding the positive root of this second-degree polynomial, we find that the
number of cores m assigned over [0, V ] should be

m←

⌈
−b+

√
b2 − 4 a c

2 a

⌉
(9)

and the corresponding value of V is set by Eq. (7). Algorithm 1 reports the
pseudo-code for assigning both m and V .

Algorithm 1 Computing values for m,V

Input:
(
W,L,WT , LT , D,M

)
Output: failure, or values for m, V

1 begin
2 if

(
m < ⌈(W − L)/(D − L)⌉

)
then

3 return (failure) /* The test of

Inequality (2) cannot guarantee that the deadline will be

met on m processors */

4 end
5 a← LT // Precompute a
6 b←M (D − (L+ LT ))− (W − L) + (WT − LT ) // Precompute b
7 c← −M (WT − LT ) // Precompute c

8 m←
⌈(
−b+

√
b2 − 4 a c

)
/(2 a)

⌉
// Compute the number of cores

9 V ← LT + (WT − LT )/m // Compute the virtual deadline

10 return (m,V )

11 end



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 11

Decision Making

state(k)

Multi-Threaded

Application

runtime(k)resource(k)

{
state(k) = nextState

(
state(k − 1), runtime(k − 1)

)
resource(k) = resourceAlloc

(
state(k)

)
Fig. 3 A general diagram for the decision-making process and the corresponding dynamics.

Run-time complexity

Algorithm 1 comprises straight-line code with no loops or recursive calls.
Hence, given as input the parameters specifying a task, it is evident that
Algorithm 1 has constant – Θ(1) – run-time.

In the rest of the paper, the typical parameters are assumed to be unknown.
We will be using the typical parameters of the DAG as an oracle to compare
approaches that ignore this additional information. Therefore, we will use mid

to refer to the ideal allocation of cores of (9), which is aware of the typical
parameters WT , LT .

5 Observation-based adaptation of resource
allocation decisions

In the previous section, we had assumed that the typical work and span values
were known a priori and that these values remain constant as the system
continues to execute. Under these assumptions, we were able to compute the
optimal allocation of (m,V ). A resource allocation scheme relying on “typical”
parameters, however, may be very inefficient because typical parameters may
not exist due to the uncertain and variable nature of DAG workloads. In the
following we investigate runtime observation-based mechanisms to adapt the
allocation of (m,V ) over multiple iterations, relaxing such assumptions.

5.1 Response-time based processor allocation

We now describe the general scheme for optimizing resources assigned to recur-
rent applications, while maintaining the guarantee that the application always
meets its deadline. Figure 3 illustrates the general scheme and the equations of
the dynamics of our monitoring-based decision-making process for controlling
the allocation of resources to an application modeled as a recurrent multi-
threaded application. Similar feedback-based schemes can be found also in
the cloud computing literature literature [11–13], where different autoscaling
techniques have been proposed. However, autoscaling techniques are usually
not concerned with (hard) real-time guarantees, and they are more focused
on developing techniques for workload prediction to perform prompt and
proactive scaling. In the equations in Figure 3, we use the following terms



Springer Nature 2021 LATEX template

12 Feedback-Based Resource Management for Multi-Threaded Applications

• state(k) is the internal state of the decision-making algorithm at the k’th
iteration

• runtime(k) is the monitored run-time measurements
• resource(k) is the resource allocation at the k’th iteration
• nextState(. . . ) describes the internal logic of the decision-making algorithm
(in the following, three different algorithms are proposed)

• resourceAlloc(. . . ) determines the resource allocation for a given state of the
decision-making algorithm.

The above description is quite general. There are many possible run-time
measurements and many different types of resources to be controlled. In this
paper, our goal is to design a simple resource allocation scheme enabled by
minimal monitoring in order to demonstrate the applicability of the general
idea.

One could envision monitoring different aspects of the run-time behavior
modeled by runtime(k), for example

• the response time of the DAG;
• the total amount of computing capacity consumed by the DAG;
• the progress of the DAG execution along different paths, possibly monitored
by instrumenting the DAG code.

These are all reasonable solutions, and each offers a different level of detail. As a
general principle, the richer the monitored information is, the more efficient any
resource allocation decisions can be. Acquiring richer (and more fine-grained)
information may, however, require greater effort on the part of the system
developer, or may not even be possible via the available interfaces. In addition,
monitoring itself typically adds overheads and disturbs the system— therefore,
heavyweight monitoring may provide additional information for too high a
cost.

In this work, we make the following assumption of minimal monitoring.

Assumption 1 The only information detected by run-time monitoring is the response
time R of each job.

This assumption makes our approach very general, and applicable in
a broad variety of settings. Using the formalism introduced above, this
assumption means that

runtime(k) = R(k)

here R(k) denotes the response time of the k’th job — the k’th invocation of
the DAG task.

In addition, the amount of computing resources resource(k) allocated to
schedule the DAG during an invocation may be set in several different ways.
Examples include:

• The number of processors/cores allocated;
• The frequency at which subsets of the cores are run;



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 13

• The fraction of computing capacity allocated (via resource reservation
schemes); and

• Various combinations of the above methods.

Again, as we privilege simplicity and generality, we make the following
assumption regarding resource allocation.

Assumption 2 The computing capacity allocated to the DAG is controlled by setting
the number m of cores assigned over the interval [0, V ) at every DAG release, in
accordance to the scheduling strategy of Section 3.

We note that many OSes do in fact give the user the ability to specify the
number of cores of a multi-core platform to assign to individual multi-threaded
applications. E.g., one way of doing this on the command line in Linux is by
the taskset command or by using the sched_setaffinity(...) system call.
Neither method requires superuser privileges.

In this context, the choice of the number of cores m implies the value of
the virtual deadline V . In fact, solving the Inequality (6) for V , we obtain that

V ≤ M(D − L)− (W − L)

M −m
(10)

showing that the choice is coupled, as m upper bounds the choice of V . More-
over, as the main objective of the approach is to minimize the amount of
allocated resource for the largest period of time, in the following we will assume
that Inequality (10) will hold with the equal sign, and it will be indicated in
the following as V (m) — see Eq. (12). In such a way, the only decision variable
is m, and the virtual deadline V (m) is a direct function of m. In summary, our
proposed resource allocation scheme labeled resource(k), can be modeled by

resource(k) = m(k), (11)

here m(k) denotes the number of processors initially allocated to the k’th job,
and V (m(k)) is determined by m(k) via Eq. (12).

