
Priority Based Ethernet Handling in Real-Time End
System with Ethernet Controller Filtering

Bjarne Johansson1,2, Mats Rågberger1, Thomas Nolte2, Alessandro V. Papadopoulos2

1 ABB Process Automation, Process Control Platform, Västerås, Sweden
2 Mälardalen University, Västerås, Sweden

{bjarne.johansson, mats.ragberger}@se.abb.com,
{thomas.nolte, alessandro.papadopoulos}@mdu.se

Abstract—This work addresses the impact of best-effort traffic
on network-dependent real-time functions in distributed control
systems. Motivated by the increased Ethernet use in real-time
dependent domains, such as the automation industry, a growth
driven by Industry 4.0, interconnectivity desires, and data thirst.
Ethernet allows different network-based functions to converge on
one physical network infrastructure. In the automation domain,
converged networks imply that functions with different criticality
and real-time requirements coexist and share the same physical
resources. The IEEE 60802 Time-Sensitive Networking profile
for Industrial Automation targets the automation industry and
addresses Ethernet network determinism on converged networks.
However, the profile is still in the draft stage at the time of writing
this paper. Meanwhile, Ethernet already provides attributes
utilized by network equipment to prioritize time-critical commu-
nication. This paper shows that Ethernet Controller filtering with
prioritized processing is a prominent solution for preserving real-
time guarantees while supporting best-effort traffic. A solution
capable of eliminating all best-effort traffic interference in the
real-time application is exemplified and evaluated on a VxWorks
system.

I. INTRODUCTION

Distributed Control Systems (DCS) are transcending into
the Industry 4.0 era, where data and information are valuable
optimization-enabling assets. Data collection requires connec-
tivity and communication, pushing the automation industry
towards network-centric solutions, implying that the network,
to some extent, replaces the controller as the information
center of the control system. Following in the tracks of
network-centric systems are increased interest for interconnec-
tivity and interoperability, key concepts in the Open Process
AutomationTM Standard1 (O-PAS). O-PAS prescribes OPC-
UA2 as the interoperable communication standard.

Upper bound end-to-end communication time of real-time
traffic is a challenge for converged Operation Technology (OT)
Ethernet networks when competing for network resources
against low-priority, best-effort traffic induced by noncritical
functions. A challenge addressed by Time Sensitive Net-
working (TSN) amendments to the IEEE 802.1Q Ethernet
networking standard. The IEEE 802.1Qbv amendment for

This work is funded by The Knowledge Foundation (KKS), projects
ARRAY and SACSys, and by The Swedish Foundation for Strategic Research
(SSF), project FuturAS.

1https://publications.opengroup.org/p190
2https://opcfoundation.org/

Scheduled Traffic (TSN-ST) brings forth short and bounded
end-to-end communication time on converged networks using
time-scheduled communication. TSN offers solutions but is
still in the early stages of industry adoption. For example, the
Industrial Automation IEEE 60802 TSN profile3 is at the time
of writing this paper still in the draft stage, and the support in
industrial network equipment is scarce [1].

Ethernet networking does not require TSN to provide
Quality of Service (QoS). The Priority Code Point (PCP),
introduced in the late ’90s in the IEEE 802.1D-1998 and
later incorporated in IEEE 802.1Q, already offers that. PCP
provides priority information utilizable by the OSI layer two
network infrastructure (i.e., switches) to determine forwarding
precedence.

In this paper, we address the challenge of preserving the
correctness of network-dependent real-time functions in end
systems when coexisting with non-real-time programs reliant
on best-effort traffic. We illustrate the problem with a simu-
lated DCN application running on VxWorks. A DCN appli-
cation with OPC UA PubSub-based real-time communication
dependencies. We identify prioritized frame processing aided
by Ethernet Controller filtering as a prominent solution, which
is the paper’s contribution, together with the verification of the
solution.

The paper is organized as follows. Section II presents the
related work. Section III describes the filtered enabled priori-
tized frame processing, followed by a quantitative evaluation in
Section IV, and a discussion in Section V. Section VI outlines
conclusions and future work.

