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Abstract— It is a standard engineering practice to design
feedback-based control to have a system follow a given trajec-
tory. While the trajectory is continuous-time, the sequence of
references is varied at discrete times as it is normally computed
by digital systems.

In this work, we propose a method to determine the optimal
discrete-time references to be applied over a time window of
a given duration. The optimality criterion is the minimization
of a weighted L2 norm between the achieved trajectory and a
given target trajectory which is desired to be followed. The
proposed method is then assessed over different simulation
results, analyzing the design parameters’ effects, and over a
UAV use case. The code to reproduce the results is publicly
available.

I. INTRODUCTION

The majority of the engineering applications that surround
us utilize feedback-based control mechanisms to track some
reference signals by regulating control actions to achieve a
desired system’s behavior. For instance, this is the driving
principle for most autonomous vehicle operations, includ-
ing driverless cars and unmanned aerial vehicles, in which
the main objective is to track some reference trajectory
while minimizing time, energy, path deviation, or other
user-defined costs. Other examples include cyber-physical
system applications like tracking the temperature or other
environmental states inside a building, deciding medication
doses for patients in the health domain, managing traffic
light signals in smart cities to minimize traffic congestion,
and even regulating the production of goods in econometric
supply-chain systems.

The desired trajectory to be followed is normally a
continuous-time function since it represents a motion in the
physical world. Instead, the reference given to the system so
that the trajectory is followed is normally in discrete-time,
since it is computed by digital systems. This paper introduces
a new approach to computing the optimal discrete-time
reference signal for a sampled-data control system to follow
a desired continuous-time trajectory. The proposed approach
is motivated by several control applications, where a fully
designed control system is expected to track a trajectory
in continuous time while having only discrete control time
instants. For example, in industrial robotics applications, a
waypoint controller may be required to follow a sequence
of waypoints according to a timing law [1]. Another similar

This work was supported by the Swedish Research Council (VR) with
the PSI project (No. #2020-05094), by the Knowledge Foundation (KKS)
with the FIESTA project (No. #20190034), by DARPA under Contract No.
FA8750-18-C-0090, and by NSF under grants No. #1816591 and #1829004.

1E. Bini is with University of Turin, Italy
2A. V. Papadopoulos is with Mälardalen University, Sweden
3J. Higgins and N. Bezzo are with University of Virginia, USA

problem is for the path planning of autonomous vehicles and
mobile robots which typically requires waypoint tracking and
static obstacle avoidance [2], [3].

The usage of sampled-data techniques for the control of
linear systems is virtually ubiquitous, thanks to the flexibility
given by the adoption of digital implementations of the
control system [4], [5], [6]. However, even if sampled-data
provide several advantages, the digital implementation sets
limitations and constraints on the information available for
feedback [7]. For example, the desired trajectory of the
control system may be expressed in continuous time, but
the reference signal can be set only at discrete time instants,
leading to a potential detriment in tracking performance.

In the past, similar problems have been addressed by de-
signing H2 or H∞ hybrid control systems [8], [9], [10]. Most
of these approaches focus on the solution of optimal and
robust control problems via convex optimization problems
whose constraints are expressed by LMIs [11], that ensure
the optimal performance [12]. However, such approaches
mostly focused on the optimal design of the digital controller.
In this paper, we focus instead on the computation of the
optimal reference signal in discrete-time given a desired
trajectory of the system output, assuming that a control loop
system has been designed.

The generation of a discrete-time reference signal can be
thought of as similar to the problem of waypoint generation
in robotics systems [13], [14], [15], [16], [17], [18]. Practical
applications range from mobile robotics where waypoints are
three-dimensional positions in space [19] to robotic manipu-
lators that use waypoints defined within a more general state
space [20]. In fact, the definition of waypoints implicitly
defines a timing law of the reference trajectory. In the UAVs
context, optimization-based techniques have been used to
find the trajectory in cluttered environments while being
robust to communication losses [21]. The contribution of this
paper is inspired by this waypoint generation problem, but
it abstracts from it, providing a more general solution. The
Matlab implementation of the optimal reference computation
is publicly available1.

The remainder of the paper is organized as follows.
Section II presents preliminaries and the system model. Sec-
tion III discusses the problem of trajectory tracking tackled
in this paper, and Section IV presents the proposed solution.
Section V shows simulation results, analyzing the effect of
different design parameters. Finally, Section VI concludes
the paper and sketches future work.