Remark 1 The virtual deadline V (m) is a non-decreasing function of m.

Proof For m < M , the virtual deadline is computed as:

V (m) =
M(D − L)− (W − L)

M −m
(12)

Computing the derivative of V with respect to m, we get

dV (m)

dm
=

M(D − L)− (W − L)

(M −m)2



Springer Nature 2021 LATEX template

14 Feedback-Based Resource Management for Multi-Threaded Applications

Algorithm 2 Binary search for core allocation.

Input: k, R(k), m(k), hi, lo
Output: m(k + 1), hi, lo

1 begin
2 if R(k) > V (m(k)) then
3 lo = m(k)
4 end
5 if R(k) < V (m(k)) then
6 hi = m(k)
7 end
8 m(k + 1) = ⌈(hi+ lo)/2⌉
9 end

and then
dV (m)

dm
≥ 0 ⇔ M ≥ W − L

D − L
which is true due to the schedulability condition of (2). □

Finally, we assume that the assignment of a larger amount of processing
capacity leads to a reduction of the response time.

Assumption 3 If m < mid cores are allocated, then the completion time will exceed
the virtual deadline, i.e., R > V (m). If m ≥ mid, then the completion time will
be below the virtual deadline, i.e., R ≤ V (m), and the completion time is a non-
increasing function of the number of assigned cores.

We note that, theoretically, this assumption holds for carefully designed
versions of list scheduling [10] on preemptive processors. It also holds in
practice for most compute-bound programs, though it may not hold for
memory-bound applications due to locality, cache, and memory bandwidth
issues. For the purposes of this paper, we make this assumption and argue
that our strategies can be reasonably expected to reduce resource waste. The
correctness guarantee (the fact that we will meet deadlines) does not depend
on this assumption.

5.2 Unknown and constant typical workload

In this section, we assume that although the values of the typical work and span
parameters, WT and LT , are not necessarily known to the run-time algorithm
that is responsible for allocating computing resources, these values do exist
and are constant over time. We use a relatively simple binary search method
to calculate m(k + 1) given the values of m(k) and R(k), which is sketched
in Algorithm 2. Note that the algorithm is repeated at every time k with the
new measurement R(k). As internal state, the algorithm maintains two values

state(k) =
(
lo(k), hi(k)

)
,



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 15

where lo(k) < hi(k) for all k and these are initialized to 0 and m, respectively.
The algorithm tries to converge to the ideal number of processors m = mid

by doing a binary search between lo(k) and hi(k) and by changing the cor-
responding values of lo(k) and hi(k) after each iteration. For any job k, we
always assign

m(k) =

⌈
lo(k) + hi(k)

2

⌉
,

which corresponds to the function resourceAlloc
(
state(k)

)
in the generic

skeleton of resource management scheme of Figure 3.

Lemma 1 The binary search algorithm converges.

Proof The invariant we maintain is that lo(k) < mid ≤ hi(k) in all iterations. This
is clearly true in the beginning since we set lo = 0 and hi = M . Recall Assumption 3
where we know that if R(k) > V (k), then m(k) < mid. In this case, we can safely
increase increase lo(k+1) to m(k). Similarly, if R(k) ≤ V (k), we know that m(k) ≥
mid(k). Therefore, we can safely set hi(k + 1) = m(k).

As in the usual binary search, in each iteration (until convergence), either the hi
value reduces or the lo value increases. Therefore, the algorithm will converge when
lo = hi− 1. At this time, m = hi and will not change further. □

5.3 Unknown and time-varying workload

In Section 5.2 above we had assumed that the values of WT and LT , although
unknown, remain constant. We now consider a further generalization: the
values of WT and LT may change over time. We propose two mechanisms
to deal with such an unknown and time-varying DAG workload. The first
(Section 5.3.1) is based on binary-exponential search [14] and extends the
previously described binary search algorithm. The second (Section 5.3.2) is a
control-based approach.

5.3.1 Binary-exponential search

We now consider the situation where the underlying computation may change
from one job to the next. In particular, consider the case where the binary
search has converged such that lo(k) + 1 = m(k) = hi(k) and then the under-
lying computation changes so that R(k) > V (k). Now we clearly need more
processors and the current hi(k) is no longer the correct upper bound on the
number of processors we need. Therefore, we must increase hi(k + 1). Here
we use the idea behind exponential search [14]. We increase hi(k + 1) by a
small increment (say hi(k+1) = hi(k)+ 2) to begin with. This causes a small
increase in m(k + 1). If we still have too few processors, we further increase
hi(k), this time by 4, doubling the increase with each iteration until we reach
the point where we have a sufficiently large upper bound. At this point, again
lo(k) and hi(k) are good upper and lower bounds and the normal binary search



Springer Nature 2021 LATEX template

16 Feedback-Based Resource Management for Multi-Threaded Applications

Algorithm 3 Binary-exponential search for core allocation.

Input: k, R(k), m(k), hi, lo
Output: m(k + 1), hi, lo

1 begin
2 if R(k) > V (m(k)) then
3 if m(k) == hi or R(k) > V (hi) then
4 Increase hi
5 end
6 lo = m(k)

7 end
8 if R(k) < V (m(k)) then
9 if R(k) < V (m(k)− 1) then

10 if lo == m(k)− 1 or R(k) < V (lo) then
11 Decrease lo
12 end
13 hi = m(k)

14 end
15 m(k + 1) = ⌈(hi+ lo)/2⌉
16 end

17 end

allows us to converge. In Algorithm 3, line 3 shows the condition under which
we increase hi(k + 1). While this condition is correct, it may misfire and may
increase hi even when it need not do so – for instance, it may be the case
that m(k) < hi(k) – therefore, R(k) which is the response time with m(k)
processors is larger than V (hi(k)), but the response time with hi(k) proces-
sors (which may be smaller) would not exceed V (hi(k)) and therefore hi(k) is
a good upper bound and need not be increased. In our actual code, we use a
slightly better condition which is less likely to misfire. However, this problem
can not be perfectly solved since we can not precisely know the response time
with hi(k) processors. This problem is related to the observability problem
described in the previous section, albeit it is not identical.