II. RELATED WORK

TSN combined with OPC UA is identified by Bruckner et
al. [2] as the future of communication in the automation do-
main. TSN consists of multiple amendments to IEEE 802.1 [3]
and Lo Bello et al. [4] provide an overview and discuss open
issues from an automation mindset, where configuration ease
is one of the highlighted challenges. As mentioned in the in-
troduction and shown, for example, by Zhao et al. [5], TSN-ST
provides low latency, deterministic end-to-end communication,
but the scheduling problem is not a trivial problem [6], [7].
Hallmans et al. [1] highlight that industry TSN adoption is still

3https://1.ieee802.org/tsn/iec-ieee-60802/

low, and the support provided by industrial network equipment
is still scarce, motivating why we do not consider TSN in the
end system handling in this work.

Already in 2002, after the introduction of PCP, end system
handling of prioritized traffic was addressed by Skeie et al. [8]
with software-based priority queue to reduce latency, and the
need for QoS in the end system highlighted by Thyrbom et
al. [9]. Since then, many studies have been made on network
stack performance on Linux. For example, Larsen et al. [10]
studied TCP latency on Linux in a data center environment
and found that the latency is around 10µs in point-to-point
communication.

Beifuß et al. [11] measures latency and constructs a model to
predict latency in the Linux network stack to find optimization
knobs to turn. Describing four main optimization points:
(i) copying between user- and kernel space, (ii) usage of
preallocated buffer, (iii) polling to reduce interrupt frequency,
and (iv) processing of batches instead of single frames. The
performance study performed by Ramneek et al. [12] reaches
a similar conclusion: buffer allocation and interrupt handling
can be expensive in terms of CPU usage.

Priority inversion due to processing of low priority packets
with high priority can potentially impact high priority real-
time execution badly [13]. A challenge addressed by Lee
et al. [14] and further improved by Blumschein et al. [15].
Both use an early software demuxer to classify packages and
prioritize the handling of the incoming packet according to
the priority of the receiving task. To further aid that approach,
Behnke et al. propose a multi-queue network interface [16].
In contrast, our work focuses on unmodified network stacks
and presents Ethernet Controller enabled filtering to enable
processing priority matching the received frame’s QoS.

III. PRIORITIZATION FILTERING

The Ethernet Controller (EC) also known as Media Access
Controller (MAC) handles, with the Physical Layer (PHY), the
transmission and reception of Ethernet Frames. When a frame
is received, the EC stores the frame in a RxQueue and raises
an interrupt to the CPU, and the OS Network stack process
the frame further. However, as pointed out by earlier work, the
network stacks do not, by default, treat the incoming frames
according to priority, which may result in priority inversion or
latency [14], [16].

ECs provide filtering options and the possibility to direct
traffic to different Rx queues based on those filtering options.
In this section, we base our EC examples on Intel I2114,
which has PCP filtering capabilities and two Rx queues. Other
ECs, such as Intel I350, have eight Rx queues, allowing even
better filtering granularity. Different ECs also support different
filtering possibilities, from Ethernet header information to
filtering on the higher protocol-layer information, typically IP-
header information. We denote the configurable properties on
which to take the filter decision, the filtering property (FP).

Figure 1 summarizes the idea, elaborated next. Based on the
FP , the EC determines the frame priority. The EC queue high

4https://cdrdv2.intel.com/v1/dl/getContent/333017

priority frames on the high priority Rx queue and raises the
corresponding interrupt. The high priority ISR post the request
to serve the incoming frame to the high priority job queue
served by the high priority network task. Low-priority frames
are handled similarly but follow the low-priority path. If the
low priority task cannot read frames from the low priority
Rx queue faster than they arrive, the low priority queue will
eventually become full. It is then essential that the EC drop
low priority frames that can’t fit into the low priority queue
to avoid filling the RxFIFO and causing high priority frame
drops.

The principle described can also handle multiple network
interfaces, where the filtering can ensure that the most suitable
network task, priority vise, processes incoming frames.

