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Abstract. Lane detection is one of the most fundamental tasks for au-
tonomous driving. It plays a crucial role in the lateral control and the
precise localization of autonomous vehicles. Monocular 3D lane detec-
tion methods provide state-of-the-art results for estimating the position
of lanes in 3D world coordinates using only the information obtained
from the front-view camera. Recent advances in Neural Architecture
Search (NAS) facilitate automated optimization of various computer vi-
sion tasks. NAS can automatically optimize monocular 3D lane detection
methods to enhance the extraction and combination of visual features,
consequently reducing computation loads and increasing accuracy. This
paper proposes 3DLaneNAS, a multi-objective method that enhances
the accuracy of monocular 3D lane detection for both short- and long-
distance scenarios while at the same time providing a fair amount of
hardware acceleration. 3DLaneNAS utilizes a new multi-objective energy
function to optimize the architecture of feature extraction and feature fu-
sion modules simultaneously. Moreover, a transfer learning mechanism is
used to improve the convergence of the search process. Experimental re-
sults reveal that 3DLaneNAS yields a minimum of 5.2% higher accuracy
and ≈1.33× lower latency over competing methods on the synthetic-3D-
lanes dataset. Code is at https://github.com/alizoljodi/3DLaneNAS

Keywords: Autonomous Vehicles · 3D Lane Detection · Neural Archi-
tecture Search

1 Introduction

To operate safely, an autonomous vehicle needs a precise understanding of the
road perspective. Lane detection is the task of estimating lane markings’ po-
sitions, which is a crucial part of road understanding [33]. The majority of
prior works focused on improving the lane detection accuracy on 2D images
[12,18,36,31,5]. 2D lane detection methods work as follows: first, they perform
lane segmentation on a 2D image; then, extracted lanes are mapped on a 3D coor-
dination space. Despite 2D lane detection’s simplicity, lanes should be projectedPr
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into 3D. The detected lanes in the image plane are commonly projected to the
3D world using the flat earth assumption, which can lead to erroneous elevation
and lane curvature estimates on hilly, banked, or curving roadways. (up to 14%
accuracy loss [10]). Multi-sensor 3D lane detection methods aim to overcome
this limitation by exploiting images with 3D shapes obtained from stereo-vision
cameras or LiDAR sensors. However, multi-sensor 3D lane detection methods
suffer from (i) expensive sensor configuration and (ii) erroneous prediction over
long distances. Monocular 3D lane detection methods have been proposed to
tackle these challenges [10,11]. The monocular 3D lane detection methods work
as follows: first, they extract scene features with various scales from a 2D image;
then, the extracted features are transformed into a top-view (bird’s eye view)
since lanes are parallel in the top-view, which helps in their detection precision.
Next, using Convolutional Neural Networks (CNNs), top-view features are fused
to construct a unified representation. Note that CNNs are known to provide the
best results for accurate lane detection [10,11,33]. Finally, the fused features are
classified using the fully-connected layer(s) to detect lane markings’ positions.
Fig. 1 shows the overview of state-of-the-art monocular 3D lane detection meth-
ods. The monocular 3D lane detection methods benefit from (i) a cost-efficient
sensor configuration and (ii) accurate estimations over long distances compared
to multi-sensor 3D lane detection methods (Section 5). Despite the success of
monocular 3D lane detection methods, they suffer from inefficient feature ex-
traction and feature fusion modules causing inaccurate predictions.

VGG16 SIPM
Projective

Transformer

ConcatenationFront-view
 Pathway

Top-view
 Pathway

Fig. 1: The overview of the state-of-the-art 3DLaneNet [10] architecture. The
feature extraction module is fed a front-view image. The VGGNet-16 [32] ar-
chitecture is used extract features. Using the sampling information provided by
SIPM , the projective transformation layers project features to the top-view. To
estimate 3D lane coordinations, top-view features are concatenated and pro-
cessed via a fully-connected network.