A similar exponential change must be made to lo when the response time of
the underlying computation decreases. However, this is even more treacherous.
Imagine that we have converged to lo(k) + 1 = m(k) = hi(k) and we observe
that R(k) < V (k). By symmetry from the above argument, one would imagine
that we should decrease lo(k+1) to decrease m(k+1). However, recall that we
want to compute the smallest m(k + 1) such that the response time R(k + 1)
is at most V (m(k+ 1)). Since R(k) may not (in fact, it is unlikely to) exactly
equal a virtual deadline corresponding to any particular number of processors,
R(k) is generally likely to be smaller than V (m(k)) even when we have the
correct number of processors. Therefore, if we always decrease m when R(k) <
V (k), the number of processors assigned will oscillate between the “correct
value” (where R < V ) and one fewer processor (where R > V ). Therefore, we



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 17

shouldn’t necessarily decrease the number of processors if the virtual deadline
is larger than the response time. To prevent this, on Line 9, we first check if
R(k) < V (m(k)− 1). If R(k) is between V (m− 1) and V (m), then we can be
sure that m was the correct allocation and we needn’t decrease lo(k + 1).

This does not completely solve the problem, however. In particular, in
some cases, it is possible that the response time R(m) < V (m − 1) while
R(m−1) > V (m−1). In this case, the correct allocation is m. However, with a
single observation, no algorithm can distinguish this case from the case where
R(m − 1) > V (m − 1). Therefore, for such computations, our algorithm does
oscillate between m and m − 1. It is important to note that this oscillation
can not be prevented when we make a single response time measurement.
Furthermore, this oscillation automatically solves the observability problem
described in Section 5.4. In particular, say that R(k) > V (m(k) − 1). In this
case, we can be sure that the response time with m(k)−1 processors (which we
did not observe) will also be larger than V (m(k)−1) due to the non-decreasing
property of response time. Therefore, it is not necessary to check with one fewer
processor. On the other hand, if the response time R(k) > V (m(k)− 1), then
this algorithm will automatically decrease lo(k + 1) and therefore, decrease
m(k+1) compared to m(k). As mentioned in Section 5.4, this measurement is
enough to check if we are using resources inefficiently and if so, the algorithm
will converge to a smaller allocation.

5.3.2 Integral Controller

A natural choice to explore for the decision-making problem is a control-based
approach. Control theory has been extensively used in different domains for
runtime adaptation.

The main challenges in applying a control-based solution in this context
are:

1. The difficulty in determining a model of the system to be controlled.
The relation between the amount of allocated resource (“resource(k)” in
Figure 3) and the runtime behavior (“runtime(k)” in Figure 3) may be
unknown or depend on unknown/unavailable internal state (e.g. cache
content)

2. the definition of an appropriate set point in terms of resource allocation to
be reached, and

3. the presence of integer variables, while normally feedback control loops work
better with real-valued variables.

All three problems are intertwined and need to be addressed jointly.
In a typical control structure, the set point is a well-defined concept that

is the desired behavior of the system. In this specific application, the ideal
resource allocation mid is unknown as it depends on the unknown relationship
between the resource allocation and the runtime behavior. Therefore, comput-
ing such quantity would require knowing exactly the function R(m) for all the
possible values of m and for all the time instants—since such function can also



Springer Nature 2021 LATEX template

18 Feedback-Based Resource Management for Multi-Threaded Applications

vary over time. The control problem can be then formulated as an approxima-
tion of the described problem, by measuring the response time of the previous
run R(m(k − 1)), and computing the approximated desired value of cores at
the current time instant as:

msp(k) := argmin
i

V (i) ≥ R(m(k − 1)) (13)

(Here, the superscript “sp” denotes “set point.”) If this is applied in an iter-
ative way over time, R(m(k − 1)) is the result of the allocation m(k − 1),
R(m(k)) is the result of the allocation m(k), and so on.

Recall that Remark 1 states that the virtual deadline V is a non-decreasing
function of m and that Assumption 3 states that the response time R decreases
with increasing values of m when R ≤ V . Therefore, if the allocation of m(k)
is too low, the resulting response time will be R(k) > V , and the controller
will increase m. On the other hand, if R(k) ≤ V the controller will try to make
the two quantities as close as possible, and it will decrease m.

The control strategy can be defined as follows. The tracking error e can be
defined as the discrepancy between msp(k) and the old core allocation as:

e(k) = msp(k)−m(k − 1) (14)

The smooth adaptation, can be achieved with an integral control structure:

m̃(k) = m̃(k − 1) +Ke(k) (15)

where K ∈ (0, 1], and the symbol m̃(k) is used to indicate the non-integer
number of cores. The resulting number of cores must be saturated between a
minimum and maximum value as

m̃(k) = min(max(m̃(k), 1),M) (16)

Furthermore, whereas the tracking error e(k) is generally an integer, the result-
ing number of cores is not necessarily an integer due to the multiplication by
the real constant K. The actual number of cores is therefore rounded:

m(k) = round(m̃(k)). (17)

Summarizing, the internal state of the control logic is state(k) = m̃(k),
while the nextState(·, ·) function is the composition of Eqs. (14)–(16), and
the resourceAlloc(·) is (17). The resulting control formulation is presented in
Algorithm 4. The formulation has the following advantages:

1. it provides a guarantee that the control strategy has a stable attractor in
e(·) = 0, meaning that it guarantees convergence either to zero tracking
error or to a stable limit cycle around e(·) = 0;



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 19

Algorithm 4 Integral Controller for core allocation.

Input: k, R(k), m̃(k − 1), K
Output: m(k + 1)

1 begin
2 msp(k) := argmini V (i) ≥ R(k) // Estimate the target allocation

3 e(k) = msp(k)−m(k − 1) // Estimate the allocation error

4 m̃(k) = m̃(k − 1) +Ke(k) // Compute the control action

5 m̃(k) = min(max(m̃(k), 1),M) // Saturate the control

6 m(k) = round(m̃(k)) // Round the control action

7 end

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4
 c

o
re

s
3
 c

o
re

s

A3 E3

D3

C3

F3

B3

A3 F3E3

D3

C3

B3

B

C

D

E

A F

B2

C2

D2

E2A2 F2

C2

D2

E2 B2 F2A2F1

D1

B1E1A1

C1

E1A1

D1

F1

C1

B1

Fig. 4 Example of DAG schedule over 4 and 3 cores. The processing time labeled by “XY”
represents the schedule of the “X” vertex of the “Y” job released by the DAG. In the
schedule over 4 cores, it can be observed that different processing times of vertices may lead
to different amounts of wasted resources. Such a difference, however, cannot be detected by
response time which has the same value of R(1) = R(2) = R(3) = 4 for all three jobs.