1https://github.com/ebni/opt_ref_track

https://github.com/ebni/opt_ref_track


II. PRELIMINARIES AND SYSTEM MODEL

The notation used throughout this paper is as follows.
For real vectors or matrices, the symbol ⊤ refers to their
transpose. The symbols R, R+, and N denote the sets of real,
non-negative real, and natural numbers, respectively. Vector
variables are indicated with bold fonts, e.g., x. A function
or trajectory f(t) that is sampled at time instants t = tk, is
denoted with fk = f(tk), for k ∈ N. The 2-norm of any
vector x ∈ Rn is denoted by ‖x‖ =

√
x⊤x. Finally, for

any linear operator L, we denote its null space (or kernel)
by kerL that is x ∈ kerL ⇔ Lx = 0.

The system has an internal controller which is designed
so that the output y(t) follows a given reference r(t)
(represented by the block “Closed-loop Continuous-time
Dynamics” in Figure 1). Section V-C shows the classic
example of a PD-controlled double integrator. The internal
continuous-time linear time-invariant dynamics of the system
is given by

ẋ(t) = Ax(t) +Br(t)

y(t) = Cx(t),
(1)

with

• an internal state x(·) : R+ %→ Rn,
• a reference function r(·) : R+ %→ Rm, to be followed,

and
• the system output y(·) : R+ %→ Rp.

We remark that despite r(t) and y(t) normally having
images in the same space (that is m = p), for generality,
we keep them separate as our analysis can address the
general case. We assume that the internal state x(t) of the
system is accessible. If this is not the case and if the system
is observable, then an asymptotic observer can provide an
accurate estimate of the internal state.

The internal state is sampled periodically, every period τ .
We denote the k-th sampling instant by tk = kτ and the
state sampled at tk by x(tk) = xk. The reference is held
constant during every period, that is

∀k, ∀t ∈ [kτ, (k + 1)τ), r(t) = rk (2)

with rk ∈ Rm being the constant reference applied over the
k-th interval.

To analyze the dynamics of (1) in the presence of a
periodic piece-wise constant reference rk, we discretize it
over the period τ . For this purpose, we define

Φ(t) = eAt, Ā = Φ(τ) (3)

Γ(t) =

! t

0

eA(t−s) dsB, B̄ = Γ(τ) (4)

With these notations, the evolution of the state x as a
function of time can be written as

xk = Ākx0 +

k−1"

i=0

Āk−i−1B̄ ri

x(t) = Φ(t− tk)xk + Γ(t− tk)rk, ∀t ≥ 0, k = ⌊t/τ⌋ .
(5)

Reference
Generator ZOH

Zero-Order Hold

ẋ = Ax+Br
y = Cx

Closed-loop
Continuous-time Dynamics

Sampler

ỹ(t) rk r(t)

x(t)

y(t)

xk,

Fig. 1: Control scheme of our approach.

III. TRAJECTORY TRACKING: THE PROBLEM

The goal of this paper is to determine the optimal ref-
erences rk such that the output y(t) of the system follows
as close as possible a given target trajectory ỹ(t). Figure 1
shows a blocks diagram, in which we see that:

• the inputs of our “Reference Generator” are:
– the continuous-time target trajectory ỹ(t) and
– the sampled state xk, while

• the output is the reference rk, which is then fed to the
system after ZOH.

Let us now formally define the necessary notions and
notations to properly state the problem.

• The target trajectory is modeled by a function ỹ(·) :
R+ %→ Rp, which has image in the same set Rp of
the output y. In fact, the trajectory represents a desired
output to be followed, and then y(t) and ỹ(t) must be
comparable.

• The distance between the target trajectory ỹ and the
achieved output trajectory y is modeled by a weighted
L2 norm, as in

!

I

e−βt‖ỹ(t)− y(t)‖2dt

with the integration interval I depending on the specific
characteristics of the problem, and the weight e−βt in-
troduced as a discount factor to give relative importance
to the near or far future. Notice that by setting β = 0,
the norm is the standard L2 norm.

• We denote with tk′ the instant at which the system state
x(tk′) is sampled and a new reference rk′ is set and
held constant over the interval [tk′ , tk′+1).

• In the following, we consider the integration interval
[tk′ , tk′+N ), where N is the number of future references
rk that should be computed.

