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Abstract 
The research on real-time systems has produced 

algorithms for effective scheduling of system re-
sources while guaranteeing the real-time proper-
ties. However, the issue of allocating component 
services to schedulable task entities has gained little 
focus, even though component based development 
has attracted an increasingly interest, also in the 
real-time community. Trade-offs when allocating 
component services to tasks, are, e.g., cpu-
overhead, footprint and integrity. 

In this paper we present a general framework for 
calculating properties, such as memory consump-
tion and cpu-overhead, of a given mapping of com-
ponent services to tasks, while utilizing existing 
real-time analysis. 

1 Introduction 

The embedded systems domain represents a class 
of real-time systems where the requirements on 
safety, reliability, resource usage, and cost leaven 
all through development. Historically, the develop-
ment of such systems has been done using only low 
level programming languages, to guarantee full 
control over the system behaviour. As the complex-
ity and the amount of functionality implemented by 
software increase, so does the cost for software 
development. Also, since product lines are common 
within the domain, issues of commonality and reuse 
are central for reducing cost as well as increasing 
reliability. Therefore component-based develop-
ment has shown to be an efficient and promising 
approach for software development, enabling well 
defined software architectures as well as reuse.  

Typically, embedded systems react on the envi-
ronment and have to respond within a bounded 
interval in time, i.e., they are real-time systems; 
hence timing and scheduling are central concepts. 
Furthermore, these systems are often resource con-
strained; consequently memory footprint and CPU 
load are desired to be as low as possible. 

A problem in current component based embed-
ded software development practices is the mapping 
of component services to run-time threads (tasks) 
[8]. Because of the real-time requirements on most 
embedded systems, it is vital that the mapping con-
siders temporal attributes, such as worst case execu-
tion time (WCET), deadline (D) and period time 
(T). In a system with many small component ser-
vices, the overhead from context switches will be 
quite high. Embedded real-time systems consist of 
periodic and sporadic events and they usually have 
end-to-end timing requirements. Periodic events can 
often be coordinated and executed by the same task, 
while preserving temporal constraints. Hence, it is 
easy to understand that there can be profits from 
grouping several component services into one task. 
Some of the benefits can be less memory in form of 
stacks and task control blocks or lower CPU utiliza-
tion due to less overhead for context switches. 
There are many trade-offs to be made when allocat-
ing component services to tasks. Different proper-
ties can be accentuated depending on how compo-
nent services are allocated to tasks, e.g., footprint, 
performance or integrity.  

Allocating component services to tasks, and 
scheduling tasks are both complex problems and 
different approaches are used. Simulated annealing 
and genetic algorithms are examples of algorithms 
that are frequently used for optimization problems. 
However, to be able to use such algorithms, a 
framework to calculate properties, such as memory 
consumption and overhead, is needed. The work 
described in this paper presents a general model for 
reasoning about trade-offs concerning allocating 
component services to tasks, while preserving extra-
functional requirements. A framework is developed 
to help transit from component services, to a run-
time model while enabling verification of temporal 
constraints, and optimization for low footprint and 
overhead.  

The problem of allocating tasks to different 
nodes is a problem that has been studied by re-
searchers using different methods [6,18]. There are 
also methods proposed for transforming structural 
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models to run-time models [3,5,10], but extra-
functional properties are usually ignored or consid-
ered as non-critical [8]. However, allocating com-
ponents to tasks is a different problem. In [16], an 
architecture for embedded systems is proposed, and 
it is identified that components has to be grouped 
into tasks, however there is no focus on the alloca-
tion of components to tasks. In [8] the authors pro-
pose a model transformation where all components 
with the same priority are allocated to the same 
task. The idea of assigning components to tasks 
considering extra-functional properties for embed-
ded systems is a relatively uncovered area. How-
ever, similar approaches to this work have been 
formulated by Shin et. al [16] and Kodase et. al [8]. 
In [4], the authors discuss how to minimize memory 
consumption in real-time task sets. Shin et. al [15] 
are discussing the code size, and how it can be 
minimized.  

The outline for the rest of the paper is as follows; 
section 2 gives an overview of the component ser-
vice to task mappings, and describes the structure of 
the components and tasks. In section 3 a framework 
for calculating the properties of components allo-
cated to tasks. Section 4 discusses allocation and 
scheduling approaches, while an illustrative exam-
ple is given in section 5. Finally in section 6, future 
work is discussed and the paper is concluded. 