2. in the case that the required number of cores is exceeding the saturation
values, Eq. (16) avoids the accumulation of the error and then it allows a
prompt reaction as soon as the required number of cores becomes again
within the saturation limits (the so-called windup effect [15]); and

3. having selected the real-valued number of cores m̃ as the state of the con-
troller, it accumulates the quantity Ke(k) over multiple iterations, causing
the computed number of cores m̃ to smoothly change and eventually cross
the threshold for the rounding. This enables the exploration of a differ-
ent number of cores, which may be needed to possibly infer information
about the resource usage, not directly available from the monitoring of the
response time only (as previously illustrated in Section 5.4).

5.4 Limits of response-time-based resource allocation

As explained above, the response time is perhaps the simplest and most easily
monitored aspect of run-time execution. Using this aspect as the sole basis
for resource allocation, however, poses some challenges. This potential issue is
illustrated by an example in Figure 4.

Let us assume that we have a DAG composed of the six vertices labeled
A, B, C, D, E, and F. The precedence constraints among these six vertices



Springer Nature 2021 LATEX template

20 Feedback-Based Resource Management for Multi-Threaded Applications

are illustrated in Figure 4 (on the left). In this example, the completion of
A enables the execution of B, C, D, and E. The last vertex F may execute
only after the preceding vertices B, C, D, and E complete. Two scenarios are
considered: the execution of the DAG workload upon 4 cores (upper schedule)
and the execution of the same workload upon 3 cores (lower schedule). In both
scenarios, the DAG releases three jobs at instants 0, 7, and 14 (the job releases
are represented by thick arrows pointing up). The variability of the execution
times of each vertex is represented by different durations of each vertex among
the three jobs shown in the schedules. The two scenarios show the schedules
over 4 and 3 cores respectively of the same three jobs with the same duration
of the vertex execution time.

This example shows the implication and the potential issues of using only
the response time to allocate the “right” amount of processing resources. When
the three jobs of the example are scheduled upon 4 cores, the response times
R(1), R(2), and R(3) of the three jobs are all equal to 4. Hence, any resource
allocation policy which uses the response time only to determine the amount of
allocated resources, cannot detect any difference in resource usage of the three
jobs. The three jobs, however, use the 4 allocated cores very differently. In the
example of Figure 4, the first job uses much less processing than the other
two. Of course, this could be detected by monitoring the amount of processing
actually used. The API for monitoring this quantity, however, is not as simply
available as the capacity to know the job response time. For this reason, if we
stick with Assumption 1, some alternate way to detect an excessive amount of
unused resources is needed.

In Figure 4, the bottom diagram shows the schedule of the very same jobs
when scheduled upon 3 cores. When scheduling on fewer cores, in fact, a job
that was wasting a large amount of capacity may be capable of executing upon
fewer cores without affecting the response time. This is the case of the first
job, which has the same response time R(1) = 4 on both 4 and 3 cores. If
instead, the job schedule is tight, the assignment of fewer cores may lead to an
increase in the response time. In the example of Figure 4, this is happening to
both the second job (with a response time R(2) increasing to 5) and the third
one (with a response time R(3) increasing from 4 to 6 when scheduled over 3
instead of 4 cores).

This example illustrates that simply observing the response time on a
certain number of cores and making a resource allocation decision based on
this observation may lead to inefficient use of resources. Hence, occasionally
“exploring” the option of scheduling the DAG on fewer cores may lead to the
detection of unused resources.

6 Comparative Evaluation

In this section, we evaluate the effectiveness of the proposed resource manage-
ment strategies, under different conditions.



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 21

6.1 Assessing the waste of resource

To quantify and compare the effectiveness of the different strategies, we assess
how the proposed runtime adaptation strategies – unaware of the typical
execution parameters – compare with the “ideal allocation” mid (with the cor-
responding response time Rid) — obtained assuming that the typical execution
parameters are known. We define the following performance metrics.

1. The allocation error ϵ assesses for every time instant k how far the
allocated cores m(k) are from the ideal mid (computed according to
Algorithm 1). It is computed as:

ϵ(k) = |m(k)−mid(k)| (18)

No distinction is made if the resource is over- or under-provisioned.
2. The waste of resource w assesses the amount of resource wasted due to

a wrong allocation. It is computed as follows:

w(k) =

{
m(k)R(k)−mid(k)Rid(k), if R(k) ≤ V (k),

m(k)V (k) +M(R(k)− V (k))−mid(k)Rid(k), if R(k) > V (k),

where Rid is the response time that is obtained with the ideal allocation of
mid cores, and V (mid).

While the metric ϵ takes into account the instantaneous difference in the num-
ber of allocated cores with the ideal number (regardless of the time such a
difference lasts), the metric w instead measures the amount of wasted process-
ing capacity due to a wrong allocation. Note that both metrics are defined per
time instant k, as the ideal allocation may vary over time. The ideal alloca-
tion, computed as per Algorithm 1, is used as an oracle since it assumes that
the typical execution parameters are known.

For both metrics, the lower the value, the better, with a perfect allocation
having both metrics equal to 0.

Note that the ideal allocation can vary over time, based on the DAG that is
executing. Such quantities are usually not possible to know in advance unless
the structure of the DAG is known. The evaluation of the presented approaches
is therefore conducted in simulation to fully control the variation of the struc-
ture, and to have full access to the required information to compute the ideal
allocation. Note that the DAG structure information is used only for simulation
purposes, but it is not communicated to the decision-making strategies.

6.2 Simulation results

To assess the quality of the runtime decision-making strategies we consider
a Parallel Synchronous DAG (PSDAG) [16, 17], simulated as described in
Appendix A. For the simulations, we selected,M = 24 cores, and the controller
gain K = 0.5.



Springer Nature 2021 LATEX template

22 Feedback-Based Resource Management for Multi-Threaded Applications

0 2 4 6 8

20

40

60

T
im

e
(s
)

Binary Search

R V Vid

0 2 4 6 8

50

100

150

200
Binary Search

R V Vid

0 2 4 6 8
0

10

20

k

#
C
o
re
s

hi-lo m mid

0 2 4 6 8
0

10

20

k

hi-lo m mid

0 2 4 6 8

20

40

60

T
im

e
(s
)

Integral Control

R V Vid

0 2 4 6 8

50

100

150

200
Integral Control

R V Vid

0 2 4 6 8
0

10

20

k

#
C
o
re
s

m mid

0 2 4 6 8
0

10

20

k

m mid

Fig. 5 Numerical results of feedback-based approaches. The binary search is presented on
the top part of the graph, and the Integral Control is presented on the bottom part of the
graph. The ideal values are indicated with a dashed line.