Having introduced these notions, we define the optimal
references (rk′ , . . . , rk′+N−1) as the solution that minimizes
the following cost

min
(rk′ ,...,rk′+N−1)

! tk′+N

tk′

e−β(t−tk′ )‖ỹ(t)− y(t)‖2dt. (6)

IV. TRAJECTORY TRACKING: THE SOLUTION

In this section, we develop the solution to the problem
of minimizing the cost of (6). To simplify the mathematics,
in this section we are going to assume that the index k′ of
the instant when setting the reference is equal to zero, that
is, k′ = 0, and that tk′ = t0 = 0. At the very end of this



section and in Section V-C, we show how the proposed logic
is applied in a receding horizon manner.

As in standard discretization procedures, the integral of (6)
may be split over sub-intervals of length τ so that the cost,
which we label J , becomes

J =

! Nτ

0

e−βt‖ỹ(t)− y(t)‖2dt =

N−1"

k=0

αk

! (k+1)τ

kτ

e−β(t−kτ)‖ỹ(t)− Cx(t)‖2dt =

N−1"

k=0

αk

! τ

0

e−βt‖ỹ(t+kτ)−CΦ(t)xk−CΓ(t)rk‖2dt (7)

with α = e−βτ .
To proceed further, we introduce the following inner

product between any pair of functions f, g : R → Rp with
image in the output space

〈f, g〉β,τ =

! τ

0

e−βtf⊤(t)g(t) dt. (8)

The properties of the inner product 〈·, ·〉β,τ follow from the
linearity of the integration and the properties of the scalar
product over Rp. Such an inner product 〈·, ·〉β,τ , naturally
induces the following norm of functions to Rp

‖f‖β,τ =
#
〈f, f〉β,τ =

$! τ

0

e−βt‖f(t)‖2 dt, (9)

which then allows us to write more compactly the cost of (7)
to be minimized, as

J =

N−1"

k=0

αk ‖ỹ ◦∆kτ − CΦxk − CΓrk‖2β,τ% &' (
Jk

(10)

where ∆kτ (t) = t + kτ is used to denote a backward
translation over time by kτ , and Jk is used to denote
more compactly the contribution to the cost J from the k-
th interval. In Eq. (10), we remark that ỹ ◦ ∆kτ , Φ, and
Γ are all functions over time, which are then integrated
according to the definition of norm of (9). As in (10), we
may sometimes drop the dependency on “(t)”, when using
functional operators such as the inner product of (8) or the
norm of (9).

In (10), we can now expand Jk by replacing xk with its
explicit expression of (5) written as function of the initial
state x0 sampled at time 0, and all references r0, . . . , rk−1

applied in every interval until kτ . By doing so, we get

Jk = ‖ỹ ◦∆kτ − CΦxk − CΓrk‖2β,τ =
)))))ỹ ◦∆kτ − CΦ

*
Ākx0 +

k−1"

i=0

Āk−i−1B̄ ri

+
− CΓrk

)))))

2

β,τ

=

))ỹ ◦∆kτ − CΦĀkx0 − CΠkr
))2
β,τ

(11)

with:

• the vector r ∈ RmN representing more compactly all
the N references (r0, . . . , rN−1) to be applied over the
N control intervals, and

• the mapping Πk : R → L(RmN ,Rn) returning for
every value of t a linear map Πk(t) : RmN → Rn.
The map Πk(t) represents the impact of all the N
references of r onto the state x(t) over the k-th interval
[kτ, (k + 1)τ). The map Πk is linear and is defined by
the following matrix in Rn×mN

Πk =

,
multiply r0' (% &
ΦĀk−1B̄ · · ·

rk−1'(%&
ΦB̄

rk'(%&
Γ

rk+1'(%&
0 · · ·

rN−1'(%&
0

-

(12)
so that

Πk(t)r = Φ(t)

k−1"

i=0

Āk−i−1B̄ ri + Γ(t)rk.

The definition of each of the N blocks of Πk, each one
of size n×m, reveals that:

– The block multiplying rk is set to Γ, which repre-
sents the impact of rk over the k-th interval itself,

– If i > k, then the n × m i-th block of Πk

multiplying ri is set to 0 to represent the fact that
future references ri cannot have an impact on the
k-th interval,

– If i < k, ri is multiplied by ΦĀk−i−1B̄i to account
for the impact of the past reference ri onto the k-th
interval.