2 Mapping component services to 
real-time tasks  

Component based software engineering is a 
promising approach for efficient software develop-
ment, enabling well defined software architectures 
as well as reuse. Temporal constraints are of great 
importance in embedded real-time systems; hence 
we need an efficient mapping from component 
services to tasks that enables verification of tempo-
ral behaviour. End-to-end deadlines are denoted 
transactions, and are defined by a sequence of com-
ponent services and a timing requirement. Given a 
mapping from component services and transactions 
to tasks we can determine if the mapping is valid 
and schedulable, and calculate the properties mem-
ory consumption and overhead. The verification is 
performed with a framework during compile-time. 
The work in this paper has two main concerns: 

1. Verification of mappings from component 
services to tasks. 

2. Calculating system properties for a mapping 

This paper is a refinement of previous work, 
autocomp [14], which is a component technology. 
An overview of the autocomp technology can be 
seen in Figure 1. The different steps in the figure is 
divided into design time, compile time, and run-
time to display at which point in time during devel-

opment they are addressed or used. The component 
model is used during design time for describing an 
application. The compile time steps, illustrated in 
Figure 1, incorporate a mapping from the compo-
nent based design, to a real-time model and map-
ping to a real-time operating system (RTOS). Dur-
ing this step the component services are replaced by 
real-time tasks and the component service require-
ments are mapped to task-level attributes. 

Model transformation 

Real-time model 

Synthesis

  

Design- 
Time

Compile-
Time 

Run- 
Time

Component model 

RTOS 

t

Figure 1 System description. 

Our general component and task model com-
bined with the notion of transactions and a pipe-
and-filter model constitutes a general approach that 
should be easy to implement for a large set of com-
ponent technologies for embedded systems such as 
Autocomp [14], Rubus [1], Koala [19] and Port-
based objects [17]. 

The component and transaction characteristics 
are described in the sections 2.1 and the tasks char-
acteristics are described in section 2.2.  

2.1 Component characteristics 

In this paper we will describe characteristics for 
a general component model that should be applica-
ble to a large set of commercial or research embed-
ded component models. The component and task 
models are meta-models for modelling the most 
important attributes of a mapping between compo-
nent services and tasks. The models are used for 
evaluation considering a set of requirements, e.g., 
memory consumption and overhead. The compo-
nent structure used throughout this paper is a pipe-
and-filter model with transactions. In Figure 2 a 
component assembly with six component services 
and two transactions is described. Each component 
service has a trigger; a time trigger, an event trigger 
or a trigger from a preceding component. A compo-
nent transaction describes an order of component 
services and defines an end-to-end timing require-
ment. Each primitive is graphically denoted in 
Figure 2. 
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Many component models do not have the notion 
of transactions built in, however, if there are possi-
bilities to model end-to-end timing requirements 
and precedence, then that can be seen as transac-
tions at a higher abstraction level. A system is de-
scribed with components, component services and 
transactions defining the temporal requirements on 
the component services. 

• A component ci is described with the tuple  
<S, I > where S is a set of component services 
provided by the component. The isolation set 
(I) defines a relation between components that 
need to be isolated for guaranteeing integrity 
(memory protection). This is often required for 
safety critical components.  

• A component service ci
j is described with the 

tuple <G, wcet, mem >, G is a trigger which is 
described with the tuple <S,T> where S is a 
signal from another component, an external ev-
ent or a timed event. T represents the minimum 
inter arrival time (MINT) in the case of an ex-
ternal event. It represents the period in the case 
of a timed trigger and it is unused if the signal 
is from another component. The parameter 
wcet is the worst case execution time, and mem, 
is the amount of memory required by the ser-
vice. A component can have an arbitrary set of 
services. A component i with a service j is de-
noted as ci

j. A component service can only trig-
ger one subsequent component service. How-
ever, a subsequent component service can be 
triggered by several proceeding component 
services, i.e., a component service can be part 
of several component transactions. 