Neural Architecture Search (NAS) advances the design procedure in CNNs
[21,25,24]. Inspired by NAS’s success, we designed a high-performance CNN
architecture for monocular 3D lane detection. To this aim, we propose 3DLa-
neNAS, a multi-objective NAS method that designs an accurate yet efficient
monocular 3D lane detection architecture. 3DLaneNAS uses multi-objective sim-
ulated annealing (MOSA) to explore the search space since it quickly finds thePr
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optimal solution [25]. While state-of-the-art methods provide excellent results in
detecting short-distance lanes, our analysis indicates that they are not sufficient
for detecting long-distance objects (Section 5). 3DLaneNAS considers short- and
long-distance errors and the network inference time in its objective function.
3DLaneNAS also devises a transfer learning mechanism to expedite the search
procedure in a large search space.

According to our experiments on the synthetic-3D-lanes dataset [10], 3DLa-
neNAS outperforms the state-of-the-art monocular 3D lane detection methods
by achieving up to 17.5% higher accuracy and 1.2× lower inference time on
NVIDIA® RTX A4000. 3DLaneNAS generates similar results with 2.74% stan-
dard deviation demonstrating our results are reproducible. To the best of our
knowledge, 3DLaneNAS is the first attempt in the literature that successfully
develops a NAS method for the 3D lane detection task.

2 Related Work

2.1 Lane Detection

Convolutional Neural Networks (CNNs) provide the most accurate results for
the lane detection task [12,31,5,3,17,28,29,2,16,10,11]. Earlier studies attempted
to improve the accuracy of CNN-based lane detection on 2D images. 2D lane
detection methods are based on either image classification [12] or image segmen-
tation [31,5]. Some studies on 2D lane detection methods transform front-view
to top-view as the post-processing module to provide a precise perception of 3D
coordination space [3,17]. A group of researchers proposed that 3D lane detection
be accomplished with the use of stereo-vision cameras [28,29]. Although stereo-
vision cameras provide a better view of the 3D world, they suffer from accuracy
loss in long-distance scenarios. Another group of researchers [2,16] investigated
3D lane detection using multi-sensor techniques. In these methods, lanes’ 3D
coordinates are estimated by fusing Lidar sensor data and RGB camera. These
methods are still costly regarding the sensor configuration.

Recently, a group of studies [10,11] proposed estimating the accurate posi-
tion of lane markings in 3D world coordinate by utilizing only one front-looking
monocular camera. 3DLaneNet [10] is the first effort in the literature proposing
intra-network inverse-perspective mapping (IPM) [27] to remove road geome-
try assumptions. The architecture of 3DLaneNet is shown in Fig. 1. The IPM
is front-view to top-view transformation with anisotropic scaling. The transfor-
mation is applied by utilizing a fixed set of parameters that specify top-view
region boundaries and anisotropic scaling. The transformation parameters are
estimated by an additional head directly connected to the feature extraction
module. Inspired by [15], SIPM samples the front-view image pixels that aim to
assign a new position in the top-view image. To improve the interaction between
CNN feature extraction and feature map transformation, 3DLaneNet designed
a dual-pathway architecture. 3DLaneNet has improved the lane fitting accuracy
by integrating the transformation mechanism in the lane detection architecture.
3DLaneNet leveraged VGGNet-16 [32] pre-trained on the ImageNet dataset [6].Pr
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Despite the success of 3DLaneNet, it suffers from (i) inefficient feature extrac-
tion/fusion modules and (ii) bounded coordination system used to represent
anchors. GenLaneNet [11] proposed an improved anchor representation by de-
coupling the learning of image encoding and 3D geometry reasoning. However,
GenLaneNet still suffers from requiring significant computing resources for the
learning process (up to 3M parameters) and inaccurate long-distance estima-
tions.

2.2 Neural Architecture Search

Automated machine learning (AutoML) advances the capability of intelligent
systems by tweaking hyper-parameters of learning models [13]. Neural Archi-
tecture Search (NAS), as a subset of AutoML, aims to design efficient neural
networks for complex learning tasks [8]. Early proposed NAS methods employed
Reinforcement Learning (RL) [37,14] or evolutionary-based algorithms [23,26]
to search through the search space. However, these methods require remarkable
computing capacity, for example, 500 NVIDIA® P100 GPUs to evaluate 20,000
neural architectures over four days [38]. Recently, differentiable NAS methods
provide state-of-the-art results for various learning tasks [20,21,22]. DARTS [21]
is a differentiable NAS method that uses the gradient descent algorithm to search
and train neural architecture cells jointly. Despite the success of differentiable
NAS methods in various domains [22], they suffer from inefficient training due to
interfering with the training of different sub-networks each other [4]. Moreover, it
has been proved that with equal search spaces and training setups, differentiable
NAS methods converge to similar results [7].