The cost Jk of (11) is quadratic in r. We can then isolate
each term by the degree of the dependency on r. By doing
so, we get

Jk =
))ỹ ◦∆kτ − CΦĀkx0 − CΠkr

))2
β,τ

=
))ỹ ◦∆kτ − CΦĀkx0

))2
β,τ

(constant)

− 2
.
ỹ ◦∆kτ − CΦĀkx0, CΠkr

/
β,τ

(linear)

+ ‖CΠkr‖2β,τ (quadratic)

to isolate the constant, linear, and quadratic terms in r.
The constant term

))ỹ ◦∆kτ − CΦĀkx0

))2
β,τ

has an in-
teresting physical interpretation. It is in fact the difference
between:

• the target trajectory over the k-th interval ỹ ◦∆kτ , and
• the free output evolution over the k-th interval originat-

ing from x0.

If these two functions match perfectly (i.e., the norm of their
difference is zero), it is quite intuitive that there is nothing
better than applying all zero references with r = 0.

The inner product of the second linear term can be written
as a more explicit linear function of r by

.
ỹ ◦∆kτ − CΦĀkx0, CΠkr

/
β,τ

= Ỹkr − x⊤
0 Vkr

with Ỹk ∈ R1×mN accounting for the target trajectory in the



k-th interval [tk, tk+1) and defined by

Ỹk =
0
ỸΦ,kĀ

k−1B̄ · · · ỸΦ,kB̄ ỸΓ,k 0 · · · 0
1

(13)

ỸΦ,k = 〈ỹ◦∆kτ , CΦ〉β,τ=
! τ

0

e−βtỹ⊤(t+ tk)CΦ(t)dt (14)

ỸΓ,k = 〈ỹ◦∆kτ , CΓ〉β,τ=
! τ

0

e−βtỹ⊤(t+ tk)CΓ(t)dt (15)

and Vk ∈ Rn×mN , expressing the impact of the initial
state x0 over the k-th interval, defined by

Vk = (Ā⊤)k
0
MΦΦĀ

k−1B̄ · · · MΦΦB̄ MΦΓ 0 · · · 0
1

(16)

MΦΦ = 〈CΦ, CΦ〉β,τ =

! τ

0

e−βtΦ⊤(t)C⊤CΦ(t) dt (17)

MΦΓ = 〈CΦ, CΓ〉β,τ =

! τ

0

e−βtΦ⊤(t)C⊤CΓ(t) dt (18)

Finally, the quadratic term ‖CΠk(t)r‖2β,τk of Jk is ex-
panded as follows

‖CΠkr‖2β,τ = 〈CΠkr, CΠkr〉β,τ = r⊤Qkr (19)

with Qk ∈ RmN×mN defined by N × N blocks of size
m×m as reported in Eq. (20) (which appears in Figure 2)

The definition of Qk in (20) exploits the definitions of
MΦΦ, MΦΓ of Eqs. (17) and (18) respectively, and MΓΓ

defined by

MΓΓ = 〈CΓ, CΓ〉β,τ =

! τ

0

e−βtΓ⊤(t)C⊤CΓ(t) dt. (21)

The final derivation of Qk allows us to write the cost Jk
accumulated in the k-th interval as

Jk =
))ỹ ◦∆kτ − CΦĀkx0

))2
β,τ

−2(Ỹk−x⊤
0 Vk)r+r⊤Qkr

and then to state the following theorem which offers the
explicit expression of the cost J .

Theorem 1: The cost J of Equation (7) is equal to

J = const. − 2(Ỹ − x⊤
0 V )r + r⊤Qr (22)

with:
• const. =

2N−1
k=0 αk

))ỹ ◦∆kτ − CΦĀkx0

))2
β,τ

• Ỹ =
2N−1

k=0 αkỸk

• V =
2N−1

k=0 αkVk

• Q =
2N−1

k=0 αkQk

Proof: The proof is constructed by the steps preceding
the theorem statement.
Theorem 1 states that the cost, as initially defined by (7)
is a quadratic form in r. The determination of the optimal
r that minimizes such a cost, however, depends on the
characteristics of the linear and the quadratic terms of (22).
Next, we offer a couple of technical lemmas, which makes
another step for determining the optimal solution.