A. QoS prioritization filtering on VxWorks

VxWorks5 is a widely used and well-known commercial
RTOS that has been around for more than 35 years and
installed more than two billion times. The solution was also
tested on Linux but left out due to page limitations.

Enabling priority packet filtering in VxWorks requires two
things, enabling driver support and providing two network
tasks with different priorities. The driver support added con-
sists of (i) support for multiple Rx queues and (ii) filter
configuration support. The filtering configuration of the EC
also configures the EC to drop frames if the destination Rx
Queue is full to prevent the RxFifo, from filling up and causing
high priority frame drop due to the Rx Queue for low priority
frames being full.

Two network tasks with different priorities are configured,
denoted NetTaskHP and NetTaskLP . The NetTaskHP
is the high-priority network task, given a priority of 20. The
NetTaskLP is the low priority network task and has priority
50. The priority values given here are the ones used in the
evaluation system, described in section IV-C.

IV. QUANTITATIVE EVALUATION

A. Evaluation setup

The evaluation setup consists of the four nodes, listed in
Table I. Table II lists the software. C1 runs the Evaluation

5https://www.windriver.com/products/vxworks

High prio.
job Q

Filter
FP

Rx FIFO

Low prio. frame

High prio. frame

Interrupt

Interrupt

High prio Q

ISR

Low prio.
job Q

Low prio Q

ISR

Serve high prio

job Queue

Serve low prio job

Queue
Low priority network task

(NetTaskLP)

High priority network task

(NetTaskHP)
Ethernet
conroller

Fig. 1: Priority based filtering - an example with two priorities,
high and low.

Application (EA), explained in Section IV-C. C3 and C4
are nodes addressing C1 with low-priority traffic. The high-
priority data exchange between C1 and C2 is brokerless OPC
UA PubSub over UDP6. The Switch is an OSI level two
Ethernet switch configured to give precedence based on the
PCP field in the Ethernet frame. The network consists of two
virtual local area networks (VLAN), with VLAN ID (VID) 1
and 2, see Fig. 2.

B. Network configuration

C1 has two ECs connected to two RJ45 ports. An I211 is
the Ethernet Port 1 (EP1) EC, and an I219 manages Ethernet
Port 2 (EP2). EP1 connects to VID 1 and EP2 to VID 2. The
OPC UA PubSub communication from C2 is the prioritized
traffic. Ethernet frames carrying the PubSub UDP frames have
the PCP field set to six, and the low priority traffic frames have
PCP set to zero. The links are 1 Gbps full-duplex.

C. Evaluation application

The EA consists of two applications/subsystems, the real-
time and non-real-time applications. The real-time application
simulates a control application concerning CPU load, deter-
minism, and dependency on input values.

The C1 CPU has four cores {P1, P2, P3, P4}. Each real-time
task τi is a 4-tuple ⟨Ci, Ti, Pi, Ai⟩. Ci is the worst-case exe-
cution time, Ti is the period (and deadline), i.e., shortest inter-
release time, Pi is the priority, where a lower value is a higher
priority, and Ai is core affinity, Ai ∈ {0, P1, P2, P3, P4} and
Ai = 0 means no affinity, i.e., the task can be scheduled on
all four cores.

The real-time application consists of two sets of tasks, HP =
{τHP

1 , τHP
2 , τHP

3 , τHP
4 } and MP = {τMP

1 , τMP
2 , τMP

3 , τMP
4 }. Each

set contains as many tasks as there are cores, that is, four. HP
contain the high priority tasks and MP the medium priority
tasks.
∀τHP

i
∀τMP

i
, τHP

i ∈ HP, τMP
i ∈ MP|τHP

i .P > τMP
i .P

The application has two multiprocessor using modes, Par-
titioned Scheduling (PS) mode, where the real-time tasks are

6https://reference.opcfoundation.org/v105/Core/docs/Part14/

TABLE I: Hardware used.
Node Hardware Ethernet

C1 MSI Intel 2.4GHz I3-7100U EP1 I211
256GB RAM EP2 I219

C2 Lenovo Mini PC EP1 I219
2GHz Intel I7 I7-9700T

16 GB RAM
C3,C4 Raspberry Pi 4B EP1 Broadcom 2711

1.5GHz ARM Cortex A72
Switch Zyxel GS1900-8 10 Gbps

Switch

Low prio sender High prio sender

Mix prio receiver

C1

C2C3

Low prio sender

C4

vlan id 1vlan id 2

Fig. 2: Evaluation setup topology.