Meta-heuristic-based NAS methods [24,35,25] benefit from fast and flexi-
ble algorithms to search a discrete search space. FastStereoNet [25] is a state-
of-the-art meta-heuristic method that designs an accurate depth estimation
pipeline. Inspired by FastStereoNet, we propose 3DLaneNAS for 3D lane de-
tection. 3DLaneNAS advantages from meta-heuristic NAS approaches’ quick
convergence search. In addition, we decoupled search space into two modules to
have a more efficient search. The results (Section 5) show that the 3DLaneNAS
method outperforms two of the most well-known 3D lane detection benchmark
models, 3DLaneNet [10] and GenLaneNet [11].

3 3DLaneNAS

3.1 Search Space

The 3DLaneNAS search space contains feature extraction, projective transfor-
mation, and feature fusion modules (Fig. 2). First, the feature extraction module
extracts feature maps from the front-view image in four resolution scales. Sec-
ond, the front-view feature maps are passed throw the projective transformation
layers to construct the top-view feature maps. The projective transformation
layers estimate input picture pixels’ new position on the target image via bilin-
ear interpolation. We set the parameters of the projective transformation layersPr
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according to [15]. Next, the feature fusion module concatenates top-view feature
maps of multiple resolutions into a single feature space. Finally, a fully-connected
layer classifies the output of the feature fusion module to estimate lane positions
in 3D world coordinate. In this paper, we used NAS to optimize the architecture
of feature extraction (Section 3.1) and feature fusion modules (Section 3.1).

?

SIPM

Feature Fusion Design SpaceFeature Extraction Design Space

Conv2D Batch Normalization Activation Projective Transformer Feature FusionAvgPooling

Fig. 2: The overview of 3DLaneNAS architecture. The search space of feature
extraction is a stack of ConvBnAct and Squeeze Blocks. The search space of
feature fusion is the combination of projective transformation outputs.

Feature Extraction Search Space The feature extraction module computes
a hierarchy of feature maps in a certain number of resolutions. Each resolution
level has been extracted by a stack of atomic blocks. In this paper, we define two
simple atomic blocks, including ConvBnAct and Squeeze Block. The ConvBnAct
is a convolution layer followed by batch-normalization and an activation func-
tion. Squeeze Block works as a light-weight encoder-decoder function to aug-
ment the features that have a higher impact on 3D lane detection performance.
Each Squeeze Block is built by a 1 × 1 average-pooling layer followed by two
convolution layers with reversed input/output sizes and a batch-normalization in
between. Five different output channels are available for ConvBnAct and Squeeze
Block, including 16, 32, 64, 128, 256. We insert or remove an atomic block of
feature extraction in each search iteration. The size of the feature extraction
search space is proportional to the current state of the feature extraction stack.
The minimum size of the feature extraction stack is set to 4 and is limited to 50
blocks. Thus, the maximum size of feature extraction search space is 1050.

Feature Fusion Search Space Fig. 3 represents feature fusion module. The
feature fusion module consists of concatenation nodes, where each node can be
active or inactive. An active node modifies a feature map by concatenating it
with another feature map from a different resolution group. If the feature map
should be concatenated with a higher resolution feature map, a max-pooling
operation should be used to decrease the additional layer’s resolution (down-
sampling layer). On the other hand, if the feature map should be concatenated
with a lower resolution feature map, an up-sampler operation should be used
to increase the additional layer’s resolution (up-sampling layer). In each searchPr
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iteration, one concatenation node swaps from/to active/inactive. The maximum
number of active nodes for feature fusion is 20, and the minimum is zero. Each
concatenation node can have 12 distinct input combinations. Thus, the size of
search space for the feature fusion module is 12× 220.