Lemma 1: The matrix Q ∈ RmN×mN is:
• symmetric, and
• positive semi-definite.

Proof: From the definitions of Eqs. (17) and (21) the
square matrices MΦΦ and MΓΓ are symmetric and then from
the definition of Eq. (20), ∀k the matrices Qk are symmetric
too. Q is a linear combination of matrices Qk, so it is
symmetric.

From (19) it follows that ∀r, r⊤Qkr ≥ 0 because it
is equal to ‖CΠkr‖2β,τ which is the square of a norm.
Hence, ∀k the matrix Qk is positive semi-definite. Since
Q is a linear combination of matrices Qk with non-negative
coefficients αk, then Q is also positive semi-definite. This
concludes the proof.

The matrix Q is then positive semi-definite. It may,
however, not be strictly positive definite. The next lemma
provides some insights about the null space of Q so that we
can find the minimum of the cost of (22).

Lemma 2: If r ∈ kerQ then r ∈ ker(Ỹ − x⊤
0 V ).

Proof: We prove the statement by contradiction. Let
us assume to have some r∗ such that r∗ ∈ kerQ and r∗ /∈
ker(Ỹ − x⊤

0 V ). Obviously it must be r∗ ∕= 0. For such a
choice of references r∗, the corresponding cost J of (22) is

J(r∗) = const. − 2(Ỹ − x⊤
0 V )r∗ + (r∗)⊤Qr∗

= const. − 2(Ỹ − x⊤
0 V )r∗

If (Ỹ −x⊤
0 V )r∗ > 0 then it is possible to find a large enough

λ > 0 such that J(λr∗) < 0. This, however, is not possible
because it is always J ≥ 0. An analogous argument can be
used if (Ỹ − x⊤

0 V )r∗ < 0. This leads to a contradiction.
Then it must be r∗ ∈ ker(Ỹ − x⊤

0 V ), as required.

Qk =

3

4444444444445

B̄⊤(Ā⊤)k−1MΦΦĀ
k−1B̄ B̄⊤(Ā⊤)k−1MΦΦĀ

k−2B̄ · · · B̄⊤(Ā⊤)k−1MΦΦB̄ B̄⊤(Ā⊤)k−1MΦΓ 0 · · · 0
B̄⊤(Ā⊤)k−2MΦΦĀ

k−1B̄ B̄⊤(Ā⊤)k−2MΦΦĀ
k−2B̄ · · · B̄⊤(Ā⊤)k−2MΦΦB̄ B̄⊤(Ā⊤)k−2MΦΓ 0 · · · 0

...
...

. . .
...

...
...

. . .
...

B̄⊤MΦΦĀ
k−1B̄ B̄⊤MΦΦĀ

k−2B̄ · · · B̄⊤MΦΦB̄ B̄⊤MΦΓ 0 · · · 0
M⊤

ΦΓĀ
k−1B̄ M⊤

ΦΓĀ
k−2B̄ · · · M⊤

ΦΓB̄ MΓΓ 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0

6

7777777777778

.

(20)

Fig. 2: Expression of Qk



Lemma 1 states that Q is positive semi-definite and
symmetric. Hence it can be diagonalized as follows:

9
Λ 0
0 0

:
=

9
H⊤

H⊤
0

:
Q

0
H H0

1

with:
• Λ the diagonal matrix with the strictly positive eigen-

value of Q,
•

0
H H0

1
the orthonormal matrix which diagonalizes

Q,
• the columns of H0 are an orthonormal basis of kerQ,

and
• the columns of H are an orthonormal basis of the

subspace of RmN orthogonal to kerQ.
From Lemma 2, any vector in kerQ = spanH0 also

belongs to the null-space of (Ỹ − x⊤
0 V ). Hence, the space

of all solutions is

{r∗}+ spanH0 = {r∗ + v : v ∈ spanH0} (23)

with r∗ = Hµ, for some linear combination µ of the basis H ,
found by the following standard minimization of a quadratic
form

J = const. − 2(Ỹ − x⊤
0 V )Hµ+ µ⊤H⊤QHµ

J = const. − 2(Ỹ − x⊤
0 V )Hµ+ µ⊤Λµ

∇J = −2(Ỹ − x⊤
0 V )H + 2µ⊤Λ

and by setting the gradient equal to zero

−2(Ỹ − x⊤
0 V )H + 2µ⊤Λ = 0

µ⊤Λ = (Ỹ − x⊤
0 V )H

Λµ = H⊤(Ỹ ⊤ − V ⊤x0)

µ = Λ−1H⊤(Ỹ ⊤ − V ⊤x0)

r∗ = HΛ−1H⊤(Ỹ ⊤ − V ⊤x0). (24)

This allows us to conclude that all solutions that minimize
the cost of (7) belong to {r∗}+spanH0, with r∗ from (24).
Which solution to pick in this set may respond to different
goals, such as robustness. This further investigation, however,
is left as future work.