A component transaction ctri is an ordered 
relation between component services and an 
end-to-end deadline. A component transac-
tion can stretch over one or several compo-
nent services and it is described with the tu-
ple < N, d >, where N is a set of component 
services {ci

x, cj
y, ck

z} and d is a relative 
deadline. The deadline is relative to the 
event that triggered the component transac-
tion. A component transaction describes a 
precedence order, i.e., the component ser-
vices defined by the N-set are executed in 
the order they appear in the component 
transaction (in the N-set). The same compo-
nent service can participate in several com-
ponent transactions. The precedence order is 
loose, meaning that the component services 
can be executed several times within the 
same component transaction, i.e., the exact 
order 1-2-3-4 is fulfilled also if the compo-
nent services execute in the order 1-3-2-3-4 
which is also formalized below: 
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Because of the loose precedence order no 
consistency or atomicity models are needed. 
There are requirements and restrictions on 
component transactions; the first service in a 
component transaction has to be triggered by 
an event, a time trigger or another compo-
nent. An event trigger may only trigger the 
first service in a component transaction. 

 
Figure 2 Component transaction model. 

2.2 Task characteristics 

The run-time model specifies the organization of 
entities in the component model into tasks and task 
transactions. During the transformation from com-
ponent model to run-time model, extra-functional 
properties like schedulability and response-time 
constraints must be considered in order to ensure 
the correctness of the final system. Actions within a 
task are executed at the same priority as the task, 
and a high priority task pre-empts a low priority 
task. Component services only interact through 
explicit interfaces, hence tasks do not synchronize 
outside the component model. The task model is for 
evaluating schedulability and other properties of a 
system.  

• A system K is described with the tuple  
<A, tcbsize, ρ > where A is a task set scheduled 
by the system, tcbsize is the size of each task 
control block, and can be considered constant, 
and the same for all tasks. The constant ρ is the 
time associated with a task switch. The system 
kernel is the only explicit shared resource be-
tween tasks; hence we do not consider block-
ing. Also blocking is not the focus of this pa-
per. 

                                                           
1 “*” means zero or more occurenses; “+” menas one or more 
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• A task τi is described with the tuple  
< S, T, wcet, stack> where S is an ordered set 
of component services. Component services 
within a task are executed in sequence. T is the 
period or minimum inter arrival time of the 
task. The parameters wcet and stack are worst 
case execution time and stack size respectively. 
The wcet, stack and period (T) are deduced 
from the component services in S. Hence, for a 
task τi: 

• 
( )
∑

∈∀∀

=
Sc

j
i

j
iji

wcetcwcet .  

• ( ) ).max( memcScstack j
i

j
iji ∈∀∀=
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i

j
iji ..min∈∀∀=  

• A task transaction ttri The timing require-
ments of a task transaction ttri are deduced 
from the timing requirements of the component 
transactions ctri. A task transaction ttri is de-
scribed with the tuple < M, d >, where M is a 
set of tasks { τi, τj, τk

 } and d is a relative dead-
line. The task transaction ttri is a direct map-
ping from the component transaction ctri. The 
task transaction ttri has the same parameters as 
the component transactions ctri but τi, τj and τk 
are the tasks that map the services ci

j, cj
k and 

ck
l respectively, see Figure 3. The task transac-

tion defines a loose precedence order between 
tasks, meaning that a task transaction is real-
ized when the tasks have executed in the order 
they appear in the task transaction, i.e. even if 
the component services do not execute in the 
exact order 1-2-3-4 they can execute in the or-
der 1-3-2-3-4, which is still a valid task trans-
action. This is due to the pipe-and-filter model 
where the data flow through the component 
services defines the task transaction. The same 
restrictions applied on the component transac-
tions ctri, apply on the task transactions ttri. 
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Figure 3, translation of component transac-

tions, to task transaction. 

2.3 Constraints on transactions 

If several task transactions ttri span over the ex-
act same tasks, the task transaction with the 
shortest deadline is the only valid.  

A component transaction defines precedence 
between component services. When component 
services are allocated to tasks, the precedence 
defined by the component transactions must 
never be broken. In other words, a set of com-
ponent services c1

1, c2
1 and c3

1 with the prece-
dence 1-2-3, may be allocated to tasks in any 
way that do not break the precedence. Hence, 
only services c1

1 and c3
1 may not be allocated 

to the same task. However, services c1
1 and c2

1, 
or c2

1 and c3
1 may be allocated (Figure 4), thus 

the component service precedence is preserved. 

 
Figure 4 Three different allocations 

Allocations (1), (2), (3) and (5) do not violate 
the precedence S1-S2-S3. Allocation (4) has 
violated the precedence (S1-S3). 