Conv2D Up-sampler

Direct Features

Additional
 Features

(a) Concatenate to lower scale additional features

Output

Conv2D Max-pooling

Direct Features

Additional
 Features

(b) Concatenate to upper scale additional features

Output

Fig. 3: (a) The Up-sampler is used for concatenating the additional features with
lower resolution. (b) The Max-pooling is used for concatenating the additional
features with higher resolution.

3.2 Search Algorithm

We use multi-objective simulated annealing (MOSA) [1] algorithm to find the
near-optimal architecture for 3D lane detection. MOSA’s search convergence is
faster than genetic programming. [25]. MOSA selects candidates with the prob-
ability of min(1, exp(−∆/T )). ∆ is the difference in energy between the present
and the newly generated candidate. T is the regulating parameter for annealing
temperature. T starts from a big value (TMax) that is gradually decreases to a
small value (TMin). Early on, TMax must be large enough to choose non-optimal
choices. (exploration). On the other hand, TMin should be small enough to only
give the maximum selection chance to optimal candidates (exploitation).

We consider a multi-objective energy function (Eq. 1) to improve the 3D
lane detection accuracy in addition to reducing the network inference time. The
energy function (E) is the multiplication of the network inference time (t) and
the average value of lateral (LatE) and longitudinal (LongE) errors. n indicates
the number of test samples in each batch. We do not use any proxy such as
Floating-Point-Operations-per-Second (FLOPs) for the inference time estima-
tion. Instead, we run the network directly on the target hardware (NVIDIA®

RTX A4000) to measure the exact inference time. We also consider a penalty
coefficient (α=10) to find the best error-latency trade-off.

E =
1

2n

n∑
i=1

((LatEi + LongEi)ti)×max(1,
1

n

n∑
i=1

(ti − α)) (1)

3.3 Training Procedure

The training procedure for 3D lane detection is time-consuming (≈ 10 GPU
hours for training one candidate). Inspired by [25], we partially train each candi-
date with fewer epochs to reduce the search time. After achieving 5× reductionPr
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search cost, our search process takes ≈ 130 GPU hours on a single NVIDIA®

RTX A4000. In addition, 3DLaneNAS leverages the idea of the transferred
weights mechanism [25] to expedite the search process.

The loss function is a combination of two equal-weighted terms (Eq. 2): The
cross-entropy of lane detection (first term) and least absolute deviations (L1-
loss) of predicted lanes and the ground truth.

L =−
∑

t∈{c1,c2,d}

N∑
i=1

(pit log pit + (1− p̂it) log (1− pit))

+
∑

t∈{c1,c2,d}

N∑
i=1

p̂it.(∥xi
t + x̂i

t∥+∥zit + ẑit∥)

(2)

The pit indicates the confidentiality of detecting the i-th lane section, repre-
sented by an anchor. x and z indicate lanes’ coordination.

4 Experimental Setup

4.1 Dataset

To evaluate our proposed method, we use the synthetic-3D-lanes dataset [10].
The dataset has been synthesized by the Blender graphic engine [9]. synthetic-
3D-lanes contains more than 300K training samples and 5k validation samples for
different illumination and weather conditions. In this dataset, the scene terrains
are modeled by a mixture of Gaussian distribution.

4.2 Configuration Setup

Hardware specification as well as training and search parameters are summarized
in Table 1.

4.3 Evaluation Metrics

The performance of lane detection methods is evaluated using the average pre-
cision (AP) metric, which is the average percentage of the matched predicted
lanes [30]. We also report lateral(x) and longitudinal(z) errors for near (0-40
meters) and far distances (40-100 meters). Additionally, we report the maximum
F-score to indicate the application’s optimal operation point.

5 Experimental Results

5.1 3D Lane Detection Performance Metrics

Table 2 presents a comparison of the results obtained by 3DLaneNAS with Gen-
LaneNet [11] and 3DLaneNet [10] as the cutting-edge 3D lane detection meth-
ods. The inference time for GPU is measured with batch size set to 1. 3DLa-
neNAS yields 5.2% and 17.5% higher accuracy compared to GenLaneNet andPr
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Table 1: Summarizing hardware specification, train, and search parameters.