Any given solution r∗ is, we remind, the collection
(r∗0 , r

∗
1 , . . . , r

∗
N−1) of all the N references to be applied over

the next N intervals to achieve minimal cost. References,
however, are computed in closed-loop upon the state is
sampled. Hence, they can be applied in a receding horizon
manner:

• only r∗0 is applied over [t0, t1)
• at t1 a new state x1 is sampled, possibly different than

the ideal state evolution Āx0 + B̄r∗0 , because of noise
or model inaccuracies, and based on it a new optimal
reference is computed and applied over [t1, t2).

Clearly, the computation of the new reference value can take
advantage of past computation due to the similarity of the
expressions. The numerical optimization of this procedure
will be investigated in the future. Note that, due to the form
of Ā, if the closed-loop continuous-time matrix A is not

asymptotically stable, possible numerical issues may arise in
the solution of the optimization procedure.

This receding horizon approach is explored in Section V-
C through a mobile robotics use case in which optimal
waypoints are used to control the motion of an unmanned
aerial vehicle.

V. SIMULATIONS

The simulation code and the corresponding videos of the
results described in this section can be accessed through the
public repository available at https://github.com/
ebni/opt_ref_track.

A. Impact of β

In this section, we briefly explore the impact of β. As
shown in Equation (6):

• if β = 0 then the differences between the target trajec-
tory ỹ(t) and the output y(t) are all equally accounted
in the integral of the cost,

• if β < 0 then the difference is weighted more for later
time instants, while

• if β > 0, the difference between the target and the
output is weighted more at earlier times.

We evaluate the impact of β on a simple double integrator
controlled by a PD, which has the following closed-loop
matrices

A =

9
0 1

−KP −KD

:
, B =

9
0

KP

:
. (25)

In this simulation, the gains of the internal controller were
set as KP = 2 and KD = 3.

The initial system state is x(0) = [0 0]T , which also
corresponds to a zero output y(0) = 0.

In the first example, we find the optimal references {rk}
so that the output follows as close as possible the target
trajectory

ỹ(t) =

;
1− cos(2π t)

2

<8

. (26)

Such a trajectory is chosen because starting from zero, it
requires to quickly reach 1 at time t = 0.5, and then go
back to zero.

Figure 3 shows the achieved output y(t) and the corre-
sponding optimal references {rk} minimizing the cost of
Eq. (6). The three plots correspond to three different values
of β ∈ {−10, 0, 10}. We observe that for β = 10 the
trajectory is more tightly followed before reaching the peak
at time t = 0.5. Also, we observe that, given the symmetry of
the target trajectory w.r.t. time t = 0.5, the achieved output
when β = −10 is the “mirror” of the output when β = 10.

The second example has the very same settings as above,
with the only difference of the target trajectory ỹ(t), which
is set equal to the unit step occurring at t = 0 as follows

ỹ(t) = step(t) =

=
1 t > 0

0 t ≤ 0.
(27)

The output and optimal references are reported in Figure 4
for the same values of β ∈ {−10, 0, 10} as above. We notice

https://github.com/ebni/opt_ref_track


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

y
(t
)
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that a choice of negative β achieves a better asymptotic
behavior. On the other hand, if a more rapid converge to
the desired set point is desired, then a positive β should be
preferred.

B. Impact of sampling period

In this section, we explore the impact of the period τ
for which each single reference is held. We borrow the PD-
controlled double integrator with closed loop matrices A and
B as in Equation (25). Also, in this section we assume β = 0
meaning that we give equal weight over time to the distance
between ỹ(t) and y(t), as indicated in the cost of Eq. (6).
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Fig. 5: Top: target trajectory ỹ(t) (blue) and achieved output
y(t) for different choices of τ and N (grays). Bottom:
optimal sequence of references.