We conducted two types of simulation campaigns: (i) assuming that the
PSDAG structure never changes, and therefore that there is a constant ideal
allocation, and (ii) assuming that the PSDAG structure can change over time,
and therefore that the ideal allocation may continuously change.

6.2.1 Constant Typical Execution Parameters

In the first set of experiments, we consider that the typical execution parame-
ters are constant but unknown. In Section 5.2, a Binary Search (BS) approach
was presented, to deal with this scenario. For the sake of completeness, we
include in the analysis the results obtained by using the Integral Controller
(IC) presented in Section 5.3.2, as it can also be used in the case of con-
stant typical execution parameters. Both algorithms are initialized to initially
allocate ⌈M/2⌉ cores.

Two examples of the obtained results are presented in Figure 5. In all the
graphs, the black dashed lines indicate the ideal resource allocation mid (with
the corresponding virtual deadline Vid := V (mid)). The solid blue lines indicate



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 23

Table 1 Aggregate metrics and results of the t-test for constant typical execution
parameters.

BS [avg. ± std.] IC [avg. ± std.] p-value
Allocation Error 1.05± 2.26 1.15± 2.24 0.3254
Waste of Resource 12.49± 37.03 13.23± 38.65 < 10−5

the resource allocated m by the algorithm and the corresponding virtual dead-
line V . The response time R resulting from the resource allocation is indicated
with the solid red line. When plotting the number of cores (“#Cores”) for the
BS algorithm, a green area indicates how the hi and lo values are varying.

The left and the right columns of Figure 5 are associated with two distinct
realizations of the PSDAG, while the top part shows the results obtained by
the BS algorithm, and the bottom part shows the ones obtained by the IC
algorithm.

The PSDAG realization presented in the left column shows that both algo-
rithms manage to reach the ideal allocation (indicated with the dashed line),
but the BS approach converges in fewer steps than the IC.

On the other hand, with the PSDAG realization presented in the right
column, the IC results in a faster convergence to the ideal allocation.

Discussion on the simulation campaign.

To better understand the obtainable performance of the proposed algorithms,
we conducted a simulation campaign of 100 randomized (and seeded) experi-
ments, where the PSDAG structure does not change, and the typical execution
parameters are constant (additional details on the simulation of the PSDAG
and the randomized quantities are included in Appendix A). Therefore, we can
analyze the obtained performance more systematically.

Table 1 shows the average and standard deviation computed for the
allocation error and waste of resource over the whole simulation campaign.
Comparing the averages to assess which method behaves better is typically
not enough. To this end, a t-test (also known as Student test) [18, Chapter
14] can be conducted to check if there is statistical evidence that the two
averages are actually different, or if the difference is due to the chance of hav-
ing extracted conducted an unlucky set of experiment, while in fact, they are
statistically comparable.

More specifically, the null-hypothesis of the t-test is H0: “the two meth-
ods have the same average”, while the alternative hypothesis H1 is that “the
two methods have different averages”. The output of a t-test is the so-called
“probability value” (or p-value), i.e., the probability of having observed the
collected data assuming that the null-hypothesis is correct. Hence, having low
p-values (typically lower than 0.05 or 0.01) is an indication that the alternative
hypothesis is correct.

We conducted a paired t-test for the two metrics to understand if there is
statistical evidence that one method is overall behaving better than the other.
Since in both metrics, the average of the BS is lower than the IC, we performed
a right-tailed t-test, where the alternative hypothesis is H1: “The average of



Springer Nature 2021 LATEX template

24 Feedback-Based Resource Management for Multi-Threaded Applications

the IC is higher than the average of the BS”. The last column of Table 1 shows
the obtained p-values. While for the allocation error, the p-value is quite large
– hence it is not possible to conclude that one method is statistically better
than the other –, for the waste of resource metric, the p-value is less than 10−5

indicating that there is enough experimental evidence to conclude that the BS
has an average better performance than the IC.

6.2.2 Time-Varying Typical Execution Parameters

Notice that, in the case of time-varying typical execution parameters, it is in
general impossible to get the two considered metrics to be equal to 0 for all the
time instants. This is due to at least two reasons: (i) initially, the allocation
must be done without any information on the response time (which is true even
in the constant case), and (ii) even if the ideal allocation is reached for a given
time instant, the structure of the DAG can change over time, hence changing
also the ideal allocation; an observation-based decision-making strategy needs
to either detect a variation in the response time or to go into an exploration
phase to reach the new ideal allocation.

We conducted a simulation campaign of 500 runs, each composed of 100
rounds, for the Binary Exponential (BE) algorithm, and for the Integral
Control (IC) algorithm.

Figures 6–8 show three examples of runs for the Binary Exponential (BE),
the two graphs on top in each figure, and for the Integral Control (IC), the
two graphs on the bottom. In each figure, the same realization of the PSDAG
is handled by both BE and IC algorithms.

The figures, follow an analogous structure, and color-coding of Figure 5,
with the difference that in this set of experiments, the BE algorithm is used
instead of the BS.

Experiment 1 (E1)

Figure 6 presents an experiment where BE has an overall qualitatively better
behavior than the IC. In particular, the IC oscillates around the ideal allo-
cation, and the oscillation has a large amplitude, occurring every time mid

decreases. The BE approach, on the other hand, manages to follow the ideal
allocation. In the experiment it is possible to appreciate the exploration phase
of BE, for example in the time interval k ∈ [50, 60], when, even though the
allocation converged to the ideal one, BE tries to decrease the allocated cores,
exploring solutions with less amount of resources.

Experiment 2 (E2)

Figure 7 shows an experiment where the IC exhibits a better qualitative behav-
ior than the BE. This is visible during the transients, where the IC converges
faster to the ideal allocation, while the BE has a slower convergence rate. This
is especially true when the allocated cores must be decreased.



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 25

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Binary Exponential

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
o
re
s hi-lo m mid

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Integral Control

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
o
re
s

m mid

Fig. 6 Experiment example 1. In this scenario, the Binary Exponential has an overall better
behavior than the Integral Control, where the Integral Controller exhibits large oscillations
in the allocated resource.