TABLE II: Software versions used.

Name Version Comment
VxWorks 21.07 OS C1 and C2

Raspberry Pi OS 10 OS on C3 and C4
Open62541 1.0.1 OPC UA PubSub

stack on C1 and C2

C2

C3S

S

C4

R
HP TaskPubSub subscriber

 PubSub publisher

C1

MP Task

High Priority Task Set

Medium Priority Task Set

x4

x4

x4

R LP Task x2

Low Priority Task Set

LP Task

Iperf3 sender

S LP Task

Iperf3 sender

Iperf3 receiver

Fig. 3: Conceptual view of the evaluation application.

pinned to a specific core, using the task affinity property τ.A.
∀τHP

i
∀τMP

i
, τHP

i ∈ HP, τMP
i ∈ MP, i ∈ 1, . . . , 4|τHP

i .A =

Pi, τ
MP
i .A = Pi

The other mode is Global Scheduling (GS), where the sched-
uler is free to schedule the real-time tasks on all cores.
∀τHP

i
∀τMP

i
, τHP

i ∈ HP, τMP ∈ MP, i ∈ 1, . . . , 4|τHP
i .A =

0, τMP
i .A = 0

Fig. 3 gives a conceptual overview of the EA and system.
At each invocation, the HP task requires an updated value

from C2 and consumes all previous values received. Values are
exchanged with OPC UA PubSub, C2 is the publisher, and C1
is the subscriber. Each of the four sender tasks in C2 publishes
an updated value every 5th ms. In C1, for each τHP

i , there is
an event-driven OPC UA PubSub Subscriber task that shares
the affinity and priority of the τHP

i , that stores the received
values in a FIFO. A FIFO read by τHP

i , shown in Fig. 3.
The MP task does not have network dependency. An anal-

ogy is an application dependent on local I/O values. The
MP tasks have lower priority since they can have a longer
execution time than the HP task, allowing the HP task to
preempt the MP tasks. Table III shows priorities and execution
times, elaborated further in Section IV-D1.

The Low Priority (LP) application and tasks represent non-
time-critical applications, dependent on data produced in C3
and C4. For example, reception of system maintenance files
as preparation for a system upgrade, application change, and
less critical process values. We use Iperf3 7 to emulate this
application.

7https://iperf.fr/

TABLE III: Task parameters.

Name Priority (P) Period (T) Exec. time (C) CPU utilization
HP 20 10ms 1ms 10%
MP 40(HN), 50(EN) 20ms 0-16ms 0-80%

60(LN)
LP 100 Event driven Comm. dep. Comm. dep.
NetTask 50 Event driven Comm. dep. Net. dep.

MP

PubSubEvent

HP

5

Incomming PubSub frame
HP Ready
MP Ready

HP Completed

MP Overrrun (~2ms left)
PubSub

NetTaskHP

Incomming PubSub frame

HP Completed

Incomming PubSub frame
HP Ready
MP Ready

0 10 2015

PubSubEventPubSubEvent
PubSubEvent

Incomming PubSub frame

Fig. 4: Scheduling example of a HP and MP task.

D. Evaluation variants

By using different priorities, execution times, and best-effort
traffic, we measure the correctness of the EA in terms of
deadline misses (overruns) and missed high-priority values
updates from C2.