The simulation of Figure 5 shows the evolution of the
output when the trajectory ỹ(t) to be tracked is the same of
Equation (26). The three plots correspond to three different
values of the holding time τ ∈ {0.04, 0.1, 0.2} and the
number of intervals N ∈ {25, 10, 5}. Not surprisingly, we
observe that the smaller is τ the closer the output y(t) is
to the target ỹ(t). Another phenomenon worth commenting
on is that when τ = 0.2 and N = 5, the optimal references
need to anticipate (at time t = 0.2) the coming growth of
the target trajectory, otherwise it may be too late (and too
costly according to (6)) to react at t = 0.4.

The simulation of Figure 6 shows, with the same values of
τ and N of Figure 5, the output when the target trajectory is a
step. The main comment worth making is that in response to
the discontinuity of the target at the origin, the first reference
r0 is always very large. Moreover, such a value grows as the
interval τ decreases.

C. The UAV use case

For real-world systems, it is common to define an optimal
control problem over a fixed prediction time horizon and con-
tinually find solutions by receding this horizon as the system
evolves. This is done to compensate for model inaccuracies
or random disturbances, as well as find a computationally
tractable approximation of the infinite-time horizon control
problem. In order to validate the proposed solution in a
realistic situation, the optimal control problem defined in
Eq. (6) was continually solved in a receding horizon fashion
for a linearized two-dimensional unmanned aerial vehicle
(UAV) system. Depending on the orientation of the UAV, the
motors can provide forces in a 2D plane. When linearized
about hovering, the UAV acts as two decoupled double
integrator systems, acting independently in each direction.
Thus, it is possible to use the closed-loop matrices A and B
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of Eq. (25) as a means of modeling motion over the plane. In
this case, the internal state x(t) ∈ R4 contains position and
velocity of both coordinates over the plane, and the control
input u(t) represents forces in the plane that map to motor
speeds of the UAV.

Additionally, it is common to define waypoints in the plane
for the UAV to move towards. In the context of this work,
the waypoint is a reference rk for the system to track over
time interval [tk, tk + τ), and such tracking is done by a PD
controller.

The optimal reference signal was tasked with commanding
the UAV to track the following target trajectory:

ỹ(t) =

9
4 sin(t)
2 sin(2t)

:
. (28)

Fig. 7 shows the resulting motion of the UAV for different
values of the holding time τ = {0.1, 0.25, 0.5}. In order to
make a fair comparison, the number of prediction intervals
N was also modified so that the total prediction horizon was
defined over 2 seconds into the future. Initially, at t = 0, the
optimal waypoints were computed for the next 2 seconds.
The first optimal waypoint r1 was applied to the system, and
after τ time, another set of optimal waypoints was found over
t = [τ, τ+2]. This process was repeated in a receding horizon
fashion, with Fig. 7 also showing the receding horizon (RH
– dashed line in the figure) at time t = 3.0. Included is
the norm of the difference between the target trajectory and
the actual trajectory over time, i.e., ‖ỹ(t)− y(t)‖, for each
choice τ .

When τ = 0.1s, N = 20 optimal waypoints were found
that could track the target trajectory with small difference.
With τ = 0.25s, only N = 8 optimal waypoints were chosen
over the 2s receding horizon, resulting in a larger difference.
Worse still was τ = 0.5s with N = 4 optimal waypoints.

Intuitively, this reflects the notion that a faster sampling rate
results in better tracking of the target trajectory.

VI. CONCLUSION AND FUTURE WORK

This paper presented an approach to optimally compute the
discrete-time reference signal rk given a desired continuous-
time trajectory ỹ(t) that the system output y(t) should
follow. The presented approach was presented for the case
of periodic sampling and has investigated its effects on the
obtainable performance over different examples, including a
UAV use case.

Future works will be devoted to the investigation of the
impact of limited processing and communication capacity on
the quality of the achieved control. Directions of investiga-
tion include the exploration of non-periodic sampling, the
evaluation of the impact of quantization, and the exploita-
tion of past computations when calculating references in a
receding horizon fashion.

Finally, we plan to apply the presented approach to addi-
tional use case applications, including experimental results in
our evaluation, and further investigate its robustness against
model uncertainty.

REFERENCES

[1] S. Schneider, A. Bylard, T. G. Chen, P. Wang, M. Cutkosky,
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