Experiment 3 (E3)

Figure 8 shows an experiment where both approaches present an oscillatory
behavior. Overall, the IC follows the ideal allocation but continuously oscil-
lating around the ideal allocation. This phenomenon is mostly induced by the
rounding in the algorithm, which does not allow the convergence towards a
single equilibrium point, but rather to a limit cycle.

On the other hand, the BE suffers from a joint effect of exploration and
window widening that significantly impacts the overall performance.

Evaluation of the overall campaign.

To assess the performance of the two methods over the whole simulation
campaign, we computed for all the experiments and for all the rounds the
instantaneous allocation error ϵ and the resource waste w. Figures 9 and 10



Springer Nature 2021 LATEX template

26 Feedback-Based Resource Management for Multi-Threaded Applications

0 10 20 30 40 50 60 70 80 90

20

40

60

T
im

e
(s
)

Binary Exponential

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
o
re
s hi-lo m mid

0 10 20 30 40 50 60 70 80 90

20

40

60

T
im

e
(s
)

Integral Control

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
o
re
s

m mid

Fig. 7 Experiment example 2. In this scenario, the Integral Control has an overall better
behavior than the Binary Exponential.

Table 2 Aggregate metrics and results of the t-test.

BE [avg. ± std.] IC [avg. ± std.] p-value
Allocation Error 0.48± 1.16 0.44± 1.12 < 10−7

Waste of Resource 15.72± 42.87 14.51± 41.66 < 10−5

show the distribution of the computed allocation error and waste of resource.
In particular, the top graphs of the two figures show the distribution of the
occurrences of the respective metric – note that the vertical axis is logarithmic
– while the bottom graphs show the computed Empirical Cumulative Distri-
bution Function (ECDF) of the two metrics—note that the vertical axis does
not start from 0 to better show the convergence of the ECDFs towards 1.

The average performance (avg.) and the standard deviation (std.) for the
two metrics are reported in Table 2.



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 27

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Binary Exponential

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
o
re
s hi-lo m mid

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Integral Control

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
o
re
s

m mid

Fig. 8 Experiment example 3. In this scenario, the Binary Exponential and the Integral
Control exhibit a comparable performance.

We conducted a paired t-test for the two metrics to understand if there
is statistical evidence that one method is overall behaving better than the
other. Since in both metrics, the average of the Integral Control is lower than
the Binary Exponential, we performed a right-tailed t-test, where the alterna-
tive hypothesis is H1: “The average of the Binary Exponential is higher than
the average of the Integral Control”. The last column of Table 2 shows the
obtained p-values. For both metrics, the p-value is less than 10−5 indicating
that there is enough experimental evidence to conclude that the IC has an aver-
age better performance than the BE when the typical execution parameters
are time-varying. This is despite potential oscillations like the ones presented
in Figures 6 and 8.



Springer Nature 2021 LATEX template

28 Feedback-Based Resource Management for Multi-Threaded Applications

0 2 4 6 8 10 12

101

103

105
F
re
q
u
en

cy

Binary Exponential

Integral Control

0 2 4 6 8 10 12
0.7

0.8

0.9

1

Allocation Error (# Cores)

E
C
D
F

Binary Exponential

Integral Control

Fig. 9 Distribution of the core allocation errors, and the corresponding Empirical Cumu-
lative Distribution Function (ECDF).

7 Related Work

As mentioned in Section 1, the real-time community has recently been devoting
a significant amount of effort to obtaining more resource-efficient implemen-
tations of safety-critical systems that, for reasons of safety, need to have their
run-time behavior characterized using very conservative models. Noteworthy
initiatives in this regard include those centered on probabilistic analysis [3, 4],
mixed-criticality analysis [1, 2] and typical-case analysis [6, 19]. We have
pointed out in Section 1 that these forms of analyses all require additional
modeling of the run-time behavior of the system under consideration; it is
not always possible to devise such additional models (and even when possible,
obtaining these models may require significant effort on the part of the system
developer.)

The approach to DAG-scheduling that is advocated in this paper, of opti-
mistically assigning a low number of processors under the expectation that
execution will complete by a specified intermediate deadline and increasing
the number of processors assigned if this fails to happen, is conceptually close
to the approach presented in [5]. Under the approach of [5], the system devel-
oper is tasked with the responsibility of specifying two values for the work and
the span parameter of the DAG: a conservative bound that is required to hold
under all circumstances (as in our model — Section 2.3), and a “typical” bound
that is assumed to hold under most, though not necessarily all, circumstances.



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 29

0 50 100 150 200 250 300 350 400 450 500
100

101

102

103

104

105
F
re
q
u
en

cy

Binary Exponential

Integral Control

0 50 100 150 200 250 300 350 400 450 500
0.8

0.85

0.9

0.95

1

Waste of resource

E
C
D
F

Binary Exponential

Integral Control

Fig. 10 Distribution of the waste of resource, and the corresponding Empirical Cumulative
Distribution Function (ECDF).

Our proposed scheme, presented in Section 5, borrows from [5] the idea of
assigning a lower number of cores before a virtual deadline. However, we do
not exploit any other characterization of the workload nor any code instru-
mentation. We take our decision based on the completion time only. The idea
of taking scheduling decisions based on runtime monitoring is not new. Several
authors proposed feedback scheduling to adjust the amount of resource based
on runtime monitoring [20–22]. In the context of multiprocessor scheduling,
Block et al. [23] proposed a task re-weighting to respond to runtime variation
in the demand, but still, the workload was sequential. Feedback-based schedul-
ing of workload with internal parallelism was proposed in [24], however, all
cores were allocated to all applications.

To the best of our knowledge, our work is the first proposing to assign the
number of cores based on the response time of the monitored workload.

8 Conclusions

To be able to establish the correctness of their run-time behavior at the
required very high levels of assurance, safety-critical systems are generally
specified using models that make very pessimistic assumptions regarding their
resource usage during run-time. Directly implementing these models can result
in inefficient system implementations – implementations that exhibit very poor
run-time resource utilization. Prior approaches that have been proposed to
enhance the efficiency of such implementations have required that additional



Springer Nature 2021 LATEX template

30 Feedback-Based Resource Management for Multi-Threaded Applications

(less conservative) characterization of run-time behavior also be provided by
the system developer; even when feasible, doing so places an additional burden
on the system developer.