1) Execution time: The HP tasks have a fixed execution
time of one ms. We use different execution times for the MP
tasks for two reasons. Firstly, to observe how MP.C impacts
the NetTask and the HP dependencies on received values
from C2. Secondly, the NetTask interference on MP when
MP.C increases. Table III show the MP tasks C range and
the corresponding utilization. Note that the execution time, C,
specified is the CPU time the task requires to complete, i.e.,
the Worst-Case Execution Time (WCET) and execution time
are always the same.

The HP and MP CPU utilization range is between 10%
and 90%. OPC UA PubSub subscriber adds approximately
four percent, in addition to the time shown in Table III.
Fig. 4 shows that it is not possible to schedule MP tasks with
C = 16ms and T = 20ms combined with HP tasks with
C = 1ms and T = 10ms with the interference of a high
priority NetTask, the NetTaskHP, and the PubSub task. The
execution times illustrated for the PubSub and NetTaskHP are
likely higher than in reality, but other high-priority executions
are left out, such as scheduling overhead. A WCET analysis
would give us the exact limits, but that is beyond the scope of
this paper. The above is the motivation behind the upper limit
of MP.C = 16ms; it is over the limit.

2) Priority: As shown in Table III we use three priority
levels for MP. These are Higher than NetTask (HN) with
priority 40, Equal to the NetTask (EN) with priority 50, and
Lower than the NetTask (LN) with priority 60. The three levels
are selected to show the interference between NetTask and
real-time application tasks. MP priority HN, can cause MP
execution to block network handling and delay the values
communicated to HP. MP priority EN, can cause the MP
execution time to affect the network handling, similar to HN,
since VxWorks, by default, will not preempt the same priority.
Finally, when MP is lower in priority than the NetTask, LN,
the execution of the MP will not interfere with the network
communication. However, network handling can block MP and
cause MP to overrun.

3) Network traffic: The high priority network traffic consist
of the variable exchange over OPC UA PubSub from C2 to
C1. The different types of low priority, best-effort traffic are
summarized in Table IV. With No LP. we mean no low-
priority traffic. The 1Gbps link and the receiver processing

TABLE IV: Low priority network communication types.

Abbreviation Sender Protocol Bandwidth
No LP. None - 0
1 TCP C3 TCP < 1Gbps
2 TCP C3,C4 TCP < 1Gbps
1 UDP C3 UDP < 400Mbps
2 UDP C3,C4 UDP < 400Mbps

0 (0%) 1 (5%) 2 (10%) 3 (15%) 4 (20%) 5 (25%) 6 (30%)
0

1000

2000

3000

MP execution time (ms) and corresponding CPU utilization.

H
P

no
in

p.

PS - No LP
GS - No LP

Fig. 5: MP tasks with higher priority than NetTask (HN) result
in HP cycles without input updates.

possibilities limit the TCP bandwidth utilization. The UDP
max bandwidth utilization is limited to 400Mbps, about 34
frames per millisecond and 40% of the available bandwidth.

4) Scheduling variants: The VxWorks scheduler is a
priority-based preemptive scheduler that, by default, uses GS
and does not pin tasks to cores, with some exceptions, such
as the NetTask, that have a core affinity for performance
reasons. The default affinity for the NetTask is P1. The EA
can run in two scheduling modes, PS and GS. In PS mode
τHP
1 .A = P1, τ

MP
1 .A = P1, i.e., τHP

1 and τMP
1 are pinned to the

core P1, the same core as the NetTask. Their uncompromising
coexistence with the NetTask on the core P1 makes the EA
in the PS mode more likely to encounter failures faster due
to overuse of P1. The affinity to P1 prevents those tasks from
utilizing the potentially available CPU time on other cores.

E. VxWorks results – no filtering

This section presents the results of running the variants
discussed without prioritization filtering. The data comes from
one-minute per variant runs. Fig. 5 shows that MP with HN
priority, cause HP to lack input data when MP.C increases.
MP execution blocks the NetTask, and C2 PubSub values do
not reach HP during MP.C.