If component transactions intersect, there are dif-
ferent strategies for how to allocate the component 
where the transactions intersect. The component in 
the intersection (cint) has to be allocated to a sepa-
rate task when a transaction that has an event trigger 
intersects another transaction. The task cint has to be 
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triggered by both transactions. This is done to in-
crease the schedulability by increasing responsive-
ness. 

In Figure 5 (1) the component cint is allocated to 
a separate task because an event triggered transac-
tion is intersecting an other transaction. In Figure 5 
(2) there is no event triggered transaction, and cint 
can be allocated to any task. Two intersecting time 
triggered transactions can be handled in any way 
that does not violate the precedence relations. 

 

 
Figure 5 Intersecting transactions, event-

triggered vs. time-triggered. 

3 Evaluation framework 

The evaluation framework is a set of models for 
calculating properties of allocations of component 
services to tasks. The properties calculated with the 
framework are used for optimization algorithms, to 
find a feasible allocation that fulfils given require-
ments on memory consumption and performance 
overhead. 

For a task set A that has been mapped from com-
ponent services to tasks in a one-to-one fashion, it is 
trivial to calculate the system memory consumption 
and performance overhead since each task has the 
same properties as the basic component service. 
When several component services are grouped to 
one task we need to calculate the tasks properties. 
For a set of component services, c1

1…cn
n, mapped 

to a set of tasks A the following properties are con-
sidered. 

• Performance overhead pA 

• Memory consumption mA 

The performance overhead is not dependent on 
how many services are allocated to a task. Each 
service ci

j has a memory consumption stack. The 
Stack of the task is the maximum size of all services 
stacks allocated to the task since all services will 
use the same stack. 

The CPU overhead p, the memory consumption 
m for a task set A in a system K is described below: 

• 
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3.1 Constraints on allocations 

It is not realistic to expect that components can 
be grouped in an arbitrary way. There may be ex-
plicit dependencies that prohibits that certain com-
ponents are grouped together. Therefore each com-
ponent has an isolation set I that defines with which 
components it may not be grouped.  

 
A component ci may have defined an isolation 

set Ii{ck,…,cn}, with components which it may not 
be allocated to ensure integrity between compo-
nents. Hence it must be assured that two compo-
nents that are defined to be isolated do not reside in 
the same task. The isolation is a restriction on 
which components may not be allocated to the same 
task. The isolation of a task set A can be validated 
and confirmed with: 
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Some grouping of component services to tasks 
can be performed without impacting the schedula-
bility negatively. Component services with a prece-
dence order can be grouped into a task if they have 
no other explicit dependencies, thereby lowering the 
overhead generated by context switches and lower-
ing the memory usage by using one stack, see (1) in 
Figure 6. Component services with the same period 
time can be grouped if they do not have any other 
explicit dependencies, (2) Figure 6.  

 
  A   B =>   A   B (1) 

  T  T =>   T  T  (2) 

 
Figure 6 Component service grouping. 

Schedulability analysis is highly dependent on 
the scheduling policy chosen. Depending on the 
system design, different analyses approaches have 
to be considered. The task and task transaction 
meta-models are constructed to fit different sched-
uling analyses. 

                                                           
2 Question mark Ci

? indicates component Ci independent of 
which service is handled 

cint 
 cint 

cint cint 

(1)

(2)
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Furthermore, only allocations with several com-
ponents to one task are considered, hence we leave 
out multiple-to-multiple allocations. Multiple-to-
multiple allocations make the system less analyz-
able and increase the complexity. Also It is assumed 
that if the system is schedulable in a one-to-one 
mapping fashion, it is also schedulable after the 
component service to task allocation.  

4 Using the framework 

An allocation can be performed in several differ-
ent ways. In a small system all possible allocations 
can be evaluated and the best chosen. For a larger 
system, however, this is not possible due to the 
combinatorial explosion. Different algorithms can 
be used to find a feasible allocation and scheduling 
of tasks. For any algorithm to work there must be 
some way to evaluate an allocation or real-time 
schedule. The proposed evaluation framework can 
be used to calculate schedulability, performance 
overhead and total memory load.  

Simulated annealing, genetic algorithms and bin 
packing are well known algorithms often used for 
optimization problems.  These algorithms have been 
used for problems similar to those described in this 
paper; bin packing, e.g., has been proposed in [13]. 
Here we discuss how theses algorithms can be used 
with the described framework, to perform compo-
nent to task allocations. 