In this work, we have proposed a feedback-based approach to enhancing
run-time efficiency in the absence of additional characterization for recur-
rent systems: systems whose run-time workload tends to be highly repetitive.
(We note that such workloads constitute a significant fraction of the overall
workloads of many safety-critical systems.)

The proposed approach is based on the notion of virtual deadline, which
reduces the usage of resources while guaranteeing meeting the deadline, even
in the worst-case scenario. Such a mechanism has been investigated under dif-
ferent assumptions, including the case where the typical parameter values are
known (and constant), which leads to a solution that can be computed offline,
to the case where the typical parameters are unknown (and time-varying), that
leads to a run-time adaptation solution. More specifically, in the latter case, our
approach monitors the response time of each occurrence of the workload and
uses the monitored value to assign resources for the next occurrence. We have
developed two different algorithms for such resource assignment, one based on
algorithm-design principles and the other, on principles of control theory, and
have applied these algorithms to an example application modeled as a DAG
executing upon a multiprocessor platform. We have shown that both methods
assure safety under worst-case conditions and that neither dominates the other
with regards to the efficiency of resource utilization: there are scenarios in
which each approach is able to make more efficient use of computing resources
than the other. Based on the statistical evaluation, the control-based approach
performs statistically better than the binary exponential, and therefore it can
be preferred.

Future work will be devoted to the investigation of more advanced strate-
gies to further reduce the waste of resources. One interesting direction is the
development of runtime monitoring mechanisms, that can detect more easily
over-provisioning situations, e.g., by measuring additional parameters other
than the response time. Another interesting direction is the development of
learning techniques to automatically identify possible workload patterns –
similarly to what is done in autoscaling techniques for cloud computing appli-
cations – to proactively allocate resources, rather than reacting to already
experienced measurements.

Appendix A Parallel Synchronous DAGs
simulation

The evaluation was conducted considering the execution of Parallel Syn-
chronous DAGs (PSDAGs) [16, 17]. The PSDAG structure is a sequence of
fully parallel threads interleaved with a sequence of synchronization barriers
(as illustrated in Figure A1). They represent well very typical programming
structures, such as a sequence of for loops.



Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 31

Fig. A1 An example of a Parallel Synchronous DAG with N = 5 segments.

To emulate a varying structure of a PSDAG, we initialized M ∈ {1, . . . , 5}
different structures of PSDAGs. For every PSDAG, we selected:

• N ∈ {2, . . . , 20} segments.
• For each segment i ∈ {1, . . . , N}:

– ℓi ∈ {1, . . . , 10} is the duration of segment i.
– µi ∈ {1, . . . ,M} level of parallelism of segment i.

The variables M and, for each PSDAG, N , ℓi, and µi are selected randomly
within the specified ranges, according to a uniform distribution.

With a period T , we switch between the M PSDAGs. The worst-case work
and span are computed as the maximum work and span among all the M
PSDAGs, multiplied by a padding factor α ≥ 1. α close to 1 represents a
worst-case close to actual runtime values. On the other hand, large values of α
are associated with very conservative worst-case estimates. In the experiments,
α = 1.2.

For every allocation round k, the response time is calculated based on the
current PSDAG that is considered to be active. More specifically, considering
a given allocation of cores m and the corresponding virtual deadline V (m),
the response time is calculated as the sum of three components:

R = Rpre +Rmid +Rpost

where Rpre is the response time to execute the amount of computation with m
cores until the virtual deadline V (m), Rmid is the extra response time of the
(ipre + 1)-th segment which experiences the switch to M cores at V (m), and
Rpost is the response time to execute the final amount of computation after the
virtual deadline V with M cores. Formally Rpre, Rmid, and Rpost are defined



Springer Nature 2021 LATEX template

32 Feedback-Based Resource Management for Multi-Threaded Applications

as follows:

Rpre =

ipre∑
i=1

ℓi

⌈µi

m

⌉
with ipre := max{i : Rpre ≤ V }

Rmid = min

{
V −Rpre +

⌈
µipre+1− nm

M

⌉
ℓipre+1,

⌈
n+ 1 +

µipre+1− (n+ 1)m

M

⌉
ℓipre+1

}
with n =

⌊
V −Rpre

ℓipre+1

⌋
Rpost =

N∑
i=ipre+2

ℓi

⌈ µi

M

⌉
.

References

[1] Vestal, S.: Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In: IEEE International Real-Time
Systems Symposium (RTSS), pp. 239–243. IEEE Computer Society Press,
Tucson, AZ (2007). https://doi.org/10.1109/RTSS.2007.47

[2] Burns, A., Davis, R.I.: A survey of research into mixed criticality systems.
ACM Comput. Surv. 50(6) (2017). https://doi.org/10.1145/3131347

[3] Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard
real-time systems. In: IEEE Real-Time Systems Symposium (RTSS), pp.
279–288 (2002). https://doi.org/10.1109/REAL.2002.1181582

[4] Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T.,
Kosmidis, L., Abella, J., Mezzetti, E., Quiñones, E., Cazorla, F.J.:
Measurement-based probabilistic timing analysis for multi-path programs.
In: Euromicro Conference on Real-Time Systems (ECRTS), pp. 91–101
(2012). https://doi.org/10.1109/ECRTS.2012.31

[5] Agrawal, K., Baruah, S.: A Measurement-Based Model for Parallel Real-
Time Tasks. In: Euromicro Conference on Real-Time Systems (ECRTS),
vol. 106. Dagstuhl, Germany, pp. 1–19 (2018). https://doi.org/10.4230/
LIPIcs.ECRTS.2018.5

[6] Agrawal, K., Baruah, S., Burns, A.: The Safe and Effective Use of
Learning-Enabled Components in Safety-Critical Systems. In: Euromi-
cro Conference on Real-Time Systems (ECRTS). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 165, pp. 1–20. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.
org/10.4230/LIPIcs.ECRTS.2020.7

https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1145/3131347
https://doi.org/10.1109/REAL.2002.1181582
https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.4230/LIPIcs.ECRTS.2018.5
https://doi.org/10.4230/LIPIcs.ECRTS.2018.5
https://doi.org/10.4230/LIPIcs.ECRTS.2020.7
https://doi.org/10.4230/LIPIcs.ECRTS.2020.7