Fig. 6 shows the result when MP priority EN. The result
follows the same pattern for EA in PS mode as for MP priority
HN. For EA in GS mode, HP gets the data each cycle without
low priority traffic. A MP task with priority EN, equal to
NetTask priority, won’t preempt and block the NetTask; the
scheduler migrates the MP task to another available core if
any. With low-priority traffic, HP lacks updates when MP.C
increases.

With MP priority LN, MP.C does not affect HP reception
of values. However, NetTask execution can prolong the MP
response time. Fig. 7 shows when MP start to miss deadlines
and overruns for the different types of low priority, best-effort
traffic.

Again, we see that the EA in PS mode fails before the EA
in GS mode. Notable is also that the UDP traffic is more of
a challenge than TCP because the TCP flow control eases the
burden on the receiver.

Fig. 8 shows the average time the MP tasks are in the
ready state. Ready is the state a VxWorks task is in when

0 (0%) 2 (10%) 4 (20%) 6 (30%)
0

1000

2000

H
P

no
in

p.
PS - No LP

0 (0%) 2 (10%) 4 (20%) 6 (30%) 8 (40%) 10 (50%) 12 (60%)
0

100

200

H
P

no
in

p. GS - No LP
GS - 1 TCP
GS - 2 TCP

0 (0%) 2 (10%) 4 (20%) 6 (30%) 8 (40%) 10 (50%) 12 (60%)
0

1000
2000
3000
4000

MP execution time (ms) and corresponding CPU utilization.

H
P

no
in

p.

GS - 1 UDP
GS - 2 UDP

Fig. 6: MP tasks with equal priority to the NetTask (HN) result
in HP cycles without input updates.

0 (0%) 4 (20%) 8 (40%) 12 (60%)
0

200

400

O
ve

rr
un

s PS - No LP
PS - 1 TCP
PS - 2 TCP

0 (0%) 4 (20%) 8 (40%) 12 (60%)
0

500

1000

1500

O
ve

rr
un

s PS - 1 UDP
PS - 2 UDP

0 (0%) 4 (20%) 8 (40%) 12 (60%)
0

2

4

O
ve

rr
un

s GS - No LP
GS - 1 TCP
GS - 2 TCP

0 (0%) 4 (20%) 8 (40%) 12 (60%)
0

50

100

150

MP execution time (ms) and corresponding CPU utilization.

O
ve

rr
un

s GS - 1 UDP
GS - 2 UDP

Fig. 7: NetTask lower priority than MP - MP misses deadlines
(overruns).
it is ready to execute, but the CPU is busy executing higher
priority tasks/interrupts. The NetTask interference on the MP
task is higher in PS mode but limited to the MP task that
shares the core with NetTask. The MP average ready time in
PS mode when receiving low-priority TCP traffic is higher
for lower MP.C. Due to LP tasks (iperf3) getting more
execution time, resulting in a larger TCP flow control window.
Except for that TCP variant, UDP traffic causes the highest
interference on the MP tasks.

F. Evaluation system – with filtering

We apply the prioritization filtering mechanism described
in Section III-A on VxWorks running in C1. Table V shows
the task priorities when using filtering. NetTaskHP handles the
high-priority traffic and NetTaskLP processes the low-priority
traffic.

G. VxWorks result – with filtering

NetTaskHP handles the high-priority network traffic, the
data that HP tasks depend on, and NetTaskHP has a higher

TABLE V: Task parameters.

Name Priority (P) Period (T) Exec. time (C) CPU utilization
HP 20 10ms 1ms 10%
MP 40 20ms 0-16ms 0-80%
LP 100 Event driven Event driven Comm. dep.
NetTaskHP 20 Event driven HP Comm. dep. HP comm. dep.
NetTaskLP 50 Event driven LP Comm. dep. LP comm. dep.

priority than the MP tasks. Hence MP execution does not cause
lost / late inputs for HP.

Fig. 9 shows that with priority filtering of the incoming
frames, the MP deadline missing limit is higher; it now occurs
at 16ms (80% utilization), the upper limit of what is feasible.
Fig. 10 shows that the time the MP task is in a ready state is
not affected by the low priority traffic. Hence, with the help of
filtering in the EC, a network-dependent real-time application
can be free from interference from less critical, best effort,
and low priority network traffic.