Train/Test Hardware Device Specification
GPU NVIDIA® RTX A4000

GPU Compiler CUDA v11.3 & cuDNN v8.2.0
DL Framework PyTorch v1.9.1

Training and Search Parameters Value
Full-Training Epochs 30

Search Epochs 5
Batch Size 8

Learning Rate 5× 10−4

Optimizer Adam
TMax / TMin 2500 / 2.5

3DLaneNet, respectively. Compared to GenLaneNet and 3DLaneNet, 3DLane-
NAS reduces inference time by 1.33× and 1.2×, respectively. 3DLaneNAS pre-
dicts lane positions with 41.9% and 50.4% lower longitudinal error, and 44% and
59% lower lateral error in comparison with GenLaneNet and 3DLaneNet, respec-
tively. Fig. 4 compares the visualization results of 3DLaneNAS with state-of-
the-art on three different road scenarios. 3DLaneNAS performs better in curvy,
downhill, and uphill road settings with partially visible lanes.

Table 2: Comparing the performance of 3DLaneNAS with the states-of-the-art.

Architecture AP F-score Lateral Error (cm) Longitudinal Error (cm) #Params Inference

(%) (%) 0-40m 40-100m 0-40m 40-100m (M) Time (ms)

3DLaneNet [10] 74.9 77.7 11.5 60.1 3.2 23.0 20.8 14.5
GenLaneNet [11] 87.2 83 7.4 53.8 1.5 23.2 3.36 16

3DLaneNAS 92.4 92.1 3.7 35.8 0.5 19.2 1.75 12

5.2 Analyzing Search Methods

Fig. 5.a shows the variation of the energy function (Eq. 1) during the search pro-
cess for 3DLaneNAS, random search, and a local search method [34]. Note that
random search is selected as the comparison baseline since it can find the optimal
architecture in several applications [19]. 3DLaneNAS provides a continuous re-
duction in energy function during the search procedure, indicating the proposed
NAS method’s potential for learning the best architecture. On the other hand,
random search and local search methods could not find many improved architec-
tures, which means that our proposed search space is not the only reason behind
the efficiency of 3DLaneNAS. Fig. 5.b shows the error-latency trade-off for the
best-discovered architectures proposed by different lane detection methods. Re-
sults show that 3DLaneNAS provides a higher error–latency trade-off compared
to state-of-the-art lane detection methods.Pr
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Fig. 4: Illustrating the performance of 3DLaneNet [10], GenLaneNet [11] and
3DLaneNAS in three different road scenarios. Blue lines are ground-truth, red
lines are network predictions. Left column: curvy roads’ results. Middle column:
downhill sample results. Right column: uphill road sample. Yellow circles show
low-confidence estimations.

5.3 Statement of Reproducibility

A common issue in many NAS studies is to
demonstrate reproducibility [19]. To prove
the reproducibility of the results, we re-
run the 3DLaneNAS five more times with
different random seeds. Then, we plot the
average energy function for the improved
solutions for five times running with the
shades to denote the confidence intervals
(Fig. 6). According to the Results, while
the confidence interval is wide in some it-
erations, all search runs converge to a sim-
ilar energy value. The standard deviation
(STDEV) is 2.74%. Finally, 3DLaneNAS is
an open-source project. The code will be
made public upon acceptance.
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Fig. 6: Demonstrating the repro-
ducibility of results. The solid line
shows the average energy value of
five runs with different random
seeds. The shade is a representa-
tion of the STDEV.

6 Conclusion

This paper proposes 3DLaneNAS, a multi-objective NAS method for design-
ing a fast and accurate monocular 3D lane detection architecture. 3DLaneNAS
improves the performance of monocular 3D lane detection by employing multi-
objective simulated annealing as the search method to optimize feature extrac-
tion and feature fusion modules. According to experimental results, 3DLaneNAS
yields a minimum of 5.2% higher Average Precision and ≈1.33× lower inferencePr
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3DLaneNAS in comparison with 3DLaneNet and GenLaneNet.

time over counterparts. These results suggest that 3DLaneNAS is an effective
method that paves the way for designing efficient lane detection methods.
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