Springer Nature 2021 LATEX template

Feedback-Based Resource Management for Multi-Threaded Applications 33

[7] Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., But-
tazzo, G.C.: Response-time analysis of conditional DAG tasks in mul-
tiprocessor systems. In: Euromicro Conference on Real-Time Systems
(ECRTS), pp. 211–221 (2015). https://doi.org/10.1109/ECRTS.2015.26

[8] Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A.: The global EDF
scheduling of systems of conditional sporadic DAG tasks. In: Euromi-
cro Conference on Real-Time Systems (ECRTS), pp. 222–231 (2015).
https://doi.org/10.1109/ECRTS.2015.27

[9] Baruah, S.: The federated scheduling of systems of conditional spo-
radic DAG tasks. In: International Conference on Embedded Software
(EMSOFT), pp. 1–10 (2015). https://doi.org/10.1109/EMSOFT.2015.
7318254

[10] Graham, R.L.: Bounds on multiprocessor timing anomalies. SIAM Journal
on Applied Mathematics 17(2), 416–429 (1969). https://doi.org/10.1137/
0117039

[11] Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments.
Journal of Grid Computing 12(4), 559–592 (2014). https://doi.org/10.
1007/s10723-014-9314-7

[12] Jennings, B., Stadler, R.: Resource Management in Clouds: Survey and
Research Challenges. Journal of Network and Systems Management
23(3), 567–619 (2015). https://doi.org/10.1007/s10922-014-9307-7

[13] Papadopoulos, A.V., Ali-Eldin, A., Årzén, K.-E., Tordsson, J., Elmroth,
E.: Peas: A performance evaluation framework for auto-scaling strategies
in cloud applications 1(4) (2016). https://doi.org/10.1145/2930659

[14] Bentley, J.L., Yao, A.C.-C.: An almost optimal algorithm for unbounded
searching. Information Processing Letters 5(3), 82–87 (1976). https://doi.
org/10.1016/0020-0190(76)90071-5

[15] Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Sci-
entists and Engineers. Princeton University Press, Princeton, New Jersey,
United States (2021)

[16] Saifullah, A., Agrawal, K., Lu, C., Gill, C.: Multi-core real-time schedul-
ing for generalized parallel task models. In: IEEE Real-Time Systems
Symposium (RTSS), pp. 217–226 (2011). https://doi.org/10.1109/RTSS.
2011.27

[17] Nelissen, G., Berten, V., Goossens, J., Milojevic, D.: Techniques opti-
mizing the number of processors to schedule multi-threaded tasks. In:

https://doi.org/10.1109/ECRTS.2015.26
https://doi.org/10.1109/ECRTS.2015.27
https://doi.org/10.1109/EMSOFT.2015.7318254
https://doi.org/10.1109/EMSOFT.2015.7318254
https://doi.org/10.1137/0117039
https://doi.org/10.1137/0117039
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1145/2930659
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/RTSS.2011.27


Springer Nature 2021 LATEX template

34 Feedback-Based Resource Management for Multi-Threaded Applications

Euromicro Conference on Real-Time Systems, (ECRTS), pp. 321–330
(2012). https://doi.org/10.1109/ECRTS.2012.37

[18] Witte, R.S., Witte, J.S.: Statistics. John Wiley & Sons Inc, Hoboken, NJ,
USA (2017)

[19] Quinton, S., Hanke, M., Ernst, R.: Formal analysis of sporadic overload
in real-time systems. In: Design, Automation and Test in Europe Confer-
ence & Exhibition (DATE), pp. 515–520 (2012). https://doi.org/10.1109/
DATE.2012.6176523

[20] Lu, C., Stankovic, J.A., Tao, G., Son, S.H.: Design and evaluation of a
feedback control EDF scheduling algorithm. In: Real-Time Systems Sym-
posium (RTSS), pp. 56–67 (1999). https://doi.org/10.1109/REAL.1999.
818828

[21] Abeni, L., Palopoli, L., Lipari, G., Walpole, J.: Analysis of a reservation-
based feedback scheduler. In: IEEE Real-Time Systems Symposium
(RTSS), pp. 71–80 (2002). https://doi.org/10.1109/REAL.2002.1181563

[22] Cervin, A., Eker, J., Bernhardsson, B., Årzén, K.-E.: Feedback–
feedforward scheduling of control tasks. Real-Time Systems 23(1-2),
25–53 (2002). https://doi.org/10.1023/A:1015394302429

[23] Block, A., Brandenburg, B., Anderson, J.H., Quint, S.: An adaptive frame-
work for multiprocessor real-time system. In: Euromicro Conference on
Real-Time Systems (ECRTS), pp. 23–33 (2008). https://doi.org/10.1109/
ECRTS.2008.21

[24] Bini, E., Buttazzo, G., Eker, J., Schorr, S., Guerra, R., Fohler, G., Årzen,
K.-E., Romero-Segovia, V., Scordino, C.: Resource management on multi-
core systems: The ACTORS approach. IEEE Micro 31(3), 72–81 (2011).
https://doi.org/10.1109/MM.2011.1

https://doi.org/10.1109/ECRTS.2012.37
https://doi.org/10.1109/DATE.2012.6176523
https://doi.org/10.1109/DATE.2012.6176523
https://doi.org/10.1109/REAL.1999.818828
https://doi.org/10.1109/REAL.1999.818828
https://doi.org/10.1109/REAL.2002.1181563
https://doi.org/10.1023/A:1015394302429
https://doi.org/10.1109/ECRTS.2008.21
https://doi.org/10.1109/ECRTS.2008.21
https://doi.org/10.1109/MM.2011.1

	Introduction
	This research.
	Contributions and Organization.


	Measurement-based modeling and scheduling of parallel tasks
	Motivation: Revising existing models
	Approach: Identifying relevant characteristics of parallelizable real-time code
	Formal System Model

	Sufficient schedulability conditions
	Resource allocation when typical parameter values are known
	Run-time complexity

	Observation-based adaptation of resource allocation decisions
	Response-time based processor allocation
	Unknown and constant typical workload
	Unknown and time-varying workload
	Binary-exponential search
	Integral Controller

	Limits of response-time-based resource allocation

	Comparative Evaluation
	Assessing the waste of resource
	Simulation results
	Constant Typical Execution Parameters
	Discussion on the simulation campaign.

	Time-Varying Typical Execution Parameters
	Experiment 1 (E1)
	Experiment 2 (E2)
	Experiment 3 (E3)
	Evaluation of the overall campaign.



	Related Work
	Conclusions
	Parallel Synchronous DAGs simulation