V. DISCUSSION

Section IV-G shows that prioritization filtering can eliminate
best-effort traffic impact on the real-time functions. Even
though the EA is a simulated application designed to show
the priority inversion problem that emerges when handling
incoming traffic with different criticality, end-systems on con-
verged networks benefit from eliminating the priority inversion
problem. The elimination of priority inversion due to best-
effort traffic interference on critical real-time task increase the
dependability of the system. How much depends on properties
like CPU utilization, communication patterns, etc., domain
and solution-specific properties. Other potential benefits are
reduced latency and decreased probability of dropping high
priority frames due to full queues.

High NetTaskHP priority poses a potential risk. For ex-
ample, a Denial of Service (DoS) attacker could generate

0 (0%) 4 (20%) 8 (40%) 12 (60%)
0

500

1000

1500

2000

R
ea

dy
tim

e
(µ

s)

PS - No LP
PS - 1 TCP
PS - 2 TCP
PS - 1 UDP
PS - 2 UDP

0 (0%) 4 (20%) 8 (40%) 12 (60%)
0

200

400

600

800

1000

MP execution time (ms) and corresponding CPU utilization.

R
ea

dy
tim

e
(µ

s) GS - No LP
GS - 1 TCP
GS - 2 TCP
GS - 1 UDP
GS - 2 UDP

Fig. 8: Average time MP tasks are in ready state - blocked
for execution by higher priority tasks. The difference between
No LP and the graphs for LP traffic illustrates the LP traffic
impact on MP

0 (0%) 4 (20%) 8 (40%) 12 (60%) 16 (80%)
0

5

10

15

20

O
ve

rr
un

s
PS - No LP
PS - 1 TCP
PS - 2 TCP
PS - 1 UDP
PS - 2 UDP

0 (0%) 4 (20%) 8 (40%) 12 (60%) 16 (80%)
0

5

10

15

20

MP execution time (ms) and corresponding CPU utilization.

O
ve

rr
un

s

GS - No LP
GS - 1 TCP
GS - 2 TCP
GS - 1 UDP
GS - 2 UDP

Fig. 9: MP deadline misses with packet filtering enabled.

0 (0%) 4 (20%) 8 (40%) 12 (60%) 16 (80%)
0

100

200

300

400

R
ea

dy
tim

e
(µ

s) PS - No LP
PS - 1 TCP
PS - 2 TCP
PS - 1 UDP
PS - 2 UDP

0 (0%) 4 (20%) 8 (40%) 12 (60%) 16 (80%)
0

100

200

300

400

MP execution time (ms) and corresponding CPU utilization.

R
ea

dy
tim

e
(µ

s) GS - No LP
GS - 1 TCP
GS - 2 TCP
GS - 1 UDP
GS - 2 UDP

Fig. 10: Average pended time for all medium priority tasks -
with packet filtering.

high-priority traffic that starves out other high-priority execu-
tion. However, if real-time functions are network-dependent,
network handling is likely to have high priority. If that is
the case, filtering might reduce the DoS attack surface since
prioritization directs low priority, best-effort traffic to lower
priority processing. A potential hardening strategy could be to
limit the nodes trusted for high-priority processing and filter
not only on a QoS property but also on node identities. Such
as MAC- or IP-addresses. However, cybersecurity is a vast
topic on its own. We realize that the challenges and potential
future work could further evaluate how to use the Ethernet
Controllers for security purposes.

The traffic load used can be discussed; 400 Mbps UDP
traffic might be much. However, consider that we only used
two Ethernet ports and two clients. A modern IPC, such as the
APC 910 from B&R8, has support for six and more one Gbps
ports served by a similar CPU as the one in C1, a quad-core
Intel I3.