Bin Packing is a method well suited for our 
framework. In [7] a bin packing model that handles 
arbitrary conflicts (BPAC) is presented. The BPAC 
model constrains certain elements from being 
packed into the same bin.  which directly can be 
used in our model as the isolation set I. The bin-
packing feasibility function is the schedulability, 
and the performance and memory overhead consti-
tute the optimization function. 

Genetic algorithms can solve, roughly, any prob-
lem as long as there is some way of comparing two 
solutions. The framework proposed in this paper 
give the possibility to use the properties memory 
consumption, performance overhead and schedula-
bility as grades for an allocation, in order to evolve 
new allocation specimen. Similar work with genetic 
algorithms has been made in, e.g., [12] and [11]. 

The simulated annealing (SA) is a global optimi-
zation technique that is regularly used for solving 
NP-Hard problems. The energy function consists of 
a schedulability test, the memory consumption and 
performance overhead. In [18] and [2] simulated 
annealing is used to place tasks on nodes in a dis-
tributed system. 

5 Evaluation 

In order to evaluate the performance of our allo-
cation approach we have made an implementation 
of the framework. We choose to perform a set of 
allocations and compare the results to a basic map-
ping where each service is allocated to a task. We 
compare the allocations with respect to memory 
usage and cpu overhead.  

The implementation is based on genetic algo-
rithms (GA) [20]. Each gene represents a service, 
and contains a reference to the task it is assigned. 
Each chromosome represents the entire system with 
all services assigned to tasks. Each allocation pro-
duced by the GA is evaluated by the framework, 
and is given a fitness value dependent on the valid-
ity of the allocation and the memory consumption 
and cpu overhead. 

Figure 7 The genetic algorithm view of the com-
ponent service to task mapping; A system with 

10 services. 

A simulator generates systems with a given number 
of services, components and transactions. The GA 
framework then performs an allocation and record 
the improvement in memory usage and cpu over-
head compared to a one-to-one mapping. The aver-
age stack usage and the cpu overhead for one-to-
one mapping and for our component service map-
ping is shown in Table 1. The data set consists of 
approximately 300 simulations. 

One-to-one mapping 
Component service 

mapping Number  
of 

services Stack Overhead % Stack Overhead % 

5 2898 9% 2253 5% 

10 5705 18% 4516 12% 

15 8250 27% 6451 17% 

20 11068 35% 8369 21% 

25 13516 37% 10364 23% 

30 16737 41% 12431 25% 
Table 1 Average stack usage and cpu overhead 

for one-to-one mappings and component service 
mappings. 

Note that the improvement is almost constant inde-
pendent of the number of services. Figure 8 summa-
rizes the improvement in stack size and cpu over-
head in component service mapping compared to 
one-to-one mapping. The number of tasks generated 
for different number of component services is 

τ1 τ2 τ3 τ4τ2 τ3
 τ4

 τ1
 τ2

 τ1

c1
1 c1

2 c2
1 c2

2 c1
3 c3

1 c3
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3 c3
4 c4
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shown in Figure 9. Hence we can see a clear im-
provement in both memory usage and cpu overhead 
when facilitating the framework for allocating com-
ponent services to tasks. In an average case our 
studies suggest an improvement in memory usage 
of 35%. For cpu overhead the improvement is ap-
proximately 20%. 
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Figure 8 Average improvement of stack and 
overhead; comparing component service map-

ping to one-to-one mapping. 
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6 Conclusion and Future Work 

For embedded real-time systems resource effi-
ciency, both performance and memory wise, is very 
important. Schedulability, considering resource 
efficiency, has gained much focus, however the 
mapping between component services to tasks has 
gained little focus. Hence, in this paper we have 
described an evaluation framework for allocating 
component services to tasks, to facilitate existing 
scheduling and optimization algorithms such as 
genetic algorithms, bin packing or simulated an-
nealing. The framework can be extended to support 
other optimizations, besides performance and mem-
ory overhead. We also show that the framework can 
give substantial improvements both in terms of 
memory usage and cpu overhead. In future work, 

the framework will be extended with jitter and 
blocking requirements. We will also look into how 
different cpu load will affect the mapping of a sys-
tem. 
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