VI. CONCLUSION AND FUTURE WORK

In this paper, we identified hardware-aided filtering of
incoming frames to network processing with appropriate pri-

8https://www.br-automation.com/en/products/industrial-pcs/
automation-pc-910/

ority as a prominent solution. We described the steps needed
to realize priority processing filtering on VxWorks. Finally,
we evaluated the solution on VxWorks using a simulated
controller application consisting of several real-time and non-
real-time tasks with different priorities and network dependen-
cies. The results show that prioritization filtering eliminates
the best-effort traffic impact on the application’s real-time
functionality.

Relevant future work is to evaluate this approach on Linux
combined with virtualization and prioritization handling in
converged virtual networks. Another natural extension of this
work is to take a holistic approach that incorporates outgoing
traffic since outgoing traffic also requires network task pro-
cessing.

REFERENCES

[1] D. Hallmans, M. Ashjaei, and T. Nolte, “Analysis of the TSN standards
for utilization in long-life industrial distributed control systems,” in IEEE
Int. Conf. Emerg. Tech. & Fact. Autom. (ETFA), pp. 190–197, 2020.

[2] D. Bruckner, M.-P. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An introduction to opc ua tsn for industrial
communication systems,” Proc. IEEE, vol. 107, no. 6, pp. 1121–1131,
2019.

[3] N. Finn, “Introduction to time-sensitive networking,” IEEE Comm.
Stand. Mag., vol. 2, no. 2, pp. 22–28, 2018.

[4] L. Lo Bello and W. Steiner, “A perspective on IEEE time-sensitive
networking for industrial communication and automation systems,” Proc.
IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.

[5] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis for
IEEE 802.1Qbv time sensitive networks using network calculus,” IEEE
Access, vol. 6, pp. 41803–41815, 2018.

[6] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1 Qbv time sensitive networks,”
in Int. Conf. Real-Time Networks and Systems, pp. 183–192, 2016.

[7] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
computing for industrial automation through time-sensitive networking
(tsn),” IEEE Comm. Stand. Mag., vol. 2, no. 2, pp. 55–61, 2018.

[8] T. Skeie, S. Johannessen, and O. Holmeide, “The road to an end-to-end
deterministic ethernet,” in IEEE Int. Workshop on Factory Communica-
tion Systems, pp. 3–9, 2002.

[9] L. Thrybom and G. Prytz, “QoS in switched industrial ethernet,” in IEEE
Conf. Emerg. Tech. & Fact. Autom. (ETFA), pp. 1–8, 2009.

[10] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni, “Architectural
breakdown of end-to-end latency in a TCP/IP network,” Int. journal of
parallel programming, vol. 37, no. 6, pp. 556–571, 2009.

[11] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A study of networking software induced
latency,” in Int. Conf. and Workshops on Networked Systems (NetSys),
pp. 1–8, 2015.

[12] Ramneek, S.-J. Cha, S. H. Jeon, Y. J. Jeong, J. M. Kim, and S. Jung,
“Analysis of Linux kernel packet processing on manycore systems,” in
IEEE Region 10 Conf. TENCON, pp. 2276–2280, 2018.

[13] I. Behnke, L. Pirl, L. Thamsen, R. Danicki, A. Polze, and O. Kao,
“Interrupting real-time iot tasks: How bad can it be to connect your
critical embedded system to the internet?,” in 2020 IEEE 39th In-
ternational Performance Computing and Communications Conference
(IPCCC), pp. 1–6, 2020.

[14] M. Lee, H. Kim, and I. Shin, “Priority-based network interrupt schedul-
ing for predictable real-time support,” Journal of Computing Science
and Engineering, vol. 9, no. 2, pp. 108–117, 2015.

[15] C. Blumschein, I. Behnke, L. Thamsen, and O. Kao, “Differentiating
network flows for priority-aware scheduling of incoming packets in real-
time iot systems,” in 25th IEEE International Symposium on Real-Time
Distributed Computing (ISORC), 2022.

[16] I. Behnke, P. Wiesner, R. Danicki, and L. Thamsen, “A priority-aware
multiqueue nic design,” in In Proceedings ofthe 35th Annual ACM
Symposium on Applied Computing (SAC), 2022.

